Merge commit 'dfc115332c94a2f62058ac7f2bce7631fbd20b3d'
[unleashed/tickless.git] / kernel / fs / zfs / dsl_dir.c
blobace9716cd0250c34e93f5e5a44630e18aa989a6f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
52 * Filesystem and Snapshot Limits
53 * ------------------------------
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
130 static void
131 dsl_dir_evict_async(void *dbu)
133 dsl_dir_t *dd = dbu;
134 dsl_pool_t *dp = dd->dd_pool;
135 int t;
137 dd->dd_dbuf = NULL;
139 for (t = 0; t < TXG_SIZE; t++) {
140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 ASSERT(dd->dd_tempreserved[t] == 0);
142 ASSERT(dd->dd_space_towrite[t] == 0);
145 if (dd->dd_parent)
146 dsl_dir_async_rele(dd->dd_parent, dd);
148 spa_async_close(dd->dd_pool->dp_spa, dd);
150 dsl_prop_fini(dd);
151 mutex_destroy(&dd->dd_lock);
152 kmem_free(dd, sizeof (dsl_dir_t));
156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
157 const char *tail, void *tag, dsl_dir_t **ddp)
159 dmu_buf_t *dbuf;
160 dsl_dir_t *dd;
161 int err;
163 ASSERT(dsl_pool_config_held(dp));
165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
166 if (err != 0)
167 return (err);
168 dd = dmu_buf_get_user(dbuf);
169 #ifdef ZFS_DEBUG
171 dmu_object_info_t doi;
172 dmu_object_info_from_db(dbuf, &doi);
173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
176 #endif
177 if (dd == NULL) {
178 dsl_dir_t *winner;
180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
181 dd->dd_object = ddobj;
182 dd->dd_dbuf = dbuf;
183 dd->dd_pool = dp;
184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
185 dsl_prop_init(dd);
187 dsl_dir_snap_cmtime_update(dd);
189 if (dsl_dir_phys(dd)->dd_parent_obj) {
190 err = dsl_dir_hold_obj(dp,
191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
192 &dd->dd_parent);
193 if (err != 0)
194 goto errout;
195 if (tail) {
196 #ifdef ZFS_DEBUG
197 uint64_t foundobj;
199 err = zap_lookup(dp->dp_meta_objset,
200 dsl_dir_phys(dd->dd_parent)->
201 dd_child_dir_zapobj, tail,
202 sizeof (foundobj), 1, &foundobj);
203 ASSERT(err || foundobj == ddobj);
204 #endif
205 (void) strcpy(dd->dd_myname, tail);
206 } else {
207 err = zap_value_search(dp->dp_meta_objset,
208 dsl_dir_phys(dd->dd_parent)->
209 dd_child_dir_zapobj,
210 ddobj, 0, dd->dd_myname);
212 if (err != 0)
213 goto errout;
214 } else {
215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
218 if (dsl_dir_is_clone(dd)) {
219 dmu_buf_t *origin_bonus;
220 dsl_dataset_phys_t *origin_phys;
223 * We can't open the origin dataset, because
224 * that would require opening this dsl_dir.
225 * Just look at its phys directly instead.
227 err = dmu_bonus_hold(dp->dp_meta_objset,
228 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
229 &origin_bonus);
230 if (err != 0)
231 goto errout;
232 origin_phys = origin_bonus->db_data;
233 dd->dd_origin_txg =
234 origin_phys->ds_creation_txg;
235 dmu_buf_rele(origin_bonus, FTAG);
238 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
239 &dd->dd_dbuf);
240 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
241 if (winner != NULL) {
242 if (dd->dd_parent)
243 dsl_dir_rele(dd->dd_parent, dd);
244 dsl_prop_fini(dd);
245 mutex_destroy(&dd->dd_lock);
246 kmem_free(dd, sizeof (dsl_dir_t));
247 dd = winner;
248 } else {
249 spa_open_ref(dp->dp_spa, dd);
254 * The dsl_dir_t has both open-to-close and instantiate-to-evict
255 * holds on the spa. We need the open-to-close holds because
256 * otherwise the spa_refcnt wouldn't change when we open a
257 * dir which the spa also has open, so we could incorrectly
258 * think it was OK to unload/export/destroy the pool. We need
259 * the instantiate-to-evict hold because the dsl_dir_t has a
260 * pointer to the dd_pool, which has a pointer to the spa_t.
262 spa_open_ref(dp->dp_spa, tag);
263 ASSERT3P(dd->dd_pool, ==, dp);
264 ASSERT3U(dd->dd_object, ==, ddobj);
265 ASSERT3P(dd->dd_dbuf, ==, dbuf);
266 *ddp = dd;
267 return (0);
269 errout:
270 if (dd->dd_parent)
271 dsl_dir_rele(dd->dd_parent, dd);
272 dsl_prop_fini(dd);
273 mutex_destroy(&dd->dd_lock);
274 kmem_free(dd, sizeof (dsl_dir_t));
275 dmu_buf_rele(dbuf, tag);
276 return (err);
279 void
280 dsl_dir_rele(dsl_dir_t *dd, void *tag)
282 dprintf_dd(dd, "%s\n", "");
283 spa_close(dd->dd_pool->dp_spa, tag);
284 dmu_buf_rele(dd->dd_dbuf, tag);
288 * Remove a reference to the given dsl dir that is being asynchronously
289 * released. Async releases occur from a taskq performing eviction of
290 * dsl datasets and dirs. This process is identical to a normal release
291 * with the exception of using the async API for releasing the reference on
292 * the spa.
294 void
295 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
297 dprintf_dd(dd, "%s\n", "");
298 spa_async_close(dd->dd_pool->dp_spa, tag);
299 dmu_buf_rele(dd->dd_dbuf, tag);
302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
303 void
304 dsl_dir_name(dsl_dir_t *dd, char *buf)
306 if (dd->dd_parent) {
307 dsl_dir_name(dd->dd_parent, buf);
308 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
309 ZFS_MAX_DATASET_NAME_LEN);
310 } else {
311 buf[0] = '\0';
313 if (!MUTEX_HELD(&dd->dd_lock)) {
315 * recursive mutex so that we can use
316 * dprintf_dd() with dd_lock held
318 mutex_enter(&dd->dd_lock);
319 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
320 <, ZFS_MAX_DATASET_NAME_LEN);
321 mutex_exit(&dd->dd_lock);
322 } else {
323 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
324 <, ZFS_MAX_DATASET_NAME_LEN);
328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
330 dsl_dir_namelen(dsl_dir_t *dd)
332 int result = 0;
334 if (dd->dd_parent) {
335 /* parent's name + 1 for the "/" */
336 result = dsl_dir_namelen(dd->dd_parent) + 1;
339 if (!MUTEX_HELD(&dd->dd_lock)) {
340 /* see dsl_dir_name */
341 mutex_enter(&dd->dd_lock);
342 result += strlen(dd->dd_myname);
343 mutex_exit(&dd->dd_lock);
344 } else {
345 result += strlen(dd->dd_myname);
348 return (result);
351 static int
352 getcomponent(const char *path, char *component, const char **nextp)
354 char *p;
356 if ((path == NULL) || (path[0] == '\0'))
357 return (SET_ERROR(ENOENT));
358 /* This would be a good place to reserve some namespace... */
359 p = strpbrk(path, "/@");
360 if (p && (p[1] == '/' || p[1] == '@')) {
361 /* two separators in a row */
362 return (SET_ERROR(EINVAL));
364 if (p == NULL || p == path) {
366 * if the first thing is an @ or /, it had better be an
367 * @ and it had better not have any more ats or slashes,
368 * and it had better have something after the @.
370 if (p != NULL &&
371 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
372 return (SET_ERROR(EINVAL));
373 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
374 return (SET_ERROR(ENAMETOOLONG));
375 (void) strcpy(component, path);
376 p = NULL;
377 } else if (p[0] == '/') {
378 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
379 return (SET_ERROR(ENAMETOOLONG));
380 (void) strncpy(component, path, p - path);
381 component[p - path] = '\0';
382 p++;
383 } else if (p[0] == '@') {
385 * if the next separator is an @, there better not be
386 * any more slashes.
388 if (strchr(path, '/'))
389 return (SET_ERROR(EINVAL));
390 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
391 return (SET_ERROR(ENAMETOOLONG));
392 (void) strncpy(component, path, p - path);
393 component[p - path] = '\0';
394 } else {
395 panic("invalid p=%p", (void *)p);
397 *nextp = p;
398 return (0);
402 * Return the dsl_dir_t, and possibly the last component which couldn't
403 * be found in *tail. The name must be in the specified dsl_pool_t. This
404 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
405 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
406 * (*tail)[0] == '@' means that the last component is a snapshot.
409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
410 dsl_dir_t **ddp, const char **tailp)
412 char buf[ZFS_MAX_DATASET_NAME_LEN];
413 const char *spaname, *next, *nextnext = NULL;
414 int err;
415 dsl_dir_t *dd;
416 uint64_t ddobj;
418 err = getcomponent(name, buf, &next);
419 if (err != 0)
420 return (err);
422 /* Make sure the name is in the specified pool. */
423 spaname = spa_name(dp->dp_spa);
424 if (strcmp(buf, spaname) != 0)
425 return (SET_ERROR(EXDEV));
427 ASSERT(dsl_pool_config_held(dp));
429 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
430 if (err != 0) {
431 return (err);
434 while (next != NULL) {
435 dsl_dir_t *child_dd;
436 err = getcomponent(next, buf, &nextnext);
437 if (err != 0)
438 break;
439 ASSERT(next[0] != '\0');
440 if (next[0] == '@')
441 break;
442 dprintf("looking up %s in obj%lld\n",
443 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
445 err = zap_lookup(dp->dp_meta_objset,
446 dsl_dir_phys(dd)->dd_child_dir_zapobj,
447 buf, sizeof (ddobj), 1, &ddobj);
448 if (err != 0) {
449 if (err == ENOENT)
450 err = 0;
451 break;
454 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
455 if (err != 0)
456 break;
457 dsl_dir_rele(dd, tag);
458 dd = child_dd;
459 next = nextnext;
462 if (err != 0) {
463 dsl_dir_rele(dd, tag);
464 return (err);
468 * It's an error if there's more than one component left, or
469 * tailp==NULL and there's any component left.
471 if (next != NULL &&
472 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
473 /* bad path name */
474 dsl_dir_rele(dd, tag);
475 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
476 err = SET_ERROR(ENOENT);
478 if (tailp != NULL)
479 *tailp = next;
480 *ddp = dd;
481 return (err);
485 * If the counts are already initialized for this filesystem and its
486 * descendants then do nothing, otherwise initialize the counts.
488 * The counts on this filesystem, and those below, may be uninitialized due to
489 * either the use of a pre-existing pool which did not support the
490 * filesystem/snapshot limit feature, or one in which the feature had not yet
491 * been enabled.
493 * Recursively descend the filesystem tree and update the filesystem/snapshot
494 * counts on each filesystem below, then update the cumulative count on the
495 * current filesystem. If the filesystem already has a count set on it,
496 * then we know that its counts, and the counts on the filesystems below it,
497 * are already correct, so we don't have to update this filesystem.
499 static void
500 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
502 uint64_t my_fs_cnt = 0;
503 uint64_t my_ss_cnt = 0;
504 dsl_pool_t *dp = dd->dd_pool;
505 objset_t *os = dp->dp_meta_objset;
506 zap_cursor_t *zc;
507 zap_attribute_t *za;
508 dsl_dataset_t *ds;
510 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
511 ASSERT(dsl_pool_config_held(dp));
512 ASSERT(dmu_tx_is_syncing(tx));
514 dsl_dir_zapify(dd, tx);
517 * If the filesystem count has already been initialized then we
518 * don't need to recurse down any further.
520 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
521 return;
523 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
524 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
526 /* Iterate my child dirs */
527 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
528 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
529 dsl_dir_t *chld_dd;
530 uint64_t count;
532 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
533 &chld_dd));
536 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
537 * temporary datasets.
539 if (chld_dd->dd_myname[0] == '$' ||
540 chld_dd->dd_myname[0] == '%') {
541 dsl_dir_rele(chld_dd, FTAG);
542 continue;
545 my_fs_cnt++; /* count this child */
547 dsl_dir_init_fs_ss_count(chld_dd, tx);
549 VERIFY0(zap_lookup(os, chld_dd->dd_object,
550 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
551 my_fs_cnt += count;
552 VERIFY0(zap_lookup(os, chld_dd->dd_object,
553 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
554 my_ss_cnt += count;
556 dsl_dir_rele(chld_dd, FTAG);
558 zap_cursor_fini(zc);
559 /* Count my snapshots (we counted children's snapshots above) */
560 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
561 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
563 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
564 zap_cursor_retrieve(zc, za) == 0;
565 zap_cursor_advance(zc)) {
566 /* Don't count temporary snapshots */
567 if (za->za_name[0] != '%')
568 my_ss_cnt++;
570 zap_cursor_fini(zc);
572 dsl_dataset_rele(ds, FTAG);
574 kmem_free(zc, sizeof (zap_cursor_t));
575 kmem_free(za, sizeof (zap_attribute_t));
577 /* we're in a sync task, update counts */
578 dmu_buf_will_dirty(dd->dd_dbuf, tx);
579 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
580 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
581 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
582 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
585 static int
586 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
588 char *ddname = (char *)arg;
589 dsl_pool_t *dp = dmu_tx_pool(tx);
590 dsl_dataset_t *ds;
591 dsl_dir_t *dd;
592 int error;
594 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
595 if (error != 0)
596 return (error);
598 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
599 dsl_dataset_rele(ds, FTAG);
600 return (SET_ERROR(ENOTSUP));
603 dd = ds->ds_dir;
604 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
605 dsl_dir_is_zapified(dd) &&
606 zap_contains(dp->dp_meta_objset, dd->dd_object,
607 DD_FIELD_FILESYSTEM_COUNT) == 0) {
608 dsl_dataset_rele(ds, FTAG);
609 return (SET_ERROR(EALREADY));
612 dsl_dataset_rele(ds, FTAG);
613 return (0);
616 static void
617 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
619 char *ddname = (char *)arg;
620 dsl_pool_t *dp = dmu_tx_pool(tx);
621 dsl_dataset_t *ds;
622 spa_t *spa;
624 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
626 spa = dsl_dataset_get_spa(ds);
628 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
630 * Since the feature was not active and we're now setting a
631 * limit, increment the feature-active counter so that the
632 * feature becomes active for the first time.
634 * We are already in a sync task so we can update the MOS.
636 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
640 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
641 * we need to ensure the counts are correct. Descend down the tree from
642 * this point and update all of the counts to be accurate.
644 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
646 dsl_dataset_rele(ds, FTAG);
650 * Make sure the feature is enabled and activate it if necessary.
651 * Since we're setting a limit, ensure the on-disk counts are valid.
652 * This is only called by the ioctl path when setting a limit value.
654 * We do not need to validate the new limit, since users who can change the
655 * limit are also allowed to exceed the limit.
658 dsl_dir_activate_fs_ss_limit(const char *ddname)
660 int error;
662 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
663 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
664 ZFS_SPACE_CHECK_RESERVED);
666 if (error == EALREADY)
667 error = 0;
669 return (error);
673 * Used to determine if the filesystem_limit or snapshot_limit should be
674 * enforced. We allow the limit to be exceeded if the user has permission to
675 * write the property value. We pass in the creds that we got in the open
676 * context since we will always be the GZ root in syncing context. We also have
677 * to handle the case where we are allowed to change the limit on the current
678 * dataset, but there may be another limit in the tree above.
680 * We can never modify these two properties within a non-global zone. In
681 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
682 * can't use that function since we are already holding the dp_config_rwlock.
683 * In addition, we already have the dd and dealing with snapshots is simplified
684 * in this code.
687 typedef enum {
688 ENFORCE_ALWAYS,
689 ENFORCE_NEVER,
690 ENFORCE_ABOVE
691 } enforce_res_t;
693 static enforce_res_t
694 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
696 enforce_res_t enforce = ENFORCE_ALWAYS;
697 uint64_t obj;
698 dsl_dataset_t *ds;
699 uint64_t zoned;
701 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
702 prop == ZFS_PROP_SNAPSHOT_LIMIT);
704 #ifdef _KERNEL
705 if (crgetzoneid(cr) != GLOBAL_ZONEID)
706 return (ENFORCE_ALWAYS);
708 if (secpolicy_zfs(cr) == 0)
709 return (ENFORCE_NEVER);
710 #endif
712 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
713 return (ENFORCE_ALWAYS);
715 ASSERT(dsl_pool_config_held(dd->dd_pool));
717 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
718 return (ENFORCE_ALWAYS);
720 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
721 /* Only root can access zoned fs's from the GZ */
722 enforce = ENFORCE_ALWAYS;
723 } else {
724 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
725 enforce = ENFORCE_ABOVE;
728 dsl_dataset_rele(ds, FTAG);
729 return (enforce);
733 * Check if adding additional child filesystem(s) would exceed any filesystem
734 * limits or adding additional snapshot(s) would exceed any snapshot limits.
735 * The prop argument indicates which limit to check.
737 * Note that all filesystem limits up to the root (or the highest
738 * initialized) filesystem or the given ancestor must be satisfied.
741 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
742 dsl_dir_t *ancestor, cred_t *cr)
744 objset_t *os = dd->dd_pool->dp_meta_objset;
745 uint64_t limit, count;
746 char *count_prop;
747 enforce_res_t enforce;
748 int err = 0;
750 ASSERT(dsl_pool_config_held(dd->dd_pool));
751 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
752 prop == ZFS_PROP_SNAPSHOT_LIMIT);
755 * If we're allowed to change the limit, don't enforce the limit
756 * e.g. this can happen if a snapshot is taken by an administrative
757 * user in the global zone (i.e. a recursive snapshot by root).
758 * However, we must handle the case of delegated permissions where we
759 * are allowed to change the limit on the current dataset, but there
760 * is another limit in the tree above.
762 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
763 if (enforce == ENFORCE_NEVER)
764 return (0);
767 * e.g. if renaming a dataset with no snapshots, count adjustment
768 * is 0.
770 if (delta == 0)
771 return (0);
773 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
775 * We don't enforce the limit for temporary snapshots. This is
776 * indicated by a NULL cred_t argument.
778 if (cr == NULL)
779 return (0);
781 count_prop = DD_FIELD_SNAPSHOT_COUNT;
782 } else {
783 count_prop = DD_FIELD_FILESYSTEM_COUNT;
787 * If an ancestor has been provided, stop checking the limit once we
788 * hit that dir. We need this during rename so that we don't overcount
789 * the check once we recurse up to the common ancestor.
791 if (ancestor == dd)
792 return (0);
795 * If we hit an uninitialized node while recursing up the tree, we can
796 * stop since we know there is no limit here (or above). The counts are
797 * not valid on this node and we know we won't touch this node's counts.
799 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
800 count_prop, sizeof (count), 1, &count) == ENOENT)
801 return (0);
803 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
804 B_FALSE);
805 if (err != 0)
806 return (err);
808 /* Is there a limit which we've hit? */
809 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
810 return (SET_ERROR(EDQUOT));
812 if (dd->dd_parent != NULL)
813 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
814 ancestor, cr);
816 return (err);
820 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
821 * parents. When a new filesystem/snapshot is created, increment the count on
822 * all parents, and when a filesystem/snapshot is destroyed, decrement the
823 * count.
825 void
826 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
827 dmu_tx_t *tx)
829 int err;
830 objset_t *os = dd->dd_pool->dp_meta_objset;
831 uint64_t count;
833 ASSERT(dsl_pool_config_held(dd->dd_pool));
834 ASSERT(dmu_tx_is_syncing(tx));
835 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
836 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
839 * When we receive an incremental stream into a filesystem that already
840 * exists, a temporary clone is created. We don't count this temporary
841 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
842 * $MOS & $ORIGIN) objsets.
844 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
845 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
846 return;
849 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
851 if (delta == 0)
852 return;
855 * If we hit an uninitialized node while recursing up the tree, we can
856 * stop since we know the counts are not valid on this node and we
857 * know we shouldn't touch this node's counts. An uninitialized count
858 * on the node indicates that either the feature has not yet been
859 * activated or there are no limits on this part of the tree.
861 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
862 prop, sizeof (count), 1, &count)) == ENOENT)
863 return;
864 VERIFY0(err);
866 count += delta;
867 /* Use a signed verify to make sure we're not neg. */
868 VERIFY3S(count, >=, 0);
870 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
871 tx));
873 /* Roll up this additional count into our ancestors */
874 if (dd->dd_parent != NULL)
875 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
878 uint64_t
879 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
880 dmu_tx_t *tx)
882 objset_t *mos = dp->dp_meta_objset;
883 uint64_t ddobj;
884 dsl_dir_phys_t *ddphys;
885 dmu_buf_t *dbuf;
887 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
888 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
889 if (pds) {
890 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
891 name, sizeof (uint64_t), 1, &ddobj, tx));
892 } else {
893 /* it's the root dir */
894 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
895 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
897 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
898 dmu_buf_will_dirty(dbuf, tx);
899 ddphys = dbuf->db_data;
901 ddphys->dd_creation_time = gethrestime_sec();
902 if (pds) {
903 ddphys->dd_parent_obj = pds->dd_object;
905 /* update the filesystem counts */
906 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
908 ddphys->dd_props_zapobj = zap_create(mos,
909 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
910 ddphys->dd_child_dir_zapobj = zap_create(mos,
911 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
912 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
913 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
914 dmu_buf_rele(dbuf, FTAG);
916 return (ddobj);
919 boolean_t
920 dsl_dir_is_clone(dsl_dir_t *dd)
922 return (dsl_dir_phys(dd)->dd_origin_obj &&
923 (dd->dd_pool->dp_origin_snap == NULL ||
924 dsl_dir_phys(dd)->dd_origin_obj !=
925 dd->dd_pool->dp_origin_snap->ds_object));
929 uint64_t
930 dsl_dir_get_used(dsl_dir_t *dd)
932 return (dsl_dir_phys(dd)->dd_used_bytes);
935 uint64_t
936 dsl_dir_get_quota(dsl_dir_t *dd)
938 return (dsl_dir_phys(dd)->dd_quota);
941 uint64_t
942 dsl_dir_get_reservation(dsl_dir_t *dd)
944 return (dsl_dir_phys(dd)->dd_reserved);
947 uint64_t
948 dsl_dir_get_compressratio(dsl_dir_t *dd)
950 /* a fixed point number, 100x the ratio */
951 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
952 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
953 dsl_dir_phys(dd)->dd_compressed_bytes));
956 uint64_t
957 dsl_dir_get_logicalused(dsl_dir_t *dd)
959 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
962 uint64_t
963 dsl_dir_get_usedsnap(dsl_dir_t *dd)
965 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
968 uint64_t
969 dsl_dir_get_usedds(dsl_dir_t *dd)
971 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
974 uint64_t
975 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
977 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
980 uint64_t
981 dsl_dir_get_usedchild(dsl_dir_t *dd)
983 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
984 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
987 void
988 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
990 dsl_dataset_t *ds;
991 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
992 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
994 dsl_dataset_name(ds, buf);
996 dsl_dataset_rele(ds, FTAG);
1000 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1002 if (dsl_dir_is_zapified(dd)) {
1003 objset_t *os = dd->dd_pool->dp_meta_objset;
1004 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1005 sizeof (*count), 1, count));
1006 } else {
1007 return (ENOENT);
1012 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1014 if (dsl_dir_is_zapified(dd)) {
1015 objset_t *os = dd->dd_pool->dp_meta_objset;
1016 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1017 sizeof (*count), 1, count));
1018 } else {
1019 return (ENOENT);
1023 void
1024 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1026 mutex_enter(&dd->dd_lock);
1027 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1028 dsl_dir_get_quota(dd));
1029 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1030 dsl_dir_get_reservation(dd));
1031 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1032 dsl_dir_get_logicalused(dd));
1033 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1034 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1035 dsl_dir_get_usedsnap(dd));
1036 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1037 dsl_dir_get_usedds(dd));
1038 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1039 dsl_dir_get_usedrefreserv(dd));
1040 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1041 dsl_dir_get_usedchild(dd));
1043 mutex_exit(&dd->dd_lock);
1045 uint64_t count;
1046 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1047 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1048 count);
1050 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1051 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1052 count);
1055 if (dsl_dir_is_clone(dd)) {
1056 char buf[ZFS_MAX_DATASET_NAME_LEN];
1057 dsl_dir_get_origin(dd, buf);
1058 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1063 void
1064 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1066 dsl_pool_t *dp = dd->dd_pool;
1068 ASSERT(dsl_dir_phys(dd));
1070 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1071 /* up the hold count until we can be written out */
1072 dmu_buf_add_ref(dd->dd_dbuf, dd);
1076 static int64_t
1077 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1079 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1080 uint64_t new_accounted =
1081 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1082 return (new_accounted - old_accounted);
1085 void
1086 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1088 ASSERT(dmu_tx_is_syncing(tx));
1090 mutex_enter(&dd->dd_lock);
1091 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1092 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1093 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1094 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1095 mutex_exit(&dd->dd_lock);
1097 /* release the hold from dsl_dir_dirty */
1098 dmu_buf_rele(dd->dd_dbuf, dd);
1101 static uint64_t
1102 dsl_dir_space_towrite(dsl_dir_t *dd)
1104 uint64_t space = 0;
1106 ASSERT(MUTEX_HELD(&dd->dd_lock));
1108 for (int i = 0; i < TXG_SIZE; i++) {
1109 space += dd->dd_space_towrite[i & TXG_MASK];
1110 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1112 return (space);
1116 * How much space would dd have available if ancestor had delta applied
1117 * to it? If ondiskonly is set, we're only interested in what's
1118 * on-disk, not estimated pending changes.
1120 uint64_t
1121 dsl_dir_space_available(dsl_dir_t *dd,
1122 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1124 uint64_t parentspace, myspace, quota, used;
1127 * If there are no restrictions otherwise, assume we have
1128 * unlimited space available.
1130 quota = UINT64_MAX;
1131 parentspace = UINT64_MAX;
1133 if (dd->dd_parent != NULL) {
1134 parentspace = dsl_dir_space_available(dd->dd_parent,
1135 ancestor, delta, ondiskonly);
1138 mutex_enter(&dd->dd_lock);
1139 if (dsl_dir_phys(dd)->dd_quota != 0)
1140 quota = dsl_dir_phys(dd)->dd_quota;
1141 used = dsl_dir_phys(dd)->dd_used_bytes;
1142 if (!ondiskonly)
1143 used += dsl_dir_space_towrite(dd);
1145 if (dd->dd_parent == NULL) {
1146 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1147 quota = MIN(quota, poolsize);
1150 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1152 * We have some space reserved, in addition to what our
1153 * parent gave us.
1155 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1158 if (dd == ancestor) {
1159 ASSERT(delta <= 0);
1160 ASSERT(used >= -delta);
1161 used += delta;
1162 if (parentspace != UINT64_MAX)
1163 parentspace -= delta;
1166 if (used > quota) {
1167 /* over quota */
1168 myspace = 0;
1169 } else {
1171 * the lesser of the space provided by our parent and
1172 * the space left in our quota
1174 myspace = MIN(parentspace, quota - used);
1177 mutex_exit(&dd->dd_lock);
1179 return (myspace);
1182 struct tempreserve {
1183 list_node_t tr_node;
1184 dsl_dir_t *tr_ds;
1185 uint64_t tr_size;
1188 static int
1189 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1190 boolean_t ignorequota, list_t *tr_list,
1191 dmu_tx_t *tx, boolean_t first)
1193 uint64_t txg = tx->tx_txg;
1194 uint64_t quota;
1195 struct tempreserve *tr;
1196 int retval = EDQUOT;
1197 uint64_t ref_rsrv = 0;
1199 ASSERT3U(txg, !=, 0);
1200 ASSERT3S(asize, >, 0);
1202 mutex_enter(&dd->dd_lock);
1205 * Check against the dsl_dir's quota. We don't add in the delta
1206 * when checking for over-quota because they get one free hit.
1208 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1209 for (int i = 0; i < TXG_SIZE; i++)
1210 est_inflight += dd->dd_tempreserved[i];
1211 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1214 * On the first iteration, fetch the dataset's used-on-disk and
1215 * refreservation values. Also, if checkrefquota is set, test if
1216 * allocating this space would exceed the dataset's refquota.
1218 if (first && tx->tx_objset) {
1219 int error;
1220 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1222 error = dsl_dataset_check_quota(ds, !netfree,
1223 asize, est_inflight, &used_on_disk, &ref_rsrv);
1224 if (error != 0) {
1225 mutex_exit(&dd->dd_lock);
1226 return (error);
1231 * If this transaction will result in a net free of space,
1232 * we want to let it through.
1234 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1235 quota = UINT64_MAX;
1236 else
1237 quota = dsl_dir_phys(dd)->dd_quota;
1240 * Adjust the quota against the actual pool size at the root
1241 * minus any outstanding deferred frees.
1242 * To ensure that it's possible to remove files from a full
1243 * pool without inducing transient overcommits, we throttle
1244 * netfree transactions against a quota that is slightly larger,
1245 * but still within the pool's allocation slop. In cases where
1246 * we're very close to full, this will allow a steady trickle of
1247 * removes to get through.
1249 uint64_t deferred = 0;
1250 if (dd->dd_parent == NULL) {
1251 spa_t *spa = dd->dd_pool->dp_spa;
1252 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1253 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1254 if (poolsize - deferred < quota) {
1255 quota = poolsize - deferred;
1256 retval = ENOSPC;
1261 * If they are requesting more space, and our current estimate
1262 * is over quota, they get to try again unless the actual
1263 * on-disk is over quota and there are no pending changes (which
1264 * may free up space for us).
1266 if (used_on_disk + est_inflight >= quota) {
1267 if (est_inflight > 0 || used_on_disk < quota ||
1268 (retval == ENOSPC && used_on_disk < quota + deferred))
1269 retval = ERESTART;
1270 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1271 "quota=%lluK tr=%lluK err=%d\n",
1272 used_on_disk>>10, est_inflight>>10,
1273 quota>>10, asize>>10, retval);
1274 mutex_exit(&dd->dd_lock);
1275 return (SET_ERROR(retval));
1278 /* We need to up our estimated delta before dropping dd_lock */
1279 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1281 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1282 asize - ref_rsrv);
1283 mutex_exit(&dd->dd_lock);
1285 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1286 tr->tr_ds = dd;
1287 tr->tr_size = asize;
1288 list_insert_tail(tr_list, tr);
1290 /* see if it's OK with our parent */
1291 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1292 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1294 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1295 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE));
1296 } else {
1297 return (0);
1302 * Reserve space in this dsl_dir, to be used in this tx's txg.
1303 * After the space has been dirtied (and dsl_dir_willuse_space()
1304 * has been called), the reservation should be canceled, using
1305 * dsl_dir_tempreserve_clear().
1308 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1309 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1311 int err;
1312 list_t *tr_list;
1314 if (asize == 0) {
1315 *tr_cookiep = NULL;
1316 return (0);
1319 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1320 list_create(tr_list, sizeof (struct tempreserve),
1321 offsetof(struct tempreserve, tr_node));
1322 ASSERT3S(asize, >, 0);
1324 err = arc_tempreserve_space(lsize, tx->tx_txg);
1325 if (err == 0) {
1326 struct tempreserve *tr;
1328 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1329 tr->tr_size = lsize;
1330 list_insert_tail(tr_list, tr);
1331 } else {
1332 if (err == EAGAIN) {
1334 * If arc_memory_throttle() detected that pageout
1335 * is running and we are low on memory, we delay new
1336 * non-pageout transactions to give pageout an
1337 * advantage.
1339 * It is unfortunate to be delaying while the caller's
1340 * locks are held.
1342 txg_delay(dd->dd_pool, tx->tx_txg,
1343 MSEC2NSEC(10), MSEC2NSEC(10));
1344 err = SET_ERROR(ERESTART);
1348 if (err == 0) {
1349 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1350 B_FALSE, tr_list, tx, B_TRUE);
1353 if (err != 0)
1354 dsl_dir_tempreserve_clear(tr_list, tx);
1355 else
1356 *tr_cookiep = tr_list;
1358 return (err);
1362 * Clear a temporary reservation that we previously made with
1363 * dsl_dir_tempreserve_space().
1365 void
1366 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1368 int txgidx = tx->tx_txg & TXG_MASK;
1369 list_t *tr_list = tr_cookie;
1370 struct tempreserve *tr;
1372 ASSERT3U(tx->tx_txg, !=, 0);
1374 if (tr_cookie == NULL)
1375 return;
1377 while ((tr = list_head(tr_list)) != NULL) {
1378 if (tr->tr_ds) {
1379 mutex_enter(&tr->tr_ds->dd_lock);
1380 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1381 tr->tr_size);
1382 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1383 mutex_exit(&tr->tr_ds->dd_lock);
1384 } else {
1385 arc_tempreserve_clear(tr->tr_size);
1387 list_remove(tr_list, tr);
1388 kmem_free(tr, sizeof (struct tempreserve));
1391 kmem_free(tr_list, sizeof (list_t));
1395 * This should be called from open context when we think we're going to write
1396 * or free space, for example when dirtying data. Be conservative; it's okay
1397 * to write less space or free more, but we don't want to write more or free
1398 * less than the amount specified.
1400 void
1401 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1403 int64_t parent_space;
1404 uint64_t est_used;
1406 mutex_enter(&dd->dd_lock);
1407 if (space > 0)
1408 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1410 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1411 parent_space = parent_delta(dd, est_used, space);
1412 mutex_exit(&dd->dd_lock);
1414 /* Make sure that we clean up dd_space_to* */
1415 dsl_dir_dirty(dd, tx);
1417 /* XXX this is potentially expensive and unnecessary... */
1418 if (parent_space && dd->dd_parent)
1419 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1422 /* call from syncing context when we actually write/free space for this dd */
1423 void
1424 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1425 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1427 int64_t accounted_delta;
1430 * dsl_dataset_set_refreservation_sync_impl() calls this with
1431 * dd_lock held, so that it can atomically update
1432 * ds->ds_reserved and the dsl_dir accounting, so that
1433 * dsl_dataset_check_quota() can see dataset and dir accounting
1434 * consistently.
1436 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1438 ASSERT(dmu_tx_is_syncing(tx));
1439 ASSERT(type < DD_USED_NUM);
1441 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1443 if (needlock)
1444 mutex_enter(&dd->dd_lock);
1445 accounted_delta =
1446 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1447 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1448 ASSERT(compressed >= 0 ||
1449 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1450 ASSERT(uncompressed >= 0 ||
1451 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1452 dsl_dir_phys(dd)->dd_used_bytes += used;
1453 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1454 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1456 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1457 ASSERT(used > 0 ||
1458 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1459 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1460 #ifdef DEBUG
1461 dd_used_t t;
1462 uint64_t u = 0;
1463 for (t = 0; t < DD_USED_NUM; t++)
1464 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1465 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1466 #endif
1468 if (needlock)
1469 mutex_exit(&dd->dd_lock);
1471 if (dd->dd_parent != NULL) {
1472 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1473 accounted_delta, compressed, uncompressed, tx);
1474 dsl_dir_transfer_space(dd->dd_parent,
1475 used - accounted_delta,
1476 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1480 void
1481 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1482 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1484 ASSERT(dmu_tx_is_syncing(tx));
1485 ASSERT(oldtype < DD_USED_NUM);
1486 ASSERT(newtype < DD_USED_NUM);
1488 if (delta == 0 ||
1489 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1490 return;
1492 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1493 mutex_enter(&dd->dd_lock);
1494 ASSERT(delta > 0 ?
1495 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1496 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1497 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1498 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1499 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1500 mutex_exit(&dd->dd_lock);
1503 typedef struct dsl_dir_set_qr_arg {
1504 const char *ddsqra_name;
1505 zprop_source_t ddsqra_source;
1506 uint64_t ddsqra_value;
1507 } dsl_dir_set_qr_arg_t;
1509 static int
1510 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1512 dsl_dir_set_qr_arg_t *ddsqra = arg;
1513 dsl_pool_t *dp = dmu_tx_pool(tx);
1514 dsl_dataset_t *ds;
1515 int error;
1516 uint64_t towrite, newval;
1518 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1519 if (error != 0)
1520 return (error);
1522 error = dsl_prop_predict(ds->ds_dir, "quota",
1523 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1524 if (error != 0) {
1525 dsl_dataset_rele(ds, FTAG);
1526 return (error);
1529 if (newval == 0) {
1530 dsl_dataset_rele(ds, FTAG);
1531 return (0);
1534 mutex_enter(&ds->ds_dir->dd_lock);
1536 * If we are doing the preliminary check in open context, and
1537 * there are pending changes, then don't fail it, since the
1538 * pending changes could under-estimate the amount of space to be
1539 * freed up.
1541 towrite = dsl_dir_space_towrite(ds->ds_dir);
1542 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1543 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1544 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1545 error = SET_ERROR(ENOSPC);
1547 mutex_exit(&ds->ds_dir->dd_lock);
1548 dsl_dataset_rele(ds, FTAG);
1549 return (error);
1552 static void
1553 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1555 dsl_dir_set_qr_arg_t *ddsqra = arg;
1556 dsl_pool_t *dp = dmu_tx_pool(tx);
1557 dsl_dataset_t *ds;
1558 uint64_t newval;
1560 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1562 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1563 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1564 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1565 &ddsqra->ddsqra_value, tx);
1567 VERIFY0(dsl_prop_get_int_ds(ds,
1568 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1569 } else {
1570 newval = ddsqra->ddsqra_value;
1571 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1572 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1575 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1576 mutex_enter(&ds->ds_dir->dd_lock);
1577 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1578 mutex_exit(&ds->ds_dir->dd_lock);
1579 dsl_dataset_rele(ds, FTAG);
1583 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1585 dsl_dir_set_qr_arg_t ddsqra;
1587 ddsqra.ddsqra_name = ddname;
1588 ddsqra.ddsqra_source = source;
1589 ddsqra.ddsqra_value = quota;
1591 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1592 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1596 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1598 dsl_dir_set_qr_arg_t *ddsqra = arg;
1599 dsl_pool_t *dp = dmu_tx_pool(tx);
1600 dsl_dataset_t *ds;
1601 dsl_dir_t *dd;
1602 uint64_t newval, used, avail;
1603 int error;
1605 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1606 if (error != 0)
1607 return (error);
1608 dd = ds->ds_dir;
1611 * If we are doing the preliminary check in open context, the
1612 * space estimates may be inaccurate.
1614 if (!dmu_tx_is_syncing(tx)) {
1615 dsl_dataset_rele(ds, FTAG);
1616 return (0);
1619 error = dsl_prop_predict(ds->ds_dir,
1620 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1621 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1622 if (error != 0) {
1623 dsl_dataset_rele(ds, FTAG);
1624 return (error);
1627 mutex_enter(&dd->dd_lock);
1628 used = dsl_dir_phys(dd)->dd_used_bytes;
1629 mutex_exit(&dd->dd_lock);
1631 if (dd->dd_parent) {
1632 avail = dsl_dir_space_available(dd->dd_parent,
1633 NULL, 0, FALSE);
1634 } else {
1635 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1638 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1639 uint64_t delta = MAX(used, newval) -
1640 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1642 if (delta > avail ||
1643 (dsl_dir_phys(dd)->dd_quota > 0 &&
1644 newval > dsl_dir_phys(dd)->dd_quota))
1645 error = SET_ERROR(ENOSPC);
1648 dsl_dataset_rele(ds, FTAG);
1649 return (error);
1652 void
1653 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1655 uint64_t used;
1656 int64_t delta;
1658 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1660 mutex_enter(&dd->dd_lock);
1661 used = dsl_dir_phys(dd)->dd_used_bytes;
1662 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1663 dsl_dir_phys(dd)->dd_reserved = value;
1665 if (dd->dd_parent != NULL) {
1666 /* Roll up this additional usage into our ancestors */
1667 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1668 delta, 0, 0, tx);
1670 mutex_exit(&dd->dd_lock);
1674 static void
1675 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1677 dsl_dir_set_qr_arg_t *ddsqra = arg;
1678 dsl_pool_t *dp = dmu_tx_pool(tx);
1679 dsl_dataset_t *ds;
1680 uint64_t newval;
1682 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1684 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1685 dsl_prop_set_sync_impl(ds,
1686 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1687 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1688 &ddsqra->ddsqra_value, tx);
1690 VERIFY0(dsl_prop_get_int_ds(ds,
1691 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1692 } else {
1693 newval = ddsqra->ddsqra_value;
1694 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1695 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1696 (longlong_t)newval);
1699 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1700 dsl_dataset_rele(ds, FTAG);
1704 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1705 uint64_t reservation)
1707 dsl_dir_set_qr_arg_t ddsqra;
1709 ddsqra.ddsqra_name = ddname;
1710 ddsqra.ddsqra_source = source;
1711 ddsqra.ddsqra_value = reservation;
1713 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1714 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1717 static dsl_dir_t *
1718 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1720 for (; ds1; ds1 = ds1->dd_parent) {
1721 dsl_dir_t *dd;
1722 for (dd = ds2; dd; dd = dd->dd_parent) {
1723 if (ds1 == dd)
1724 return (dd);
1727 return (NULL);
1731 * If delta is applied to dd, how much of that delta would be applied to
1732 * ancestor? Syncing context only.
1734 static int64_t
1735 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1737 if (dd == ancestor)
1738 return (delta);
1740 mutex_enter(&dd->dd_lock);
1741 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1742 mutex_exit(&dd->dd_lock);
1743 return (would_change(dd->dd_parent, delta, ancestor));
1746 typedef struct dsl_dir_rename_arg {
1747 const char *ddra_oldname;
1748 const char *ddra_newname;
1749 cred_t *ddra_cred;
1750 } dsl_dir_rename_arg_t;
1752 /* ARGSUSED */
1753 static int
1754 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1756 int *deltap = arg;
1757 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1759 dsl_dataset_name(ds, namebuf);
1761 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1762 return (SET_ERROR(ENAMETOOLONG));
1763 return (0);
1766 static int
1767 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1769 dsl_dir_rename_arg_t *ddra = arg;
1770 dsl_pool_t *dp = dmu_tx_pool(tx);
1771 dsl_dir_t *dd, *newparent;
1772 const char *mynewname;
1773 int error;
1774 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1776 /* target dir should exist */
1777 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1778 if (error != 0)
1779 return (error);
1781 /* new parent should exist */
1782 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1783 &newparent, &mynewname);
1784 if (error != 0) {
1785 dsl_dir_rele(dd, FTAG);
1786 return (error);
1789 /* can't rename to different pool */
1790 if (dd->dd_pool != newparent->dd_pool) {
1791 dsl_dir_rele(newparent, FTAG);
1792 dsl_dir_rele(dd, FTAG);
1793 return (SET_ERROR(ENXIO));
1796 /* new name should not already exist */
1797 if (mynewname == NULL) {
1798 dsl_dir_rele(newparent, FTAG);
1799 dsl_dir_rele(dd, FTAG);
1800 return (SET_ERROR(EEXIST));
1803 /* if the name length is growing, validate child name lengths */
1804 if (delta > 0) {
1805 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1806 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1807 if (error != 0) {
1808 dsl_dir_rele(newparent, FTAG);
1809 dsl_dir_rele(dd, FTAG);
1810 return (error);
1814 if (dmu_tx_is_syncing(tx)) {
1815 if (spa_feature_is_active(dp->dp_spa,
1816 SPA_FEATURE_FS_SS_LIMIT)) {
1818 * Although this is the check function and we don't
1819 * normally make on-disk changes in check functions,
1820 * we need to do that here.
1822 * Ensure this portion of the tree's counts have been
1823 * initialized in case the new parent has limits set.
1825 dsl_dir_init_fs_ss_count(dd, tx);
1829 if (newparent != dd->dd_parent) {
1830 /* is there enough space? */
1831 uint64_t myspace =
1832 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1833 dsl_dir_phys(dd)->dd_reserved);
1834 objset_t *os = dd->dd_pool->dp_meta_objset;
1835 uint64_t fs_cnt = 0;
1836 uint64_t ss_cnt = 0;
1838 if (dsl_dir_is_zapified(dd)) {
1839 int err;
1841 err = zap_lookup(os, dd->dd_object,
1842 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1843 &fs_cnt);
1844 if (err != ENOENT && err != 0) {
1845 dsl_dir_rele(newparent, FTAG);
1846 dsl_dir_rele(dd, FTAG);
1847 return (err);
1851 * have to add 1 for the filesystem itself that we're
1852 * moving
1854 fs_cnt++;
1856 err = zap_lookup(os, dd->dd_object,
1857 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1858 &ss_cnt);
1859 if (err != ENOENT && err != 0) {
1860 dsl_dir_rele(newparent, FTAG);
1861 dsl_dir_rele(dd, FTAG);
1862 return (err);
1866 /* no rename into our descendant */
1867 if (closest_common_ancestor(dd, newparent) == dd) {
1868 dsl_dir_rele(newparent, FTAG);
1869 dsl_dir_rele(dd, FTAG);
1870 return (SET_ERROR(EINVAL));
1873 error = dsl_dir_transfer_possible(dd->dd_parent,
1874 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1875 if (error != 0) {
1876 dsl_dir_rele(newparent, FTAG);
1877 dsl_dir_rele(dd, FTAG);
1878 return (error);
1882 dsl_dir_rele(newparent, FTAG);
1883 dsl_dir_rele(dd, FTAG);
1884 return (0);
1887 static void
1888 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1890 dsl_dir_rename_arg_t *ddra = arg;
1891 dsl_pool_t *dp = dmu_tx_pool(tx);
1892 dsl_dir_t *dd, *newparent;
1893 const char *mynewname;
1894 int error;
1895 objset_t *mos = dp->dp_meta_objset;
1897 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1898 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1899 &mynewname));
1901 /* Log this before we change the name. */
1902 spa_history_log_internal_dd(dd, "rename", tx,
1903 "-> %s", ddra->ddra_newname);
1905 if (newparent != dd->dd_parent) {
1906 objset_t *os = dd->dd_pool->dp_meta_objset;
1907 uint64_t fs_cnt = 0;
1908 uint64_t ss_cnt = 0;
1911 * We already made sure the dd counts were initialized in the
1912 * check function.
1914 if (spa_feature_is_active(dp->dp_spa,
1915 SPA_FEATURE_FS_SS_LIMIT)) {
1916 VERIFY0(zap_lookup(os, dd->dd_object,
1917 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1918 &fs_cnt));
1919 /* add 1 for the filesystem itself that we're moving */
1920 fs_cnt++;
1922 VERIFY0(zap_lookup(os, dd->dd_object,
1923 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1924 &ss_cnt));
1927 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1928 DD_FIELD_FILESYSTEM_COUNT, tx);
1929 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1930 DD_FIELD_FILESYSTEM_COUNT, tx);
1932 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1933 DD_FIELD_SNAPSHOT_COUNT, tx);
1934 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1935 DD_FIELD_SNAPSHOT_COUNT, tx);
1937 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1938 -dsl_dir_phys(dd)->dd_used_bytes,
1939 -dsl_dir_phys(dd)->dd_compressed_bytes,
1940 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1941 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1942 dsl_dir_phys(dd)->dd_used_bytes,
1943 dsl_dir_phys(dd)->dd_compressed_bytes,
1944 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1946 if (dsl_dir_phys(dd)->dd_reserved >
1947 dsl_dir_phys(dd)->dd_used_bytes) {
1948 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1949 dsl_dir_phys(dd)->dd_used_bytes;
1951 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1952 -unused_rsrv, 0, 0, tx);
1953 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1954 unused_rsrv, 0, 0, tx);
1958 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1960 /* remove from old parent zapobj */
1961 error = zap_remove(mos,
1962 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1963 dd->dd_myname, tx);
1964 ASSERT0(error);
1966 (void) strcpy(dd->dd_myname, mynewname);
1967 dsl_dir_rele(dd->dd_parent, dd);
1968 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1969 VERIFY0(dsl_dir_hold_obj(dp,
1970 newparent->dd_object, NULL, dd, &dd->dd_parent));
1972 /* add to new parent zapobj */
1973 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1974 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1976 dsl_prop_notify_all(dd);
1978 dsl_dir_rele(newparent, FTAG);
1979 dsl_dir_rele(dd, FTAG);
1983 dsl_dir_rename(const char *oldname, const char *newname)
1985 dsl_dir_rename_arg_t ddra;
1987 ddra.ddra_oldname = oldname;
1988 ddra.ddra_newname = newname;
1989 ddra.ddra_cred = CRED();
1991 return (dsl_sync_task(oldname,
1992 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1993 3, ZFS_SPACE_CHECK_RESERVED));
1997 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1998 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
2000 dsl_dir_t *ancestor;
2001 int64_t adelta;
2002 uint64_t avail;
2003 int err;
2005 ancestor = closest_common_ancestor(sdd, tdd);
2006 adelta = would_change(sdd, -space, ancestor);
2007 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2008 if (avail < space)
2009 return (SET_ERROR(ENOSPC));
2011 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2012 ancestor, cr);
2013 if (err != 0)
2014 return (err);
2015 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2016 ancestor, cr);
2017 if (err != 0)
2018 return (err);
2020 return (0);
2023 timestruc_t
2024 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2026 timestruc_t t;
2028 mutex_enter(&dd->dd_lock);
2029 t = dd->dd_snap_cmtime;
2030 mutex_exit(&dd->dd_lock);
2032 return (t);
2035 void
2036 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2038 timestruc_t t;
2040 gethrestime(&t);
2041 mutex_enter(&dd->dd_lock);
2042 dd->dd_snap_cmtime = t;
2043 mutex_exit(&dd->dd_lock);
2046 void
2047 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2049 objset_t *mos = dd->dd_pool->dp_meta_objset;
2050 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2053 boolean_t
2054 dsl_dir_is_zapified(dsl_dir_t *dd)
2056 dmu_object_info_t doi;
2058 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2059 return (doi.doi_type == DMU_OTN_ZAP_METADATA);