1 /* $OpenBSD: bn_gf2m.c,v 1.23 2017/01/29 17:49:22 beck Exp $ */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
66 * 6. Redistributions of any form whatsoever must retain the following
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
94 #include <openssl/opensslconf.h>
96 #include <openssl/err.h>
100 #ifndef OPENSSL_NO_EC2M
102 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
103 #define MAX_ITERATIONS 50
105 static const BN_ULONG SQR_tb
[16] =
106 { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85 };
108 /* Platform-specific macros to accelerate squaring. */
111 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
112 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
113 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
114 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
116 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
117 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
118 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
119 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
122 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
125 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
126 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
129 #if !defined(OPENSSL_BN_ASM_GF2m)
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
136 bn_GF2m_mul_1x1(BN_ULONG
*r1
, BN_ULONG
*r0
, const BN_ULONG a
, const BN_ULONG b
)
140 BN_ULONG tab
[8], top2b
= a
>> 30;
143 a1
= a
& (0x3FFFFFFF);
154 tab
[7] = a1
^ a2
^ a4
;
158 s
= tab
[b
>> 3 & 0x7];
161 s
= tab
[b
>> 6 & 0x7];
164 s
= tab
[b
>> 9 & 0x7];
167 s
= tab
[b
>> 12 & 0x7];
170 s
= tab
[b
>> 15 & 0x7];
173 s
= tab
[b
>> 18 & 0x7];
176 s
= tab
[b
>> 21 & 0x7];
179 s
= tab
[b
>> 24 & 0x7];
182 s
= tab
[b
>> 27 & 0x7];
189 /* compensate for the top two bits of a */
203 BN_ULONG tab
[16], top3b
= a
>> 61;
204 BN_ULONG a1
, a2
, a4
, a8
;
206 a1
= a
& (0x1FFFFFFFFFFFFFFFULL
);
218 tab
[7] = a1
^ a2
^ a4
;
222 tab
[11] = a1
^ a2
^ a8
;
224 tab
[13] = a1
^ a4
^ a8
;
225 tab
[14] = a2
^ a4
^ a8
;
226 tab
[15] = a1
^ a2
^ a4
^ a8
;
230 s
= tab
[b
>> 4 & 0xF];
233 s
= tab
[b
>> 8 & 0xF];
236 s
= tab
[b
>> 12 & 0xF];
239 s
= tab
[b
>> 16 & 0xF];
242 s
= tab
[b
>> 20 & 0xF];
245 s
= tab
[b
>> 24 & 0xF];
248 s
= tab
[b
>> 28 & 0xF];
251 s
= tab
[b
>> 32 & 0xF];
254 s
= tab
[b
>> 36 & 0xF];
257 s
= tab
[b
>> 40 & 0xF];
260 s
= tab
[b
>> 44 & 0xF];
263 s
= tab
[b
>> 48 & 0xF];
266 s
= tab
[b
>> 52 & 0xF];
269 s
= tab
[b
>> 56 & 0xF];
276 /* compensate for the top three bits of a */
295 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
296 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
297 * The caller MUST ensure that the variables have the right amount
298 * of space allocated.
301 bn_GF2m_mul_2x2(BN_ULONG
*r
, const BN_ULONG a1
, const BN_ULONG a0
,
302 const BN_ULONG b1
, const BN_ULONG b0
)
306 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
307 bn_GF2m_mul_1x1(r
+ 3, r
+ 2, a1
, b1
);
308 bn_GF2m_mul_1x1(r
+ 1, r
, a0
, b0
);
309 bn_GF2m_mul_1x1(&m1
, &m0
, a0
^ a1
, b0
^ b1
);
310 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
311 r
[2] ^= m1
^ r
[1] ^ r
[3]; /* h0 ^= m1 ^ l1 ^ h1; */
312 r
[1] = r
[3] ^ r
[2] ^ r
[0] ^ m1
^ m0
; /* l1 ^= l0 ^ h0 ^ m0; */
315 void bn_GF2m_mul_2x2(BN_ULONG
*r
, BN_ULONG a1
, BN_ULONG a0
, BN_ULONG b1
,
319 /* Add polynomials a and b and store result in r; r could be a or b, a and b
320 * could be equal; r is the bitwise XOR of a and b.
323 BN_GF2m_add(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
)
326 const BIGNUM
*at
, *bt
;
331 if (a
->top
< b
->top
) {
339 if (bn_wexpand(r
, at
->top
) == NULL
)
342 for (i
= 0; i
< bt
->top
; i
++) {
343 r
->d
[i
] = at
->d
[i
] ^ bt
->d
[i
];
345 for (; i
< at
->top
; i
++) {
356 /* Some functions allow for representation of the irreducible polynomials
357 * as an int[], say p. The irreducible f(t) is then of the form:
358 * t^p[0] + t^p[1] + ... + t^p[k]
359 * where m = p[0] > p[1] > ... > p[k] = 0.
363 /* Performs modular reduction of a and store result in r. r could be a. */
365 BN_GF2m_mod_arr(BIGNUM
*r
, const BIGNUM
*a
, const int p
[])
374 /* reduction mod 1 => return 0 */
379 /* Since the algorithm does reduction in the r value, if a != r, copy
380 * the contents of a into r so we can do reduction in r.
383 if (!bn_wexpand(r
, a
->top
))
385 for (j
= 0; j
< a
->top
; j
++) {
392 /* start reduction */
393 dN
= p
[0] / BN_BITS2
;
394 for (j
= r
->top
- 1; j
> dN
; ) {
402 for (k
= 1; p
[k
] != 0; k
++) {
403 /* reducing component t^p[k] */
408 z
[j
- n
] ^= (zz
>> d0
);
410 z
[j
- n
- 1] ^= (zz
<< d1
);
413 /* reducing component t^0 */
415 d0
= p
[0] % BN_BITS2
;
417 z
[j
- n
] ^= (zz
>> d0
);
419 z
[j
- n
- 1] ^= (zz
<< d1
);
422 /* final round of reduction */
425 d0
= p
[0] % BN_BITS2
;
431 /* clear up the top d1 bits */
433 z
[dN
] = (z
[dN
] << d1
) >> d1
;
436 z
[0] ^= zz
; /* reduction t^0 component */
438 for (k
= 1; p
[k
] != 0; k
++) {
441 /* reducing component t^p[k]*/
443 d0
= p
[k
] % BN_BITS2
;
446 if (d0
&& (tmp_ulong
= zz
>> d1
))
447 z
[n
+ 1] ^= tmp_ulong
;
457 /* Performs modular reduction of a by p and store result in r. r could be a.
459 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
460 * function is only provided for convenience; for best performance, use the
461 * BN_GF2m_mod_arr function.
464 BN_GF2m_mod(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*p
)
471 ret
= BN_GF2m_poly2arr(p
, arr
, sizeof(arr
) / sizeof(arr
[0]));
472 if (!ret
|| ret
> (int)(sizeof(arr
) / sizeof(arr
[0]))) {
473 BNerror(BN_R_INVALID_LENGTH
);
476 ret
= BN_GF2m_mod_arr(r
, a
, arr
);
482 /* Compute the product of two polynomials a and b, reduce modulo p, and store
483 * the result in r. r could be a or b; a could be b.
486 BN_GF2m_mod_mul_arr(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
, const int p
[],
489 int zlen
, i
, j
, k
, ret
= 0;
491 BN_ULONG x1
, x0
, y1
, y0
, zz
[4];
497 return BN_GF2m_mod_sqr_arr(r
, a
, p
, ctx
);
501 if ((s
= BN_CTX_get(ctx
)) == NULL
)
504 zlen
= a
->top
+ b
->top
+ 4;
505 if (!bn_wexpand(s
, zlen
))
509 for (i
= 0; i
< zlen
; i
++)
512 for (j
= 0; j
< b
->top
; j
+= 2) {
514 y1
= ((j
+ 1) == b
->top
) ? 0 : b
->d
[j
+ 1];
515 for (i
= 0; i
< a
->top
; i
+= 2) {
517 x1
= ((i
+ 1) == a
->top
) ? 0 : a
->d
[i
+ 1];
518 bn_GF2m_mul_2x2(zz
, x1
, x0
, y1
, y0
);
519 for (k
= 0; k
< 4; k
++)
520 s
->d
[i
+ j
+ k
] ^= zz
[k
];
525 if (BN_GF2m_mod_arr(r
, s
, p
))
534 /* Compute the product of two polynomials a and b, reduce modulo p, and store
535 * the result in r. r could be a or b; a could equal b.
537 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
538 * function is only provided for convenience; for best performance, use the
539 * BN_GF2m_mod_mul_arr function.
542 BN_GF2m_mod_mul(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
, const BIGNUM
*p
,
546 const int max
= BN_num_bits(p
) + 1;
552 if ((arr
= reallocarray(NULL
, max
, sizeof(int))) == NULL
)
554 ret
= BN_GF2m_poly2arr(p
, arr
, max
);
555 if (!ret
|| ret
> max
) {
556 BNerror(BN_R_INVALID_LENGTH
);
559 ret
= BN_GF2m_mod_mul_arr(r
, a
, b
, arr
, ctx
);
568 /* Square a, reduce the result mod p, and store it in a. r could be a. */
570 BN_GF2m_mod_sqr_arr(BIGNUM
*r
, const BIGNUM
*a
, const int p
[], BN_CTX
*ctx
)
577 if ((s
= BN_CTX_get(ctx
)) == NULL
)
579 if (!bn_wexpand(s
, 2 * a
->top
))
582 for (i
= a
->top
- 1; i
>= 0; i
--) {
583 s
->d
[2 * i
+ 1] = SQR1(a
->d
[i
]);
584 s
->d
[2 * i
] = SQR0(a
->d
[i
]);
589 if (!BN_GF2m_mod_arr(r
, s
, p
))
599 /* Square a, reduce the result mod p, and store it in a. r could be a.
601 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
602 * function is only provided for convenience; for best performance, use the
603 * BN_GF2m_mod_sqr_arr function.
606 BN_GF2m_mod_sqr(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*p
, BN_CTX
*ctx
)
609 const int max
= BN_num_bits(p
) + 1;
614 if ((arr
= reallocarray(NULL
, max
, sizeof(int))) == NULL
)
616 ret
= BN_GF2m_poly2arr(p
, arr
, max
);
617 if (!ret
|| ret
> max
) {
618 BNerror(BN_R_INVALID_LENGTH
);
621 ret
= BN_GF2m_mod_sqr_arr(r
, a
, arr
, ctx
);
630 /* Invert a, reduce modulo p, and store the result in r. r could be a.
631 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
632 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
633 * of Elliptic Curve Cryptography Over Binary Fields".
636 BN_GF2m_mod_inv(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*p
, BN_CTX
*ctx
)
638 BIGNUM
*b
, *c
= NULL
, *u
= NULL
, *v
= NULL
, *tmp
;
646 if ((b
= BN_CTX_get(ctx
)) == NULL
)
648 if ((c
= BN_CTX_get(ctx
)) == NULL
)
650 if ((u
= BN_CTX_get(ctx
)) == NULL
)
652 if ((v
= BN_CTX_get(ctx
)) == NULL
)
655 if (!BN_GF2m_mod(u
, a
, p
))
667 while (!BN_is_odd(u
)) {
670 if (!BN_rshift1(u
, u
))
673 if (!BN_GF2m_add(b
, b
, p
))
676 if (!BN_rshift1(b
, b
))
680 if (BN_abs_is_word(u
, 1))
683 if (BN_num_bits(u
) < BN_num_bits(v
)) {
692 if (!BN_GF2m_add(u
, u
, v
))
694 if (!BN_GF2m_add(b
, b
, c
))
699 int i
, ubits
= BN_num_bits(u
),
700 vbits
= BN_num_bits(v
), /* v is copy of p */
702 BN_ULONG
*udp
, *bdp
, *vdp
, *cdp
;
704 if (!bn_wexpand(u
, top
))
707 for (i
= u
->top
; i
< top
; i
++)
710 if (!bn_wexpand(b
, top
))
714 for (i
= 1; i
< top
; i
++)
717 if (!bn_wexpand(c
, top
))
720 for (i
= 0; i
< top
; i
++)
723 vdp
= v
->d
; /* It pays off to "cache" *->d pointers, because
724 * it allows optimizer to be more aggressive.
725 * But we don't have to "cache" p->d, because *p
726 * is declared 'const'... */
728 while (ubits
&& !(udp
[0]&1)) {
729 BN_ULONG u0
, u1
, b0
, b1
, mask
;
733 mask
= (BN_ULONG
)0 - (b0
& 1);
734 b0
^= p
->d
[0] & mask
;
735 for (i
= 0; i
< top
- 1; i
++) {
737 udp
[i
] = ((u0
>> 1) |
738 (u1
<< (BN_BITS2
- 1))) & BN_MASK2
;
740 b1
= bdp
[i
+ 1] ^ (p
->d
[i
+ 1] & mask
);
741 bdp
[i
] = ((b0
>> 1) |
742 (b1
<< (BN_BITS2
- 1))) & BN_MASK2
;
750 if (ubits
<= BN_BITS2
) {
751 /* See if poly was reducible. */
773 for (i
= 0; i
< top
; i
++) {
777 if (ubits
== vbits
) {
779 int utop
= (ubits
- 1) / BN_BITS2
;
781 while ((ul
= udp
[utop
]) == 0 && utop
)
783 ubits
= utop
*BN_BITS2
+ BN_num_bits_word(ul
);
796 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
805 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
807 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
808 * function is only provided for convenience; for best performance, use the
809 * BN_GF2m_mod_inv function.
812 BN_GF2m_mod_inv_arr(BIGNUM
*r
, const BIGNUM
*xx
, const int p
[], BN_CTX
*ctx
)
819 if ((field
= BN_CTX_get(ctx
)) == NULL
)
821 if (!BN_GF2m_arr2poly(p
, field
))
824 ret
= BN_GF2m_mod_inv(r
, xx
, field
, ctx
);
833 #ifndef OPENSSL_SUN_GF2M_DIV
834 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
835 * or y, x could equal y.
838 BN_GF2m_mod_div(BIGNUM
*r
, const BIGNUM
*y
, const BIGNUM
*x
, const BIGNUM
*p
,
849 if ((xinv
= BN_CTX_get(ctx
)) == NULL
)
852 if (!BN_GF2m_mod_inv(xinv
, x
, p
, ctx
))
854 if (!BN_GF2m_mod_mul(r
, y
, xinv
, p
, ctx
))
864 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
865 * or y, x could equal y.
866 * Uses algorithm Modular_Division_GF(2^m) from
867 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
871 BN_GF2m_mod_div(BIGNUM
*r
, const BIGNUM
*y
, const BIGNUM
*x
, const BIGNUM
*p
,
874 BIGNUM
*a
, *b
, *u
, *v
;
883 if ((a
= BN_CTX_get(ctx
)) == NULL
)
885 if ((b
= BN_CTX_get(ctx
)) == NULL
)
887 if ((u
= BN_CTX_get(ctx
)) == NULL
)
889 if ((v
= BN_CTX_get(ctx
)) == NULL
)
892 /* reduce x and y mod p */
893 if (!BN_GF2m_mod(u
, y
, p
))
895 if (!BN_GF2m_mod(a
, x
, p
))
900 while (!BN_is_odd(a
)) {
901 if (!BN_rshift1(a
, a
))
904 if (!BN_GF2m_add(u
, u
, p
))
906 if (!BN_rshift1(u
, u
))
911 if (BN_GF2m_cmp(b
, a
) > 0) {
912 if (!BN_GF2m_add(b
, b
, a
))
914 if (!BN_GF2m_add(v
, v
, u
))
917 if (!BN_rshift1(b
, b
))
920 if (!BN_GF2m_add(v
, v
, p
))
922 if (!BN_rshift1(v
, v
))
924 } while (!BN_is_odd(b
));
925 } else if (BN_abs_is_word(a
, 1))
928 if (!BN_GF2m_add(a
, a
, b
))
930 if (!BN_GF2m_add(u
, u
, v
))
933 if (!BN_rshift1(a
, a
))
936 if (!BN_GF2m_add(u
, u
, p
))
938 if (!BN_rshift1(u
, u
))
940 } while (!BN_is_odd(a
));
955 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
956 * or yy, xx could equal yy.
958 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
959 * function is only provided for convenience; for best performance, use the
960 * BN_GF2m_mod_div function.
963 BN_GF2m_mod_div_arr(BIGNUM
*r
, const BIGNUM
*yy
, const BIGNUM
*xx
,
964 const int p
[], BN_CTX
*ctx
)
973 if ((field
= BN_CTX_get(ctx
)) == NULL
)
975 if (!BN_GF2m_arr2poly(p
, field
))
978 ret
= BN_GF2m_mod_div(r
, yy
, xx
, field
, ctx
);
987 /* Compute the bth power of a, reduce modulo p, and store
988 * the result in r. r could be a.
989 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
992 BN_GF2m_mod_exp_arr(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
, const int p
[],
1004 if (BN_abs_is_word(b
, 1))
1005 return (BN_copy(r
, a
) != NULL
);
1008 if ((u
= BN_CTX_get(ctx
)) == NULL
)
1011 if (!BN_GF2m_mod_arr(u
, a
, p
))
1014 n
= BN_num_bits(b
) - 1;
1015 for (i
= n
- 1; i
>= 0; i
--) {
1016 if (!BN_GF2m_mod_sqr_arr(u
, u
, p
, ctx
))
1018 if (BN_is_bit_set(b
, i
)) {
1019 if (!BN_GF2m_mod_mul_arr(u
, u
, a
, p
, ctx
))
1033 /* Compute the bth power of a, reduce modulo p, and store
1034 * the result in r. r could be a.
1036 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
1037 * function is only provided for convenience; for best performance, use the
1038 * BN_GF2m_mod_exp_arr function.
1041 BN_GF2m_mod_exp(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
, const BIGNUM
*p
,
1045 const int max
= BN_num_bits(p
) + 1;
1051 if ((arr
= reallocarray(NULL
, max
, sizeof(int))) == NULL
)
1053 ret
= BN_GF2m_poly2arr(p
, arr
, max
);
1054 if (!ret
|| ret
> max
) {
1055 BNerror(BN_R_INVALID_LENGTH
);
1058 ret
= BN_GF2m_mod_exp_arr(r
, a
, b
, arr
, ctx
);
1066 /* Compute the square root of a, reduce modulo p, and store
1067 * the result in r. r could be a.
1068 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1071 BN_GF2m_mod_sqrt_arr(BIGNUM
*r
, const BIGNUM
*a
, const int p
[], BN_CTX
*ctx
)
1079 /* reduction mod 1 => return 0 */
1085 if ((u
= BN_CTX_get(ctx
)) == NULL
)
1088 if (!BN_set_bit(u
, p
[0] - 1))
1090 ret
= BN_GF2m_mod_exp_arr(r
, a
, u
, p
, ctx
);
1098 /* Compute the square root of a, reduce modulo p, and store
1099 * the result in r. r could be a.
1101 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
1102 * function is only provided for convenience; for best performance, use the
1103 * BN_GF2m_mod_sqrt_arr function.
1106 BN_GF2m_mod_sqrt(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*p
, BN_CTX
*ctx
)
1109 const int max
= BN_num_bits(p
) + 1;
1113 if ((arr
= reallocarray(NULL
, max
, sizeof(int))) == NULL
)
1115 ret
= BN_GF2m_poly2arr(p
, arr
, max
);
1116 if (!ret
|| ret
> max
) {
1117 BNerror(BN_R_INVALID_LENGTH
);
1120 ret
= BN_GF2m_mod_sqrt_arr(r
, a
, arr
, ctx
);
1128 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1129 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1132 BN_GF2m_mod_solve_quad_arr(BIGNUM
*r
, const BIGNUM
*a_
, const int p
[],
1135 int ret
= 0, count
= 0, j
;
1136 BIGNUM
*a
, *z
, *rho
, *w
, *w2
, *tmp
;
1141 /* reduction mod 1 => return 0 */
1147 if ((a
= BN_CTX_get(ctx
)) == NULL
)
1149 if ((z
= BN_CTX_get(ctx
)) == NULL
)
1151 if ((w
= BN_CTX_get(ctx
)) == NULL
)
1154 if (!BN_GF2m_mod_arr(a
, a_
, p
))
1157 if (BN_is_zero(a
)) {
1163 if (p
[0] & 0x1) /* m is odd */
1165 /* compute half-trace of a */
1168 for (j
= 1; j
<= (p
[0] - 1) / 2; j
++) {
1169 if (!BN_GF2m_mod_sqr_arr(z
, z
, p
, ctx
))
1171 if (!BN_GF2m_mod_sqr_arr(z
, z
, p
, ctx
))
1173 if (!BN_GF2m_add(z
, z
, a
))
1178 else /* m is even */
1180 if ((rho
= BN_CTX_get(ctx
)) == NULL
)
1182 if ((w2
= BN_CTX_get(ctx
)) == NULL
)
1184 if ((tmp
= BN_CTX_get(ctx
)) == NULL
)
1187 if (!BN_rand(rho
, p
[0], 0, 0))
1189 if (!BN_GF2m_mod_arr(rho
, rho
, p
))
1192 if (!BN_copy(w
, rho
))
1194 for (j
= 1; j
<= p
[0] - 1; j
++) {
1195 if (!BN_GF2m_mod_sqr_arr(z
, z
, p
, ctx
))
1197 if (!BN_GF2m_mod_sqr_arr(w2
, w
, p
, ctx
))
1199 if (!BN_GF2m_mod_mul_arr(tmp
, w2
, a
, p
, ctx
))
1201 if (!BN_GF2m_add(z
, z
, tmp
))
1203 if (!BN_GF2m_add(w
, w2
, rho
))
1207 } while (BN_is_zero(w
) && (count
< MAX_ITERATIONS
));
1208 if (BN_is_zero(w
)) {
1209 BNerror(BN_R_TOO_MANY_ITERATIONS
);
1214 if (!BN_GF2m_mod_sqr_arr(w
, z
, p
, ctx
))
1216 if (!BN_GF2m_add(w
, z
, w
))
1218 if (BN_GF2m_cmp(w
, a
)) {
1219 BNerror(BN_R_NO_SOLUTION
);
1234 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1236 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1237 * function is only provided for convenience; for best performance, use the
1238 * BN_GF2m_mod_solve_quad_arr function.
1241 BN_GF2m_mod_solve_quad(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*p
, BN_CTX
*ctx
)
1244 const int max
= BN_num_bits(p
) + 1;
1249 if ((arr
= reallocarray(NULL
, max
, sizeof(int))) == NULL
)
1251 ret
= BN_GF2m_poly2arr(p
, arr
, max
);
1252 if (!ret
|| ret
> max
) {
1253 BNerror(BN_R_INVALID_LENGTH
);
1256 ret
= BN_GF2m_mod_solve_quad_arr(r
, a
, arr
, ctx
);
1264 /* Convert the bit-string representation of a polynomial
1265 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1266 * to the bits with non-zero coefficient. Array is terminated with -1.
1267 * Up to max elements of the array will be filled. Return value is total
1268 * number of array elements that would be filled if array was large enough.
1271 BN_GF2m_poly2arr(const BIGNUM
*a
, int p
[], int max
)
1279 for (i
= a
->top
- 1; i
>= 0; i
--) {
1281 /* skip word if a->d[i] == 0 */
1284 for (j
= BN_BITS2
- 1; j
>= 0; j
--) {
1285 if (a
->d
[i
] & mask
) {
1287 p
[k
] = BN_BITS2
* i
+ j
;
1302 /* Convert the coefficient array representation of a polynomial to a
1303 * bit-string. The array must be terminated by -1.
1306 BN_GF2m_arr2poly(const int p
[], BIGNUM
*a
)
1312 for (i
= 0; p
[i
] != -1; i
++) {
1313 if (BN_set_bit(a
, p
[i
]) == 0)