Merge commit 'dfc115332c94a2f62058ac7f2bce7631fbd20b3d'
[unleashed/tickless.git] / lib / libcrypto / bn / bn_gf2m.c
blob8562b3f87e21f077e02662b7f381014bf375f3d3
1 /* $OpenBSD: bn_gf2m.c,v 1.23 2017/01/29 17:49:22 beck Exp $ */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
91 #include <limits.h>
92 #include <stdio.h>
94 #include <openssl/opensslconf.h>
96 #include <openssl/err.h>
98 #include "bn_lcl.h"
100 #ifndef OPENSSL_NO_EC2M
102 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
103 #define MAX_ITERATIONS 50
105 static const BN_ULONG SQR_tb[16] =
106 { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85 };
108 /* Platform-specific macros to accelerate squaring. */
109 #ifdef _LP64
110 #define SQR1(w) \
111 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
112 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
113 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
114 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
115 #define SQR0(w) \
116 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
117 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
118 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
119 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
120 #else
121 #define SQR1(w) \
122 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
124 #define SQR0(w) \
125 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
126 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
127 #endif
129 #if !defined(OPENSSL_BN_ASM_GF2m)
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
135 static void
136 bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
138 #ifndef _LP64
139 BN_ULONG h, l, s;
140 BN_ULONG tab[8], top2b = a >> 30;
141 BN_ULONG a1, a2, a4;
143 a1 = a & (0x3FFFFFFF);
144 a2 = a1 << 1;
145 a4 = a2 << 1;
147 tab[0] = 0;
148 tab[1] = a1;
149 tab[2] = a2;
150 tab[3] = a1 ^ a2;
151 tab[4] = a4;
152 tab[5] = a1 ^ a4;
153 tab[6] = a2 ^ a4;
154 tab[7] = a1 ^ a2 ^ a4;
156 s = tab[b & 0x7];
157 l = s;
158 s = tab[b >> 3 & 0x7];
159 l ^= s << 3;
160 h = s >> 29;
161 s = tab[b >> 6 & 0x7];
162 l ^= s << 6;
163 h ^= s >> 26;
164 s = tab[b >> 9 & 0x7];
165 l ^= s << 9;
166 h ^= s >> 23;
167 s = tab[b >> 12 & 0x7];
168 l ^= s << 12;
169 h ^= s >> 20;
170 s = tab[b >> 15 & 0x7];
171 l ^= s << 15;
172 h ^= s >> 17;
173 s = tab[b >> 18 & 0x7];
174 l ^= s << 18;
175 h ^= s >> 14;
176 s = tab[b >> 21 & 0x7];
177 l ^= s << 21;
178 h ^= s >> 11;
179 s = tab[b >> 24 & 0x7];
180 l ^= s << 24;
181 h ^= s >> 8;
182 s = tab[b >> 27 & 0x7];
183 l ^= s << 27;
184 h ^= s >> 5;
185 s = tab[b >> 30];
186 l ^= s << 30;
187 h ^= s >> 2;
189 /* compensate for the top two bits of a */
190 if (top2b & 01) {
191 l ^= b << 30;
192 h ^= b >> 2;
194 if (top2b & 02) {
195 l ^= b << 31;
196 h ^= b >> 1;
199 *r1 = h;
200 *r0 = l;
201 #else
202 BN_ULONG h, l, s;
203 BN_ULONG tab[16], top3b = a >> 61;
204 BN_ULONG a1, a2, a4, a8;
206 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
207 a2 = a1 << 1;
208 a4 = a2 << 1;
209 a8 = a4 << 1;
211 tab[0] = 0;
212 tab[1] = a1;
213 tab[2] = a2;
214 tab[3] = a1 ^ a2;
215 tab[4] = a4;
216 tab[5] = a1 ^ a4;
217 tab[6] = a2 ^ a4;
218 tab[7] = a1 ^ a2 ^ a4;
219 tab[8] = a8;
220 tab[9] = a1 ^ a8;
221 tab[10] = a2 ^ a8;
222 tab[11] = a1 ^ a2 ^ a8;
223 tab[12] = a4 ^ a8;
224 tab[13] = a1 ^ a4 ^ a8;
225 tab[14] = a2 ^ a4 ^ a8;
226 tab[15] = a1 ^ a2 ^ a4 ^ a8;
228 s = tab[b & 0xF];
229 l = s;
230 s = tab[b >> 4 & 0xF];
231 l ^= s << 4;
232 h = s >> 60;
233 s = tab[b >> 8 & 0xF];
234 l ^= s << 8;
235 h ^= s >> 56;
236 s = tab[b >> 12 & 0xF];
237 l ^= s << 12;
238 h ^= s >> 52;
239 s = tab[b >> 16 & 0xF];
240 l ^= s << 16;
241 h ^= s >> 48;
242 s = tab[b >> 20 & 0xF];
243 l ^= s << 20;
244 h ^= s >> 44;
245 s = tab[b >> 24 & 0xF];
246 l ^= s << 24;
247 h ^= s >> 40;
248 s = tab[b >> 28 & 0xF];
249 l ^= s << 28;
250 h ^= s >> 36;
251 s = tab[b >> 32 & 0xF];
252 l ^= s << 32;
253 h ^= s >> 32;
254 s = tab[b >> 36 & 0xF];
255 l ^= s << 36;
256 h ^= s >> 28;
257 s = tab[b >> 40 & 0xF];
258 l ^= s << 40;
259 h ^= s >> 24;
260 s = tab[b >> 44 & 0xF];
261 l ^= s << 44;
262 h ^= s >> 20;
263 s = tab[b >> 48 & 0xF];
264 l ^= s << 48;
265 h ^= s >> 16;
266 s = tab[b >> 52 & 0xF];
267 l ^= s << 52;
268 h ^= s >> 12;
269 s = tab[b >> 56 & 0xF];
270 l ^= s << 56;
271 h ^= s >> 8;
272 s = tab[b >> 60];
273 l ^= s << 60;
274 h ^= s >> 4;
276 /* compensate for the top three bits of a */
277 if (top3b & 01) {
278 l ^= b << 61;
279 h ^= b >> 3;
281 if (top3b & 02) {
282 l ^= b << 62;
283 h ^= b >> 2;
285 if (top3b & 04) {
286 l ^= b << 63;
287 h ^= b >> 1;
290 *r1 = h;
291 *r0 = l;
292 #endif
295 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
296 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
297 * The caller MUST ensure that the variables have the right amount
298 * of space allocated.
300 static void
301 bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
302 const BN_ULONG b1, const BN_ULONG b0)
304 BN_ULONG m1, m0;
306 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
307 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
308 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
309 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
310 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
311 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
312 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
314 #else
315 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
316 BN_ULONG b0);
317 #endif
319 /* Add polynomials a and b and store result in r; r could be a or b, a and b
320 * could be equal; r is the bitwise XOR of a and b.
323 BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
325 int i;
326 const BIGNUM *at, *bt;
328 bn_check_top(a);
329 bn_check_top(b);
331 if (a->top < b->top) {
332 at = b;
333 bt = a;
334 } else {
335 at = a;
336 bt = b;
339 if (bn_wexpand(r, at->top) == NULL)
340 return 0;
342 for (i = 0; i < bt->top; i++) {
343 r->d[i] = at->d[i] ^ bt->d[i];
345 for (; i < at->top; i++) {
346 r->d[i] = at->d[i];
349 r->top = at->top;
350 bn_correct_top(r);
352 return 1;
356 /* Some functions allow for representation of the irreducible polynomials
357 * as an int[], say p. The irreducible f(t) is then of the form:
358 * t^p[0] + t^p[1] + ... + t^p[k]
359 * where m = p[0] > p[1] > ... > p[k] = 0.
363 /* Performs modular reduction of a and store result in r. r could be a. */
365 BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
367 int j, k;
368 int n, dN, d0, d1;
369 BN_ULONG zz, *z;
371 bn_check_top(a);
373 if (!p[0]) {
374 /* reduction mod 1 => return 0 */
375 BN_zero(r);
376 return 1;
379 /* Since the algorithm does reduction in the r value, if a != r, copy
380 * the contents of a into r so we can do reduction in r.
382 if (a != r) {
383 if (!bn_wexpand(r, a->top))
384 return 0;
385 for (j = 0; j < a->top; j++) {
386 r->d[j] = a->d[j];
388 r->top = a->top;
390 z = r->d;
392 /* start reduction */
393 dN = p[0] / BN_BITS2;
394 for (j = r->top - 1; j > dN; ) {
395 zz = z[j];
396 if (z[j] == 0) {
397 j--;
398 continue;
400 z[j] = 0;
402 for (k = 1; p[k] != 0; k++) {
403 /* reducing component t^p[k] */
404 n = p[0] - p[k];
405 d0 = n % BN_BITS2;
406 d1 = BN_BITS2 - d0;
407 n /= BN_BITS2;
408 z[j - n] ^= (zz >> d0);
409 if (d0)
410 z[j - n - 1] ^= (zz << d1);
413 /* reducing component t^0 */
414 n = dN;
415 d0 = p[0] % BN_BITS2;
416 d1 = BN_BITS2 - d0;
417 z[j - n] ^= (zz >> d0);
418 if (d0)
419 z[j - n - 1] ^= (zz << d1);
422 /* final round of reduction */
423 while (j == dN) {
425 d0 = p[0] % BN_BITS2;
426 zz = z[dN] >> d0;
427 if (zz == 0)
428 break;
429 d1 = BN_BITS2 - d0;
431 /* clear up the top d1 bits */
432 if (d0)
433 z[dN] = (z[dN] << d1) >> d1;
434 else
435 z[dN] = 0;
436 z[0] ^= zz; /* reduction t^0 component */
438 for (k = 1; p[k] != 0; k++) {
439 BN_ULONG tmp_ulong;
441 /* reducing component t^p[k]*/
442 n = p[k] / BN_BITS2;
443 d0 = p[k] % BN_BITS2;
444 d1 = BN_BITS2 - d0;
445 z[n] ^= (zz << d0);
446 if (d0 && (tmp_ulong = zz >> d1))
447 z[n + 1] ^= tmp_ulong;
453 bn_correct_top(r);
454 return 1;
457 /* Performs modular reduction of a by p and store result in r. r could be a.
459 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
460 * function is only provided for convenience; for best performance, use the
461 * BN_GF2m_mod_arr function.
464 BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
466 int ret = 0;
467 int arr[6];
469 bn_check_top(a);
470 bn_check_top(p);
471 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
472 if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
473 BNerror(BN_R_INVALID_LENGTH);
474 return 0;
476 ret = BN_GF2m_mod_arr(r, a, arr);
477 bn_check_top(r);
478 return ret;
482 /* Compute the product of two polynomials a and b, reduce modulo p, and store
483 * the result in r. r could be a or b; a could be b.
486 BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[],
487 BN_CTX *ctx)
489 int zlen, i, j, k, ret = 0;
490 BIGNUM *s;
491 BN_ULONG x1, x0, y1, y0, zz[4];
493 bn_check_top(a);
494 bn_check_top(b);
496 if (a == b) {
497 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
500 BN_CTX_start(ctx);
501 if ((s = BN_CTX_get(ctx)) == NULL)
502 goto err;
504 zlen = a->top + b->top + 4;
505 if (!bn_wexpand(s, zlen))
506 goto err;
507 s->top = zlen;
509 for (i = 0; i < zlen; i++)
510 s->d[i] = 0;
512 for (j = 0; j < b->top; j += 2) {
513 y0 = b->d[j];
514 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
515 for (i = 0; i < a->top; i += 2) {
516 x0 = a->d[i];
517 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
518 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
519 for (k = 0; k < 4; k++)
520 s->d[i + j + k] ^= zz[k];
524 bn_correct_top(s);
525 if (BN_GF2m_mod_arr(r, s, p))
526 ret = 1;
527 bn_check_top(r);
529 err:
530 BN_CTX_end(ctx);
531 return ret;
534 /* Compute the product of two polynomials a and b, reduce modulo p, and store
535 * the result in r. r could be a or b; a could equal b.
537 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
538 * function is only provided for convenience; for best performance, use the
539 * BN_GF2m_mod_mul_arr function.
542 BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p,
543 BN_CTX *ctx)
545 int ret = 0;
546 const int max = BN_num_bits(p) + 1;
547 int *arr = NULL;
549 bn_check_top(a);
550 bn_check_top(b);
551 bn_check_top(p);
552 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
553 goto err;
554 ret = BN_GF2m_poly2arr(p, arr, max);
555 if (!ret || ret > max) {
556 BNerror(BN_R_INVALID_LENGTH);
557 goto err;
559 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
560 bn_check_top(r);
562 err:
563 free(arr);
564 return ret;
568 /* Square a, reduce the result mod p, and store it in a. r could be a. */
570 BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
572 int i, ret = 0;
573 BIGNUM *s;
575 bn_check_top(a);
576 BN_CTX_start(ctx);
577 if ((s = BN_CTX_get(ctx)) == NULL)
578 goto err;
579 if (!bn_wexpand(s, 2 * a->top))
580 goto err;
582 for (i = a->top - 1; i >= 0; i--) {
583 s->d[2 * i + 1] = SQR1(a->d[i]);
584 s->d[2 * i] = SQR0(a->d[i]);
587 s->top = 2 * a->top;
588 bn_correct_top(s);
589 if (!BN_GF2m_mod_arr(r, s, p))
590 goto err;
591 bn_check_top(r);
592 ret = 1;
594 err:
595 BN_CTX_end(ctx);
596 return ret;
599 /* Square a, reduce the result mod p, and store it in a. r could be a.
601 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
602 * function is only provided for convenience; for best performance, use the
603 * BN_GF2m_mod_sqr_arr function.
606 BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
608 int ret = 0;
609 const int max = BN_num_bits(p) + 1;
610 int *arr = NULL;
612 bn_check_top(a);
613 bn_check_top(p);
614 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
615 goto err;
616 ret = BN_GF2m_poly2arr(p, arr, max);
617 if (!ret || ret > max) {
618 BNerror(BN_R_INVALID_LENGTH);
619 goto err;
621 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
622 bn_check_top(r);
624 err:
625 free(arr);
626 return ret;
630 /* Invert a, reduce modulo p, and store the result in r. r could be a.
631 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
632 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
633 * of Elliptic Curve Cryptography Over Binary Fields".
636 BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
638 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
639 int ret = 0;
641 bn_check_top(a);
642 bn_check_top(p);
644 BN_CTX_start(ctx);
646 if ((b = BN_CTX_get(ctx)) == NULL)
647 goto err;
648 if ((c = BN_CTX_get(ctx)) == NULL)
649 goto err;
650 if ((u = BN_CTX_get(ctx)) == NULL)
651 goto err;
652 if ((v = BN_CTX_get(ctx)) == NULL)
653 goto err;
655 if (!BN_GF2m_mod(u, a, p))
656 goto err;
657 if (BN_is_zero(u))
658 goto err;
660 if (!BN_copy(v, p))
661 goto err;
662 #if 0
663 if (!BN_one(b))
664 goto err;
666 while (1) {
667 while (!BN_is_odd(u)) {
668 if (BN_is_zero(u))
669 goto err;
670 if (!BN_rshift1(u, u))
671 goto err;
672 if (BN_is_odd(b)) {
673 if (!BN_GF2m_add(b, b, p))
674 goto err;
676 if (!BN_rshift1(b, b))
677 goto err;
680 if (BN_abs_is_word(u, 1))
681 break;
683 if (BN_num_bits(u) < BN_num_bits(v)) {
684 tmp = u;
685 u = v;
686 v = tmp;
687 tmp = b;
688 b = c;
689 c = tmp;
692 if (!BN_GF2m_add(u, u, v))
693 goto err;
694 if (!BN_GF2m_add(b, b, c))
695 goto err;
697 #else
699 int i, ubits = BN_num_bits(u),
700 vbits = BN_num_bits(v), /* v is copy of p */
701 top = p->top;
702 BN_ULONG *udp, *bdp, *vdp, *cdp;
704 if (!bn_wexpand(u, top))
705 goto err;
706 udp = u->d;
707 for (i = u->top; i < top; i++)
708 udp[i] = 0;
709 u->top = top;
710 if (!bn_wexpand(b, top))
711 goto err;
712 bdp = b->d;
713 bdp[0] = 1;
714 for (i = 1; i < top; i++)
715 bdp[i] = 0;
716 b->top = top;
717 if (!bn_wexpand(c, top))
718 goto err;
719 cdp = c->d;
720 for (i = 0; i < top; i++)
721 cdp[i] = 0;
722 c->top = top;
723 vdp = v->d; /* It pays off to "cache" *->d pointers, because
724 * it allows optimizer to be more aggressive.
725 * But we don't have to "cache" p->d, because *p
726 * is declared 'const'... */
727 while (1) {
728 while (ubits && !(udp[0]&1)) {
729 BN_ULONG u0, u1, b0, b1, mask;
731 u0 = udp[0];
732 b0 = bdp[0];
733 mask = (BN_ULONG)0 - (b0 & 1);
734 b0 ^= p->d[0] & mask;
735 for (i = 0; i < top - 1; i++) {
736 u1 = udp[i + 1];
737 udp[i] = ((u0 >> 1) |
738 (u1 << (BN_BITS2 - 1))) & BN_MASK2;
739 u0 = u1;
740 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
741 bdp[i] = ((b0 >> 1) |
742 (b1 << (BN_BITS2 - 1))) & BN_MASK2;
743 b0 = b1;
745 udp[i] = u0 >> 1;
746 bdp[i] = b0 >> 1;
747 ubits--;
750 if (ubits <= BN_BITS2) {
751 /* See if poly was reducible. */
752 if (udp[0] == 0)
753 goto err;
754 if (udp[0] == 1)
755 break;
758 if (ubits < vbits) {
759 i = ubits;
760 ubits = vbits;
761 vbits = i;
762 tmp = u;
763 u = v;
764 v = tmp;
765 tmp = b;
766 b = c;
767 c = tmp;
768 udp = vdp;
769 vdp = v->d;
770 bdp = cdp;
771 cdp = c->d;
773 for (i = 0; i < top; i++) {
774 udp[i] ^= vdp[i];
775 bdp[i] ^= cdp[i];
777 if (ubits == vbits) {
778 BN_ULONG ul;
779 int utop = (ubits - 1) / BN_BITS2;
781 while ((ul = udp[utop]) == 0 && utop)
782 utop--;
783 ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
786 bn_correct_top(b);
788 #endif
790 if (!BN_copy(r, b))
791 goto err;
792 bn_check_top(r);
793 ret = 1;
795 err:
796 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
797 bn_correct_top(c);
798 bn_correct_top(u);
799 bn_correct_top(v);
800 #endif
801 BN_CTX_end(ctx);
802 return ret;
805 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
807 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
808 * function is only provided for convenience; for best performance, use the
809 * BN_GF2m_mod_inv function.
812 BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
814 BIGNUM *field;
815 int ret = 0;
817 bn_check_top(xx);
818 BN_CTX_start(ctx);
819 if ((field = BN_CTX_get(ctx)) == NULL)
820 goto err;
821 if (!BN_GF2m_arr2poly(p, field))
822 goto err;
824 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
825 bn_check_top(r);
827 err:
828 BN_CTX_end(ctx);
829 return ret;
833 #ifndef OPENSSL_SUN_GF2M_DIV
834 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
835 * or y, x could equal y.
838 BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p,
839 BN_CTX *ctx)
841 BIGNUM *xinv = NULL;
842 int ret = 0;
844 bn_check_top(y);
845 bn_check_top(x);
846 bn_check_top(p);
848 BN_CTX_start(ctx);
849 if ((xinv = BN_CTX_get(ctx)) == NULL)
850 goto err;
852 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
853 goto err;
854 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
855 goto err;
856 bn_check_top(r);
857 ret = 1;
859 err:
860 BN_CTX_end(ctx);
861 return ret;
863 #else
864 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
865 * or y, x could equal y.
866 * Uses algorithm Modular_Division_GF(2^m) from
867 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
868 * the Great Divide".
871 BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p,
872 BN_CTX *ctx)
874 BIGNUM *a, *b, *u, *v;
875 int ret = 0;
877 bn_check_top(y);
878 bn_check_top(x);
879 bn_check_top(p);
881 BN_CTX_start(ctx);
883 if ((a = BN_CTX_get(ctx)) == NULL)
884 goto err;
885 if ((b = BN_CTX_get(ctx)) == NULL)
886 goto err;
887 if ((u = BN_CTX_get(ctx)) == NULL)
888 goto err;
889 if ((v = BN_CTX_get(ctx)) == NULL)
890 goto err;
892 /* reduce x and y mod p */
893 if (!BN_GF2m_mod(u, y, p))
894 goto err;
895 if (!BN_GF2m_mod(a, x, p))
896 goto err;
897 if (!BN_copy(b, p))
898 goto err;
900 while (!BN_is_odd(a)) {
901 if (!BN_rshift1(a, a))
902 goto err;
903 if (BN_is_odd(u))
904 if (!BN_GF2m_add(u, u, p))
905 goto err;
906 if (!BN_rshift1(u, u))
907 goto err;
910 do {
911 if (BN_GF2m_cmp(b, a) > 0) {
912 if (!BN_GF2m_add(b, b, a))
913 goto err;
914 if (!BN_GF2m_add(v, v, u))
915 goto err;
916 do {
917 if (!BN_rshift1(b, b))
918 goto err;
919 if (BN_is_odd(v))
920 if (!BN_GF2m_add(v, v, p))
921 goto err;
922 if (!BN_rshift1(v, v))
923 goto err;
924 } while (!BN_is_odd(b));
925 } else if (BN_abs_is_word(a, 1))
926 break;
927 else {
928 if (!BN_GF2m_add(a, a, b))
929 goto err;
930 if (!BN_GF2m_add(u, u, v))
931 goto err;
932 do {
933 if (!BN_rshift1(a, a))
934 goto err;
935 if (BN_is_odd(u))
936 if (!BN_GF2m_add(u, u, p))
937 goto err;
938 if (!BN_rshift1(u, u))
939 goto err;
940 } while (!BN_is_odd(a));
942 } while (1);
944 if (!BN_copy(r, u))
945 goto err;
946 bn_check_top(r);
947 ret = 1;
949 err:
950 BN_CTX_end(ctx);
951 return ret;
953 #endif
955 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
956 * or yy, xx could equal yy.
958 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
959 * function is only provided for convenience; for best performance, use the
960 * BN_GF2m_mod_div function.
963 BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
964 const int p[], BN_CTX *ctx)
966 BIGNUM *field;
967 int ret = 0;
969 bn_check_top(yy);
970 bn_check_top(xx);
972 BN_CTX_start(ctx);
973 if ((field = BN_CTX_get(ctx)) == NULL)
974 goto err;
975 if (!BN_GF2m_arr2poly(p, field))
976 goto err;
978 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
979 bn_check_top(r);
981 err:
982 BN_CTX_end(ctx);
983 return ret;
987 /* Compute the bth power of a, reduce modulo p, and store
988 * the result in r. r could be a.
989 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
992 BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[],
993 BN_CTX *ctx)
995 int ret = 0, i, n;
996 BIGNUM *u;
998 bn_check_top(a);
999 bn_check_top(b);
1001 if (BN_is_zero(b))
1002 return (BN_one(r));
1004 if (BN_abs_is_word(b, 1))
1005 return (BN_copy(r, a) != NULL);
1007 BN_CTX_start(ctx);
1008 if ((u = BN_CTX_get(ctx)) == NULL)
1009 goto err;
1011 if (!BN_GF2m_mod_arr(u, a, p))
1012 goto err;
1014 n = BN_num_bits(b) - 1;
1015 for (i = n - 1; i >= 0; i--) {
1016 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1017 goto err;
1018 if (BN_is_bit_set(b, i)) {
1019 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1020 goto err;
1023 if (!BN_copy(r, u))
1024 goto err;
1025 bn_check_top(r);
1026 ret = 1;
1028 err:
1029 BN_CTX_end(ctx);
1030 return ret;
1033 /* Compute the bth power of a, reduce modulo p, and store
1034 * the result in r. r could be a.
1036 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
1037 * function is only provided for convenience; for best performance, use the
1038 * BN_GF2m_mod_exp_arr function.
1041 BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p,
1042 BN_CTX *ctx)
1044 int ret = 0;
1045 const int max = BN_num_bits(p) + 1;
1046 int *arr = NULL;
1048 bn_check_top(a);
1049 bn_check_top(b);
1050 bn_check_top(p);
1051 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1052 goto err;
1053 ret = BN_GF2m_poly2arr(p, arr, max);
1054 if (!ret || ret > max) {
1055 BNerror(BN_R_INVALID_LENGTH);
1056 goto err;
1058 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1059 bn_check_top(r);
1061 err:
1062 free(arr);
1063 return ret;
1066 /* Compute the square root of a, reduce modulo p, and store
1067 * the result in r. r could be a.
1068 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1071 BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
1073 int ret = 0;
1074 BIGNUM *u;
1076 bn_check_top(a);
1078 if (!p[0]) {
1079 /* reduction mod 1 => return 0 */
1080 BN_zero(r);
1081 return 1;
1084 BN_CTX_start(ctx);
1085 if ((u = BN_CTX_get(ctx)) == NULL)
1086 goto err;
1088 if (!BN_set_bit(u, p[0] - 1))
1089 goto err;
1090 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1091 bn_check_top(r);
1093 err:
1094 BN_CTX_end(ctx);
1095 return ret;
1098 /* Compute the square root of a, reduce modulo p, and store
1099 * the result in r. r could be a.
1101 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
1102 * function is only provided for convenience; for best performance, use the
1103 * BN_GF2m_mod_sqrt_arr function.
1106 BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1108 int ret = 0;
1109 const int max = BN_num_bits(p) + 1;
1110 int *arr = NULL;
1111 bn_check_top(a);
1112 bn_check_top(p);
1113 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1114 goto err;
1115 ret = BN_GF2m_poly2arr(p, arr, max);
1116 if (!ret || ret > max) {
1117 BNerror(BN_R_INVALID_LENGTH);
1118 goto err;
1120 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1121 bn_check_top(r);
1123 err:
1124 free(arr);
1125 return ret;
1128 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1129 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1132 BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1133 BN_CTX *ctx)
1135 int ret = 0, count = 0, j;
1136 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1138 bn_check_top(a_);
1140 if (!p[0]) {
1141 /* reduction mod 1 => return 0 */
1142 BN_zero(r);
1143 return 1;
1146 BN_CTX_start(ctx);
1147 if ((a = BN_CTX_get(ctx)) == NULL)
1148 goto err;
1149 if ((z = BN_CTX_get(ctx)) == NULL)
1150 goto err;
1151 if ((w = BN_CTX_get(ctx)) == NULL)
1152 goto err;
1154 if (!BN_GF2m_mod_arr(a, a_, p))
1155 goto err;
1157 if (BN_is_zero(a)) {
1158 BN_zero(r);
1159 ret = 1;
1160 goto err;
1163 if (p[0] & 0x1) /* m is odd */
1165 /* compute half-trace of a */
1166 if (!BN_copy(z, a))
1167 goto err;
1168 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1169 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1170 goto err;
1171 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1172 goto err;
1173 if (!BN_GF2m_add(z, z, a))
1174 goto err;
1178 else /* m is even */
1180 if ((rho = BN_CTX_get(ctx)) == NULL)
1181 goto err;
1182 if ((w2 = BN_CTX_get(ctx)) == NULL)
1183 goto err;
1184 if ((tmp = BN_CTX_get(ctx)) == NULL)
1185 goto err;
1186 do {
1187 if (!BN_rand(rho, p[0], 0, 0))
1188 goto err;
1189 if (!BN_GF2m_mod_arr(rho, rho, p))
1190 goto err;
1191 BN_zero(z);
1192 if (!BN_copy(w, rho))
1193 goto err;
1194 for (j = 1; j <= p[0] - 1; j++) {
1195 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1196 goto err;
1197 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1198 goto err;
1199 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1200 goto err;
1201 if (!BN_GF2m_add(z, z, tmp))
1202 goto err;
1203 if (!BN_GF2m_add(w, w2, rho))
1204 goto err;
1206 count++;
1207 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1208 if (BN_is_zero(w)) {
1209 BNerror(BN_R_TOO_MANY_ITERATIONS);
1210 goto err;
1214 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1215 goto err;
1216 if (!BN_GF2m_add(w, z, w))
1217 goto err;
1218 if (BN_GF2m_cmp(w, a)) {
1219 BNerror(BN_R_NO_SOLUTION);
1220 goto err;
1223 if (!BN_copy(r, z))
1224 goto err;
1225 bn_check_top(r);
1227 ret = 1;
1229 err:
1230 BN_CTX_end(ctx);
1231 return ret;
1234 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1236 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1237 * function is only provided for convenience; for best performance, use the
1238 * BN_GF2m_mod_solve_quad_arr function.
1241 BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1243 int ret = 0;
1244 const int max = BN_num_bits(p) + 1;
1245 int *arr = NULL;
1247 bn_check_top(a);
1248 bn_check_top(p);
1249 if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1250 goto err;
1251 ret = BN_GF2m_poly2arr(p, arr, max);
1252 if (!ret || ret > max) {
1253 BNerror(BN_R_INVALID_LENGTH);
1254 goto err;
1256 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1257 bn_check_top(r);
1259 err:
1260 free(arr);
1261 return ret;
1264 /* Convert the bit-string representation of a polynomial
1265 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1266 * to the bits with non-zero coefficient. Array is terminated with -1.
1267 * Up to max elements of the array will be filled. Return value is total
1268 * number of array elements that would be filled if array was large enough.
1271 BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1273 int i, j, k = 0;
1274 BN_ULONG mask;
1276 if (BN_is_zero(a))
1277 return 0;
1279 for (i = a->top - 1; i >= 0; i--) {
1280 if (!a->d[i])
1281 /* skip word if a->d[i] == 0 */
1282 continue;
1283 mask = BN_TBIT;
1284 for (j = BN_BITS2 - 1; j >= 0; j--) {
1285 if (a->d[i] & mask) {
1286 if (k < max)
1287 p[k] = BN_BITS2 * i + j;
1288 k++;
1290 mask >>= 1;
1294 if (k < max) {
1295 p[k] = -1;
1296 k++;
1299 return k;
1302 /* Convert the coefficient array representation of a polynomial to a
1303 * bit-string. The array must be terminated by -1.
1306 BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1308 int i;
1310 bn_check_top(a);
1311 BN_zero(a);
1312 for (i = 0; p[i] != -1; i++) {
1313 if (BN_set_bit(a, p[i]) == 0)
1314 return 0;
1316 bn_check_top(a);
1318 return 1;
1321 #endif