1 /* $OpenBSD: bn_sqrt.c,v 1.9 2017/01/29 17:49:22 beck Exp $ */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
33 * 6. Redistributions of any form whatsoever must retain the following
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
58 #include <openssl/err.h>
63 BN_mod_sqrt(BIGNUM
*in
, const BIGNUM
*a
, const BIGNUM
*p
, BN_CTX
*ctx
)
64 /* Returns 'ret' such that
66 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
67 * in Algebraic Computational Number Theory", algorithm 1.5.1).
74 BIGNUM
*A
, *b
, *q
, *t
, *x
, *y
;
77 if (!BN_is_odd(p
) || BN_abs_is_word(p
, 1)) {
78 if (BN_abs_is_word(p
, 2)) {
83 if (!BN_set_word(ret
, BN_is_bit_set(a
, 0))) {
92 BNerror(BN_R_P_IS_NOT_PRIME
);
96 if (BN_is_zero(a
) || BN_is_one(a
)) {
101 if (!BN_set_word(ret
, BN_is_one(a
))) {
111 if ((A
= BN_CTX_get(ctx
)) == NULL
)
113 if ((b
= BN_CTX_get(ctx
)) == NULL
)
115 if ((q
= BN_CTX_get(ctx
)) == NULL
)
117 if ((t
= BN_CTX_get(ctx
)) == NULL
)
119 if ((x
= BN_CTX_get(ctx
)) == NULL
)
121 if ((y
= BN_CTX_get(ctx
)) == NULL
)
130 if (!BN_nnmod(A
, a
, p
, ctx
))
133 /* now write |p| - 1 as 2^e*q where q is odd */
135 while (!BN_is_bit_set(p
, e
))
137 /* we'll set q later (if needed) */
140 /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
141 * modulo (|p|-1)/2, and square roots can be computed
142 * directly by modular exponentiation.
144 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
145 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
147 if (!BN_rshift(q
, p
, 2))
150 if (!BN_add_word(q
, 1))
152 if (!BN_mod_exp_ct(ret
, A
, q
, p
, ctx
))
161 * In this case 2 is always a non-square since
162 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
163 * So if a really is a square, then 2*a is a non-square.
165 * b := (2*a)^((|p|-5)/8),
168 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
174 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175 * = a^2 * b^2 * (-2*i)
180 * (This is due to A.O.L. Atkin,
181 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
186 if (!BN_mod_lshift1_quick(t
, A
, p
))
189 /* b := (2*a)^((|p|-5)/8) */
190 if (!BN_rshift(q
, p
, 3))
193 if (!BN_mod_exp_ct(b
, t
, q
, p
, ctx
))
197 if (!BN_mod_sqr(y
, b
, p
, ctx
))
200 /* t := (2*a)*b^2 - 1*/
201 if (!BN_mod_mul(t
, t
, y
, p
, ctx
))
203 if (!BN_sub_word(t
, 1))
207 if (!BN_mod_mul(x
, A
, b
, p
, ctx
))
209 if (!BN_mod_mul(x
, x
, t
, p
, ctx
))
212 if (!BN_copy(ret
, x
))
218 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
219 * First, find some y that is not a square. */
220 if (!BN_copy(q
, p
)) goto end
; /* use 'q' as temp */
224 /* For efficiency, try small numbers first;
225 * if this fails, try random numbers.
228 if (!BN_set_word(y
, i
))
231 if (!BN_pseudo_rand(y
, BN_num_bits(p
), 0, 0))
233 if (BN_ucmp(y
, p
) >= 0) {
235 if (!BN_add(y
, y
, p
))
238 if (!BN_sub(y
, y
, p
))
242 /* now 0 <= y < |p| */
244 if (!BN_set_word(y
, i
))
248 r
= BN_kronecker(y
, q
, ctx
); /* here 'q' is |p| */
253 BNerror(BN_R_P_IS_NOT_PRIME
);
257 while (r
== 1 && ++i
< 82);
260 /* Many rounds and still no non-square -- this is more likely
261 * a bug than just bad luck.
262 * Even if p is not prime, we should have found some y
265 BNerror(BN_R_TOO_MANY_ITERATIONS
);
269 /* Here's our actual 'q': */
270 if (!BN_rshift(q
, q
, e
))
273 /* Now that we have some non-square, we can find an element
274 * of order 2^e by computing its q'th power. */
275 if (!BN_mod_exp_ct(y
, y
, q
, p
, ctx
))
278 BNerror(BN_R_P_IS_NOT_PRIME
);
282 /* Now we know that (if p is indeed prime) there is an integer
283 * k, 0 <= k < 2^e, such that
285 * a^q * y^k == 1 (mod p).
287 * As a^q is a square and y is not, k must be even.
288 * q+1 is even, too, so there is an element
290 * X := a^((q+1)/2) * y^(k/2),
294 * X^2 = a^q * a * y^k
297 * so it is the square root that we are looking for.
300 /* t := (q-1)/2 (note that q is odd) */
301 if (!BN_rshift1(t
, q
))
304 /* x := a^((q-1)/2) */
305 if (BN_is_zero(t
)) /* special case: p = 2^e + 1 */
307 if (!BN_nnmod(t
, A
, p
, ctx
))
310 /* special case: a == 0 (mod p) */
314 } else if (!BN_one(x
))
317 if (!BN_mod_exp_ct(x
, A
, t
, p
, ctx
))
320 /* special case: a == 0 (mod p) */
327 /* b := a*x^2 (= a^q) */
328 if (!BN_mod_sqr(b
, x
, p
, ctx
))
330 if (!BN_mod_mul(b
, b
, A
, p
, ctx
))
333 /* x := a*x (= a^((q+1)/2)) */
334 if (!BN_mod_mul(x
, x
, A
, p
, ctx
))
338 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
339 * where E refers to the original value of e, which we
340 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
348 if (!BN_copy(ret
, x
))
355 /* find smallest i such that b^(2^i) = 1 */
357 if (!BN_mod_sqr(t
, b
, p
, ctx
))
359 while (!BN_is_one(t
)) {
362 BNerror(BN_R_NOT_A_SQUARE
);
365 if (!BN_mod_mul(t
, t
, t
, p
, ctx
))
370 /* t := y^2^(e - i - 1) */
373 for (j
= e
- i
- 1; j
> 0; j
--) {
374 if (!BN_mod_sqr(t
, t
, p
, ctx
))
377 if (!BN_mod_mul(y
, t
, t
, p
, ctx
))
379 if (!BN_mod_mul(x
, x
, t
, p
, ctx
))
381 if (!BN_mod_mul(b
, b
, y
, p
, ctx
))
388 /* verify the result -- the input might have been not a square
389 * (test added in 0.9.8) */
391 if (!BN_mod_sqr(x
, ret
, p
, ctx
))
394 if (!err
&& 0 != BN_cmp(x
, A
)) {
395 BNerror(BN_R_NOT_A_SQUARE
);
402 if (ret
!= NULL
&& ret
!= in
) {