preprocessor cleanup: __sparc
[unleashed/tickless.git] / kernel / os / mmapobj.c
blob781381656714b54b7c0d3711107b9e53d80680f8
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2014 Joyent, Inc. All rights reserved.
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/mman.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/vmsystm.h>
37 #include <sys/machsystm.h>
38 #include <sys/debug.h>
39 #include <vm/as.h>
40 #include <vm/seg.h>
41 #include <sys/vmparam.h>
42 #include <sys/vfs.h>
43 #include <sys/elf.h>
44 #include <sys/machelf.h>
45 #include <sys/corectl.h>
46 #include <sys/exec.h>
47 #include <sys/exechdr.h>
48 #include <sys/autoconf.h>
49 #include <sys/mem.h>
50 #include <vm/seg_dev.h>
51 #include <sys/vmparam.h>
52 #include <sys/mmapobj.h>
53 #include <sys/atomic.h>
56 * Theory statement:
58 * The main driving force behind mmapobj is to interpret and map ELF files
59 * inside of the kernel instead of having the linker be responsible for this.
61 * mmapobj also supports the AOUT 4.x binary format as well as flat files in
62 * a read only manner.
64 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
65 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker
66 * and Libraries Guide" for more information about the standard and mapping
67 * rules.
69 * Having mmapobj interpret and map objects will allow the kernel to make the
70 * best decision for where to place the mappings for said objects. Thus, we
71 * can make optimizations inside of the kernel for specific platforms or cache
72 * mapping information to make mapping objects faster. The cache is ignored
73 * if ASLR is enabled.
75 * The lib_va_hash will be one such optimization. For each ELF object that
76 * mmapobj is asked to interpret, we will attempt to cache the information
77 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
78 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program
79 * headers which should cover a majority of the libraries out there without
80 * wasting space. In order to make sure that the cached information is valid,
81 * we check the passed in vnode's mtime and ctime to make sure the vnode
82 * has not been modified since the last time we used it.
84 * In addition, the lib_va_hash may contain a preferred starting VA for the
85 * object which can be useful for platforms which support a shared context.
86 * This will increase the likelyhood that library text can be shared among
87 * many different processes. We limit the reserved VA space for 32 bit objects
88 * in order to minimize fragmenting the processes address space.
90 * In addition to the above, the mmapobj interface allows for padding to be
91 * requested before the first mapping and after the last mapping created.
92 * When padding is requested, no additional optimizations will be made for
93 * that request.
97 * Threshold to prevent allocating too much kernel memory to read in the
98 * program headers for an object. If it requires more than below,
99 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
100 * program headers which could possibly fail. If less memory than below is
101 * needed, then we use a KM_SLEEP allocation and are willing to wait for the
102 * memory if we need to.
104 size_t mmapobj_alloc_threshold = 65536;
106 /* Debug stats for test coverage */
107 #ifdef DEBUG
108 struct mobj_stats {
109 uint_t mobjs_unmap_called;
110 uint_t mobjs_remap_devnull;
111 uint_t mobjs_lookup_start;
112 uint_t mobjs_alloc_start;
113 uint_t mobjs_alloc_vmem;
114 uint_t mobjs_add_collision;
115 uint_t mobjs_get_addr;
116 uint_t mobjs_map_flat_no_padding;
117 uint_t mobjs_map_flat_padding;
118 uint_t mobjs_map_ptload_text;
119 uint_t mobjs_map_ptload_initdata;
120 uint_t mobjs_map_ptload_preread;
121 uint_t mobjs_map_ptload_unaligned_text;
122 uint_t mobjs_map_ptload_unaligned_map_fail;
123 uint_t mobjs_map_ptload_unaligned_read_fail;
124 uint_t mobjs_zfoddiff;
125 uint_t mobjs_zfoddiff_nowrite;
126 uint_t mobjs_zfodextra;
127 uint_t mobjs_ptload_failed;
128 uint_t mobjs_map_elf_no_holes;
129 uint_t mobjs_unmap_hole;
130 uint_t mobjs_nomem_header;
131 uint_t mobjs_inval_header;
132 uint_t mobjs_overlap_header;
133 uint_t mobjs_np2_align;
134 uint_t mobjs_np2_align_overflow;
135 uint_t mobjs_exec_padding;
136 uint_t mobjs_exec_addr_mapped;
137 uint_t mobjs_exec_addr_devnull;
138 uint_t mobjs_exec_addr_in_use;
139 uint_t mobjs_lvp_found;
140 uint_t mobjs_no_loadable_yet;
141 uint_t mobjs_nothing_to_map;
142 uint_t mobjs_e2big;
143 uint_t mobjs_dyn_pad_align;
144 uint_t mobjs_dyn_pad_noalign;
145 uint_t mobjs_alloc_start_fail;
146 uint_t mobjs_lvp_nocache;
147 uint_t mobjs_extra_padding;
148 uint_t mobjs_lvp_not_needed;
149 uint_t mobjs_no_mem_map_sz;
150 uint_t mobjs_check_exec_failed;
151 uint_t mobjs_lvp_used;
152 uint_t mobjs_wrong_model;
153 uint_t mobjs_noexec_fs;
154 uint_t mobjs_e2big_et_rel;
155 uint_t mobjs_et_rel_mapped;
156 uint_t mobjs_unknown_elf_type;
157 uint_t mobjs_phent32_too_small;
158 uint_t mobjs_phent64_too_small;
159 uint_t mobjs_inval_elf_class;
160 uint_t mobjs_too_many_phdrs;
161 uint_t mobjs_no_phsize;
162 uint_t mobjs_phsize_large;
163 uint_t mobjs_phsize_xtralarge;
164 uint_t mobjs_fast_wrong_model;
165 uint_t mobjs_fast_e2big;
166 uint_t mobjs_fast;
167 uint_t mobjs_fast_success;
168 uint_t mobjs_fast_not_now;
169 uint_t mobjs_small_file;
170 uint_t mobjs_read_error;
171 uint_t mobjs_unsupported;
172 uint_t mobjs_flat_e2big;
173 uint_t mobjs_phent_align32;
174 uint_t mobjs_phent_align64;
175 uint_t mobjs_lib_va_find_hit;
176 uint_t mobjs_lib_va_find_delay_delete;
177 uint_t mobjs_lib_va_find_delete;
178 uint_t mobjs_lib_va_add_delay_delete;
179 uint_t mobjs_lib_va_add_delete;
180 uint_t mobjs_lib_va_create_failure;
181 uint_t mobjs_min_align;
182 } mobj_stats;
184 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++)
185 #else
186 #define MOBJ_STAT_ADD(stat)
187 #endif
190 * Check if addr is at or above the address space reserved for the stack.
191 * The stack is at the top of the address space for all sparc processes
192 * and 64 bit x86 processes. For 32 bit x86, the stack is not at the top
193 * of the address space and thus this check wil always return false for
194 * 32 bit x86 processes.
196 #if defined(__sparc)
197 #define OVERLAPS_STACK(addr, p) \
198 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
199 #elif defined(__amd64)
200 #define OVERLAPS_STACK(addr, p) \
201 ((p->p_model == DATAMODEL_LP64) && \
202 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
203 #elif defined(__i386)
204 #define OVERLAPS_STACK(addr, p) 0
205 #endif
207 /* lv_flags values - bitmap */
208 #define LV_ELF32 0x1 /* 32 bit ELF file */
209 #define LV_ELF64 0x2 /* 64 bit ELF file */
210 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */
213 * Note: lv_num_segs will denote how many segments this file has and will
214 * only be set after the lv_mps array has been filled out.
215 * lv_mps can only be valid if lv_num_segs is non-zero.
217 struct lib_va {
218 struct lib_va *lv_next;
219 caddr_t lv_base_va; /* start va for library */
220 ssize_t lv_len; /* total va span of library */
221 size_t lv_align; /* minimum alignment */
222 uint64_t lv_nodeid; /* filesystem node id */
223 uint64_t lv_fsid; /* filesystem id */
224 timestruc_t lv_ctime; /* last time file was changed */
225 timestruc_t lv_mtime; /* or modified */
226 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
227 int lv_num_segs; /* # segs for this file */
228 int lv_flags;
229 uint_t lv_refcnt; /* number of holds on struct */
232 #define LIB_VA_SIZE 1024
233 #define LIB_VA_MASK (LIB_VA_SIZE - 1)
234 #define LIB_VA_MUTEX_SHIFT 3
236 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
237 #error "LIB_VA_SIZE is not a power of 2"
238 #endif
240 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
241 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
243 #define LIB_VA_HASH_MUTEX(index) \
244 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
246 #define LIB_VA_HASH(nodeid) \
247 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
249 #define LIB_VA_MATCH_ID(arg1, arg2) \
250 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \
251 (arg1)->lv_fsid == (arg2)->va_fsid)
253 #define LIB_VA_MATCH_TIME(arg1, arg2) \
254 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \
255 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \
256 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \
257 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
259 #define LIB_VA_MATCH(arg1, arg2) \
260 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
263 * lib_va will be used for optimized allocation of address ranges for
264 * libraries, such that subsequent mappings of the same library will attempt
265 * to use the same VA as previous mappings of that library.
266 * In order to map libraries at the same VA in many processes, we need to carve
267 * out our own address space for them which is unique across many processes.
268 * We use different arenas for 32 bit and 64 bit libraries.
270 * Since the 32 bit address space is relatively small, we limit the number of
271 * libraries which try to use consistent virtual addresses to lib_threshold.
272 * For 64 bit libraries there is no such limit since the address space is large.
274 static vmem_t *lib_va_32_arena;
275 static vmem_t *lib_va_64_arena;
276 uint_t lib_threshold = 20; /* modifiable via /etc/system */
278 static kmutex_t lib_va_init_mutex; /* no need to initialize */
281 * Number of 32 bit and 64 bit libraries in lib_va hash.
283 static uint_t libs_mapped_32 = 0;
284 static uint_t libs_mapped_64 = 0;
287 * Free up the resources associated with lvp as well as lvp itself.
288 * We also decrement the number of libraries mapped via a lib_va
289 * cached virtual address.
291 void
292 lib_va_free(struct lib_va *lvp)
294 int is_64bit = lvp->lv_flags & LV_ELF64;
295 ASSERT(lvp->lv_refcnt == 0);
297 if (lvp->lv_base_va != NULL) {
298 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
299 lvp->lv_base_va, lvp->lv_len);
300 if (is_64bit) {
301 atomic_dec_32(&libs_mapped_64);
302 } else {
303 atomic_dec_32(&libs_mapped_32);
306 kmem_free(lvp, sizeof (struct lib_va));
310 * See if the file associated with the vap passed in is in the lib_va hash.
311 * If it is and the file has not been modified since last use, then
312 * return a pointer to that data. Otherwise, return NULL if the file has
313 * changed or the file was not found in the hash.
315 static struct lib_va *
316 lib_va_find(vattr_t *vap)
318 struct lib_va *lvp;
319 struct lib_va *del = NULL;
320 struct lib_va **tmp;
321 uint_t index;
322 index = LIB_VA_HASH(vap->va_nodeid);
324 mutex_enter(LIB_VA_HASH_MUTEX(index));
325 tmp = &lib_va_hash[index];
326 while (*tmp != NULL) {
327 lvp = *tmp;
328 if (LIB_VA_MATCH_ID(lvp, vap)) {
329 if (LIB_VA_MATCH_TIME(lvp, vap)) {
330 ASSERT((lvp->lv_flags & LV_DEL) == 0);
331 lvp->lv_refcnt++;
332 MOBJ_STAT_ADD(lib_va_find_hit);
333 } else {
335 * file was updated since last use.
336 * need to remove it from list.
338 del = lvp;
339 *tmp = del->lv_next;
340 del->lv_next = NULL;
342 * If we can't delete it now, mark it for later
344 if (del->lv_refcnt) {
345 MOBJ_STAT_ADD(lib_va_find_delay_delete);
346 del->lv_flags |= LV_DEL;
347 del = NULL;
349 lvp = NULL;
351 mutex_exit(LIB_VA_HASH_MUTEX(index));
352 if (del) {
353 ASSERT(del->lv_refcnt == 0);
354 MOBJ_STAT_ADD(lib_va_find_delete);
355 lib_va_free(del);
357 return (lvp);
359 tmp = &lvp->lv_next;
361 mutex_exit(LIB_VA_HASH_MUTEX(index));
362 return (NULL);
366 * Add a new entry to the lib_va hash.
367 * Search the hash while holding the appropriate mutex to make sure that the
368 * data is not already in the cache. If we find data that is in the cache
369 * already and has not been modified since last use, we return NULL. If it
370 * has been modified since last use, we will remove that entry from
371 * the hash and it will be deleted once it's reference count reaches zero.
372 * If there is no current entry in the hash we will add the new entry and
373 * return it to the caller who is responsible for calling lib_va_release to
374 * drop their reference count on it.
376 * lv_num_segs will be set to zero since the caller needs to add that
377 * information to the data structure.
379 static struct lib_va *
380 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
382 struct lib_va *lvp;
383 uint_t index;
384 model_t model;
385 struct lib_va **tmp;
386 struct lib_va *del = NULL;
388 model = get_udatamodel();
389 index = LIB_VA_HASH(vap->va_nodeid);
391 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
393 mutex_enter(LIB_VA_HASH_MUTEX(index));
396 * Make sure not adding same data a second time.
397 * The hash chains should be relatively short and adding
398 * is a relatively rare event, so it's worth the check.
400 tmp = &lib_va_hash[index];
401 while (*tmp != NULL) {
402 if (LIB_VA_MATCH_ID(*tmp, vap)) {
403 if (LIB_VA_MATCH_TIME(*tmp, vap)) {
404 mutex_exit(LIB_VA_HASH_MUTEX(index));
405 kmem_free(lvp, sizeof (struct lib_va));
406 return (NULL);
410 * We have the same nodeid and fsid but the file has
411 * been modified since we last saw it.
412 * Need to remove the old node and add this new
413 * one.
414 * Could probably use a callback mechanism to make
415 * this cleaner.
417 ASSERT(del == NULL);
418 del = *tmp;
419 *tmp = del->lv_next;
420 del->lv_next = NULL;
423 * Check to see if we can free it. If lv_refcnt
424 * is greater than zero, than some other thread
425 * has a reference to the one we want to delete
426 * and we can not delete it. All of this is done
427 * under the lib_va_hash_mutex lock so it is atomic.
429 if (del->lv_refcnt) {
430 MOBJ_STAT_ADD(lib_va_add_delay_delete);
431 del->lv_flags |= LV_DEL;
432 del = NULL;
434 /* tmp is already advanced */
435 continue;
437 tmp = &((*tmp)->lv_next);
440 lvp->lv_base_va = base_va;
441 lvp->lv_len = len;
442 lvp->lv_align = align;
443 lvp->lv_nodeid = vap->va_nodeid;
444 lvp->lv_fsid = vap->va_fsid;
445 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
446 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
447 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
448 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
449 lvp->lv_next = NULL;
450 lvp->lv_refcnt = 1;
452 /* Caller responsible for filling this and lv_mps out */
453 lvp->lv_num_segs = 0;
455 if (model == DATAMODEL_LP64) {
456 lvp->lv_flags = LV_ELF64;
457 } else {
458 ASSERT(model == DATAMODEL_ILP32);
459 lvp->lv_flags = LV_ELF32;
462 if (base_va != NULL) {
463 if (model == DATAMODEL_LP64) {
464 atomic_inc_32(&libs_mapped_64);
465 } else {
466 ASSERT(model == DATAMODEL_ILP32);
467 atomic_inc_32(&libs_mapped_32);
470 ASSERT(*tmp == NULL);
471 *tmp = lvp;
472 mutex_exit(LIB_VA_HASH_MUTEX(index));
473 if (del) {
474 ASSERT(del->lv_refcnt == 0);
475 MOBJ_STAT_ADD(lib_va_add_delete);
476 lib_va_free(del);
478 return (lvp);
482 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
483 * In addition, if this is the last hold and lvp is marked for deletion,
484 * free up it's reserved address space and free the structure.
486 static void
487 lib_va_release(struct lib_va *lvp)
489 uint_t index;
490 int to_del = 0;
492 ASSERT(lvp->lv_refcnt > 0);
494 index = LIB_VA_HASH(lvp->lv_nodeid);
495 mutex_enter(LIB_VA_HASH_MUTEX(index));
496 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
497 to_del = 1;
499 mutex_exit(LIB_VA_HASH_MUTEX(index));
500 if (to_del) {
501 ASSERT(lvp->lv_next == 0);
502 lib_va_free(lvp);
507 * Dummy function for mapping through /dev/null
508 * Normally I would have used mmmmap in common/io/mem.c
509 * but that is a static function, and for /dev/null, it
510 * just returns -1.
512 /* ARGSUSED */
513 static int
514 mmapobj_dummy(dev_t dev, off_t off, int prot)
516 return (-1);
520 * Called when an error occurred which requires mmapobj to return failure.
521 * All mapped objects will be unmapped and /dev/null mappings will be
522 * reclaimed if necessary.
523 * num_mapped is the number of elements of mrp which have been mapped, and
524 * num_segs is the total number of elements in mrp.
525 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
526 * we had already made reservations for them.
527 * If num_mapped equals num_segs, then we know that we had fully mapped
528 * the file and only need to clean up the segments described.
529 * If they are not equal, then for ET_DYN we will unmap the range from the
530 * end of the last mapped segment to the end of the last segment in mrp
531 * since we would have made a reservation for that memory earlier.
532 * If e_type is passed in as zero, num_mapped must equal num_segs.
534 void
535 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
536 ushort_t e_type)
538 int i;
539 struct as *as = curproc->p_as;
540 caddr_t addr;
541 size_t size;
543 if (e_type == ET_EXEC) {
544 num_mapped = num_segs;
546 #ifdef DEBUG
547 if (e_type == 0) {
548 ASSERT(num_mapped == num_segs);
550 #endif
552 MOBJ_STAT_ADD(unmap_called);
553 for (i = 0; i < num_mapped; i++) {
556 * If we are going to have to create a mapping we need to
557 * make sure that no one else will use the address we
558 * need to remap between the time it is unmapped and
559 * mapped below.
561 if (mrp[i].mr_flags & MR_RESV) {
562 as_rangelock(as);
564 /* Always need to unmap what we mapped */
565 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
567 /* Need to reclaim /dev/null reservation from earlier */
568 if (mrp[i].mr_flags & MR_RESV) {
569 struct segdev_crargs dev_a;
571 ASSERT(e_type != ET_DYN);
573 * Use seg_dev segment driver for /dev/null mapping.
575 dev_a.mapfunc = mmapobj_dummy;
576 dev_a.dev = makedevice(mm_major, M_NULL);
577 dev_a.offset = 0;
578 dev_a.type = 0; /* neither PRIVATE nor SHARED */
579 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
580 dev_a.hat_attr = 0;
581 dev_a.hat_flags = 0;
583 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
584 segdev_create, &dev_a);
585 MOBJ_STAT_ADD(remap_devnull);
586 as_rangeunlock(as);
590 if (num_mapped != num_segs) {
591 ASSERT(e_type == ET_DYN);
592 /* Need to unmap any reservation made after last mapped seg */
593 if (num_mapped == 0) {
594 addr = mrp[0].mr_addr;
595 } else {
596 addr = mrp[num_mapped - 1].mr_addr +
597 mrp[num_mapped - 1].mr_msize;
599 size = (size_t)mrp[num_segs - 1].mr_addr +
600 mrp[num_segs - 1].mr_msize - (size_t)addr;
601 (void) as_unmap(as, addr, size);
604 * Now we need to unmap the holes between mapped segs.
605 * Note that we have not mapped all of the segments and thus
606 * the holes between segments would not have been unmapped
607 * yet. If num_mapped == num_segs, then all of the holes
608 * between segments would have already been unmapped.
611 for (i = 1; i < num_mapped; i++) {
612 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
613 size = mrp[i].mr_addr - addr;
614 (void) as_unmap(as, addr, size);
620 * We need to add the start address into mrp so that the unmap function
621 * has absolute addresses to use.
623 static void
624 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
626 int i;
628 for (i = 0; i < num_mapped; i++) {
629 mrp[i].mr_addr += (size_t)start_addr;
631 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
634 static caddr_t
635 mmapobj_lookup_start_addr(struct lib_va *lvp)
637 proc_t *p = curproc;
638 struct as *as = p->p_as;
639 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
640 int error;
641 uint_t ma_flags = _MAP_LOW32;
642 caddr_t base = NULL;
643 size_t len;
644 size_t align;
646 ASSERT(lvp != NULL);
647 MOBJ_STAT_ADD(lookup_start);
649 as_rangelock(as);
651 base = lvp->lv_base_va;
652 len = lvp->lv_len;
655 * If we don't have an expected base address, or the one that we want
656 * to use is not available or acceptable, go get an acceptable
657 * address range.
659 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
660 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
661 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
662 if (lvp->lv_flags & LV_ELF64) {
663 ma_flags = 0;
666 align = lvp->lv_align;
667 if (align > 1) {
668 ma_flags |= MAP_ALIGN;
671 base = (caddr_t)align;
672 map_addr(&base, len, 0, 1, ma_flags);
676 * Need to reserve the address space we're going to use.
677 * Don't reserve swap space since we'll be mapping over this.
679 if (base != NULL) {
680 crargs.flags |= MAP_NORESERVE;
681 error = as_map(as, base, len, segvn_create, &crargs);
682 if (error) {
683 base = NULL;
687 as_rangeunlock(as);
688 return (base);
692 * Get the starting address for a given file to be mapped and return it
693 * to the caller. If we're using lib_va and we need to allocate an address,
694 * we will attempt to allocate it from the global reserved pool such that the
695 * same address can be used in the future for this file. If we can't use the
696 * reserved address then we just get one that will fit in our address space.
698 * Returns the starting virtual address for the range to be mapped or NULL
699 * if an error is encountered. If we successfully insert the requested info
700 * into the lib_va hash, then *lvpp will be set to point to this lib_va
701 * structure. The structure will have a hold on it and thus lib_va_release
702 * needs to be called on it by the caller. This function will not fill out
703 * lv_mps or lv_num_segs since it does not have enough information to do so.
704 * The caller is responsible for doing this making sure that any modifications
705 * to lv_mps are visible before setting lv_num_segs.
707 static caddr_t
708 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
709 int randomize, int primary, size_t align, vattr_t *vap)
711 proc_t *p = curproc;
712 struct as *as = p->p_as;
713 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
714 int error;
715 model_t model;
716 uint_t ma_flags = _MAP_LOW32;
717 caddr_t base = NULL;
718 vmem_t *model_vmem;
719 size_t lib_va_start;
720 size_t lib_va_end;
721 size_t lib_va_len;
723 ASSERT(lvpp != NULL);
724 ASSERT(!(randomize && use_lib_va));
725 /* XXX: I'd prefer not to need to do this */
726 ASSERT(!(primary && use_lib_va));
728 MOBJ_STAT_ADD(alloc_start);
729 model = get_udatamodel();
731 if (model == DATAMODEL_LP64) {
732 ma_flags = 0;
733 model_vmem = lib_va_64_arena;
734 } else {
735 ASSERT(model == DATAMODEL_ILP32);
736 model_vmem = lib_va_32_arena;
739 if (align > 1) {
740 ma_flags |= MAP_ALIGN;
743 if (randomize != 0)
744 ma_flags |= _MAP_RANDOMIZE;
746 if (primary != 0)
747 ma_flags |= _MAP_STARTLOW;
749 if (use_lib_va) {
751 * The first time through, we need to setup the lib_va arenas.
752 * We call map_addr to find a suitable range of memory to map
753 * the given library, and we will set the highest address
754 * in our vmem arena to the end of this adddress range.
755 * We allow up to half of the address space to be used
756 * for lib_va addresses but we do not prevent any allocations
757 * in this range from other allocation paths.
759 if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
760 mutex_enter(&lib_va_init_mutex);
761 if (lib_va_64_arena == NULL) {
762 base = (caddr_t)align;
763 as_rangelock(as);
764 map_addr(&base, len, 0, 1, ma_flags);
765 as_rangeunlock(as);
766 if (base == NULL) {
767 mutex_exit(&lib_va_init_mutex);
768 MOBJ_STAT_ADD(lib_va_create_failure);
769 goto nolibva;
771 lib_va_end = (size_t)base + len;
772 lib_va_len = lib_va_end >> 1;
773 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
774 lib_va_start = lib_va_end - lib_va_len;
777 * Need to make sure we avoid the address hole.
778 * We know lib_va_end is valid but we need to
779 * make sure lib_va_start is as well.
781 if ((lib_va_end > (size_t)hole_end) &&
782 (lib_va_start < (size_t)hole_end)) {
783 lib_va_start = P2ROUNDUP(
784 (size_t)hole_end, PAGESIZE);
785 lib_va_len = lib_va_end - lib_va_start;
787 lib_va_64_arena = vmem_create("lib_va_64",
788 (void *)lib_va_start, lib_va_len, PAGESIZE,
789 NULL, NULL, NULL, 0,
790 VM_NOSLEEP | VMC_IDENTIFIER);
791 if (lib_va_64_arena == NULL) {
792 mutex_exit(&lib_va_init_mutex);
793 goto nolibva;
796 model_vmem = lib_va_64_arena;
797 mutex_exit(&lib_va_init_mutex);
798 } else if (lib_va_32_arena == NULL &&
799 model == DATAMODEL_ILP32) {
800 mutex_enter(&lib_va_init_mutex);
801 if (lib_va_32_arena == NULL) {
802 base = (caddr_t)align;
803 as_rangelock(as);
804 map_addr(&base, len, 0, 1, ma_flags);
805 as_rangeunlock(as);
806 if (base == NULL) {
807 mutex_exit(&lib_va_init_mutex);
808 MOBJ_STAT_ADD(lib_va_create_failure);
809 goto nolibva;
811 lib_va_end = (size_t)base + len;
812 lib_va_len = lib_va_end >> 1;
813 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
814 lib_va_start = lib_va_end - lib_va_len;
815 lib_va_32_arena = vmem_create("lib_va_32",
816 (void *)lib_va_start, lib_va_len, PAGESIZE,
817 NULL, NULL, NULL, 0,
818 VM_NOSLEEP | VMC_IDENTIFIER);
819 if (lib_va_32_arena == NULL) {
820 mutex_exit(&lib_va_init_mutex);
821 goto nolibva;
824 model_vmem = lib_va_32_arena;
825 mutex_exit(&lib_va_init_mutex);
828 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
829 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
830 NULL, VM_NOSLEEP | VM_ENDALLOC);
831 MOBJ_STAT_ADD(alloc_vmem);
835 * Even if the address fails to fit in our address space,
836 * or we can't use a reserved address,
837 * we should still save it off in lib_va_hash.
839 *lvpp = lib_va_add_hash(base, len, align, vap);
842 * Check for collision on insertion and free up our VA space.
843 * This is expected to be rare, so we'll just reset base to
844 * NULL instead of looking it up in the lib_va hash.
846 if (*lvpp == NULL) {
847 if (base != NULL) {
848 vmem_xfree(model_vmem, base, len);
849 base = NULL;
850 MOBJ_STAT_ADD(add_collision);
855 nolibva:
856 as_rangelock(as);
859 * If we don't have an expected base address, or the one that we want
860 * to use is not available or acceptable, go get an acceptable
861 * address range.
863 * If ASLR is enabled, we should never have used the cache, and should
864 * also start our real work here, in the consequent of the next
865 * condition.
867 if (randomize != 0)
868 ASSERT(base == NULL);
870 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
871 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
872 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
873 MOBJ_STAT_ADD(get_addr);
874 base = (caddr_t)align;
875 map_addr(&base, len, 0, 1, ma_flags);
879 * Need to reserve the address space we're going to use.
880 * Don't reserve swap space since we'll be mapping over this.
882 if (base != NULL) {
883 /* Don't reserve swap space since we'll be mapping over this */
884 crargs.flags |= MAP_NORESERVE;
885 error = as_map(as, base, len, segvn_create, &crargs);
886 if (error) {
887 base = NULL;
891 as_rangeunlock(as);
892 return (base);
896 * Map the file associated with vp into the address space as a single
897 * read only private mapping.
898 * Returns 0 for success, and non-zero for failure to map the file.
900 static int
901 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
902 cred_t *fcred)
904 int error = 0;
905 struct as *as = curproc->p_as;
906 caddr_t addr = NULL;
907 caddr_t start_addr;
908 size_t len;
909 size_t pad_len;
910 int prot = PROT_USER | PROT_READ;
911 uint_t ma_flags = _MAP_LOW32;
912 vattr_t vattr;
913 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
915 if (get_udatamodel() == DATAMODEL_LP64) {
916 ma_flags = 0;
919 vattr.va_mask = AT_SIZE;
920 error = fop_getattr(vp, &vattr, 0, fcred, NULL);
921 if (error) {
922 return (error);
925 len = vattr.va_size;
927 ma_flags |= MAP_PRIVATE;
928 if (padding == 0) {
929 MOBJ_STAT_ADD(map_flat_no_padding);
930 error = fop_map(vp, 0, as, &addr, len, prot, PROT_ALL,
931 ma_flags, fcred, NULL);
932 if (error == 0) {
933 mrp[0].mr_addr = addr;
934 mrp[0].mr_msize = len;
935 mrp[0].mr_fsize = len;
936 mrp[0].mr_offset = 0;
937 mrp[0].mr_prot = prot;
938 mrp[0].mr_flags = 0;
940 return (error);
943 /* padding was requested so there's more work to be done */
944 MOBJ_STAT_ADD(map_flat_padding);
946 /* No need to reserve swap space now since it will be reserved later */
947 crargs.flags |= MAP_NORESERVE;
949 /* Need to setup padding which can only be in PAGESIZE increments. */
950 ASSERT((padding & PAGEOFFSET) == 0);
951 pad_len = len + (2 * padding);
953 as_rangelock(as);
954 map_addr(&addr, pad_len, 0, 1, ma_flags);
955 error = as_map(as, addr, pad_len, segvn_create, &crargs);
956 as_rangeunlock(as);
957 if (error) {
958 return (error);
960 start_addr = addr;
961 addr += padding;
962 ma_flags |= MAP_FIXED;
963 error = fop_map(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
964 fcred, NULL);
965 if (error == 0) {
966 mrp[0].mr_addr = start_addr;
967 mrp[0].mr_msize = padding;
968 mrp[0].mr_fsize = 0;
969 mrp[0].mr_offset = 0;
970 mrp[0].mr_prot = 0;
971 mrp[0].mr_flags = MR_PADDING;
973 mrp[1].mr_addr = addr;
974 mrp[1].mr_msize = len;
975 mrp[1].mr_fsize = len;
976 mrp[1].mr_offset = 0;
977 mrp[1].mr_prot = prot;
978 mrp[1].mr_flags = 0;
980 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
981 mrp[2].mr_msize = padding;
982 mrp[2].mr_fsize = 0;
983 mrp[2].mr_offset = 0;
984 mrp[2].mr_prot = 0;
985 mrp[2].mr_flags = MR_PADDING;
986 } else {
987 /* Need to cleanup the as_map from earlier */
988 (void) as_unmap(as, start_addr, pad_len);
990 return (error);
994 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
995 * address space.
996 * vp - vnode to be mapped in
997 * addr - start address
998 * len - length of vp to be mapped
999 * zfodlen - length of zero filled memory after len above
1000 * offset - offset into file where mapping should start
1001 * prot - protections for this mapping
1002 * fcred - credentials for the file associated with vp at open time.
1004 static int
1005 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1006 off_t offset, int prot, cred_t *fcred)
1008 int error = 0;
1009 caddr_t zfodbase, oldaddr;
1010 size_t oldlen;
1011 size_t end;
1012 size_t zfoddiff;
1013 label_t ljb;
1014 struct as *as = curproc->p_as;
1015 model_t model;
1016 int full_page;
1019 * See if addr and offset are aligned such that we can map in
1020 * full pages instead of partial pages.
1022 full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1023 ((uintptr_t)offset & PAGEOFFSET));
1025 model = get_udatamodel();
1027 oldaddr = addr;
1028 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1029 if (len) {
1030 spgcnt_t availm, npages;
1031 int preread;
1032 uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1034 if (model == DATAMODEL_ILP32) {
1035 mflag |= _MAP_LOW32;
1037 /* We may need to map in extra bytes */
1038 oldlen = len;
1039 len += ((size_t)oldaddr & PAGEOFFSET);
1041 if (full_page) {
1042 offset = (off_t)((uintptr_t)offset & PAGEMASK);
1043 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1044 mflag |= MAP_TEXT;
1045 MOBJ_STAT_ADD(map_ptload_text);
1046 } else {
1047 mflag |= MAP_INITDATA;
1048 MOBJ_STAT_ADD(map_ptload_initdata);
1052 * maxprot is passed as PROT_ALL so that mdb can
1053 * write to this segment.
1055 if (error = fop_map(vp, (offset_t)offset, as, &addr,
1056 len, prot, PROT_ALL, mflag, fcred, NULL)) {
1057 return (error);
1061 * If the segment can fit and is relatively small, then
1062 * we prefault the entire segment in. This is based
1063 * on the model that says the best working set of a
1064 * small program is all of its pages.
1065 * We only do this if freemem will not drop below
1066 * lotsfree since we don't want to induce paging.
1068 npages = (spgcnt_t)btopr(len);
1069 availm = freemem - lotsfree;
1070 preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1073 * If we aren't prefaulting the segment,
1074 * increment "deficit", if necessary to ensure
1075 * that pages will become available when this
1076 * process starts executing.
1078 if (preread == 0 && npages > availm &&
1079 deficit < lotsfree) {
1080 deficit += MIN((pgcnt_t)(npages - availm),
1081 lotsfree - deficit);
1084 if (preread) {
1085 (void) as_faulta(as, addr, len);
1086 MOBJ_STAT_ADD(map_ptload_preread);
1088 } else {
1090 * addr and offset were not aligned such that we could
1091 * use fop_map, thus we need to as_map the memory we
1092 * need and then read the data in from disk.
1093 * This code path is a corner case which should never
1094 * be taken, but hand crafted binaries could trigger
1095 * this logic and it needs to work correctly.
1097 MOBJ_STAT_ADD(map_ptload_unaligned_text);
1098 as_rangelock(as);
1099 (void) as_unmap(as, addr, len);
1102 * We use zfod_argsp because we need to be able to
1103 * write to the mapping and then we'll change the
1104 * protections later if they are incorrect.
1106 error = as_map(as, addr, len, segvn_create, zfod_argsp);
1107 as_rangeunlock(as);
1108 if (error) {
1109 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1110 return (error);
1113 /* Now read in the data from disk */
1114 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1115 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1116 if (error) {
1117 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1118 return (error);
1122 * Now set protections.
1124 if (prot != PROT_ZFOD) {
1125 (void) as_setprot(as, addr, len, prot);
1130 if (zfodlen) {
1131 end = (size_t)addr + len;
1132 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1133 zfoddiff = (uintptr_t)zfodbase - end;
1134 if (zfoddiff) {
1136 * Before we go to zero the remaining space on the last
1137 * page, make sure we have write permission.
1139 * We need to be careful how we zero-fill the last page
1140 * if the protection does not include PROT_WRITE. Using
1141 * as_setprot() can cause the VM segment code to call
1142 * segvn_vpage(), which must allocate a page struct for
1143 * each page in the segment. If we have a very large
1144 * segment, this may fail, so we check for that, even
1145 * though we ignore other return values from as_setprot.
1147 MOBJ_STAT_ADD(zfoddiff);
1148 if ((prot & PROT_WRITE) == 0) {
1149 if (as_setprot(as, (caddr_t)end, zfoddiff,
1150 prot | PROT_WRITE) == ENOMEM)
1151 return (ENOMEM);
1152 MOBJ_STAT_ADD(zfoddiff_nowrite);
1154 if (on_fault(&ljb)) {
1155 no_fault();
1156 if ((prot & PROT_WRITE) == 0) {
1157 (void) as_setprot(as, (caddr_t)end,
1158 zfoddiff, prot);
1160 return (EFAULT);
1162 uzero((void *)end, zfoddiff);
1163 no_fault();
1166 * Remove write protection to return to original state
1168 if ((prot & PROT_WRITE) == 0) {
1169 (void) as_setprot(as, (caddr_t)end,
1170 zfoddiff, prot);
1173 if (zfodlen > zfoddiff) {
1174 struct segvn_crargs crargs =
1175 SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1177 MOBJ_STAT_ADD(zfodextra);
1178 zfodlen -= zfoddiff;
1179 crargs.szc = AS_MAP_NO_LPOOB;
1182 as_rangelock(as);
1183 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1184 error = as_map(as, (caddr_t)zfodbase,
1185 zfodlen, segvn_create, &crargs);
1186 as_rangeunlock(as);
1187 if (error) {
1188 return (error);
1192 return (0);
1196 * Map the ELF file represented by vp into the users address space. The
1197 * first mapping will start at start_addr and there will be num_elements
1198 * mappings. The mappings are described by the data in mrp which may be
1199 * modified upon returning from this function.
1200 * Returns 0 for success or errno for failure.
1202 static int
1203 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1204 int num_elements, cred_t *fcred, ushort_t e_type)
1206 int i;
1207 int ret;
1208 caddr_t lo;
1209 caddr_t hi;
1210 struct as *as = curproc->p_as;
1212 for (i = 0; i < num_elements; i++) {
1213 caddr_t addr;
1214 size_t p_memsz;
1215 size_t p_filesz;
1216 size_t zfodlen;
1217 offset_t p_offset;
1218 size_t dif;
1219 int prot;
1221 /* Always need to adjust mr_addr */
1222 addr = start_addr + (size_t)(mrp[i].mr_addr);
1223 mrp[i].mr_addr =
1224 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1226 /* Padding has already been mapped */
1227 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1228 continue;
1231 /* Can't execute code from "noexec" mounted filesystem. */
1232 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) &&
1233 ((mrp[i].mr_prot & PROT_EXEC) != 0)) {
1234 MOBJ_STAT_ADD(noexec_fs);
1235 return (EACCES);
1238 p_memsz = mrp[i].mr_msize;
1239 p_filesz = mrp[i].mr_fsize;
1240 zfodlen = p_memsz - p_filesz;
1241 p_offset = mrp[i].mr_offset;
1242 dif = (uintptr_t)(addr) & PAGEOFFSET;
1243 prot = mrp[i].mr_prot | PROT_USER;
1244 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1245 p_offset, prot, fcred);
1246 if (ret != 0) {
1247 MOBJ_STAT_ADD(ptload_failed);
1248 mmapobj_unmap(mrp, i, num_elements, e_type);
1249 return (ret);
1252 /* Need to cleanup mrp to reflect the actual values used */
1253 mrp[i].mr_msize += dif;
1254 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1257 /* Also need to unmap any holes created above */
1258 if (num_elements == 1) {
1259 MOBJ_STAT_ADD(map_elf_no_holes);
1260 return (0);
1262 if (e_type == ET_EXEC) {
1263 return (0);
1266 as_rangelock(as);
1267 lo = start_addr;
1268 hi = mrp[0].mr_addr;
1270 /* Remove holes made by the rest of the segments */
1271 for (i = 0; i < num_elements - 1; i++) {
1272 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1273 mrp[i].mr_msize, PAGESIZE);
1274 hi = mrp[i + 1].mr_addr;
1275 if (lo < hi) {
1277 * If as_unmap fails we just use up a bit of extra
1278 * space
1280 (void) as_unmap(as, (caddr_t)lo,
1281 (size_t)hi - (size_t)lo);
1282 MOBJ_STAT_ADD(unmap_hole);
1285 as_rangeunlock(as);
1287 return (0);
1290 /* Ugly hack to get STRUCT_* macros to work below */
1291 struct myphdr {
1292 Phdr x; /* native version */
1295 struct myphdr32 {
1296 Elf32_Phdr x;
1300 * Calculate and return the number of loadable segments in the ELF Phdr
1301 * represented by phdrbase as well as the len of the total mapping and
1302 * the max alignment that is needed for a given segment. On success,
1303 * 0 is returned, and *len, *loadable and *align have been filled out.
1304 * On failure, errno will be returned, which in this case is ENOTSUP
1305 * if we were passed an ELF file with overlapping segments.
1307 static int
1308 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1309 int *loadable, size_t *align)
1311 int i;
1312 int hsize;
1313 model_t model;
1314 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1315 uint_t p_type;
1316 offset_t p_offset;
1317 size_t p_memsz;
1318 size_t p_align;
1319 caddr_t vaddr;
1320 int num_segs = 0;
1321 caddr_t start_addr = NULL;
1322 caddr_t p_end = NULL;
1323 size_t max_align = 0;
1324 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */
1325 STRUCT_HANDLE(myphdr, mph);
1327 model = get_udatamodel();
1328 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1330 /* hsize alignment should have been checked before calling this func */
1331 if (model == DATAMODEL_LP64) {
1332 hsize = ehdrp->e_phentsize;
1333 if (hsize & 7) {
1334 return (ENOTSUP);
1336 } else {
1337 ASSERT(model == DATAMODEL_ILP32);
1338 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1339 if (hsize & 3) {
1340 return (ENOTSUP);
1345 * Determine the span of all loadable segments and calculate the
1346 * number of loadable segments.
1348 for (i = 0; i < nphdrs; i++) {
1349 p_type = STRUCT_FGET(mph, x.p_type);
1350 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1351 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1352 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1355 * Skip this header if it requests no memory to be
1356 * mapped.
1358 if (p_memsz == 0) {
1359 STRUCT_SET_HANDLE(mph, model,
1360 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1361 hsize));
1362 MOBJ_STAT_ADD(nomem_header);
1363 continue;
1365 if (num_segs++ == 0) {
1367 * The p_vaddr of the first PT_LOAD segment
1368 * must either be NULL or within the first
1369 * page in order to be interpreted.
1370 * Otherwise, its an invalid file.
1372 if (e_type == ET_DYN &&
1373 ((caddr_t)((uintptr_t)vaddr &
1374 (uintptr_t)PAGEMASK) != NULL)) {
1375 MOBJ_STAT_ADD(inval_header);
1376 return (ENOTSUP);
1378 start_addr = vaddr;
1380 * For the first segment, we need to map from
1381 * the beginning of the file, so we will
1382 * adjust the size of the mapping to include
1383 * this memory.
1385 p_offset = STRUCT_FGET(mph, x.p_offset);
1386 } else {
1387 p_offset = 0;
1390 * Check to make sure that this mapping wouldn't
1391 * overlap a previous mapping.
1393 if (vaddr < p_end) {
1394 MOBJ_STAT_ADD(overlap_header);
1395 return (ENOTSUP);
1398 p_end = vaddr + p_memsz + p_offset;
1399 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1401 p_align = STRUCT_FGET(mph, x.p_align);
1402 if (p_align > 1 && p_align > max_align) {
1403 max_align = p_align;
1404 if (max_align < min_align) {
1405 max_align = min_align;
1406 MOBJ_STAT_ADD(min_align);
1410 STRUCT_SET_HANDLE(mph, model,
1411 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1415 * The alignment should be a power of 2, if it isn't we forgive it
1416 * and round up. On overflow, we'll set the alignment to max_align
1417 * rounded down to the nearest power of 2.
1419 if (max_align > 0 && !ISP2(max_align)) {
1420 MOBJ_STAT_ADD(np2_align);
1421 *align = 2 * (1L << (highbit(max_align) - 1));
1422 if (*align < max_align ||
1423 (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1424 MOBJ_STAT_ADD(np2_align_overflow);
1425 *align = 1L << (highbit(max_align) - 1);
1427 } else {
1428 *align = max_align;
1431 ASSERT(*align >= PAGESIZE || *align == 0);
1433 *loadable = num_segs;
1434 *len = p_end - start_addr;
1435 return (0);
1439 * Check the address space to see if the virtual addresses to be used are
1440 * available. If they are not, return errno for failure. On success, 0
1441 * will be returned, and the virtual addresses for each mmapobj_result_t
1442 * will be reserved. Note that a reservation could have earlier been made
1443 * for a given segment via a /dev/null mapping. If that is the case, then
1444 * we can use that VA space for our mappings.
1445 * Note: this function will only be used for ET_EXEC binaries.
1448 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1450 int i;
1451 struct as *as = curproc->p_as;
1452 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1453 int ret;
1454 caddr_t myaddr;
1455 size_t mylen;
1456 struct seg *seg;
1458 /* No need to reserve swap space now since it will be reserved later */
1459 crargs.flags |= MAP_NORESERVE;
1460 as_rangelock(as);
1461 for (i = 0; i < loadable; i++) {
1463 myaddr = start_addr + (size_t)mrp[i].mr_addr;
1464 mylen = mrp[i].mr_msize;
1466 /* See if there is a hole in the as for this range */
1467 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1468 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1469 ASSERT(mylen == mrp[i].mr_msize);
1471 #ifdef DEBUG
1472 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1473 MOBJ_STAT_ADD(exec_padding);
1475 #endif
1476 ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1477 if (ret) {
1478 as_rangeunlock(as);
1479 mmapobj_unmap_exec(mrp, i, start_addr);
1480 return (ret);
1482 } else {
1484 * There is a mapping that exists in the range
1485 * so check to see if it was a "reservation"
1486 * from /dev/null. The mapping is from
1487 * /dev/null if the mapping comes from
1488 * segdev and the type is neither MAP_SHARED
1489 * nor MAP_PRIVATE.
1491 AS_LOCK_ENTER(as, RW_READER);
1492 seg = as_findseg(as, myaddr, 0);
1493 MOBJ_STAT_ADD(exec_addr_mapped);
1494 if (seg && seg->s_ops == &segdev_ops &&
1495 ((segop_gettype(seg, myaddr) &
1496 (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1497 myaddr >= seg->s_base &&
1498 myaddr + mylen <=
1499 seg->s_base + seg->s_size) {
1500 MOBJ_STAT_ADD(exec_addr_devnull);
1501 AS_LOCK_EXIT(as);
1502 (void) as_unmap(as, myaddr, mylen);
1503 ret = as_map(as, myaddr, mylen, segvn_create,
1504 &crargs);
1505 mrp[i].mr_flags |= MR_RESV;
1506 if (ret) {
1507 as_rangeunlock(as);
1508 /* Need to remap what we unmapped */
1509 mmapobj_unmap_exec(mrp, i + 1,
1510 start_addr);
1511 return (ret);
1513 } else {
1514 AS_LOCK_EXIT(as);
1515 as_rangeunlock(as);
1516 mmapobj_unmap_exec(mrp, i, start_addr);
1517 MOBJ_STAT_ADD(exec_addr_in_use);
1518 return (EADDRINUSE);
1522 as_rangeunlock(as);
1523 return (0);
1527 * Walk through the ELF program headers and extract all useful information
1528 * for PT_LOAD and PT_SUNWBSS segments into mrp.
1529 * Return 0 on success or error on failure.
1531 static int
1532 process_phdrs(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1533 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred,
1534 uint_t flags)
1536 int i;
1537 caddr_t start_addr = NULL;
1538 caddr_t vaddr;
1539 size_t len = 0;
1540 size_t lib_len = 0;
1541 int ret;
1542 int prot;
1543 struct lib_va *lvp = NULL;
1544 vattr_t vattr;
1545 struct as *as = curproc->p_as;
1546 int error;
1547 int loadable = 0;
1548 int current = 0;
1549 int use_lib_va = 1;
1550 size_t align = 0;
1551 size_t add_pad = 0;
1552 int hdr_seen = 0;
1553 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1554 uint_t p_type;
1555 offset_t p_offset;
1556 size_t p_memsz;
1557 size_t p_filesz;
1558 uint_t p_flags;
1559 int hsize;
1560 model_t model;
1561 STRUCT_HANDLE(myphdr, mph);
1563 model = get_udatamodel();
1564 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1567 * Need to make sure that hsize is aligned properly.
1568 * For 32bit processes, 4 byte alignment is required.
1569 * For 64bit processes, 8 byte alignment is required.
1570 * If the alignment isn't correct, we need to return failure
1571 * since it could cause an alignment error panic while walking
1572 * the phdr array.
1574 if (model == DATAMODEL_LP64) {
1575 hsize = ehdrp->e_phentsize;
1576 if (hsize & 7) {
1577 MOBJ_STAT_ADD(phent_align64);
1578 return (ENOTSUP);
1580 } else {
1581 ASSERT(model == DATAMODEL_ILP32);
1582 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1583 if (hsize & 3) {
1584 MOBJ_STAT_ADD(phent_align32);
1585 return (ENOTSUP);
1589 if ((padding != 0) || secflag_enabled(curproc, PROC_SEC_ASLR) ||
1590 (flags & MMOBJ_PRIMARY) != 0) {
1591 use_lib_va = 0;
1593 if (e_type == ET_DYN) {
1594 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1595 error = fop_getattr(vp, &vattr, 0, fcred, NULL);
1596 if (error) {
1597 return (error);
1599 /* Check to see if we already have a description for this lib */
1600 if (!secflag_enabled(curproc, PROC_SEC_ASLR))
1601 lvp = lib_va_find(&vattr);
1603 if (lvp != NULL) {
1604 MOBJ_STAT_ADD(lvp_found);
1605 if (use_lib_va) {
1606 start_addr = mmapobj_lookup_start_addr(lvp);
1607 if (start_addr == NULL) {
1608 lib_va_release(lvp);
1609 return (ENOMEM);
1614 * loadable may be zero if the original allocator
1615 * of lvp hasn't finished setting it up but the rest
1616 * of the fields will be accurate.
1618 loadable = lvp->lv_num_segs;
1619 len = lvp->lv_len;
1620 align = lvp->lv_align;
1625 * Determine the span of all loadable segments and calculate the
1626 * number of loadable segments, the total len spanned by the mappings
1627 * and the max alignment, if we didn't get them above.
1629 if (loadable == 0) {
1630 MOBJ_STAT_ADD(no_loadable_yet);
1631 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1632 &loadable, &align);
1633 if (ret != 0) {
1635 * Since it'd be an invalid file, we shouldn't have
1636 * cached it previously.
1638 ASSERT(lvp == NULL);
1639 return (ret);
1641 #ifdef DEBUG
1642 if (lvp) {
1643 ASSERT(len == lvp->lv_len);
1644 ASSERT(align == lvp->lv_align);
1646 #endif
1649 /* Make sure there's something to map. */
1650 if (len == 0 || loadable == 0) {
1652 * Since it'd be an invalid file, we shouldn't have
1653 * cached it previously.
1655 ASSERT(lvp == NULL);
1656 MOBJ_STAT_ADD(nothing_to_map);
1657 return (ENOTSUP);
1660 lib_len = len;
1661 if (padding != 0) {
1662 loadable += 2;
1664 if (loadable > *num_mapped) {
1665 *num_mapped = loadable;
1666 /* cleanup previous reservation */
1667 if (start_addr) {
1668 (void) as_unmap(as, start_addr, lib_len);
1670 MOBJ_STAT_ADD(e2big);
1671 if (lvp) {
1672 lib_va_release(lvp);
1674 return (E2BIG);
1678 * We now know the size of the object to map and now we need to
1679 * get the start address to map it at. It's possible we already
1680 * have it if we found all the info we need in the lib_va cache.
1682 if (e_type == ET_DYN && start_addr == NULL) {
1684 * Need to make sure padding does not throw off
1685 * required alignment. We can only specify an
1686 * alignment for the starting address to be mapped,
1687 * so we round padding up to the alignment and map
1688 * from there and then throw out the extra later.
1690 if (padding != 0) {
1691 if (align > 1) {
1692 add_pad = P2ROUNDUP(padding, align);
1693 len += add_pad;
1694 MOBJ_STAT_ADD(dyn_pad_align);
1695 } else {
1696 MOBJ_STAT_ADD(dyn_pad_noalign);
1697 len += padding; /* at beginning */
1699 len += padding; /* at end of mapping */
1702 * At this point, if lvp is non-NULL, then above we
1703 * already found it in the cache but did not get
1704 * the start address since we were not going to use lib_va.
1705 * Since we know that lib_va will not be used, it's safe
1706 * to call mmapobj_alloc_start_addr and know that lvp
1707 * will not be modified.
1709 ASSERT(lvp ? use_lib_va == 0 : 1);
1710 start_addr = mmapobj_alloc_start_addr(&lvp, len,
1711 use_lib_va,
1712 secflag_enabled(curproc, PROC_SEC_ASLR),
1713 flags & MMOBJ_PRIMARY,
1714 align, &vattr);
1715 if (start_addr == NULL) {
1716 if (lvp) {
1717 lib_va_release(lvp);
1719 MOBJ_STAT_ADD(alloc_start_fail);
1720 return (ENOMEM);
1723 * If we can't cache it, no need to hang on to it.
1724 * Setting lv_num_segs to non-zero will make that
1725 * field active and since there are too many segments
1726 * to cache, all future users will not try to use lv_mps.
1728 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1729 lvp->lv_num_segs = loadable;
1730 lib_va_release(lvp);
1731 lvp = NULL;
1732 MOBJ_STAT_ADD(lvp_nocache);
1735 * Free the beginning of the mapping if the padding
1736 * was not aligned correctly.
1738 if (padding != 0 && add_pad != padding) {
1739 (void) as_unmap(as, start_addr,
1740 add_pad - padding);
1741 start_addr += (add_pad - padding);
1742 MOBJ_STAT_ADD(extra_padding);
1747 * At this point, we have reserved the virtual address space
1748 * for our mappings. Now we need to start filling out the mrp
1749 * array to describe all of the individual mappings we are going
1750 * to return.
1751 * For ET_EXEC there has been no memory reservation since we are
1752 * using fixed addresses. While filling in the mrp array below,
1753 * we will have the first segment biased to start at addr 0
1754 * and the rest will be biased by this same amount. Thus if there
1755 * is padding, the first padding will start at addr 0, and the next
1756 * segment will start at the value of padding.
1759 /* We'll fill out padding later, so start filling in mrp at index 1 */
1760 if (padding != 0) {
1761 current = 1;
1764 /* If we have no more need for lvp let it go now */
1765 if (lvp != NULL && use_lib_va == 0) {
1766 lib_va_release(lvp);
1767 MOBJ_STAT_ADD(lvp_not_needed);
1768 lvp = NULL;
1771 /* Now fill out the mrp structs from the program headers */
1772 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1773 for (i = 0; i < nphdrs; i++) {
1774 p_type = STRUCT_FGET(mph, x.p_type);
1775 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1776 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1777 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1778 p_filesz = STRUCT_FGET(mph, x.p_filesz);
1779 p_offset = STRUCT_FGET(mph, x.p_offset);
1780 p_flags = STRUCT_FGET(mph, x.p_flags);
1783 * Skip this header if it requests no memory to be
1784 * mapped.
1786 if (p_memsz == 0) {
1787 STRUCT_SET_HANDLE(mph, model,
1788 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1789 hsize));
1790 MOBJ_STAT_ADD(no_mem_map_sz);
1791 continue;
1794 prot = 0;
1795 if (p_flags & PF_R)
1796 prot |= PROT_READ;
1797 if (p_flags & PF_W)
1798 prot |= PROT_WRITE;
1799 if (p_flags & PF_X)
1800 prot |= PROT_EXEC;
1802 ASSERT(current < loadable);
1803 mrp[current].mr_msize = p_memsz;
1804 mrp[current].mr_fsize = p_filesz;
1805 mrp[current].mr_offset = p_offset;
1806 mrp[current].mr_prot = prot;
1808 if (hdr_seen == 0 && p_filesz != 0) {
1809 mrp[current].mr_flags = MR_HDR_ELF;
1811 * We modify mr_offset because we
1812 * need to map the ELF header as well, and if
1813 * we didn't then the header could be left out
1814 * of the mapping that we will create later.
1815 * Since we're removing the offset, we need to
1816 * account for that in the other fields as well
1817 * since we will be mapping the memory from 0
1818 * to p_offset.
1820 if (e_type == ET_DYN) {
1821 mrp[current].mr_offset = 0;
1822 mrp[current].mr_msize += p_offset;
1823 mrp[current].mr_fsize += p_offset;
1824 } else {
1825 ASSERT(e_type == ET_EXEC);
1827 * Save off the start addr which will be
1828 * our bias for the rest of the
1829 * ET_EXEC mappings.
1831 start_addr = vaddr - padding;
1833 mrp[current].mr_addr = (caddr_t)padding;
1834 hdr_seen = 1;
1835 } else {
1836 if (e_type == ET_EXEC) {
1837 /* bias mr_addr */
1838 mrp[current].mr_addr =
1839 vaddr - (size_t)start_addr;
1840 } else {
1841 mrp[current].mr_addr = vaddr + padding;
1843 mrp[current].mr_flags = 0;
1845 current++;
1848 /* Move to next phdr */
1849 STRUCT_SET_HANDLE(mph, model,
1850 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1851 hsize));
1854 /* Now fill out the padding segments */
1855 if (padding != 0) {
1856 mrp[0].mr_addr = NULL;
1857 mrp[0].mr_msize = padding;
1858 mrp[0].mr_fsize = 0;
1859 mrp[0].mr_offset = 0;
1860 mrp[0].mr_prot = 0;
1861 mrp[0].mr_flags = MR_PADDING;
1863 /* Setup padding for the last segment */
1864 ASSERT(current == loadable - 1);
1865 mrp[current].mr_addr = (caddr_t)lib_len + padding;
1866 mrp[current].mr_msize = padding;
1867 mrp[current].mr_fsize = 0;
1868 mrp[current].mr_offset = 0;
1869 mrp[current].mr_prot = 0;
1870 mrp[current].mr_flags = MR_PADDING;
1874 * Need to make sure address ranges desired are not in use or
1875 * are previously allocated reservations from /dev/null. For
1876 * ET_DYN, we already made sure our address range was free.
1878 if (e_type == ET_EXEC) {
1879 ret = check_exec_addrs(loadable, mrp, start_addr);
1880 if (ret != 0) {
1881 ASSERT(lvp == NULL);
1882 MOBJ_STAT_ADD(check_exec_failed);
1883 return (ret);
1887 /* Finish up our business with lvp. */
1888 if (lvp) {
1889 ASSERT(e_type == ET_DYN);
1890 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1891 bcopy(mrp, lvp->lv_mps,
1892 loadable * sizeof (mmapobj_result_t));
1893 membar_producer();
1896 * Setting lv_num_segs to a non-zero value indicates that
1897 * lv_mps is now valid and can be used by other threads.
1898 * So, the above stores need to finish before lv_num_segs
1899 * is updated. lv_mps is only valid if lv_num_segs is
1900 * greater than LIBVA_CACHED_SEGS.
1902 lvp->lv_num_segs = loadable;
1903 lib_va_release(lvp);
1904 MOBJ_STAT_ADD(lvp_used);
1907 /* Now that we have mrp completely filled out go map it */
1908 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1909 if (ret == 0) {
1910 *num_mapped = loadable;
1913 return (ret);
1917 * Take the ELF file passed in, and do the work of mapping it.
1918 * num_mapped in - # elements in user buffer
1919 * num_mapped out - # sections mapped and length of mrp array if
1920 * no errors.
1922 static int
1923 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1924 uint_t *num_mapped, size_t padding, cred_t *fcred, uint_t flags)
1926 int error;
1927 offset_t phoff;
1928 int nphdrs;
1929 unsigned char ei_class;
1930 unsigned short phentsize;
1931 ssize_t phsizep;
1932 caddr_t phbasep;
1933 int to_map;
1934 model_t model;
1936 ei_class = ehdrp->e_ident[EI_CLASS];
1937 model = get_udatamodel();
1938 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1939 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1940 MOBJ_STAT_ADD(wrong_model);
1941 return (ENOTSUP);
1944 /* Can't execute code from "noexec" mounted filesystem. */
1945 if (ehdrp->e_type == ET_EXEC &&
1946 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1947 MOBJ_STAT_ADD(noexec_fs);
1948 return (EACCES);
1952 * Relocatable and core files are mapped as a single flat file
1953 * since no interpretation is done on them by mmapobj.
1955 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1956 to_map = padding ? 3 : 1;
1957 if (*num_mapped < to_map) {
1958 *num_mapped = to_map;
1959 MOBJ_STAT_ADD(e2big_et_rel);
1960 return (E2BIG);
1962 error = mmapobj_map_flat(vp, mrp, padding, fcred);
1963 if (error == 0) {
1964 *num_mapped = to_map;
1965 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1966 MOBJ_STAT_ADD(et_rel_mapped);
1968 return (error);
1971 /* Check for an unknown ELF type */
1972 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1973 MOBJ_STAT_ADD(unknown_elf_type);
1974 return (ENOTSUP);
1977 if (ei_class == ELFCLASS32) {
1978 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1979 ASSERT(model == DATAMODEL_ILP32);
1980 nphdrs = e32hdr->e_phnum;
1981 phentsize = e32hdr->e_phentsize;
1982 if (phentsize < sizeof (Elf32_Phdr)) {
1983 MOBJ_STAT_ADD(phent32_too_small);
1984 return (ENOTSUP);
1986 phoff = e32hdr->e_phoff;
1987 } else if (ei_class == ELFCLASS64) {
1988 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1989 ASSERT(model == DATAMODEL_LP64);
1990 nphdrs = e64hdr->e_phnum;
1991 phentsize = e64hdr->e_phentsize;
1992 if (phentsize < sizeof (Elf64_Phdr)) {
1993 MOBJ_STAT_ADD(phent64_too_small);
1994 return (ENOTSUP);
1996 phoff = e64hdr->e_phoff;
1997 } else {
1998 /* fallthrough case for an invalid ELF class */
1999 MOBJ_STAT_ADD(inval_elf_class);
2000 return (ENOTSUP);
2004 * nphdrs should only have this value for core files which are handled
2005 * above as a single mapping. If other file types ever use this
2006 * sentinel, then we'll add the support needed to handle this here.
2008 if (nphdrs == PN_XNUM) {
2009 MOBJ_STAT_ADD(too_many_phdrs);
2010 return (ENOTSUP);
2013 phsizep = nphdrs * phentsize;
2015 if (phsizep == 0) {
2016 MOBJ_STAT_ADD(no_phsize);
2017 return (ENOTSUP);
2020 /* Make sure we only wait for memory if it's a reasonable request */
2021 if (phsizep > mmapobj_alloc_threshold) {
2022 MOBJ_STAT_ADD(phsize_large);
2023 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2024 MOBJ_STAT_ADD(phsize_xtralarge);
2025 return (ENOMEM);
2027 } else {
2028 phbasep = kmem_alloc(phsizep, KM_SLEEP);
2031 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2032 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2033 fcred, NULL)) != 0) {
2034 kmem_free(phbasep, phsizep);
2035 return (error);
2038 /* Now process the phdr's */
2039 error = process_phdrs(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2040 padding, fcred, flags);
2041 kmem_free(phbasep, phsizep);
2042 return (error);
2046 * These are the two types of files that we can interpret and we want to read
2047 * in enough info to cover both types when looking at the initial header.
2049 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec)))
2052 * Map vp passed in in an interpreted manner. ELF and AOUT files will be
2053 * interpreted and mapped appropriately for execution.
2054 * num_mapped in - # elements in mrp
2055 * num_mapped out - # sections mapped and length of mrp array if
2056 * no errors or E2BIG returned.
2058 * Returns 0 on success, errno value on failure.
2060 static int
2061 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2062 uint_t *num_mapped, size_t padding, cred_t *fcred, uint_t flags)
2064 int error = 0;
2065 vattr_t vattr;
2066 struct lib_va *lvp;
2067 caddr_t start_addr;
2068 model_t model;
2071 * header has to be aligned to the native size of ulong_t in order
2072 * to avoid an unaligned access when dereferencing the header as
2073 * a ulong_t. Thus we allocate our array on the stack of type
2074 * ulong_t and then have header, which we dereference later as a char
2075 * array point at lheader.
2077 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2078 caddr_t header = (caddr_t)&lheader;
2080 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2081 error = fop_getattr(vp, &vattr, 0, fcred, NULL);
2082 if (error) {
2083 return (error);
2087 * Check lib_va to see if we already have a full description
2088 * for this library. This is the fast path and only used for
2089 * ET_DYN ELF files (dynamic libraries).
2091 if (padding == 0 && !secflag_enabled(curproc, PROC_SEC_ASLR) &&
2092 ((lvp = lib_va_find(&vattr)) != NULL)) {
2093 int num_segs;
2095 model = get_udatamodel();
2096 if ((model == DATAMODEL_ILP32 &&
2097 lvp->lv_flags & LV_ELF64) ||
2098 (model == DATAMODEL_LP64 &&
2099 lvp->lv_flags & LV_ELF32)) {
2100 lib_va_release(lvp);
2101 MOBJ_STAT_ADD(fast_wrong_model);
2102 return (ENOTSUP);
2104 num_segs = lvp->lv_num_segs;
2105 if (*num_mapped < num_segs) {
2106 *num_mapped = num_segs;
2107 lib_va_release(lvp);
2108 MOBJ_STAT_ADD(fast_e2big);
2109 return (E2BIG);
2113 * Check to see if we have all the mappable program headers
2114 * cached.
2116 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2117 MOBJ_STAT_ADD(fast);
2118 start_addr = mmapobj_lookup_start_addr(lvp);
2119 if (start_addr == NULL) {
2120 lib_va_release(lvp);
2121 return (ENOMEM);
2124 bcopy(lvp->lv_mps, mrp,
2125 num_segs * sizeof (mmapobj_result_t));
2127 error = mmapobj_map_elf(vp, start_addr, mrp,
2128 num_segs, fcred, ET_DYN);
2130 lib_va_release(lvp);
2131 if (error == 0) {
2132 *num_mapped = num_segs;
2133 MOBJ_STAT_ADD(fast_success);
2135 return (error);
2137 MOBJ_STAT_ADD(fast_not_now);
2139 /* Release it for now since we'll look it up below */
2140 lib_va_release(lvp);
2144 * Time to see if this is a file we can interpret. If it's smaller
2145 * than this, then we can't interpret it.
2147 if (vattr.va_size < MAX_HEADER_SIZE) {
2148 MOBJ_STAT_ADD(small_file);
2149 return (ENOTSUP);
2152 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2153 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2154 MOBJ_STAT_ADD(read_error);
2155 return (error);
2158 /* Verify file type */
2159 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2160 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2161 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2162 padding, fcred, flags));
2165 /* Unsupported type */
2166 MOBJ_STAT_ADD(unsupported);
2167 return (ENOTSUP);
2171 * Given a vnode, map it as either a flat file or interpret it and map
2172 * it according to the rules of the file type.
2173 * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2174 * If padding is non-zero, the mappings will be padded by that amount
2175 * rounded up to the nearest pagesize.
2176 * If the mapping is successful, *num_mapped will contain the number of
2177 * distinct mappings created, and mrp will point to the array of
2178 * mmapobj_result_t's which describe these mappings.
2180 * On error, -1 is returned and errno is set appropriately.
2181 * A special error case will set errno to E2BIG when there are more than
2182 * *num_mapped mappings to be created and *num_mapped will be set to the
2183 * number of mappings needed.
2186 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2187 uint_t *num_mapped, size_t padding, cred_t *fcred)
2189 int to_map;
2190 int error = 0;
2192 ASSERT((padding & PAGEOFFSET) == 0);
2193 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2194 ASSERT(num_mapped != NULL);
2195 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2197 if ((flags & MMOBJ_INTERPRET) == 0) {
2198 to_map = padding ? 3 : 1;
2199 if (*num_mapped < to_map) {
2200 *num_mapped = to_map;
2201 MOBJ_STAT_ADD(flat_e2big);
2202 return (E2BIG);
2204 error = mmapobj_map_flat(vp, mrp, padding, fcred);
2206 if (error) {
2207 return (error);
2209 *num_mapped = to_map;
2210 return (0);
2213 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred,
2214 flags);
2215 return (error);