4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24 * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
41 * VM - physical page management.
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/errno.h>
50 #include <sys/vnode.h>
52 #include <sys/vtrace.h>
54 #include <sys/cmn_err.h>
55 #include <sys/tuneable.h>
56 #include <sys/sysmacros.h>
57 #include <sys/cpuvar.h>
58 #include <sys/callb.h>
59 #include <sys/debug.h>
60 #include <sys/tnf_probe.h>
61 #include <sys/condvar_impl.h>
62 #include <sys/mem_config.h>
63 #include <sys/mem_cage.h>
65 #include <sys/atomic.h>
66 #include <sys/strlog.h>
68 #include <sys/ontrap.h>
77 #include <vm/seg_kmem.h>
78 #include <vm/vm_dep.h>
79 #include <sys/vm_usage.h>
80 #include <sys/fs_subr.h>
82 #include <sys/modctl.h>
84 static pgcnt_t max_page_get
; /* max page_get request size in pages */
85 pgcnt_t total_pages
= 0; /* total number of pages (used by /proc) */
88 * freemem_lock protects all freemem variables:
89 * availrmem. Also this lock protects the globals which track the
90 * availrmem changes for accurate kernel footprint calculation.
91 * See below for an explanation of these
94 kmutex_t freemem_lock
;
96 pgcnt_t availrmem_initial
;
99 * These globals track availrmem changes to get a more accurate
100 * estimate of tke kernel size. Historically pp_kernel is used for
101 * kernel size and is based on availrmem. But availrmem is adjusted for
102 * locked pages in the system not just for kernel locked pages.
103 * These new counters will track the pages locked through segvn and
104 * by explicit user locking.
106 * pages_locked : How many pages are locked because of user specified
107 * locking through mlock or plock.
109 * pages_useclaim,pages_claimed : These two variables track the
110 * claim adjustments because of the protection changes on a segvn segment.
112 * All these globals are protected by the same lock which protects availrmem.
114 pgcnt_t pages_locked
= 0;
115 pgcnt_t pages_useclaim
= 0;
116 pgcnt_t pages_claimed
= 0;
120 * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122 static kmutex_t new_freemem_lock
;
123 static uint_t freemem_wait
; /* someone waiting for freemem */
124 static kcondvar_t freemem_cv
;
127 * The logical page free list is maintained as two lists, the 'free'
128 * and the 'cache' lists.
129 * The free list contains those pages that should be reused first.
131 * The implementation of the lists is machine dependent.
132 * page_get_freelist(), page_get_cachelist(),
133 * page_list_sub(), and page_list_add()
134 * form the interface to the machine dependent implementation.
136 * Pages with p_free set are on the cache list.
137 * Pages with p_free and p_age set are on the free list,
139 * A page may be locked while on either list.
143 * free list accounting stuff.
146 * Spread out the value for the number of pages on the
147 * page free and page cache lists. If there is just one
148 * value, then it must be under just one lock.
149 * The lock contention and cache traffic are a real bother.
151 * When we acquire and then drop a single pcf lock
152 * we can start in the middle of the array of pcf structures.
153 * If we acquire more than one pcf lock at a time, we need to
154 * start at the front to avoid deadlocking.
156 * pcf_count holds the number of pages in each pool.
158 * pcf_block is set when page_create_get_something() has asked the
159 * PSM page freelist and page cachelist routines without specifying
160 * a color and nothing came back. This is used to block anything
161 * else from moving pages from one list to the other while the
162 * lists are searched again. If a page is freeed while pcf_block is
163 * set, then pcf_reserve is incremented. pcgs_unblock() takes care
164 * of clearning pcf_block, doing the wakeups, etc.
167 #define MAX_PCF_FANOUT NCPU
168 static uint_t pcf_fanout
= 1; /* Will get changed at boot time */
169 static uint_t pcf_fanout_mask
= 0;
172 kmutex_t pcf_lock
; /* protects the structure */
173 uint_t pcf_count
; /* page count */
174 uint_t pcf_wait
; /* number of waiters */
175 uint_t pcf_block
; /* pcgs flag to page_free() */
176 uint_t pcf_reserve
; /* pages freed after pcf_block set */
177 uint_t pcf_fill
[10]; /* to line up on the caches */
181 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
182 * it will hash the cpu to). This is done to prevent a drain condition
183 * from happening. This drain condition will occur when pcf_count decrement
184 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An
185 * example of this shows up with device interrupts. The dma buffer is allocated
186 * by the cpu requesting the IO thus the pcf_count is decremented based on that.
187 * When the memory is returned by the interrupt thread, the pcf_count will be
188 * incremented based on the cpu servicing the interrupt.
190 static struct pcf pcf
[MAX_PCF_FANOUT
];
191 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
192 (randtick() >> 24)) & (pcf_fanout_mask))
194 static int pcf_decrement_bucket(pgcnt_t
);
195 static int pcf_decrement_multiple(pgcnt_t
*, pgcnt_t
, int);
197 kmutex_t pcgs_lock
; /* serializes page_create_get_ */
198 kmutex_t pcgs_cagelock
; /* serializes NOSLEEP cage allocs */
199 kmutex_t pcgs_wait_lock
; /* used for delay in pcgs */
200 static kcondvar_t pcgs_cv
; /* cv for delay in pcgs */
205 * No locks, but so what, they are only statistics.
208 static struct page_tcnt
{
209 int pc_free_cache
; /* free's into cache list */
210 int pc_free_dontneed
; /* free's with dontneed */
211 int pc_free_pageout
; /* free's from pageout */
212 int pc_free_free
; /* free's into free list */
213 int pc_free_pages
; /* free's into large page free list */
214 int pc_destroy_pages
; /* large page destroy's */
215 int pc_get_cache
; /* get's from cache list */
216 int pc_get_free
; /* get's from free list */
217 int pc_reclaim
; /* reclaim's */
218 int pc_abortfree
; /* abort's of free pages */
219 int pc_find_hit
; /* find's that find page */
220 int pc_find_miss
; /* find's that don't find page */
221 int pc_destroy_free
; /* # of free pages destroyed */
222 int pc_addclaim_pages
;
223 int pc_subclaim_pages
;
224 int pc_free_replacement_page
[2];
225 int pc_try_demote_pages
[6];
226 int pc_demote_pages
[2];
230 uint_t hashin_not_held
;
231 uint_t hashin_already
;
233 uint_t hashout_count
;
234 uint_t hashout_not_held
;
236 uint_t page_create_count
;
237 uint_t page_create_not_enough
;
238 uint_t page_create_not_enough_again
;
239 uint_t page_create_zero
;
240 uint_t page_create_hashout
;
241 uint_t page_create_page_lock_failed
;
242 uint_t page_create_trylock_failed
;
243 uint_t page_create_found_one
;
244 uint_t page_create_hashin_failed
;
245 uint_t page_create_dropped_phm
;
247 uint_t page_create_new
;
248 uint_t page_create_exists
;
249 uint_t page_create_putbacks
;
250 uint_t page_create_overshoot
;
252 uint_t page_reclaim_zero
;
253 uint_t page_reclaim_zero_locked
;
255 uint_t page_rename_exists
;
256 uint_t page_rename_count
;
258 uint_t page_lookup_cnt
[20];
259 uint_t page_lookup_nowait_cnt
[10];
260 uint_t page_find_cnt
;
261 uint_t page_exists_cnt
;
262 uint_t page_exists_forreal_cnt
;
263 uint_t page_lookup_dev_cnt
;
264 uint_t get_cachelist_cnt
;
265 uint_t page_create_cnt
[10];
266 uint_t alloc_pages
[9];
267 uint_t page_exphcontg
[19];
268 uint_t page_create_large_cnt
[10];
272 static inline struct page
*
273 find_page(struct vmobject
*obj
, uoff_t off
)
280 page
= avl_find(&obj
->tree
, &key
, NULL
);
284 pagecnt
.pc_find_hit
++;
286 pagecnt
.pc_find_miss
++;
294 #define MEMSEG_SEARCH_STATS
297 #ifdef MEMSEG_SEARCH_STATS
298 struct memseg_stats
{
305 #define MEMSEG_STAT_INCR(v) \
306 atomic_inc_32(&memseg_stats.v)
308 #define MEMSEG_STAT_INCR(x)
311 struct memseg
*memsegs
; /* list of memory segments */
314 * /etc/system tunable to control large page allocation hueristic.
316 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
317 * for large page allocation requests. If a large page is not readily
318 * avaliable on the local freelists we will go through additional effort
319 * to create a large page, potentially moving smaller pages around to coalesce
320 * larger pages in the local lgroup.
321 * Default value of LPAP_DEFAULT will go to remote freelists if large pages
322 * are not readily available in the local lgroup.
325 LPAP_DEFAULT
, /* default large page allocation policy */
326 LPAP_LOCAL
/* local large page allocation policy */
329 enum lpap lpg_alloc_prefer
= LPAP_DEFAULT
;
331 static void page_init_mem_config(void);
332 static int page_do_hashin(struct page
*, struct vmobject
*, uoff_t
);
333 static void page_do_hashout(page_t
*);
334 static void page_capture_init();
335 int page_capture_take_action(page_t
*, uint_t
, void *);
337 static void page_demote_vp_pages(page_t
*);
343 if (boot_ncpus
!= -1) {
344 pcf_fanout
= boot_ncpus
;
346 pcf_fanout
= max_ncpus
;
350 * Force at least 4 buckets if possible for sun4v.
352 pcf_fanout
= MAX(pcf_fanout
, 4);
356 * Round up to the nearest power of 2.
358 pcf_fanout
= MIN(pcf_fanout
, MAX_PCF_FANOUT
);
359 if (!ISP2(pcf_fanout
)) {
360 pcf_fanout
= 1 << highbit(pcf_fanout
);
362 if (pcf_fanout
> MAX_PCF_FANOUT
) {
363 pcf_fanout
= 1 << (highbit(MAX_PCF_FANOUT
) - 1);
366 pcf_fanout_mask
= pcf_fanout
- 1;
370 * vm subsystem related initialization
375 boolean_t
callb_vm_cpr(void *, int);
377 (void) callb_add(callb_vm_cpr
, 0, CB_CL_CPR_VM
, "vm");
378 page_init_mem_config();
385 * This function is called at startup and when memory is added or deleted.
388 init_pages_pp_maximum()
390 static pgcnt_t p_min
;
391 static pgcnt_t pages_pp_maximum_startup
;
392 static pgcnt_t avrmem_delta
;
393 static int init_done
;
394 static int user_set
; /* true if set in /etc/system */
396 if (init_done
== 0) {
398 /* If the user specified a value, save it */
399 if (pages_pp_maximum
!= 0) {
401 pages_pp_maximum_startup
= pages_pp_maximum
;
405 * Setting of pages_pp_maximum is based first time
406 * on the value of availrmem just after the start-up
407 * allocations. To preserve this relationship at run
408 * time, use a delta from availrmem_initial.
410 ASSERT(availrmem_initial
>= availrmem
);
411 avrmem_delta
= availrmem_initial
- availrmem
;
413 /* The allowable floor of pages_pp_maximum */
414 p_min
= tune
.t_minarmem
+ 100;
416 /* Make sure we don't come through here again. */
420 * Determine pages_pp_maximum, the number of currently available
421 * pages (availrmem) that can't be `locked'. If not set by
422 * the user, we set it to 4% of the currently available memory
424 * But we also insist that it be greater than tune.t_minarmem;
425 * otherwise a process could lock down a lot of memory, get swapped
426 * out, and never have enough to get swapped back in.
429 pages_pp_maximum
= pages_pp_maximum_startup
;
431 pages_pp_maximum
= ((availrmem_initial
- avrmem_delta
) / 25)
432 + btop(4 * 1024 * 1024);
434 if (pages_pp_maximum
<= p_min
) {
435 pages_pp_maximum
= p_min
;
440 set_max_page_get(pgcnt_t target_total_pages
)
442 max_page_get
= target_total_pages
/ 2;
445 static pgcnt_t pending_delete
;
449 page_mem_config_post_add(
453 set_max_page_get(total_pages
- pending_delete
);
454 init_pages_pp_maximum();
459 page_mem_config_pre_del(
465 nv
= atomic_add_long_nv(&pending_delete
, (spgcnt_t
)delta_pages
);
466 set_max_page_get(total_pages
- nv
);
472 page_mem_config_post_del(
479 nv
= atomic_add_long_nv(&pending_delete
, -(spgcnt_t
)delta_pages
);
480 set_max_page_get(total_pages
- nv
);
482 init_pages_pp_maximum();
485 static kphysm_setup_vector_t page_mem_config_vec
= {
486 KPHYSM_SETUP_VECTOR_VERSION
,
487 page_mem_config_post_add
,
488 page_mem_config_pre_del
,
489 page_mem_config_post_del
,
493 page_init_mem_config(void)
497 ret
= kphysm_setup_func_register(&page_mem_config_vec
, NULL
);
502 * Evenly spread out the PCF counters for large free pages
505 page_free_large_ctr(pgcnt_t npages
)
507 static struct pcf
*p
= pcf
;
512 lump
= roundup(npages
, pcf_fanout
) / pcf_fanout
;
516 ASSERT(!p
->pcf_block
);
519 p
->pcf_count
+= (uint_t
)lump
;
522 p
->pcf_count
+= (uint_t
)npages
;
526 ASSERT(!p
->pcf_wait
);
528 if (++p
> &pcf
[pcf_fanout
- 1])
536 * Add a physical chunk of memory to the system free lists during startup.
537 * Platform specific startup() allocates the memory for the page structs.
539 * num - number of page structures
540 * base - page number (pfn) to be associated with the first page.
542 * Since we are doing this during startup (ie. single threaded), we will
543 * use shortcut routines to avoid any locking overhead while putting all
544 * these pages on the freelists.
546 * NOTE: Any changes performed to page_free(), must also be performed to
547 * add_physmem() since this is how we initialize all page_t's at
557 uint_t szc
= page_num_pagesizes() - 1;
558 pgcnt_t large
= page_get_pagecnt(szc
);
562 * Arbitrarily limit the max page_get request
563 * to 1/2 of the page structs we have.
566 set_max_page_get(total_pages
);
568 PLCNT_MODIFY_MAX(pnum
, (long)num
);
571 * The physical space for the pages array
572 * representing ram pages has already been
573 * allocated. Here we initialize each lock
574 * in the page structure, and put each on
577 for (; num
; pp
++, pnum
++, num
--) {
580 * this needs to fill in the page number
581 * and do any other arch specific initialization
583 add_physmem_cb(pp
, pnum
);
590 * Initialize the page lock as unlocked, since nobody
591 * can see or access this page yet.
598 page_iolock_init(pp
);
601 * initialize other fields in the page_t
604 page_clr_all_props(pp
);
606 pp
->p_offset
= (uoff_t
)-1;
611 * Simple case: System doesn't support large pages.
615 page_free_at_startup(pp
);
620 * Handle unaligned pages, we collect them up onto
621 * the root page until we have a full large page.
623 if (!IS_P2ALIGNED(pnum
, large
)) {
626 * If not in a large page,
627 * just free as small page.
631 page_free_at_startup(pp
);
636 * Link a constituent page into the large page.
639 page_list_concat(&root
, &pp
);
642 * When large page is fully formed, free it.
644 if (++cnt
== large
) {
645 page_free_large_ctr(cnt
);
646 page_list_add_pages(root
, PG_LIST_ISINIT
);
654 * At this point we have a page number which
655 * is aligned. We assert that we aren't already
656 * in a different large page.
658 ASSERT(IS_P2ALIGNED(pnum
, large
));
659 ASSERT(root
== NULL
&& cnt
== 0);
662 * If insufficient number of pages left to form
663 * a large page, just free the small page.
667 page_free_at_startup(pp
);
672 * Otherwise start a new large page.
678 ASSERT(root
== NULL
&& cnt
== 0);
682 * Find a page representing the specified [vp, offset].
683 * If we find the page but it is intransit coming in,
684 * it will have an "exclusive" lock and we wait for
685 * the i/o to complete. A page found on the free list
686 * is always reclaimed and then locked. On success, the page
687 * is locked, its data is valid and it isn't on the free
688 * list, while a NULL is returned if the page doesn't exist.
691 page_lookup(struct vmobject
*obj
, uoff_t off
, se_t se
)
693 return (page_lookup_create(obj
, off
, se
, NULL
, NULL
, 0));
697 * Find a page representing the specified [vp, offset].
698 * We either return the one we found or, if passed in,
699 * create one with identity of [vp, offset] of the
700 * pre-allocated page. If we find existing page but it is
701 * intransit coming in, it will have an "exclusive" lock
702 * and we wait for the i/o to complete. A page found on
703 * the free list is always reclaimed and then locked.
704 * On success, the page is locked, its data is valid and
705 * it isn't on the free list, while a NULL is returned
706 * if the page doesn't exist and newpp is NULL;
710 struct vmobject
*obj
,
722 ASSERT(!VMOBJECT_LOCKED(obj
));
723 VM_STAT_ADD(page_lookup_cnt
[0]);
724 ASSERT(newpp
? PAGE_EXCL(newpp
) : 1);
728 pp
= find_page(obj
, off
);
731 VM_STAT_ADD(page_lookup_cnt
[1]);
732 es
= (newpp
!= NULL
) ? 1 : 0;
735 VM_STAT_ADD(page_lookup_cnt
[4]);
736 if (!page_lock_es(pp
, se
, obj
, P_RECLAIM
, es
)) {
737 VM_STAT_ADD(page_lookup_cnt
[5]);
741 VM_STAT_ADD(page_lookup_cnt
[6]);
743 vmobject_unlock(obj
);
745 if (newpp
!= NULL
&& pp
->p_szc
< newpp
->p_szc
&&
746 PAGE_EXCL(pp
) && nrelocp
!= NULL
) {
747 ASSERT(nrelocp
!= NULL
);
748 (void) page_relocate(&pp
, &newpp
, 1, 1, nrelocp
,
751 VM_STAT_COND_ADD(*nrelocp
== 1,
752 page_lookup_cnt
[11]);
753 VM_STAT_COND_ADD(*nrelocp
> 1,
754 page_lookup_cnt
[12]);
758 if (se
== SE_SHARED
) {
761 VM_STAT_ADD(page_lookup_cnt
[13]);
763 } else if (newpp
!= NULL
&& nrelocp
!= NULL
) {
764 if (PAGE_EXCL(pp
) && se
== SE_SHARED
) {
767 VM_STAT_COND_ADD(pp
->p_szc
< newpp
->p_szc
,
768 page_lookup_cnt
[14]);
769 VM_STAT_COND_ADD(pp
->p_szc
== newpp
->p_szc
,
770 page_lookup_cnt
[15]);
771 VM_STAT_COND_ADD(pp
->p_szc
> newpp
->p_szc
,
772 page_lookup_cnt
[16]);
773 } else if (newpp
!= NULL
&& PAGE_EXCL(pp
)) {
776 } else if (newpp
!= NULL
) {
778 * If we have a preallocated page then
779 * insert it now and basically behave like
782 VM_STAT_ADD(page_lookup_cnt
[18]);
784 * Since we hold the page hash mutex and
785 * just searched for this page, page_hashin
786 * had better not fail. If it does, that
787 * means some thread did not follow the
788 * page hash mutex rules. Panic now and
789 * get it over with. As usual, go down
790 * holding all the locks.
792 if (!page_hashin(newpp
, obj
, off
, true)) {
793 ASSERT(VMOBJECT_LOCKED(obj
));
794 panic("page_lookup_create: hashin failed %p %p %llx",
798 ASSERT(VMOBJECT_LOCKED(obj
));
799 vmobject_unlock(obj
);
800 page_set_props(newpp
, P_REF
);
805 VM_STAT_ADD(page_lookup_cnt
[19]);
806 vmobject_unlock(obj
);
809 ASSERT(pp
? PAGE_LOCKED_SE(pp
, se
) : 1);
811 ASSERT(pp
? ((PP_ISFREE(pp
) == 0) && (PP_ISAGED(pp
) == 0)) : 1);
817 * Search the hash list for the page representing the
818 * specified [vp, offset] and return it locked. Skip
819 * free pages and pages that cannot be locked as requested.
820 * Used while attempting to kluster pages.
823 page_lookup_nowait(struct vmobject
*obj
, uoff_t off
, se_t se
)
827 ASSERT(!VMOBJECT_LOCKED(obj
));
828 VM_STAT_ADD(page_lookup_nowait_cnt
[0]);
831 pp
= find_page(obj
, off
);
833 if (pp
== NULL
|| PP_ISFREE(pp
)) {
834 VM_STAT_ADD(page_lookup_nowait_cnt
[2]);
837 if (!page_trylock(pp
, se
)) {
838 VM_STAT_ADD(page_lookup_nowait_cnt
[3]);
841 VM_STAT_ADD(page_lookup_nowait_cnt
[4]);
843 VM_STAT_ADD(page_lookup_nowait_cnt
[6]);
850 vmobject_unlock(obj
);
852 ASSERT(pp
? PAGE_LOCKED_SE(pp
, se
) : 1);
858 * Search the hash list for a page with the specified [vp, off]
859 * that is known to exist and is already locked. This routine
860 * is typically used by segment SOFTUNLOCK routines.
863 page_find(struct vmobject
*obj
, uoff_t off
)
867 ASSERT(!VMOBJECT_LOCKED(obj
));
868 VM_STAT_ADD(page_find_cnt
);
871 page
= find_page(obj
, off
);
872 vmobject_unlock(obj
);
874 ASSERT(page
== NULL
|| PAGE_LOCKED(page
) || panicstr
);
879 * Determine whether a page with the specified [vp, off]
880 * currently exists in the system. Obviously this should
881 * only be considered as a hint since nothing prevents the
882 * page from disappearing or appearing immediately after
883 * the return from this routine.
885 * Note: This is virtually identical to page_find. Can we combine them?
888 page_exists(struct vmobject
*obj
, uoff_t off
)
892 ASSERT(!VMOBJECT_LOCKED(obj
));
893 VM_STAT_ADD(page_exists_cnt
);
896 page
= find_page(obj
, off
);
897 vmobject_unlock(obj
);
903 * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
904 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array
905 * with these pages locked SHARED. If necessary reclaim pages from
906 * freelist. Return 1 if contiguous pages exist and 0 otherwise.
908 * If we fail to lock pages still return 1 if pages exist and contiguous.
909 * But in this case return value is just a hint. ppa array won't be filled.
910 * Caller should initialize ppa[0] as NULL to distinguish return value.
912 * Returns 0 if pages don't exist or not physically contiguous.
914 * This routine doesn't work for anonymous(swapfs) pages.
917 page_exists_physcontig(struct vmobject
*obj
, uoff_t off
, uint_t szc
,
925 uoff_t save_off
= off
;
932 ASSERT(!IS_SWAPFSVP(obj
->vnode
));
933 ASSERT(!VN_ISKAS(obj
->vnode
));
937 VM_STAT_ADD(page_exphcontg
[0]);
942 pp
= find_page(obj
, off
);
943 vmobject_unlock(obj
);
945 VM_STAT_ADD(page_exphcontg
[1]);
948 VM_STAT_ADD(page_exphcontg
[2]);
952 pages
= page_get_pagecnt(szc
);
954 pfn
= rootpp
->p_pagenum
;
956 if ((pszc
= pp
->p_szc
) >= szc
&& ppa
!= NULL
) {
957 VM_STAT_ADD(page_exphcontg
[3]);
958 if (!page_trylock(pp
, SE_SHARED
)) {
959 VM_STAT_ADD(page_exphcontg
[4]);
963 * Also check whether p_pagenum was modified by DR.
965 if (pp
->p_szc
!= pszc
|| pp
->p_vnode
!= obj
->vnode
||
966 pp
->p_offset
!= off
|| pp
->p_pagenum
!= pfn
) {
967 VM_STAT_ADD(page_exphcontg
[5]);
973 * szc was non zero and vnode and offset matched after we
974 * locked the page it means it can't become free on us.
976 ASSERT(!PP_ISFREE(pp
));
977 if (!IS_P2ALIGNED(pfn
, pages
)) {
985 for (i
= 1; i
< pages
; i
++, pp
++, off
+= PAGESIZE
, pfn
++) {
986 if (!page_trylock(pp
, SE_SHARED
)) {
987 VM_STAT_ADD(page_exphcontg
[6]);
996 if (pp
->p_szc
!= pszc
) {
997 VM_STAT_ADD(page_exphcontg
[7]);
1009 * szc the same as for previous already locked pages
1010 * with right identity. Since this page had correct
1011 * szc after we locked it can't get freed or destroyed
1012 * and therefore must have the expected identity.
1014 ASSERT(!PP_ISFREE(pp
));
1015 if (pp
->p_vnode
!= obj
->vnode
||
1016 pp
->p_offset
!= off
) {
1017 panic("page_exists_physcontig: "
1018 "large page identity doesn't match");
1021 ASSERT(pp
->p_pagenum
== pfn
);
1023 VM_STAT_ADD(page_exphcontg
[8]);
1026 } else if (pszc
>= szc
) {
1027 VM_STAT_ADD(page_exphcontg
[9]);
1028 if (!IS_P2ALIGNED(pfn
, pages
)) {
1034 if (!IS_P2ALIGNED(pfn
, pages
)) {
1035 VM_STAT_ADD(page_exphcontg
[10]);
1039 if (page_numtomemseg_nolock(pfn
) !=
1040 page_numtomemseg_nolock(pfn
+ pages
- 1)) {
1041 VM_STAT_ADD(page_exphcontg
[11]);
1046 * We loop up 4 times across pages to promote page size.
1047 * We're extra cautious to promote page size atomically with respect
1048 * to everybody else. But we can probably optimize into 1 loop if
1049 * this becomes an issue.
1052 for (i
= 0; i
< pages
; i
++, pp
++, off
+= PAGESIZE
, pfn
++) {
1053 if (!page_trylock(pp
, SE_EXCL
)) {
1054 VM_STAT_ADD(page_exphcontg
[12]);
1058 * Check whether p_pagenum was modified by DR.
1060 if (pp
->p_pagenum
!= pfn
) {
1064 if (pp
->p_vnode
!= obj
->vnode
||
1065 pp
->p_offset
!= off
) {
1066 VM_STAT_ADD(page_exphcontg
[13]);
1070 if (pp
->p_szc
>= szc
) {
1079 VM_STAT_ADD(page_exphcontg
[14]);
1089 for (i
= 0; i
< pages
; i
++, pp
++) {
1090 if (PP_ISFREE(pp
)) {
1091 VM_STAT_ADD(page_exphcontg
[15]);
1092 ASSERT(!PP_ISAGED(pp
));
1093 ASSERT(pp
->p_szc
== 0);
1094 if (!page_reclaim(pp
, NULL
)) {
1098 ASSERT(pp
->p_szc
< szc
);
1099 VM_STAT_ADD(page_exphcontg
[16]);
1100 (void) hat_pageunload(pp
, HAT_FORCE_PGUNLOAD
);
1104 VM_STAT_ADD(page_exphcontg
[17]);
1106 * page_reclaim failed because we were out of memory.
1107 * drop the rest of the locks and return because this page
1108 * must be already reallocated anyway.
1111 for (j
= 0; j
< pages
; j
++, pp
++) {
1121 for (i
= 0; i
< pages
; i
++, pp
++, off
+= PAGESIZE
) {
1122 ASSERT(PAGE_EXCL(pp
));
1123 ASSERT(!PP_ISFREE(pp
));
1124 ASSERT(!hat_page_is_mapped(pp
));
1125 VERIFY(pp
->p_object
== obj
);
1126 ASSERT(pp
->p_vnode
== obj
->vnode
);
1127 ASSERT(pp
->p_offset
== off
);
1131 for (i
= 0; i
< pages
; i
++, pp
++) {
1136 page_downgrade(ppa
[i
]);
1142 VM_STAT_ADD(page_exphcontg
[18]);
1143 ASSERT(vn_has_cached_data(obj
->vnode
));
1148 * Determine whether a page with the specified [vp, off]
1149 * currently exists in the system and if so return its
1150 * size code. Obviously this should only be considered as
1151 * a hint since nothing prevents the page from disappearing
1152 * or appearing immediately after the return from this routine.
1155 page_exists_forreal(struct vmobject
*obj
, uoff_t off
, uint_t
*szc
)
1160 ASSERT(!VMOBJECT_LOCKED(obj
));
1161 ASSERT(szc
!= NULL
);
1162 VM_STAT_ADD(page_exists_forreal_cnt
);
1165 pp
= find_page(obj
, off
);
1170 vmobject_unlock(obj
);
1174 /* wakeup threads waiting for pages in page_create_get_something() */
1178 if (!CV_HAS_WAITERS(&pcgs_cv
))
1180 cv_broadcast(&pcgs_cv
);
1184 * 'freemem' is used all over the kernel as an indication of how many
1185 * pages are free (either on the cache list or on the free page list)
1186 * in the system. In very few places is a really accurate 'freemem'
1187 * needed. To avoid contention of the lock protecting a the
1188 * single freemem, it was spread out into NCPU buckets. Set_freemem
1189 * sets freemem to the total of all NCPU buckets. It is called from
1190 * clock() on each TICK.
1201 for (i
= 0; i
< pcf_fanout
; i
++) {
1208 * Don't worry about grabbing mutex. It's not that
1209 * critical if we miss a tick or two. This is
1210 * where we wakeup possible delayers in
1211 * page_create_get_something().
1225 for (i
= 0; i
< pcf_fanout
; i
++) {
1230 * We just calculated it, might as well set it.
1237 * Acquire all of the page cache & free (pcf) locks.
1246 for (i
= 0; i
< pcf_fanout
; i
++) {
1247 mutex_enter(&p
->pcf_lock
);
1253 * Release all the pcf_locks.
1262 for (i
= 0; i
< pcf_fanout
; i
++) {
1263 mutex_exit(&p
->pcf_lock
);
1269 * Inform the VM system that we need some pages freed up.
1270 * Calls must be symmetric, e.g.:
1272 * page_needfree(100);
1274 * page_needfree(-100);
1277 page_needfree(spgcnt_t npages
)
1279 mutex_enter(&new_freemem_lock
);
1281 mutex_exit(&new_freemem_lock
);
1285 * Throttle for page_create(): try to prevent freemem from dropping
1286 * below throttlefree. We can't provide a 100% guarantee because
1287 * KM_NOSLEEP allocations, page_reclaim(), and various other things
1288 * nibble away at the freelist. However, we can block all PG_WAIT
1289 * allocations until memory becomes available. The motivation is
1290 * that several things can fall apart when there's no free memory:
1292 * (1) If pageout() needs memory to push a page, the system deadlocks.
1294 * (2) By (broken) specification, timeout(9F) can neither fail nor
1295 * block, so it has no choice but to panic the system if it
1296 * cannot allocate a callout structure.
1298 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1299 * it panics if it cannot allocate a callback structure.
1301 * (4) Untold numbers of third-party drivers have not yet been hardened
1302 * against KM_NOSLEEP and/or allocb() failures; they simply assume
1303 * success and panic the system with a data fault on failure.
1304 * (The long-term solution to this particular problem is to ship
1305 * hostile fault-injecting DEBUG kernels with the DDK.)
1307 * It is theoretically impossible to guarantee success of non-blocking
1308 * allocations, but in practice, this throttle is very hard to break.
1311 page_create_throttle(pgcnt_t npages
, int flags
)
1315 pgcnt_t tf
; /* effective value of throttlefree */
1318 * Normal priority allocations.
1320 if ((flags
& (PG_WAIT
| PG_NORMALPRI
)) == PG_NORMALPRI
) {
1321 ASSERT(!(flags
& (PG_PANIC
| PG_PUSHPAGE
)));
1322 return (freemem
>= npages
+ throttlefree
);
1326 * Never deny pages when:
1327 * - it's a thread that cannot block [NOMEMWAIT()]
1328 * - the allocation cannot block and must not fail
1329 * - the allocation cannot block and is pageout dispensated
1332 ((flags
& (PG_WAIT
| PG_PANIC
)) == PG_PANIC
) ||
1333 ((flags
& (PG_WAIT
| PG_PUSHPAGE
)) == PG_PUSHPAGE
))
1337 * If the allocation can't block, we look favorably upon it
1338 * unless we're below pageout_reserve. In that case we fail
1339 * the allocation because we want to make sure there are a few
1340 * pages available for pageout.
1342 if ((flags
& PG_WAIT
) == 0)
1343 return (freemem
>= npages
+ pageout_reserve
);
1345 /* Calculate the effective throttlefree value */
1347 ((flags
& PG_PUSHPAGE
) ? pageout_reserve
: 0);
1349 cv_signal(&proc_pageout
->p_cv
);
1354 mutex_enter(&new_freemem_lock
);
1355 for (i
= 0; i
< pcf_fanout
; i
++) {
1356 fm
+= pcf
[i
].pcf_count
;
1358 mutex_exit(&pcf
[i
].pcf_lock
);
1361 if (freemem
>= npages
+ tf
) {
1362 mutex_exit(&new_freemem_lock
);
1367 cv_wait(&freemem_cv
, &new_freemem_lock
);
1370 mutex_exit(&new_freemem_lock
);
1376 * page_create_wait() is called to either coalesce pages from the
1377 * different pcf buckets or to wait because there simply are not
1378 * enough pages to satisfy the caller's request.
1380 * Sadly, this is called from platform/vm/vm_machdep.c
1383 page_create_wait(pgcnt_t npages
, uint_t flags
)
1390 * Wait until there are enough free pages to satisfy our
1392 * We set needfree += npages before prodding pageout, to make sure
1393 * it does real work when npages > lotsfree > freemem.
1395 VM_STAT_ADD(page_create_not_enough
);
1397 ASSERT(!kcage_on
? !(flags
& PG_NORELOC
) : 1);
1399 if ((flags
& PG_NORELOC
) &&
1400 kcage_freemem
< kcage_throttlefree
+ npages
)
1401 (void) kcage_create_throttle(npages
, flags
);
1403 if (freemem
< npages
+ throttlefree
)
1404 if (!page_create_throttle(npages
, flags
))
1407 if (pcf_decrement_bucket(npages
) ||
1408 pcf_decrement_multiple(&total
, npages
, 0))
1412 * All of the pcf locks are held, there are not enough pages
1413 * to satisfy the request (npages < total).
1414 * Be sure to acquire the new_freemem_lock before dropping
1415 * the pcf locks. This prevents dropping wakeups in page_free().
1416 * The order is always pcf_lock then new_freemem_lock.
1418 * Since we hold all the pcf locks, it is a good time to set freemem.
1420 * If the caller does not want to wait, return now.
1421 * Else turn the pageout daemon loose to find something
1422 * and wait till it does.
1427 if ((flags
& PG_WAIT
) == 0) {
1433 ASSERT(proc_pageout
!= NULL
);
1434 cv_signal(&proc_pageout
->p_cv
);
1437 * We are going to wait.
1438 * We currently hold all of the pcf_locks,
1439 * get the new_freemem_lock (it protects freemem_wait),
1440 * before dropping the pcf_locks.
1442 mutex_enter(&new_freemem_lock
);
1445 for (i
= 0; i
< pcf_fanout
; i
++) {
1447 mutex_exit(&p
->pcf_lock
);
1454 cv_wait(&freemem_cv
, &new_freemem_lock
);
1459 mutex_exit(&new_freemem_lock
);
1461 VM_STAT_ADD(page_create_not_enough_again
);
1465 * A routine to do the opposite of page_create_wait().
1468 page_create_putback(spgcnt_t npages
)
1475 * When a contiguous lump is broken up, we have to
1476 * deal with lots of pages (min 64) so lets spread
1477 * the wealth around.
1479 lump
= roundup(npages
, pcf_fanout
) / pcf_fanout
;
1482 for (p
= pcf
; (npages
> 0) && (p
< &pcf
[pcf_fanout
]); p
++) {
1483 which
= &p
->pcf_count
;
1485 mutex_enter(&p
->pcf_lock
);
1488 which
= &p
->pcf_reserve
;
1491 if (lump
< npages
) {
1492 *which
+= (uint_t
)lump
;
1495 *which
+= (uint_t
)npages
;
1500 mutex_enter(&new_freemem_lock
);
1502 * Check to see if some other thread
1503 * is actually waiting. Another bucket
1504 * may have woken it up by now. If there
1505 * are no waiters, then set our pcf_wait
1506 * count to zero to avoid coming in here
1511 cv_broadcast(&freemem_cv
);
1513 cv_signal(&freemem_cv
);
1519 mutex_exit(&new_freemem_lock
);
1521 mutex_exit(&p
->pcf_lock
);
1523 ASSERT(npages
== 0);
1527 * A helper routine for page_create_get_something.
1528 * The indenting got to deep down there.
1529 * Unblock the pcf counters. Any pages freed after
1530 * pcf_block got set are moved to pcf_count and
1531 * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1539 /* Update freemem while we're here. */
1542 for (i
= 0; i
< pcf_fanout
; i
++) {
1543 mutex_enter(&p
->pcf_lock
);
1544 ASSERT(p
->pcf_count
== 0);
1545 p
->pcf_count
= p
->pcf_reserve
;
1547 freemem
+= p
->pcf_count
;
1549 mutex_enter(&new_freemem_lock
);
1551 if (p
->pcf_reserve
> 1) {
1552 cv_broadcast(&freemem_cv
);
1555 cv_signal(&freemem_cv
);
1561 mutex_exit(&new_freemem_lock
);
1564 mutex_exit(&p
->pcf_lock
);
1570 * Called from page_create_va() when both the cache and free lists
1571 * have been checked once.
1573 * Either returns a page or panics since the accounting was done
1574 * way before we got here.
1576 * We don't come here often, so leave the accounting on permanently.
1579 #define MAX_PCGS 100
1582 #define PCGS_TRIES 100
1584 #define PCGS_TRIES 10
1588 uint_t pcgs_counts
[PCGS_TRIES
];
1589 uint_t pcgs_too_many
;
1590 uint_t pcgs_entered
;
1591 uint_t pcgs_entered_noreloc
;
1593 uint_t pcgs_cagelocked
;
1594 #endif /* VM_STATS */
1596 static struct page
*
1597 page_create_get_something(struct vmobject
*obj
, uoff_t off
, struct seg
*seg
,
1598 caddr_t vaddr
, uint_t flags
)
1607 VM_STAT_ADD(pcgs_entered
);
1610 * Tap any reserve freelists: if we fail now, we'll die
1611 * since the page(s) we're looking for have already been
1616 if ((flags
& PG_NORELOC
) != 0) {
1617 VM_STAT_ADD(pcgs_entered_noreloc
);
1619 * Requests for free pages from critical threads
1620 * such as pageout still won't throttle here, but
1621 * we must try again, to give the cageout thread
1622 * another chance to catch up. Since we already
1623 * accounted for the pages, we had better get them
1626 * N.B. All non-critical threads acquire the pcgs_cagelock
1627 * to serialize access to the freelists. This implements a
1628 * turnstile-type synchornization to avoid starvation of
1629 * critical requests for PG_NORELOC memory by non-critical
1630 * threads: all non-critical threads must acquire a 'ticket'
1631 * before passing through, which entails making sure
1632 * kcage_freemem won't fall below minfree prior to grabbing
1633 * pages from the freelists.
1635 if (kcage_create_throttle(1, flags
) == KCT_NONCRIT
) {
1636 mutex_enter(&pcgs_cagelock
);
1638 VM_STAT_ADD(pcgs_cagelocked
);
1643 * Time to get serious.
1644 * We failed to get a `correctly colored' page from both the
1645 * free and cache lists.
1646 * We escalate in stage.
1648 * First try both lists without worring about color.
1650 * Then, grab all page accounting locks (ie. pcf[]) and
1651 * steal any pages that they have and set the pcf_block flag to
1652 * stop deletions from the lists. This will help because
1653 * a page can get added to the free list while we are looking
1654 * at the cache list, then another page could be added to the cache
1655 * list allowing the page on the free list to be removed as we
1656 * move from looking at the cache list to the free list. This
1657 * could happen over and over. We would never find the page
1658 * we have accounted for.
1660 * Noreloc pages are a subset of the global (relocatable) page pool.
1661 * They are not tracked separately in the pcf bins, so it is
1662 * impossible to know when doing pcf accounting if the available
1663 * page(s) are noreloc pages or not. When looking for a noreloc page
1664 * it is quite easy to end up here even if the global (relocatable)
1665 * page pool has plenty of free pages but the noreloc pool is empty.
1667 * When the noreloc pool is empty (or low), additional noreloc pages
1668 * are created by converting pages from the global page pool. This
1669 * process will stall during pcf accounting if the pcf bins are
1670 * already locked. Such is the case when a noreloc allocation is
1671 * looping here in page_create_get_something waiting for more noreloc
1674 * Short of adding a new field to the pcf bins to accurately track
1675 * the number of free noreloc pages, we instead do not grab the
1676 * pcgs_lock, do not set the pcf blocks and do not timeout when
1677 * allocating a noreloc page. This allows noreloc allocations to
1678 * loop without blocking global page pool allocations.
1680 * NOTE: the behaviour of page_create_get_something has not changed
1681 * for the case of global page pool allocations.
1684 flags
&= ~PG_MATCH_COLOR
;
1686 #if defined(__i386) || defined(__amd64)
1687 flags
= page_create_update_flags_x86(flags
);
1690 lgrp
= lgrp_mem_choose(seg
, vaddr
, PAGESIZE
);
1692 for (count
= 0; kcage_on
|| count
< MAX_PCGS
; count
++) {
1693 pp
= page_get_freelist(obj
, off
, seg
, vaddr
, PAGESIZE
, flags
,
1696 pp
= page_get_cachelist(obj
, off
, seg
, vaddr
, flags
,
1701 * Serialize. Don't fight with other pcgs().
1703 if (!locked
&& (!kcage_on
|| !(flags
& PG_NORELOC
))) {
1704 mutex_enter(&pcgs_lock
);
1705 VM_STAT_ADD(pcgs_locked
);
1708 for (i
= 0; i
< pcf_fanout
; i
++) {
1709 mutex_enter(&p
->pcf_lock
);
1710 ASSERT(p
->pcf_block
== 0);
1712 p
->pcf_reserve
= p
->pcf_count
;
1714 mutex_exit(&p
->pcf_lock
);
1722 * Since page_free() puts pages on
1723 * a list then accounts for it, we
1724 * just have to wait for page_free()
1725 * to unlock any page it was working
1726 * with. The page_lock()-page_reclaim()
1727 * path falls in the same boat.
1729 * We don't need to check on the
1730 * PG_WAIT flag, we have already
1731 * accounted for the page we are
1732 * looking for in page_create_va().
1734 * We just wait a moment to let any
1735 * locked pages on the lists free up,
1736 * then continue around and try again.
1738 * Will be awakened by set_freemem().
1740 mutex_enter(&pcgs_wait_lock
);
1741 cv_wait(&pcgs_cv
, &pcgs_wait_lock
);
1742 mutex_exit(&pcgs_wait_lock
);
1746 if (count
>= PCGS_TRIES
) {
1747 VM_STAT_ADD(pcgs_too_many
);
1749 VM_STAT_ADD(pcgs_counts
[count
]);
1754 mutex_exit(&pcgs_lock
);
1757 mutex_exit(&pcgs_cagelock
);
1762 * we go down holding the pcf locks.
1764 panic("no %spage found %d",
1765 ((flags
& PG_NORELOC
) ? "non-reloc " : ""), count
);
1770 uint32_t pg_alloc_pgs_mtbf
= 0;
1774 * Used for large page support. It will attempt to allocate
1775 * a large page(s) off the freelist.
1777 * Returns non zero on failure.
1780 page_alloc_pages(struct vmobject
*obj
, struct seg
*seg
, caddr_t addr
,
1781 struct page
**basepp
, struct page
**ppa
, uint_t szc
, int anypgsz
,
1784 pgcnt_t npgs
, curnpgs
, totpgs
;
1786 page_t
*pplist
= NULL
, *pp
;
1790 ASSERT(szc
!= 0 && szc
<= (page_num_pagesizes() - 1));
1791 ASSERT(pgflags
== 0 || pgflags
== PG_LOCAL
);
1794 * Check if system heavily prefers local large pages over remote
1795 * on systems with multiple lgroups.
1797 if (lpg_alloc_prefer
== LPAP_LOCAL
&& nlgrps
> 1) {
1801 VM_STAT_ADD(alloc_pages
[0]);
1804 if (pg_alloc_pgs_mtbf
&& !(gethrtime() % pg_alloc_pgs_mtbf
)) {
1810 * One must be NULL but not both.
1811 * And one must be non NULL but not both.
1813 ASSERT(basepp
!= NULL
|| ppa
!= NULL
);
1814 ASSERT(basepp
== NULL
|| ppa
== NULL
);
1816 #if defined(__i386) || defined(__amd64)
1817 while (page_chk_freelist(szc
) == 0) {
1818 VM_STAT_ADD(alloc_pages
[8]);
1819 if (anypgsz
== 0 || --szc
== 0)
1824 pgsz
= page_get_pagesize(szc
);
1825 totpgs
= curnpgs
= npgs
= pgsz
>> PAGESHIFT
;
1827 ASSERT(((uintptr_t)addr
& (pgsz
- 1)) == 0);
1829 (void) page_create_wait(npgs
, PG_WAIT
);
1831 while (npgs
&& szc
) {
1832 lgrp
= lgrp_mem_choose(seg
, addr
, pgsz
);
1833 if (pgflags
== PG_LOCAL
) {
1834 pp
= page_get_freelist(obj
, 0, seg
, addr
, pgsz
, pgflags
,
1837 pp
= page_get_freelist(obj
, 0, seg
, addr
, pgsz
,
1841 pp
= page_get_freelist(obj
, 0, seg
, addr
, pgsz
, 0, lgrp
);
1844 VM_STAT_ADD(alloc_pages
[1]);
1845 page_list_concat(&pplist
, &pp
);
1846 ASSERT(npgs
>= curnpgs
);
1848 } else if (anypgsz
) {
1849 VM_STAT_ADD(alloc_pages
[2]);
1851 pgsz
= page_get_pagesize(szc
);
1852 curnpgs
= pgsz
>> PAGESHIFT
;
1854 VM_STAT_ADD(alloc_pages
[3]);
1855 ASSERT(npgs
== totpgs
);
1856 page_create_putback(npgs
);
1861 VM_STAT_ADD(alloc_pages
[4]);
1863 page_create_putback(npgs
);
1865 } else if (basepp
!= NULL
) {
1867 ASSERT(ppa
== NULL
);
1871 npgs
= totpgs
- npgs
;
1875 * Clear the free and age bits. Also if we were passed in a ppa then
1876 * fill it in with all the constituent pages from the large page. But
1877 * if we failed to allocate all the pages just free what we got.
1880 ASSERT(PP_ISFREE(pp
));
1881 ASSERT(PP_ISAGED(pp
));
1882 if (ppa
!= NULL
|| err
!= 0) {
1884 VM_STAT_ADD(alloc_pages
[5]);
1887 page_sub(&pplist
, pp
);
1891 VM_STAT_ADD(alloc_pages
[6]);
1892 ASSERT(pp
->p_szc
!= 0);
1893 curnpgs
= page_get_pagecnt(pp
->p_szc
);
1894 page_list_break(&pp
, &pplist
, curnpgs
);
1895 page_list_add_pages(pp
, 0);
1896 page_create_putback(curnpgs
);
1897 ASSERT(npgs
>= curnpgs
);
1902 VM_STAT_ADD(alloc_pages
[7]);
1913 * Get a single large page off of the freelists, and set it up for use.
1914 * Number of bytes requested must be a supported page size.
1916 * Note that this call may fail even if there is sufficient
1917 * memory available or PG_WAIT is set, so the caller must
1918 * be willing to fallback on page_create_va(), block and retry,
1919 * or fail the requester.
1922 page_create_va_large(struct vmobject
*obj
, uoff_t off
, size_t bytes
,
1923 uint_t flags
, struct seg
*seg
, caddr_t vaddr
, void *arg
)
1929 lgrp_id_t
*lgrpid
= (lgrp_id_t
*)arg
;
1931 ASSERT(obj
!= NULL
);
1933 ASSERT((flags
& ~(PG_EXCL
| PG_WAIT
|
1934 PG_NORELOC
| PG_PANIC
| PG_PUSHPAGE
| PG_NORMALPRI
)) == 0);
1937 ASSERT((flags
& PG_EXCL
) == PG_EXCL
);
1939 npages
= btop(bytes
);
1941 if (!kcage_on
|| panicstr
) {
1943 * Cage is OFF, or we are single threaded in
1944 * panic, so make everything a RELOC request.
1946 flags
&= ~PG_NORELOC
;
1950 * Make sure there's adequate physical memory available.
1951 * Note: PG_WAIT is ignored here.
1953 if (freemem
<= throttlefree
+ npages
) {
1954 VM_STAT_ADD(page_create_large_cnt
[1]);
1959 * If cage is on, dampen draw from cage when available
1960 * cage space is low.
1962 if ((flags
& (PG_NORELOC
| PG_WAIT
)) == (PG_NORELOC
| PG_WAIT
) &&
1963 kcage_freemem
< kcage_throttlefree
+ npages
) {
1966 * The cage is on, the caller wants PG_NORELOC
1967 * pages and available cage memory is very low.
1968 * Call kcage_create_throttle() to attempt to
1969 * control demand on the cage.
1971 if (kcage_create_throttle(npages
, flags
) == KCT_FAILURE
) {
1972 VM_STAT_ADD(page_create_large_cnt
[2]);
1977 if (!pcf_decrement_bucket(npages
) &&
1978 !pcf_decrement_multiple(NULL
, npages
, 1)) {
1979 VM_STAT_ADD(page_create_large_cnt
[4]);
1984 * This is where this function behaves fundamentally differently
1985 * than page_create_va(); since we're intending to map the page
1986 * with a single TTE, we have to get it as a physically contiguous
1987 * hardware pagesize chunk. If we can't, we fail.
1989 if (lgrpid
!= NULL
&& *lgrpid
>= 0 && *lgrpid
<= lgrp_alloc_max
&&
1990 LGRP_EXISTS(lgrp_table
[*lgrpid
]))
1991 lgrp
= lgrp_table
[*lgrpid
];
1993 lgrp
= lgrp_mem_choose(seg
, vaddr
, bytes
);
1995 if ((rootpp
= page_get_freelist(&kvp
.v_object
, off
, seg
, vaddr
,
1996 bytes
, flags
& ~PG_MATCH_COLOR
, lgrp
)) == NULL
) {
1997 page_create_putback(npages
);
1998 VM_STAT_ADD(page_create_large_cnt
[5]);
2003 * if we got the page with the wrong mtype give it back this is a
2004 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2005 * inside "if" and the workaround becomes just a nop
2007 if (kcage_on
&& (flags
& PG_NORELOC
) && !PP_ISNORELOC(rootpp
)) {
2008 page_list_add_pages(rootpp
, 0);
2009 page_create_putback(npages
);
2010 VM_STAT_ADD(page_create_large_cnt
[6]);
2015 * If satisfying this request has left us with too little
2016 * memory, start the wheels turning to get some back. The
2017 * first clause of the test prevents waking up the pageout
2018 * daemon in situations where it would decide that there's
2021 if (nscan
< desscan
&& freemem
< minfree
) {
2022 cv_signal(&proc_pageout
->p_cv
);
2027 ASSERT(PAGE_EXCL(pp
));
2028 VERIFY(pp
->p_object
== NULL
);
2029 ASSERT(pp
->p_vnode
== NULL
);
2030 ASSERT(!hat_page_is_mapped(pp
));
2033 if (!page_hashin(pp
, obj
, off
, false))
2034 panic("page_create_large: hashin failed: page %p",
2041 VM_STAT_ADD(page_create_large_cnt
[0]);
2047 * Create enough pages for "bytes" worth of data starting at
2050 * Where flag must be one of:
2052 * PG_EXCL: Exclusive create (fail if any page already
2053 * exists in the page cache) which does not
2054 * wait for memory to become available.
2056 * PG_WAIT: Non-exclusive create which can wait for
2057 * memory to become available.
2059 * PG_PHYSCONTIG: Allocate physically contiguous pages.
2062 * A doubly linked list of pages is returned to the caller. Each page
2063 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
2066 * Unable to change the parameters to page_create() in a minor release,
2067 * we renamed page_create() to page_create_va(), and changed all known calls
2068 * from page_create() to page_create_va().
2070 * We should consider ditch this renaming by replacing all the strings
2071 * "page_create_va", with "page_create".
2073 * NOTE: There is a copy of this interface as page_create_io() in
2074 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied
2078 page_create_va(struct vmobject
*obj
, uoff_t off
, size_t bytes
, uint_t flags
,
2079 struct seg
*seg
, caddr_t vaddr
)
2081 page_t
*plist
= NULL
;
2083 pgcnt_t found_on_free
= 0;
2089 ASSERT(bytes
!= 0 && obj
!= NULL
);
2091 if ((flags
& PG_EXCL
) == 0 && (flags
& PG_WAIT
) == 0) {
2092 panic("page_create: invalid flags");
2095 ASSERT((flags
& ~(PG_EXCL
| PG_WAIT
|
2096 PG_NORELOC
| PG_PANIC
| PG_PUSHPAGE
| PG_NORMALPRI
)) == 0);
2099 pages_req
= npages
= btopr(bytes
);
2101 * Try to see whether request is too large to *ever* be
2102 * satisfied, in order to prevent deadlock. We arbitrarily
2103 * decide to limit maximum size requests to max_page_get.
2105 if (npages
>= max_page_get
) {
2106 if ((flags
& PG_WAIT
) == 0) {
2110 "Request for too much kernel memory "
2111 "(%lu bytes), will hang forever", bytes
);
2117 if (!kcage_on
|| panicstr
) {
2119 * Cage is OFF, or we are single threaded in
2120 * panic, so make everything a RELOC request.
2122 flags
&= ~PG_NORELOC
;
2125 if (freemem
<= throttlefree
+ npages
)
2126 if (!page_create_throttle(npages
, flags
))
2130 * If cage is on, dampen draw from cage when available
2131 * cage space is low.
2133 if ((flags
& PG_NORELOC
) &&
2134 kcage_freemem
< kcage_throttlefree
+ npages
) {
2137 * The cage is on, the caller wants PG_NORELOC
2138 * pages and available cage memory is very low.
2139 * Call kcage_create_throttle() to attempt to
2140 * control demand on the cage.
2142 if (kcage_create_throttle(npages
, flags
) == KCT_FAILURE
)
2146 VM_STAT_ADD(page_create_cnt
[0]);
2148 if (!pcf_decrement_bucket(npages
)) {
2150 * Have to look harder. If npages is greater than
2151 * one, then we might have to coalesce the counters.
2153 * Go wait. We come back having accounted
2156 VM_STAT_ADD(page_create_cnt
[1]);
2157 if (!page_create_wait(npages
, flags
)) {
2158 VM_STAT_ADD(page_create_cnt
[2]);
2164 * If satisfying this request has left us with too little
2165 * memory, start the wheels turning to get some back. The
2166 * first clause of the test prevents waking up the pageout
2167 * daemon in situations where it would decide that there's
2170 if (nscan
< desscan
&& freemem
< minfree
) {
2171 cv_signal(&proc_pageout
->p_cv
);
2175 * Loop around collecting the requested number of pages.
2176 * Most of the time, we have to `create' a new page. With
2177 * this in mind, pull the page off the free list before
2178 * getting the hash lock. This will minimize the hash
2179 * lock hold time, nesting, and the like. If it turns
2180 * out we don't need the page, we put it back at the end.
2186 ASSERT(!VMOBJECT_LOCKED(obj
));
2190 * Try to get a page from the freelist (ie,
2191 * a page with no [obj, off] tag). If that
2192 * fails, use the cachelist.
2194 * During the first attempt at both the free
2195 * and cache lists we try for the correct color.
2198 * XXXX-how do we deal with virtual indexed
2199 * caches and and colors?
2201 VM_STAT_ADD(page_create_cnt
[4]);
2203 * Get lgroup to allocate next page of shared memory
2204 * from and use it to specify where to allocate
2205 * the physical memory
2207 lgrp
= lgrp_mem_choose(seg
, vaddr
, PAGESIZE
);
2208 npp
= page_get_freelist(obj
, off
, seg
, vaddr
, PAGESIZE
,
2209 flags
| PG_MATCH_COLOR
, lgrp
);
2211 npp
= page_get_cachelist(obj
, off
, seg
, vaddr
,
2212 flags
| PG_MATCH_COLOR
,
2215 npp
= page_create_get_something(
2216 obj
, off
, seg
, vaddr
,
2217 flags
& ~PG_MATCH_COLOR
);
2220 if (PP_ISAGED(npp
) == 0) {
2222 * Since this page came from the
2223 * cachelist, we must destroy the
2224 * old vnode association.
2226 page_hashout(npp
, false);
2234 ASSERT(PAGE_EXCL(npp
));
2235 VERIFY(npp
->p_object
== NULL
);
2236 ASSERT(npp
->p_vnode
== NULL
);
2237 ASSERT(!hat_page_is_mapped(npp
));
2242 * Here we have a page in our hot little mits and are
2243 * just waiting to stuff it on the appropriate lists.
2244 * Get the mutex and check to see if it really does
2248 pp
= find_page(obj
, off
);
2250 VM_STAT_ADD(page_create_new
);
2253 if (!page_hashin(pp
, obj
, off
, true)) {
2255 * Since we hold the page vnode page cache
2256 * mutex and just searched for this page,
2257 * page_hashin had better not fail. If it
2258 * does, that means some thread did not
2259 * follow the page hash mutex rules. Panic
2260 * now and get it over with. As usual, go
2261 * down holding all the locks.
2263 ASSERT(VMOBJECT_LOCKED(obj
));
2264 panic("page_create: "
2265 "hashin failed %p %p %llx", pp
, obj
, off
);
2268 ASSERT(VMOBJECT_LOCKED(obj
));
2269 vmobject_unlock(obj
);
2272 * Hat layer locking need not be done to set
2273 * the following bits since the page is not hashed
2274 * and was on the free list (i.e., had no mappings).
2276 * Set the reference bit to protect
2277 * against immediate pageout
2279 * XXXmh modify freelist code to set reference
2280 * bit so we don't have to do it here.
2282 page_set_props(pp
, P_REF
);
2285 VM_STAT_ADD(page_create_exists
);
2286 if (flags
& PG_EXCL
) {
2288 * Found an existing page, and the caller
2289 * wanted all new pages. Undo all of the work
2292 vmobject_unlock(obj
);
2293 while (plist
!= NULL
) {
2295 page_sub(&plist
, pp
);
2297 /* large pages should not end up here */
2298 ASSERT(pp
->p_szc
== 0);
2300 VN_DISPOSE(pp
, B_INVAL
, 0, kcred
);
2302 VM_STAT_ADD(page_create_found_one
);
2305 ASSERT(flags
& PG_WAIT
);
2306 if (!page_lock(pp
, SE_EXCL
, obj
, P_NO_RECLAIM
)) {
2308 * Start all over again if we blocked trying
2311 vmobject_unlock(obj
);
2312 VM_STAT_ADD(page_create_page_lock_failed
);
2315 vmobject_unlock(obj
);
2317 if (PP_ISFREE(pp
)) {
2318 ASSERT(PP_ISAGED(pp
) == 0);
2319 VM_STAT_ADD(pagecnt
.pc_get_cache
);
2320 page_list_sub(pp
, PG_CACHE_LIST
);
2327 * Got a page! It is locked. Acquire the i/o
2328 * lock since we are going to use the p_next and
2329 * p_prev fields to link the requested pages together.
2332 page_add(&plist
, pp
);
2333 plist
= plist
->p_next
;
2338 ASSERT((flags
& PG_EXCL
) ? (found_on_free
== pages_req
) : 1);
2342 * Did not need this page after all.
2343 * Put it back on the free list.
2345 VM_STAT_ADD(page_create_putbacks
);
2348 npp
->p_offset
= (uoff_t
)-1;
2349 page_list_add(npp
, PG_FREE_LIST
| PG_LIST_TAIL
);
2353 ASSERT(pages_req
>= found_on_free
);
2356 uint_t overshoot
= (uint_t
)(pages_req
- found_on_free
);
2359 VM_STAT_ADD(page_create_overshoot
);
2360 p
= &pcf
[PCF_INDEX()];
2361 mutex_enter(&p
->pcf_lock
);
2363 p
->pcf_reserve
+= overshoot
;
2365 p
->pcf_count
+= overshoot
;
2367 mutex_enter(&new_freemem_lock
);
2369 cv_signal(&freemem_cv
);
2374 mutex_exit(&new_freemem_lock
);
2377 mutex_exit(&p
->pcf_lock
);
2378 /* freemem is approximate, so this test OK */
2380 freemem
+= overshoot
;
2388 * One or more constituent pages of this large page has been marked
2389 * toxic. Simply demote the large page to PAGESIZE pages and let
2390 * page_free() handle it. This routine should only be called by
2391 * large page free routines (page_free_pages() and page_destroy_pages().
2392 * All pages are locked SE_EXCL and have already been marked free.
2395 page_free_toxic_pages(page_t
*rootpp
)
2398 pgcnt_t i
, pgcnt
= page_get_pagecnt(rootpp
->p_szc
);
2399 uint_t szc
= rootpp
->p_szc
;
2401 for (i
= 0, tpp
= rootpp
; i
< pgcnt
; i
++, tpp
= tpp
->p_next
) {
2402 ASSERT(tpp
->p_szc
== szc
);
2403 ASSERT((PAGE_EXCL(tpp
) &&
2404 !page_iolock_assert(tpp
)) || panicstr
);
2408 while (rootpp
!= NULL
) {
2410 page_sub(&rootpp
, tpp
);
2411 ASSERT(PP_ISFREE(tpp
));
2418 * Put page on the "free" list.
2419 * The free list is really two lists maintained by
2420 * the PSM of whatever machine we happen to be on.
2423 page_free(page_t
*pp
, int dontneed
)
2428 ASSERT((PAGE_EXCL(pp
) &&
2429 !page_iolock_assert(pp
)) || panicstr
);
2431 if (PP_ISFREE(pp
)) {
2432 panic("page_free: page %p is free", (void *)pp
);
2435 if (pp
->p_szc
!= 0) {
2436 if (pp
->p_vnode
== NULL
|| IS_SWAPFSVP(pp
->p_vnode
) ||
2438 panic("page_free: anon or kernel "
2439 "or no vnode large page %p", (void *)pp
);
2441 page_demote_vp_pages(pp
);
2442 ASSERT(pp
->p_szc
== 0);
2446 * The page_struct_lock need not be acquired to examine these
2447 * fields since the page has an "exclusive" lock.
2449 if (hat_page_is_mapped(pp
) || pp
->p_lckcnt
!= 0 || pp
->p_cowcnt
!= 0 ||
2450 pp
->p_slckcnt
!= 0) {
2451 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2452 "slckcnt = %d", (void *)pp
, page_pptonum(pp
), pp
->p_lckcnt
,
2453 pp
->p_cowcnt
, pp
->p_slckcnt
);
2457 ASSERT(!hat_page_getshare(pp
));
2460 ASSERT(pp
->p_vnode
== NULL
|| !IS_VMODSORT(pp
->p_vnode
) ||
2462 page_clr_all_props(pp
);
2463 ASSERT(!hat_page_getshare(pp
));
2466 * Now we add the page to the head of the free list.
2467 * But if this page is associated with a paged vnode
2468 * then we adjust the head forward so that the page is
2469 * effectively at the end of the list.
2471 if (pp
->p_vnode
== NULL
) {
2473 * Page has no identity, put it on the free list.
2476 pp
->p_offset
= (uoff_t
)-1;
2477 page_list_add(pp
, PG_FREE_LIST
| PG_LIST_TAIL
);
2478 VM_STAT_ADD(pagecnt
.pc_free_free
);
2483 /* move it to the tail of the list */
2484 page_list_add(pp
, PG_CACHE_LIST
| PG_LIST_TAIL
);
2486 VM_STAT_ADD(pagecnt
.pc_free_cache
);
2488 page_list_add(pp
, PG_CACHE_LIST
| PG_LIST_HEAD
);
2490 VM_STAT_ADD(pagecnt
.pc_free_dontneed
);
2496 * Now do the `freemem' accounting.
2498 pcf_index
= PCF_INDEX();
2499 p
= &pcf
[pcf_index
];
2501 mutex_enter(&p
->pcf_lock
);
2503 p
->pcf_reserve
+= 1;
2507 mutex_enter(&new_freemem_lock
);
2509 * Check to see if some other thread
2510 * is actually waiting. Another bucket
2511 * may have woken it up by now. If there
2512 * are no waiters, then set our pcf_wait
2513 * count to zero to avoid coming in here
2514 * next time. Also, since only one page
2515 * was put on the free list, just wake
2519 cv_signal(&freemem_cv
);
2524 mutex_exit(&new_freemem_lock
);
2527 mutex_exit(&p
->pcf_lock
);
2529 /* freemem is approximate, so this test OK */
2535 * Put page on the "free" list during intial startup.
2536 * This happens during initial single threaded execution.
2539 page_free_at_startup(page_t
*pp
)
2544 page_list_add(pp
, PG_FREE_LIST
| PG_LIST_HEAD
| PG_LIST_ISINIT
);
2545 VM_STAT_ADD(pagecnt
.pc_free_free
);
2548 * Now do the `freemem' accounting.
2550 pcf_index
= PCF_INDEX();
2551 p
= &pcf
[pcf_index
];
2553 ASSERT(p
->pcf_block
== 0);
2554 ASSERT(p
->pcf_wait
== 0);
2557 /* freemem is approximate, so this is OK */
2562 page_free_pages(page_t
*pp
)
2564 page_t
*tpp
, *rootpp
= NULL
;
2565 pgcnt_t pgcnt
= page_get_pagecnt(pp
->p_szc
);
2567 uint_t szc
= pp
->p_szc
;
2569 VM_STAT_ADD(pagecnt
.pc_free_pages
);
2571 ASSERT(pp
->p_szc
!= 0 && pp
->p_szc
< page_num_pagesizes());
2572 if ((page_pptonum(pp
) & (pgcnt
- 1)) != 0) {
2573 panic("page_free_pages: not root page %p", (void *)pp
);
2577 for (i
= 0, tpp
= pp
; i
< pgcnt
; i
++, tpp
++) {
2578 ASSERT((PAGE_EXCL(tpp
) &&
2579 !page_iolock_assert(tpp
)) || panicstr
);
2580 if (PP_ISFREE(tpp
)) {
2581 panic("page_free_pages: page %p is free", (void *)tpp
);
2584 if (hat_page_is_mapped(tpp
) || tpp
->p_lckcnt
!= 0 ||
2585 tpp
->p_cowcnt
!= 0 || tpp
->p_slckcnt
!= 0) {
2586 panic("page_free_pages %p", (void *)tpp
);
2590 ASSERT(!hat_page_getshare(tpp
));
2591 VERIFY(tpp
->p_object
== NULL
);
2592 ASSERT(tpp
->p_vnode
== NULL
);
2593 ASSERT(tpp
->p_szc
== szc
);
2596 page_clr_all_props(tpp
);
2598 tpp
->p_offset
= (uoff_t
)-1;
2599 ASSERT(tpp
->p_next
== tpp
);
2600 ASSERT(tpp
->p_prev
== tpp
);
2601 page_list_concat(&rootpp
, &tpp
);
2603 ASSERT(rootpp
== pp
);
2605 page_list_add_pages(rootpp
, 0);
2606 page_create_putback(pgcnt
);
2612 * This routine attempts to return pages to the cachelist via page_release().
2613 * It does not *have* to be successful in all cases, since the pageout scanner
2614 * will catch any pages it misses. It does need to be fast and not introduce
2615 * too much overhead.
2617 * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2618 * don't lock and retry. This is ok, since the page scanner will eventually
2619 * find any page we miss in free_vp_pages().
2622 free_vp_pages(struct vmobject
*obj
, uoff_t off
, size_t len
)
2626 extern int swap_in_range(vnode_t
*, uoff_t
, size_t);
2630 if (free_pages
== 0)
2632 if (swap_in_range(obj
->vnode
, off
, len
))
2635 for (; off
< eoff
; off
+= PAGESIZE
) {
2638 * find the page using a fast, but inexact search. It'll be OK
2639 * if a few pages slip through the cracks here.
2641 pp
= page_exists(obj
, off
);
2644 * If we didn't find the page (it may not exist), the page
2645 * is free, looks still in use (shared), or we can't lock it,
2650 page_share_cnt(pp
) > 0 ||
2651 !page_trylock(pp
, SE_EXCL
))
2655 * Once we have locked pp, verify that it's still the
2656 * correct page and not already free
2658 ASSERT(PAGE_LOCKED_SE(pp
, SE_EXCL
));
2659 if (pp
->p_vnode
!= obj
->vnode
|| pp
->p_offset
!= off
||
2666 * try to release the page...
2668 (void) page_release(pp
, 1);
2673 * Reclaim the given page from the free list.
2674 * If pp is part of a large pages, only the given constituent page is reclaimed
2675 * and the large page it belonged to will be demoted. This can only happen
2676 * if the page is not on the cachelist.
2678 * Returns 1 on success or 0 on failure.
2680 * The page is unlocked if it can't be reclaimed (when freemem == 0).
2681 * If `lock' is non-null, it will be dropped and re-acquired if
2682 * the routine must wait while freemem is 0.
2684 * As it turns out, boot_getpages() does this. It picks a page,
2685 * based on where OBP mapped in some address, gets its pfn, searches
2686 * the memsegs, locks the page, then pulls it off the free list!
2689 page_reclaim(struct page
*pp
, struct vmobject
*obj
)
2696 ASSERT(obj
!= NULL
? VMOBJECT_LOCKED(obj
) : 1);
2697 ASSERT(PAGE_EXCL(pp
) && PP_ISFREE(pp
));
2700 * If `freemem' is 0, we cannot reclaim this page from the
2701 * freelist, so release every lock we might hold: the page,
2702 * and the vnode page lock before blocking.
2704 * The only way `freemem' can become 0 while there are pages
2705 * marked free (have their p->p_free bit set) is when the
2706 * system is low on memory and doing a page_create(). In
2707 * order to guarantee that once page_create() starts acquiring
2708 * pages it will be able to get all that it needs since `freemem'
2709 * was decreased by the requested amount. So, we need to release
2710 * this page, and let page_create() have it.
2712 * Since `freemem' being zero is not supposed to happen, just
2713 * use the usual hash stuff as a starting point. If that bucket
2714 * is empty, then assume the worst, and start at the beginning
2715 * of the pcf array. If we always start at the beginning
2716 * when acquiring more than one pcf lock, there won't be any
2717 * deadlock problems.
2720 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2722 if (freemem
<= throttlefree
&& !page_create_throttle(1l, 0)) {
2724 goto page_reclaim_nomem
;
2727 enough
= pcf_decrement_bucket(1);
2730 VM_STAT_ADD(page_reclaim_zero
);
2732 * Check again. Its possible that some other thread
2733 * could have been right behind us, and added one
2734 * to a list somewhere. Acquire each of the pcf locks
2735 * until we find a page.
2738 for (i
= 0; i
< pcf_fanout
; i
++) {
2739 mutex_enter(&p
->pcf_lock
);
2740 if (p
->pcf_count
>= 1) {
2743 * freemem is not protected by any lock. Thus,
2744 * we cannot have any assertion containing
2757 * We really can't have page `pp'.
2758 * Time for the no-memory dance with
2759 * page_free(). This is just like
2760 * page_create_wait(). Plus the added
2761 * attraction of releasing the vnode page lock.
2762 * Page_unlock() will wakeup any thread
2763 * waiting around for this page.
2766 VM_STAT_ADD(page_reclaim_zero_locked
);
2767 vmobject_unlock(obj
);
2772 * get this before we drop all the pcf locks.
2774 mutex_enter(&new_freemem_lock
);
2777 for (i
= 0; i
< pcf_fanout
; i
++) {
2779 mutex_exit(&p
->pcf_lock
);
2784 cv_wait(&freemem_cv
, &new_freemem_lock
);
2787 mutex_exit(&new_freemem_lock
);
2796 * The pcf accounting has been done,
2797 * though none of the pcf_wait flags have been set,
2798 * drop the locks and continue on.
2801 mutex_exit(&p
->pcf_lock
);
2807 VM_STAT_ADD(pagecnt
.pc_reclaim
);
2810 * page_list_sub will handle the case where pp is a large page.
2811 * It's possible that the page was promoted while on the freelist
2813 if (PP_ISAGED(pp
)) {
2814 page_list_sub(pp
, PG_FREE_LIST
);
2816 page_list_sub(pp
, PG_CACHE_LIST
);
2820 * clear the p_free & p_age bits since this page is no longer
2821 * on the free list. Notice that there was a brief time where
2822 * a page is marked as free, but is not on the list.
2824 * Set the reference bit to protect against immediate pageout.
2828 page_set_props(pp
, P_REF
);
2830 CPU_STATS_ENTER_K();
2831 cpup
= CPU
; /* get cpup now that CPU cannot change */
2832 CPU_STATS_ADDQ(cpup
, vm
, pgrec
, 1);
2833 CPU_STATS_ADDQ(cpup
, vm
, pgfrec
, 1);
2835 ASSERT(pp
->p_szc
== 0);
2841 * Destroy identity of the page and put it back on
2842 * the page free list. Assumes that the caller has
2843 * acquired the "exclusive" lock on the page.
2846 page_destroy(page_t
*pp
, int dontfree
)
2848 ASSERT((PAGE_EXCL(pp
) &&
2849 !page_iolock_assert(pp
)) || panicstr
);
2850 ASSERT(pp
->p_slckcnt
== 0 || panicstr
);
2852 if (pp
->p_szc
!= 0) {
2853 if (pp
->p_vnode
== NULL
|| IS_SWAPFSVP(pp
->p_vnode
) ||
2855 panic("page_destroy: anon or kernel or no vnode "
2856 "large page %p", (void *)pp
);
2858 page_demote_vp_pages(pp
);
2859 ASSERT(pp
->p_szc
== 0);
2863 * Unload translations, if any, then hash out the
2864 * page to erase its identity.
2866 (void) hat_pageunload(pp
, HAT_FORCE_PGUNLOAD
);
2867 page_hashout(pp
, false);
2871 * Acquire the "freemem_lock" for availrmem.
2872 * The page_struct_lock need not be acquired for lckcnt
2873 * and cowcnt since the page has an "exclusive" lock.
2874 * We are doing a modified version of page_pp_unlock here.
2876 if ((pp
->p_lckcnt
!= 0) || (pp
->p_cowcnt
!= 0)) {
2877 mutex_enter(&freemem_lock
);
2878 if (pp
->p_lckcnt
!= 0) {
2883 if (pp
->p_cowcnt
!= 0) {
2884 availrmem
+= pp
->p_cowcnt
;
2885 pages_locked
-= pp
->p_cowcnt
;
2888 mutex_exit(&freemem_lock
);
2891 * Put the page on the "free" list.
2898 page_destroy_pages(page_t
*pp
)
2901 page_t
*tpp
, *rootpp
= NULL
;
2902 pgcnt_t pgcnt
= page_get_pagecnt(pp
->p_szc
);
2903 pgcnt_t i
, pglcks
= 0;
2904 uint_t szc
= pp
->p_szc
;
2906 ASSERT(pp
->p_szc
!= 0 && pp
->p_szc
< page_num_pagesizes());
2908 VM_STAT_ADD(pagecnt
.pc_destroy_pages
);
2910 if ((page_pptonum(pp
) & (pgcnt
- 1)) != 0) {
2911 panic("page_destroy_pages: not root page %p", (void *)pp
);
2915 for (i
= 0, tpp
= pp
; i
< pgcnt
; i
++, tpp
++) {
2916 ASSERT((PAGE_EXCL(tpp
) &&
2917 !page_iolock_assert(tpp
)) || panicstr
);
2918 ASSERT(tpp
->p_slckcnt
== 0 || panicstr
);
2919 (void) hat_pageunload(tpp
, HAT_FORCE_PGUNLOAD
);
2920 page_hashout(tpp
, false);
2921 ASSERT(tpp
->p_offset
== (uoff_t
)-1);
2922 if (tpp
->p_lckcnt
!= 0) {
2925 } else if (tpp
->p_cowcnt
!= 0) {
2926 pglcks
+= tpp
->p_cowcnt
;
2929 ASSERT(!hat_page_getshare(tpp
));
2930 VERIFY(tpp
->p_object
== NULL
);
2931 ASSERT(tpp
->p_vnode
== NULL
);
2932 ASSERT(tpp
->p_szc
== szc
);
2935 page_clr_all_props(tpp
);
2937 ASSERT(tpp
->p_next
== tpp
);
2938 ASSERT(tpp
->p_prev
== tpp
);
2939 page_list_concat(&rootpp
, &tpp
);
2942 ASSERT(rootpp
== pp
);
2944 mutex_enter(&freemem_lock
);
2945 availrmem
+= pglcks
;
2946 mutex_exit(&freemem_lock
);
2949 page_list_add_pages(rootpp
, 0);
2950 page_create_putback(pgcnt
);
2954 * Similar to page_destroy(), but destroys pages which are
2955 * locked and known to be on the page free list. Since
2956 * the page is known to be free and locked, no one can access
2959 * Also, the number of free pages does not change.
2962 page_destroy_free(page_t
*pp
)
2964 ASSERT(PAGE_EXCL(pp
));
2965 ASSERT(PP_ISFREE(pp
));
2966 ASSERT(pp
->p_vnode
);
2967 ASSERT(hat_page_getattr(pp
, P_MOD
| P_REF
| P_RO
) == 0);
2968 ASSERT(!hat_page_is_mapped(pp
));
2969 ASSERT(PP_ISAGED(pp
) == 0);
2970 ASSERT(pp
->p_szc
== 0);
2972 VM_STAT_ADD(pagecnt
.pc_destroy_free
);
2973 page_list_sub(pp
, PG_CACHE_LIST
);
2975 page_hashout(pp
, false);
2976 VERIFY(pp
->p_object
== NULL
);
2977 ASSERT(pp
->p_vnode
== NULL
);
2978 ASSERT(pp
->p_offset
== (uoff_t
)-1);
2981 page_list_add(pp
, PG_FREE_LIST
| PG_LIST_TAIL
);
2984 mutex_enter(&new_freemem_lock
);
2986 cv_signal(&freemem_cv
);
2988 mutex_exit(&new_freemem_lock
);
2992 * Rename the page "opp" to have an identity specified
2993 * by [vp, off]. If a page already exists with this name
2994 * it is locked and destroyed. Note that the page's
2995 * translations are not unloaded during the rename.
2997 * This routine is used by the anon layer to "steal" the
2998 * original page and is not unlike destroying a page and
2999 * creating a new page using the same page frame.
3001 * XXX -- Could deadlock if caller 1 tries to rename A to B while
3002 * caller 2 tries to rename B to A.
3005 page_rename(struct page
*opp
, struct vmobject
*obj
, uoff_t off
)
3011 ASSERT(PAGE_EXCL(opp
) && !page_iolock_assert(opp
));
3012 ASSERT(!VMOBJECT_LOCKED(obj
));
3013 ASSERT(PP_ISFREE(opp
) == 0);
3015 VM_STAT_ADD(page_rename_count
);
3018 * CacheFS may call page_rename for a large NFS page
3019 * when both CacheFS and NFS mount points are used
3020 * by applications. Demote this large page before
3021 * renaming it, to ensure that there are no "partial"
3022 * large pages left lying around.
3024 if (opp
->p_szc
!= 0) {
3025 vnode_t
*ovp
= opp
->p_vnode
;
3026 ASSERT(ovp
!= NULL
);
3027 ASSERT(!IS_SWAPFSVP(ovp
));
3028 ASSERT(!VN_ISKAS(ovp
));
3029 page_demote_vp_pages(opp
);
3030 ASSERT(opp
->p_szc
== 0);
3033 page_hashout(opp
, false);
3039 * Look for an existing page with this name and destroy it if found.
3040 * By holding the page hash lock all the way to the page_hashin()
3041 * call, we are assured that no page can be created with this
3042 * identity. In the case when the phm lock is dropped to undo any
3043 * hat layer mappings, the existing page is held with an "exclusive"
3044 * lock, again preventing another page from being created with
3047 pp
= find_page(obj
, off
);
3049 VM_STAT_ADD(page_rename_exists
);
3052 * As it turns out, this is one of only two places where
3053 * page_lock() needs to hold the passed in lock in the
3054 * successful case. In all of the others, the lock could
3055 * be dropped as soon as the attempt is made to lock
3056 * the page. It is tempting to add yet another arguement,
3057 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3059 if (!page_lock(pp
, SE_EXCL
, obj
, P_RECLAIM
)) {
3061 * Went to sleep because the page could not
3062 * be locked. We were woken up when the page
3063 * was unlocked, or when the page was destroyed.
3064 * In either case, `phm' was dropped while we
3065 * slept. Hence we should not just roar through
3072 * If an existing page is a large page, then demote
3073 * it to ensure that no "partial" large pages are
3074 * "created" after page_rename. An existing page
3075 * can be a CacheFS page, and can't belong to swapfs.
3077 if (hat_page_is_mapped(pp
)) {
3079 * Unload translations. Since we hold the
3080 * exclusive lock on this page, the page
3081 * can not be changed while we drop phm.
3082 * This is also not a lock protocol violation,
3083 * but rather the proper way to do things.
3085 vmobject_unlock(obj
);
3086 (void) hat_pageunload(pp
, HAT_FORCE_PGUNLOAD
);
3087 if (pp
->p_szc
!= 0) {
3088 ASSERT(!IS_SWAPFSVP(obj
->vnode
));
3089 ASSERT(!VN_ISKAS(obj
->vnode
));
3090 page_demote_vp_pages(pp
);
3091 ASSERT(pp
->p_szc
== 0);
3094 } else if (pp
->p_szc
!= 0) {
3095 ASSERT(!IS_SWAPFSVP(obj
->vnode
));
3096 ASSERT(!VN_ISKAS(obj
->vnode
));
3097 vmobject_unlock(obj
);
3098 page_demote_vp_pages(pp
);
3099 ASSERT(pp
->p_szc
== 0);
3102 page_hashout(pp
, true);
3105 * Hash in the page with the new identity.
3107 if (!page_hashin(opp
, obj
, off
, true)) {
3109 * We were holding phm while we searched for [vp, off]
3110 * and only dropped phm if we found and locked a page.
3111 * If we can't create this page now, then some thing
3114 panic("page_rename: Can't hash in page: %p", (void *)pp
);
3118 ASSERT(VMOBJECT_LOCKED(obj
));
3119 vmobject_unlock(obj
);
3122 * Now that we have dropped phm, lets get around to finishing up
3126 ASSERT(!hat_page_is_mapped(pp
));
3127 /* for now large pages should not end up here */
3128 ASSERT(pp
->p_szc
== 0);
3130 * Save the locks for transfer to the new page and then
3131 * clear them so page_free doesn't think they're important.
3132 * The page_struct_lock need not be acquired for lckcnt and
3133 * cowcnt since the page has an "exclusive" lock.
3135 olckcnt
= pp
->p_lckcnt
;
3136 ocowcnt
= pp
->p_cowcnt
;
3137 pp
->p_lckcnt
= pp
->p_cowcnt
= 0;
3140 * Put the page on the "free" list after we drop
3141 * the lock. The less work under the lock the better.
3143 VN_DISPOSE(pp
, B_FREE
, 0, kcred
);
3147 * Transfer the lock count from the old page (if any).
3148 * The page_struct_lock need not be acquired for lckcnt and
3149 * cowcnt since the page has an "exclusive" lock.
3151 opp
->p_lckcnt
+= olckcnt
;
3152 opp
->p_cowcnt
+= ocowcnt
;
3156 * low level routine to add page `page' to the AVL tree and vnode chains for
3159 * Pages are normally inserted at the start of a vnode's v_object list.
3160 * If the vnode is VMODSORT and the page is modified, it goes at the end.
3161 * This can happen when a modified page is relocated for DR.
3163 * Returns 1 on success and 0 on failure.
3166 page_do_hashin(struct page
*page
, struct vmobject
*obj
, uoff_t offset
)
3171 ASSERT(PAGE_EXCL(page
));
3172 ASSERT(obj
!= NULL
);
3173 ASSERT(obj
->vnode
!= NULL
);
3174 ASSERT(VMOBJECT_LOCKED(obj
));
3177 * Be sure to set these up before the page is inserted into the AVL
3178 * tree. As soon as the page is placed on the list some other
3179 * thread might get confused and wonder how this page could
3180 * possibly hash to this list.
3182 page
->p_object
= obj
;
3183 page
->p_vnode
= obj
->vnode
;
3184 page
->p_offset
= offset
;
3187 * record if this page is on a swap vnode
3189 if ((obj
->vnode
->v_flag
& VISSWAP
) != 0)
3193 * Duplicates are not allowed - fail to insert if we already have a
3194 * page with this identity.
3196 if (avl_find(&obj
->tree
, page
, &where
) != NULL
) {
3197 page
->p_object
= NULL
;
3198 page
->p_vnode
= NULL
;
3199 page
->p_offset
= (uoff_t
)(-1);
3203 avl_insert(&obj
->tree
, page
, where
);
3206 * Add the page to the vnode's list of pages
3208 if (IS_VMODSORT(obj
->vnode
) && hat_ismod(page
))
3209 vmobject_add_page_tail(obj
, page
);
3211 vmobject_add_page_head(obj
, page
);
3217 * Add page `pp' to both the hash and vp chains for [vp, offset].
3219 * Returns 1 on success and 0 on failure.
3220 * If `locked` is true, we do *not* attempt to lock the vnode's page mutex.
3223 page_hashin(struct page
*pp
, struct vmobject
*obj
, uoff_t offset
, bool locked
)
3227 ASSERT(pp
->p_fsdata
== 0 || panicstr
);
3229 VM_STAT_ADD(hashin_count
);
3232 VM_STAT_ADD(hashin_not_held
);
3236 rc
= page_do_hashin(pp
, obj
, offset
);
3239 vmobject_unlock(obj
);
3242 VM_STAT_ADD(hashin_already
);
3248 * Remove page `page' from the AVL tree and vnode chains and remove its
3249 * vnode association. All mutexes must be held
3252 page_do_hashout(page_t
*page
)
3256 vnode_t
*vnode
= page
->p_vnode
;
3258 ASSERT(vnode
!= NULL
);
3259 ASSERT(VMOBJECT_LOCKED(&vnode
->v_object
));
3261 avl_remove(&vnode
->v_object
.tree
, page
);
3263 vmobject_remove_page(&vnode
->v_object
, page
);
3265 page_clr_all_props(page
);
3267 page
->p_object
= NULL
;
3268 page
->p_vnode
= NULL
;
3269 page
->p_offset
= (uoff_t
)-1;
3274 * Remove page `page' from the AVL tree and vnode chains and remove vnode
3277 * When `locked` is true, we do *not* attempt to lock the vnode's page
3281 page_hashout(page_t
*pp
, bool locked
)
3283 struct vmobject
*obj
;
3287 ASSERT(hold
!= NULL
? MUTEX_HELD(hold
) : 1);
3288 ASSERT(pp
->p_vnode
!= NULL
);
3289 ASSERT((PAGE_EXCL(pp
) && !page_iolock_assert(pp
)) || panicstr
);
3291 obj
= &pp
->p_vnode
->v_object
;
3294 VM_STAT_ADD(hashout_not_held
);
3298 page_do_hashout(pp
);
3301 vmobject_unlock(obj
);
3304 * Wake up processes waiting for this page. The page's
3305 * identity has been changed, and is probably not the
3306 * desired page any longer.
3308 sep
= page_se_mutex(pp
);
3310 pp
->p_selock
&= ~SE_EWANTED
;
3311 if (CV_HAS_WAITERS(&pp
->p_cv
))
3312 cv_broadcast(&pp
->p_cv
);
3317 * Add the page to the front of a linked list of pages
3318 * using the p_next & p_prev pointers for the list.
3319 * The caller is responsible for protecting the list pointers.
3322 page_add(page_t
**ppp
, page_t
*pp
)
3324 ASSERT(PAGE_EXCL(pp
) || (PAGE_SHARED(pp
) && page_iolock_assert(pp
)));
3326 page_add_common(ppp
, pp
);
3332 * Common code for page_add() and mach_page_add()
3335 page_add_common(page_t
**ppp
, page_t
*pp
)
3338 pp
->p_next
= pp
->p_prev
= pp
;
3341 pp
->p_prev
= (*ppp
)->p_prev
;
3342 (*ppp
)->p_prev
= pp
;
3343 pp
->p_prev
->p_next
= pp
;
3350 * Remove this page from a linked list of pages
3351 * using the p_next & p_prev pointers for the list.
3353 * The caller is responsible for protecting the list pointers.
3356 page_sub(page_t
**ppp
, page_t
*pp
)
3358 ASSERT((PP_ISFREE(pp
)) ? 1 :
3359 (PAGE_EXCL(pp
)) || (PAGE_SHARED(pp
) && page_iolock_assert(pp
)));
3361 if (*ppp
== NULL
|| pp
== NULL
) {
3362 panic("page_sub: bad arg(s): pp %p, *ppp %p",
3363 (void *)pp
, (void *)(*ppp
));
3367 page_sub_common(ppp
, pp
);
3372 * Common code for page_sub() and mach_page_sub()
3375 page_sub_common(page_t
**ppp
, page_t
*pp
)
3378 *ppp
= pp
->p_next
; /* go to next page */
3381 *ppp
= NULL
; /* page list is gone */
3383 pp
->p_prev
->p_next
= pp
->p_next
;
3384 pp
->p_next
->p_prev
= pp
->p_prev
;
3386 pp
->p_prev
= pp
->p_next
= pp
; /* make pp a list of one */
3391 * Break page list cppp into two lists with npages in the first list.
3392 * The tail is returned in nppp.
3395 page_list_break(page_t
**oppp
, page_t
**nppp
, pgcnt_t npages
)
3397 page_t
*s1pp
= *oppp
;
3399 page_t
*e1pp
, *e2pp
;
3411 for (n
= 0, s2pp
= *oppp
; n
< npages
; n
++) {
3412 s2pp
= s2pp
->p_next
;
3414 /* Fix head and tail of new lists */
3415 e1pp
= s2pp
->p_prev
;
3416 e2pp
= s1pp
->p_prev
;
3417 s1pp
->p_prev
= e1pp
;
3418 e1pp
->p_next
= s1pp
;
3419 s2pp
->p_prev
= e2pp
;
3420 e2pp
->p_next
= s2pp
;
3422 /* second list empty */
3433 * Concatenate page list nppp onto the end of list ppp.
3436 page_list_concat(page_t
**ppp
, page_t
**nppp
)
3438 page_t
*s1pp
, *s2pp
, *e1pp
, *e2pp
;
3440 if (*nppp
== NULL
) {
3448 e1pp
= s1pp
->p_prev
;
3450 e2pp
= s2pp
->p_prev
;
3451 s1pp
->p_prev
= e2pp
;
3452 e2pp
->p_next
= s1pp
;
3453 e1pp
->p_next
= s2pp
;
3454 s2pp
->p_prev
= e1pp
;
3458 * return the next page in the page list
3461 page_list_next(page_t
*pp
)
3463 return (pp
->p_next
);
3468 * Add the page to the front of the linked list of pages
3469 * using p_list.vnode for the list.
3471 * The caller is responsible for protecting the lists.
3474 page_vpadd(page_t
**ppp
, page_t
*pp
)
3476 panic("%s should not be used", __func__
);
3480 page_lpadd(page_t
**ppp
, page_t
*pp
)
3483 pp
->p_list
.largepg
.next
= pp
->p_list
.largepg
.prev
= pp
;
3485 pp
->p_list
.largepg
.next
= *ppp
;
3486 pp
->p_list
.largepg
.prev
= (*ppp
)->p_list
.largepg
.prev
;
3487 (*ppp
)->p_list
.largepg
.prev
= pp
;
3488 pp
->p_list
.largepg
.prev
->p_list
.largepg
.next
= pp
;
3494 * Remove this page from the linked list of pages
3495 * using p_list.vnode for the list.
3497 * The caller is responsible for protecting the lists.
3500 page_vpsub(page_t
**ppp
, page_t
*pp
)
3502 panic("%s should not be used", __func__
);
3506 page_lpsub(page_t
**ppp
, page_t
*pp
)
3508 if (*ppp
== NULL
|| pp
== NULL
) {
3509 panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3510 (void *)pp
, (void *)(*ppp
));
3515 *ppp
= pp
->p_list
.largepg
.next
; /* go to next page */
3518 *ppp
= NULL
; /* page list is gone */
3520 pp
->p_list
.largepg
.prev
->p_list
.largepg
.next
= pp
->p_list
.largepg
.next
;
3521 pp
->p_list
.largepg
.next
->p_list
.largepg
.prev
= pp
->p_list
.largepg
.prev
;
3523 pp
->p_list
.largepg
.prev
= pp
->p_list
.largepg
.next
= pp
; /* make pp a list of one */
3527 * Lock a physical page into memory "long term". Used to support "lock
3528 * in memory" functions. Accepts the page to be locked, and a cow variable
3529 * to indicate whether a the lock will travel to the new page during
3530 * a potential copy-on-write.
3534 page_t
*pp
, /* page to be locked */
3535 int cow
, /* cow lock */
3536 int kernel
) /* must succeed -- ignore checking */
3538 int r
= 0; /* result -- assume failure */
3540 ASSERT(PAGE_LOCKED(pp
));
3542 page_struct_lock(pp
);
3544 * Acquire the "freemem_lock" for availrmem.
3547 mutex_enter(&freemem_lock
);
3548 if ((availrmem
> pages_pp_maximum
) &&
3549 (pp
->p_cowcnt
< (ushort_t
)PAGE_LOCK_MAXIMUM
)) {
3552 mutex_exit(&freemem_lock
);
3554 if (++pp
->p_cowcnt
== (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3556 "COW lock limit reached on pfn 0x%lx",
3560 mutex_exit(&freemem_lock
);
3563 if (pp
->p_lckcnt
< (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3565 if (++pp
->p_lckcnt
==
3566 (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3567 cmn_err(CE_WARN
, "Page lock limit "
3568 "reached on pfn 0x%lx",
3574 /* availrmem accounting done by caller */
3578 mutex_enter(&freemem_lock
);
3579 if (availrmem
> pages_pp_maximum
) {
3585 mutex_exit(&freemem_lock
);
3589 page_struct_unlock(pp
);
3594 * Decommit a lock on a physical page frame. Account for cow locks if
3599 page_t
*pp
, /* page to be unlocked */
3600 int cow
, /* expect cow lock */
3601 int kernel
) /* this was a kernel lock */
3603 ASSERT(PAGE_LOCKED(pp
));
3605 page_struct_lock(pp
);
3607 * Acquire the "freemem_lock" for availrmem.
3608 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3609 * could be called to unlock even if nothing is locked. This could
3610 * happen if locked file pages were truncated (removing the lock)
3611 * and the file was grown again and new pages faulted in; the new
3612 * pages are unlocked but the segment still thinks they're locked.
3616 mutex_enter(&freemem_lock
);
3620 mutex_exit(&freemem_lock
);
3623 if (pp
->p_lckcnt
&& --pp
->p_lckcnt
== 0) {
3625 mutex_enter(&freemem_lock
);
3628 mutex_exit(&freemem_lock
);
3632 page_struct_unlock(pp
);
3636 * This routine reserves availrmem for npages;
3637 * flags: KM_NOSLEEP or KM_SLEEP
3638 * returns 1 on success or 0 on failure
3641 page_resv(pgcnt_t npages
, uint_t flags
)
3643 mutex_enter(&freemem_lock
);
3644 while (availrmem
< tune
.t_minarmem
+ npages
) {
3645 if (flags
& KM_NOSLEEP
) {
3646 mutex_exit(&freemem_lock
);
3649 mutex_exit(&freemem_lock
);
3650 page_needfree(npages
);
3653 page_needfree(-(spgcnt_t
)npages
);
3654 mutex_enter(&freemem_lock
);
3656 availrmem
-= npages
;
3657 mutex_exit(&freemem_lock
);
3662 * This routine unreserves availrmem for npages;
3665 page_unresv(pgcnt_t npages
)
3667 mutex_enter(&freemem_lock
);
3668 availrmem
+= npages
;
3669 mutex_exit(&freemem_lock
);
3673 * See Statement at the beginning of segvn_lockop() regarding
3674 * the way we handle cowcnts and lckcnts.
3676 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3677 * that breaks COW has PROT_WRITE.
3679 * Note that, we may also break COW in case we are softlocking
3680 * on read access during physio;
3681 * in this softlock case, the vpage may not have PROT_WRITE.
3682 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3683 * if the vpage doesn't have PROT_WRITE.
3685 * This routine is never called if we are stealing a page
3688 * The caller subtracted from availrmem for read only mapping.
3689 * if lckcnt is 1 increment availrmem.
3693 page_t
*opp
, /* original page frame losing lock */
3694 page_t
*npp
, /* new page frame gaining lock */
3695 uint_t write_perm
) /* set if vpage has PROT_WRITE */
3700 ASSERT(PAGE_LOCKED(opp
));
3701 ASSERT(PAGE_LOCKED(npp
));
3704 * Since we have two pages we probably have two locks. We need to take
3705 * them in a defined order to avoid deadlocks. It's also possible they
3706 * both hash to the same lock in which case this is a non-issue.
3708 nidx
= PAGE_LLOCK_HASH(PP_PAGEROOT(npp
));
3709 oidx
= PAGE_LLOCK_HASH(PP_PAGEROOT(opp
));
3711 page_struct_lock(npp
);
3712 page_struct_lock(opp
);
3713 } else if (oidx
< nidx
) {
3714 page_struct_lock(opp
);
3715 page_struct_lock(npp
);
3716 } else { /* The pages hash to the same lock */
3717 page_struct_lock(npp
);
3720 ASSERT(npp
->p_cowcnt
== 0);
3721 ASSERT(npp
->p_lckcnt
== 0);
3723 /* Don't use claim if nothing is locked (see page_pp_unlock above) */
3724 if ((write_perm
&& opp
->p_cowcnt
!= 0) ||
3725 (!write_perm
&& opp
->p_lckcnt
!= 0)) {
3729 ASSERT(opp
->p_cowcnt
!= 0);
3733 ASSERT(opp
->p_lckcnt
!= 0);
3736 * We didn't need availrmem decremented if p_lckcnt on
3737 * original page is 1. Here, we are unlocking
3738 * read-only copy belonging to original page and
3739 * are locking a copy belonging to new page.
3741 if (opp
->p_lckcnt
== 1)
3749 mutex_enter(&freemem_lock
);
3752 mutex_exit(&freemem_lock
);
3756 page_struct_unlock(opp
);
3757 page_struct_unlock(npp
);
3758 } else if (oidx
< nidx
) {
3759 page_struct_unlock(npp
);
3760 page_struct_unlock(opp
);
3761 } else { /* The pages hash to the same lock */
3762 page_struct_unlock(npp
);
3767 * Simple claim adjust functions -- used to support changes in
3768 * claims due to changes in access permissions. Used by segvn_setprot().
3771 page_addclaim(page_t
*pp
)
3773 int r
= 0; /* result */
3775 ASSERT(PAGE_LOCKED(pp
));
3777 page_struct_lock(pp
);
3778 ASSERT(pp
->p_lckcnt
!= 0);
3780 if (pp
->p_lckcnt
== 1) {
3781 if (pp
->p_cowcnt
< (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3784 if (++pp
->p_cowcnt
== (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3786 "COW lock limit reached on pfn 0x%lx",
3791 mutex_enter(&freemem_lock
);
3792 if ((availrmem
> pages_pp_maximum
) &&
3793 (pp
->p_cowcnt
< (ushort_t
)PAGE_LOCK_MAXIMUM
)) {
3796 mutex_exit(&freemem_lock
);
3799 if (++pp
->p_cowcnt
== (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3801 "COW lock limit reached on pfn 0x%lx",
3805 mutex_exit(&freemem_lock
);
3807 page_struct_unlock(pp
);
3812 page_subclaim(page_t
*pp
)
3816 ASSERT(PAGE_LOCKED(pp
));
3818 page_struct_lock(pp
);
3819 ASSERT(pp
->p_cowcnt
!= 0);
3822 if (pp
->p_lckcnt
< (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3827 mutex_enter(&freemem_lock
);
3830 mutex_exit(&freemem_lock
);
3834 if (++pp
->p_lckcnt
== (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3836 "Page lock limit reached on pfn 0x%lx",
3845 page_struct_unlock(pp
);
3850 * Variant of page_addclaim(), where ppa[] contains the pages of a single large
3854 page_addclaim_pages(page_t
**ppa
)
3856 pgcnt_t lckpgs
= 0, pg_idx
;
3858 VM_STAT_ADD(pagecnt
.pc_addclaim_pages
);
3861 * Only need to take the page struct lock on the large page root.
3863 page_struct_lock(ppa
[0]);
3864 for (pg_idx
= 0; ppa
[pg_idx
] != NULL
; pg_idx
++) {
3866 ASSERT(PAGE_LOCKED(ppa
[pg_idx
]));
3867 ASSERT(ppa
[pg_idx
]->p_lckcnt
!= 0);
3868 if (ppa
[pg_idx
]->p_cowcnt
== (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3869 page_struct_unlock(ppa
[0]);
3872 if (ppa
[pg_idx
]->p_lckcnt
> 1)
3877 mutex_enter(&freemem_lock
);
3878 if (availrmem
>= pages_pp_maximum
+ lckpgs
) {
3879 availrmem
-= lckpgs
;
3880 pages_claimed
+= lckpgs
;
3882 mutex_exit(&freemem_lock
);
3883 page_struct_unlock(ppa
[0]);
3886 mutex_exit(&freemem_lock
);
3889 for (pg_idx
= 0; ppa
[pg_idx
] != NULL
; pg_idx
++) {
3890 ppa
[pg_idx
]->p_lckcnt
--;
3891 ppa
[pg_idx
]->p_cowcnt
++;
3893 page_struct_unlock(ppa
[0]);
3898 * Variant of page_subclaim(), where ppa[] contains the pages of a single large
3902 page_subclaim_pages(page_t
**ppa
)
3904 pgcnt_t ulckpgs
= 0, pg_idx
;
3906 VM_STAT_ADD(pagecnt
.pc_subclaim_pages
);
3909 * Only need to take the page struct lock on the large page root.
3911 page_struct_lock(ppa
[0]);
3912 for (pg_idx
= 0; ppa
[pg_idx
] != NULL
; pg_idx
++) {
3914 ASSERT(PAGE_LOCKED(ppa
[pg_idx
]));
3915 ASSERT(ppa
[pg_idx
]->p_cowcnt
!= 0);
3916 if (ppa
[pg_idx
]->p_lckcnt
== (ushort_t
)PAGE_LOCK_MAXIMUM
) {
3917 page_struct_unlock(ppa
[0]);
3920 if (ppa
[pg_idx
]->p_lckcnt
!= 0)
3925 mutex_enter(&freemem_lock
);
3926 availrmem
+= ulckpgs
;
3927 pages_claimed
-= ulckpgs
;
3928 mutex_exit(&freemem_lock
);
3931 for (pg_idx
= 0; ppa
[pg_idx
] != NULL
; pg_idx
++) {
3932 ppa
[pg_idx
]->p_cowcnt
--;
3933 ppa
[pg_idx
]->p_lckcnt
++;
3936 page_struct_unlock(ppa
[0]);
3941 page_numtopp(pfn_t pfnum
, se_t se
)
3946 pp
= page_numtopp_nolock(pfnum
);
3952 * Acquire the appropriate lock on the page.
3954 while (!page_lock(pp
, se
, NULL
, P_RECLAIM
)) {
3955 if (page_pptonum(pp
) != pfnum
)
3960 if (page_pptonum(pp
) != pfnum
) {
3969 page_numtopp_noreclaim(pfn_t pfnum
, se_t se
)
3974 pp
= page_numtopp_nolock(pfnum
);
3980 * Acquire the appropriate lock on the page.
3982 while (!page_lock(pp
, se
, NULL
, P_NO_RECLAIM
)) {
3983 if (page_pptonum(pp
) != pfnum
)
3988 if (page_pptonum(pp
) != pfnum
) {
3997 * This routine is like page_numtopp, but will only return page structs
3998 * for pages which are ok for loading into hardware using the page struct.
4001 page_numtopp_nowait(pfn_t pfnum
, se_t se
)
4006 pp
= page_numtopp_nolock(pfnum
);
4012 * Try to acquire the appropriate lock on the page.
4017 if (!page_trylock(pp
, se
))
4020 if (page_pptonum(pp
) != pfnum
) {
4024 if (PP_ISFREE(pp
)) {
4034 * Returns a count of dirty pages that are in the process
4035 * of being written out. If 'cleanit' is set, try to push the page.
4038 page_busy(int cleanit
)
4040 page_t
*page0
= page_first();
4042 pgcnt_t nppbusy
= 0;
4046 vnode_t
*vp
= pp
->p_vnode
;
4048 * A page is a candidate for syncing if it is:
4050 * (a) On neither the freelist nor the cachelist
4051 * (b) Hashed onto a vnode
4052 * (c) Not a kernel page
4054 * (e) Not part of a swapfile
4055 * (f) a page which belongs to a real vnode; eg has a non-null
4057 * (g) Backed by a filesystem which doesn't have a
4058 * stubbed-out sync operation
4060 if (!PP_ISFREE(pp
) && vp
!= NULL
&& !VN_ISKAS(vp
) &&
4061 hat_ismod(pp
) && !IS_SWAPVP(vp
) && vp
->v_vfsp
!= NULL
&&
4062 vfs_can_sync(vp
->v_vfsp
)) {
4067 if (!page_trylock(pp
, SE_EXCL
))
4070 if (PP_ISFREE(pp
) || vp
== NULL
|| IS_SWAPVP(vp
) ||
4071 pp
->p_lckcnt
!= 0 || pp
->p_cowcnt
!= 0 ||
4073 HAT_SYNC_DONTZERO
| HAT_SYNC_STOPON_MOD
) & P_MOD
)) {
4080 (void) fop_putpage(vp
, off
, PAGESIZE
,
4081 B_ASYNC
| B_FREE
, kcred
, NULL
);
4084 } while ((pp
= page_next(pp
)) != page0
);
4089 void page_invalidate_pages(void);
4092 * callback handler to vm sub-system
4094 * callers make sure no recursive entries to this func.
4098 callb_vm_cpr(void *arg
, int code
)
4100 if (code
== CB_CODE_CPR_CHKPT
)
4101 page_invalidate_pages();
4106 * Invalidate all pages of the system.
4107 * It shouldn't be called until all user page activities are all stopped.
4110 page_invalidate_pages()
4116 const int MAXRETRIES
= 4;
4119 * Flush dirty pages and destroy the clean ones.
4123 pp
= page0
= page_first();
4130 * skip the page if it has no vnode or the page associated
4131 * with the kernel vnode or prom allocated kernel mem.
4133 if ((vp
= pp
->p_vnode
) == NULL
|| VN_ISKAS(vp
))
4137 * skip the page which is already free invalidated.
4139 if (PP_ISFREE(pp
) && PP_ISAGED(pp
))
4143 * skip pages that are already locked or can't be "exclusively"
4144 * locked or are already free. After we lock the page, check
4145 * the free and age bits again to be sure it's not destroyed
4147 * To achieve max. parallelization, we use page_trylock instead
4148 * of page_lock so that we don't get block on individual pages
4149 * while we have thousands of other pages to process.
4151 if (!page_trylock(pp
, SE_EXCL
)) {
4154 } else if (PP_ISFREE(pp
)) {
4155 if (!PP_ISAGED(pp
)) {
4156 page_destroy_free(pp
);
4163 * Is this page involved in some I/O? shared?
4165 * The page_struct_lock need not be acquired to
4166 * examine these fields since the page has an
4169 if (pp
->p_lckcnt
!= 0 || pp
->p_cowcnt
!= 0) {
4174 if (vp
->v_type
== VCHR
) {
4175 panic("vp->v_type == VCHR");
4179 if (!page_try_demote_pages(pp
)) {
4185 * Check the modified bit. Leave the bits alone in hardware
4186 * (they will be modified if we do the putpage).
4188 mod
= (hat_pagesync(pp
, HAT_SYNC_DONTZERO
| HAT_SYNC_STOPON_MOD
)
4191 offset
= pp
->p_offset
;
4193 * Hold the vnode before releasing the page lock
4194 * to prevent it from being freed and re-used by
4195 * some other thread.
4200 * No error return is checked here. Callers such as
4201 * cpr deals with the dirty pages at the dump time
4202 * if this putpage fails.
4204 (void) fop_putpage(vp
, offset
, PAGESIZE
, B_INVAL
,
4208 VN_DISPOSE(pp
, B_INVAL
, 0, kcred
);
4210 } while ((pp
= page_next(pp
)) != page0
);
4211 if (nbusypages
&& retry
++ < MAXRETRIES
) {
4218 * Replace the page "old" with the page "new" on the page hash and vnode lists
4220 * the replacement must be done in place, ie the equivalent sequence:
4222 * vp = old->p_vnode;
4223 * off = old->p_offset;
4224 * page_do_hashout(old)
4225 * page_do_hashin(new, obj, off)
4227 * doesn't work, since
4228 * 1) if old is the only page on the vnode, the v_object list has a window
4229 * where it looks empty. This will break file system assumptions.
4231 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_object list.
4234 page_do_relocate_hash(page_t
*new, page_t
*old
)
4237 vnode_t
*vp
= old
->p_vnode
;
4240 ASSERT(PAGE_EXCL(old
));
4241 ASSERT(PAGE_EXCL(new));
4243 ASSERT(VMOBJECT_LOCKED(&vp
->v_object
));
4246 * update new and replace old with new on the page hash list
4248 new->p_object
= old
->p_object
;
4249 new->p_vnode
= old
->p_vnode
;
4250 new->p_offset
= old
->p_offset
;
4252 avl_remove(&vp
->v_object
.tree
, old
);
4253 avl_add(&vp
->v_object
.tree
, new);
4255 if ((new->p_vnode
->v_flag
& VISSWAP
) != 0)
4259 * replace old with new on the vnode's page list
4261 list_insert_before(&vp
->v_object
.list
, old
, new);
4262 list_remove(&vp
->v_object
.list
, old
);
4265 * clear out the old page
4267 old
->p_object
= NULL
;
4268 old
->p_vnode
= NULL
;
4270 old
->p_offset
= (uoff_t
)-1;
4271 page_clr_all_props(old
);
4274 * Wake up processes waiting for this page. The page's
4275 * identity has been changed, and is probably not the
4276 * desired page any longer.
4278 sep
= page_se_mutex(old
);
4280 old
->p_selock
&= ~SE_EWANTED
;
4281 if (CV_HAS_WAITERS(&old
->p_cv
))
4282 cv_broadcast(&old
->p_cv
);
4287 * This function moves the identity of page "pp_old" to page "pp_new".
4288 * Both pages must be locked on entry. "pp_new" is free, has no identity,
4289 * and need not be hashed out from anywhere.
4292 page_relocate_hash(page_t
*pp_new
, page_t
*pp_old
)
4294 vnode_t
*vp
= pp_old
->p_vnode
;
4295 uoff_t off
= pp_old
->p_offset
;
4300 ASSERT(PAGE_EXCL(pp_old
));
4301 ASSERT(PAGE_EXCL(pp_new
));
4303 VERIFY(pp_new
->p_object
== NULL
);
4304 ASSERT(pp_new
->p_vnode
== NULL
);
4306 vmobject_lock(&vp
->v_object
);
4308 page_do_relocate_hash(pp_new
, pp_old
);
4309 pp_new
->p_fsdata
= pp_old
->p_fsdata
;
4310 pp_old
->p_fsdata
= 0;
4312 vmobject_unlock(&vp
->v_object
);
4315 * The page_struct_lock need not be acquired for lckcnt and
4316 * cowcnt since the page has an "exclusive" lock.
4318 ASSERT(pp_new
->p_lckcnt
== 0);
4319 ASSERT(pp_new
->p_cowcnt
== 0);
4320 pp_new
->p_lckcnt
= pp_old
->p_lckcnt
;
4321 pp_new
->p_cowcnt
= pp_old
->p_cowcnt
;
4322 pp_old
->p_lckcnt
= pp_old
->p_cowcnt
= 0;
4326 * Helper routine used to lock all remaining members of a
4327 * large page. The caller is responsible for passing in a locked
4328 * pp. If pp is a large page, then it succeeds in locking all the
4329 * remaining constituent pages or it returns with only the
4330 * original page locked.
4332 * Returns 1 on success, 0 on failure.
4334 * If success is returned this routine guarantees p_szc for all constituent
4335 * pages of a large page pp belongs to can't change. To achieve this we
4336 * recheck szc of pp after locking all constituent pages and retry if szc
4337 * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4338 * lock on one of constituent pages it can't be running after all constituent
4339 * pages are locked. hat_page_demote() with a lock on a constituent page
4340 * outside of this large page (i.e. pp belonged to a larger large page) is
4341 * already done with all constituent pages of pp since the root's p_szc is
4342 * changed last. Therefore no need to synchronize with hat_page_demote() that
4343 * locked a constituent page outside of pp's current large page.
4346 uint32_t gpg_trylock_mtbf
= 0;
4350 group_page_trylock(page_t
*pp
, se_t se
)
4354 uint_t pszc
= pp
->p_szc
;
4357 if (gpg_trylock_mtbf
&& !(gethrtime() % gpg_trylock_mtbf
)) {
4362 if (pp
!= PP_GROUPLEADER(pp
, pszc
)) {
4367 ASSERT(PAGE_LOCKED_SE(pp
, se
));
4368 ASSERT(!PP_ISFREE(pp
));
4372 npgs
= page_get_pagecnt(pszc
);
4374 for (i
= 1; i
< npgs
; i
++, tpp
++) {
4375 if (!page_trylock(tpp
, se
)) {
4377 for (j
= 1; j
< i
; j
++, tpp
++) {
4383 if (pp
->p_szc
!= pszc
) {
4384 ASSERT(pp
->p_szc
< pszc
);
4385 ASSERT(pp
->p_vnode
!= NULL
&& !PP_ISKAS(pp
) &&
4386 !IS_SWAPFSVP(pp
->p_vnode
));
4388 for (i
= 1; i
< npgs
; i
++, tpp
++) {
4398 group_page_unlock(page_t
*pp
)
4403 ASSERT(PAGE_LOCKED(pp
));
4404 ASSERT(!PP_ISFREE(pp
));
4405 ASSERT(pp
== PP_PAGEROOT(pp
));
4406 npgs
= page_get_pagecnt(pp
->p_szc
);
4407 for (i
= 1, tpp
= pp
+ 1; i
< npgs
; i
++, tpp
++) {
4414 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages
4415 * ERANGE : this is not a base page
4416 * EBUSY : failure to get locks on the page/pages
4417 * ENOMEM : failure to obtain replacement pages
4418 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel
4419 * EIO : An error occurred while trying to copy the page data
4421 * Return with all constituent members of target and replacement
4422 * SE_EXCL locked. It is the callers responsibility to drop the
4428 page_t
**replacement
,
4438 pfn_t pfn
, repl_pfn
;
4441 int repl_contig
= 0;
4443 spgcnt_t dofree
= 0;
4449 * If this is not a base page,
4450 * just return with 0x0 pages relocated.
4453 ASSERT(PAGE_EXCL(targ
));
4454 ASSERT(!PP_ISFREE(targ
));
4456 ASSERT(szc
< mmu_page_sizes
);
4457 VM_STAT_ADD(vmm_vmstats
.ppr_reloc
[szc
]);
4458 pfn
= targ
->p_pagenum
;
4459 if (pfn
!= PFN_BASE(pfn
, szc
)) {
4460 VM_STAT_ADD(vmm_vmstats
.ppr_relocnoroot
[szc
]);
4464 if ((repl
= *replacement
) != NULL
&& repl
->p_szc
>= szc
) {
4465 repl_pfn
= repl
->p_pagenum
;
4466 if (repl_pfn
!= PFN_BASE(repl_pfn
, szc
)) {
4467 VM_STAT_ADD(vmm_vmstats
.ppr_reloc_replnoroot
[szc
]);
4474 * We must lock all members of this large page or we cannot
4475 * relocate any part of it.
4477 if (grouplock
!= 0 && !group_page_trylock(targ
, SE_EXCL
)) {
4478 VM_STAT_ADD(vmm_vmstats
.ppr_relocnolock
[targ
->p_szc
]);
4483 * reread szc it could have been decreased before
4484 * group_page_trylock() was done.
4487 ASSERT(szc
< mmu_page_sizes
);
4488 VM_STAT_ADD(vmm_vmstats
.ppr_reloc
[szc
]);
4489 ASSERT(pfn
== PFN_BASE(pfn
, szc
));
4491 npgs
= page_get_pagecnt(targ
->p_szc
);
4494 dofree
= npgs
; /* Size of target page in MMU pages */
4495 if (!page_create_wait(dofree
, 0)) {
4496 if (grouplock
!= 0) {
4497 group_page_unlock(targ
);
4499 VM_STAT_ADD(vmm_vmstats
.ppr_relocnomem
[szc
]);
4504 * seg kmem pages require that the target and replacement
4505 * page be the same pagesize.
4507 flags
= (VN_ISKAS(targ
->p_vnode
)) ? PGR_SAMESZC
: 0;
4508 repl
= page_get_replacement_page(targ
, lgrp
, flags
);
4510 if (grouplock
!= 0) {
4511 group_page_unlock(targ
);
4513 page_create_putback(dofree
);
4514 VM_STAT_ADD(vmm_vmstats
.ppr_relocnomem
[szc
]);
4520 ASSERT(PAGE_LOCKED(repl
));
4527 for (i
= 0; i
< npgs
; i
++) {
4528 ASSERT(PAGE_EXCL(targ
));
4529 ASSERT(targ
->p_slckcnt
== 0);
4530 ASSERT(repl
->p_slckcnt
== 0);
4532 (void) hat_pageunload(targ
, HAT_FORCE_PGUNLOAD
);
4534 ASSERT(hat_page_getshare(targ
) == 0);
4535 ASSERT(!PP_ISFREE(targ
));
4536 ASSERT(targ
->p_pagenum
== (pfn
+ i
));
4537 ASSERT(repl_contig
== 0 ||
4538 repl
->p_pagenum
== (repl_pfn
+ i
));
4541 * Copy the page contents and attributes then
4542 * relocate the page in the page hash.
4544 if (ppcopy(targ
, repl
) == 0) {
4547 VM_STAT_ADD(vmm_vmstats
.ppr_copyfail
);
4548 if (grouplock
!= 0) {
4549 group_page_unlock(targ
);
4552 *replacement
= NULL
;
4553 page_free_replacement_page(repl
);
4554 page_create_putback(dofree
);
4560 if (repl_contig
!= 0) {
4563 repl
= repl
->p_next
;
4570 for (i
= 0; i
< npgs
; i
++) {
4571 ppattr
= hat_page_getattr(targ
, (P_MOD
| P_REF
| P_RO
));
4572 page_clr_all_props(repl
);
4573 page_set_props(repl
, ppattr
);
4574 page_relocate_hash(repl
, targ
);
4576 ASSERT(hat_page_getshare(targ
) == 0);
4577 ASSERT(hat_page_getshare(repl
) == 0);
4579 * Now clear the props on targ, after the
4580 * page_relocate_hash(), they no longer
4583 page_clr_all_props(targ
);
4584 ASSERT(targ
->p_next
== targ
);
4585 ASSERT(targ
->p_prev
== targ
);
4586 page_list_concat(&pl
, &targ
);
4589 if (repl_contig
!= 0) {
4592 repl
= repl
->p_next
;
4595 /* assert that we have come full circle with repl */
4596 ASSERT(repl_contig
== 1 || first_repl
== repl
);
4599 if (*replacement
== NULL
) {
4600 ASSERT(first_repl
== repl
);
4601 *replacement
= repl
;
4603 VM_STAT_ADD(vmm_vmstats
.ppr_relocok
[szc
]);
4608 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4613 page_t
**replacement
,
4621 /* do_page_relocate returns 0 on success or errno value */
4622 ret
= do_page_relocate(target
, replacement
, grouplock
, nrelocp
, lgrp
);
4624 if (ret
!= 0 || freetarget
== 0) {
4627 if (*nrelocp
== 1) {
4628 ASSERT(*target
!= NULL
);
4629 page_free(*target
, 1);
4631 page_t
*tpp
= *target
;
4632 uint_t szc
= tpp
->p_szc
;
4633 pgcnt_t npgs
= page_get_pagecnt(szc
);
4637 ASSERT(PAGE_EXCL(tpp
));
4638 ASSERT(!hat_page_is_mapped(tpp
));
4639 ASSERT(tpp
->p_szc
== szc
);
4643 } while ((tpp
= tpp
->p_next
) != *target
);
4645 page_list_add_pages(*target
, 0);
4646 npgs
= page_get_pagecnt(szc
);
4647 page_create_putback(npgs
);
4653 * it is up to the caller to deal with pcf accounting.
4656 page_free_replacement_page(page_t
*pplist
)
4660 while (pplist
!= NULL
) {
4662 * pp_targ is a linked list.
4665 if (pp
->p_szc
== 0) {
4666 page_sub(&pplist
, pp
);
4667 page_clr_all_props(pp
);
4670 page_list_add(pp
, PG_FREE_LIST
| PG_LIST_TAIL
);
4672 VM_STAT_ADD(pagecnt
.pc_free_replacement_page
[0]);
4674 spgcnt_t curnpgs
= page_get_pagecnt(pp
->p_szc
);
4676 page_list_break(&pp
, &pplist
, curnpgs
);
4679 ASSERT(PAGE_EXCL(tpp
));
4680 ASSERT(!hat_page_is_mapped(tpp
));
4681 page_clr_all_props(tpp
);
4684 } while ((tpp
= tpp
->p_next
) != pp
);
4685 page_list_add_pages(pp
, 0);
4686 VM_STAT_ADD(pagecnt
.pc_free_replacement_page
[1]);
4692 * Relocate target to non-relocatable replacement page.
4695 page_relocate_cage(page_t
**target
, page_t
**replacement
)
4698 spgcnt_t pgcnt
, npgs
;
4703 ASSERT(PAGE_EXCL(tpp
));
4704 ASSERT(tpp
->p_szc
== 0);
4706 pgcnt
= btop(page_get_pagesize(tpp
->p_szc
));
4709 (void) page_create_wait(pgcnt
, PG_WAIT
| PG_NORELOC
);
4710 rpp
= page_get_replacement_page(tpp
, NULL
, PGR_NORELOC
);
4712 page_create_putback(pgcnt
);
4713 kcage_cageout_wakeup();
4715 } while (rpp
== NULL
);
4717 ASSERT(PP_ISNORELOC(rpp
));
4719 result
= page_relocate(&tpp
, &rpp
, 0, 1, &npgs
, NULL
);
4724 panic("page_relocate_cage: partial relocation");
4731 * Release the page lock on a page, place on cachelist
4732 * tail if no longer mapped. Caller can let us know if
4733 * the page is known to be clean.
4736 page_release(page_t
*pp
, int checkmod
)
4740 ASSERT(PAGE_LOCKED(pp
) && !PP_ISFREE(pp
) &&
4741 (pp
->p_vnode
!= NULL
));
4743 if (!hat_page_is_mapped(pp
) && !IS_SWAPVP(pp
->p_vnode
) &&
4744 ((PAGE_SHARED(pp
) && page_tryupgrade(pp
)) || PAGE_EXCL(pp
)) &&
4745 pp
->p_lckcnt
== 0 && pp
->p_cowcnt
== 0 &&
4746 !hat_page_is_mapped(pp
)) {
4749 * If page is modified, unlock it
4751 * (p_nrm & P_MOD) bit has the latest stuff because:
4752 * (1) We found that this page doesn't have any mappings
4753 * _after_ holding SE_EXCL and
4754 * (2) We didn't drop SE_EXCL lock after the check in (1)
4756 if (checkmod
&& hat_ismod(pp
)) {
4760 VN_DISPOSE(pp
, B_FREE
, 0, kcred
);
4761 status
= PGREL_CLEAN
;
4765 status
= PGREL_NOTREL
;
4771 * Given a constituent page, try to demote the large page on the freelist.
4773 * Returns nonzero if the page could be demoted successfully. Returns with
4774 * the constituent page still locked.
4777 page_try_demote_free_pages(page_t
*pp
)
4779 page_t
*rootpp
= pp
;
4780 pfn_t pfn
= page_pptonum(pp
);
4782 uint_t szc
= pp
->p_szc
;
4784 ASSERT(PP_ISFREE(pp
));
4785 ASSERT(PAGE_EXCL(pp
));
4788 * Adjust rootpp and lock it, if `pp' is not the base
4791 npgs
= page_get_pagecnt(pp
->p_szc
);
4796 if (!IS_P2ALIGNED(pfn
, npgs
)) {
4797 pfn
= P2ALIGN(pfn
, npgs
);
4798 rootpp
= page_numtopp_nolock(pfn
);
4801 if (pp
!= rootpp
&& !page_trylock(rootpp
, SE_EXCL
)) {
4805 if (rootpp
->p_szc
!= szc
) {
4807 page_unlock(rootpp
);
4811 page_demote_free_pages(rootpp
);
4814 page_unlock(rootpp
);
4816 ASSERT(PP_ISFREE(pp
));
4817 ASSERT(PAGE_EXCL(pp
));
4822 * Given a constituent page, try to demote the large page.
4824 * Returns nonzero if the page could be demoted successfully. Returns with
4825 * the constituent page still locked.
4828 page_try_demote_pages(page_t
*pp
)
4830 page_t
*tpp
, *rootpp
= pp
;
4831 pfn_t pfn
= page_pptonum(pp
);
4833 uint_t szc
= pp
->p_szc
;
4834 vnode_t
*vp
= pp
->p_vnode
;
4836 ASSERT(PAGE_EXCL(pp
));
4838 VM_STAT_ADD(pagecnt
.pc_try_demote_pages
[0]);
4840 if (pp
->p_szc
== 0) {
4841 VM_STAT_ADD(pagecnt
.pc_try_demote_pages
[1]);
4845 if (vp
!= NULL
&& !IS_SWAPFSVP(vp
) && !VN_ISKAS(vp
)) {
4846 VM_STAT_ADD(pagecnt
.pc_try_demote_pages
[2]);
4847 page_demote_vp_pages(pp
);
4848 ASSERT(pp
->p_szc
== 0);
4853 * Adjust rootpp if passed in is not the base
4856 npgs
= page_get_pagecnt(pp
->p_szc
);
4858 if (!IS_P2ALIGNED(pfn
, npgs
)) {
4859 pfn
= P2ALIGN(pfn
, npgs
);
4860 rootpp
= page_numtopp_nolock(pfn
);
4861 VM_STAT_ADD(pagecnt
.pc_try_demote_pages
[3]);
4862 ASSERT(rootpp
->p_vnode
!= NULL
);
4863 ASSERT(rootpp
->p_szc
== szc
);
4867 * We can't demote kernel pages since we can't hat_unload()
4870 if (VN_ISKAS(rootpp
->p_vnode
))
4874 * Attempt to lock all constituent pages except the page passed
4875 * in since it's already locked.
4877 for (tpp
= rootpp
, i
= 0; i
< npgs
; i
++, tpp
++) {
4878 ASSERT(!PP_ISFREE(tpp
));
4879 ASSERT(tpp
->p_vnode
!= NULL
);
4881 if (tpp
!= pp
&& !page_trylock(tpp
, SE_EXCL
))
4883 ASSERT(tpp
->p_szc
== rootpp
->p_szc
);
4884 ASSERT(page_pptonum(tpp
) == page_pptonum(rootpp
) + i
);
4888 * If we failed to lock them all then unlock what we have
4889 * locked so far and bail.
4898 VM_STAT_ADD(pagecnt
.pc_try_demote_pages
[4]);
4902 for (tpp
= rootpp
, i
= 0; i
< npgs
; i
++, tpp
++) {
4903 ASSERT(PAGE_EXCL(tpp
));
4904 ASSERT(tpp
->p_slckcnt
== 0);
4905 (void) hat_pageunload(tpp
, HAT_FORCE_PGUNLOAD
);
4910 * Unlock all pages except the page passed in.
4912 for (tpp
= rootpp
, i
= 0; i
< npgs
; i
++, tpp
++) {
4913 ASSERT(!hat_page_is_mapped(tpp
));
4918 VM_STAT_ADD(pagecnt
.pc_try_demote_pages
[5]);
4923 * Called by page_free() and page_destroy() to demote the page size code
4924 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
4925 * p_szc on free list, neither can we just clear p_szc of a single page_t
4926 * within a large page since it will break other code that relies on p_szc
4927 * being the same for all page_t's of a large page). Anonymous pages should
4928 * never end up here because anon_map_getpages() cannot deal with p_szc
4929 * changes after a single constituent page is locked. While anonymous or
4930 * kernel large pages are demoted or freed the entire large page at a time
4931 * with all constituent pages locked EXCL for the file system pages we
4932 * have to be able to demote a large page (i.e. decrease all constituent pages
4933 * p_szc) with only just an EXCL lock on one of constituent pages. The reason
4934 * we can easily deal with anonymous page demotion the entire large page at a
4935 * time is that those operation originate at address space level and concern
4936 * the entire large page region with actual demotion only done when pages are
4937 * not shared with any other processes (therefore we can always get EXCL lock
4938 * on all anonymous constituent pages after clearing segment page
4939 * cache). However file system pages can be truncated or invalidated at a
4940 * PAGESIZE level from the file system side and end up in page_free() or
4941 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
4942 * and therefore pageout should be able to demote a large page by EXCL locking
4943 * any constituent page that is not under SOFTLOCK). In those cases we cannot
4944 * rely on being able to lock EXCL all constituent pages.
4946 * To prevent szc changes on file system pages one has to lock all constituent
4947 * pages at least SHARED (or call page_szc_lock()). The only subsystem that
4948 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
4949 * prevent szc changes is hat layer that uses its own page level mlist
4950 * locks. hat assumes that szc doesn't change after mlist lock for a page is
4951 * taken. Therefore we need to change szc under hat level locks if we only
4952 * have an EXCL lock on a single constituent page and hat still references any
4953 * of constituent pages. (Note we can't "ignore" hat layer by simply
4954 * hat_pageunload() all constituent pages without having EXCL locks on all of
4955 * constituent pages). We use hat_page_demote() call to safely demote szc of
4956 * all constituent pages under hat locks when we only have an EXCL lock on one
4957 * of constituent pages.
4959 * This routine calls page_szc_lock() before calling hat_page_demote() to
4960 * allow segvn in one special case not to lock all constituent pages SHARED
4961 * before calling hat_memload_array() that relies on p_szc not changing even
4962 * before hat level mlist lock is taken. In that case segvn uses
4963 * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
4965 * Anonymous or kernel page demotion still has to lock all pages exclusively
4966 * and do hat_pageunload() on all constituent pages before demoting the page
4967 * therefore there's no need for anonymous or kernel page demotion to use
4968 * hat_page_demote() mechanism.
4970 * hat_page_demote() removes all large mappings that map pp and then decreases
4971 * p_szc starting from the last constituent page of the large page. By working
4972 * from the tail of a large page in pfn decreasing order allows one looking at
4973 * the root page to know that hat_page_demote() is done for root's szc area.
4974 * e.g. if a root page has szc 1 one knows it only has to lock all constituent
4975 * pages within szc 1 area to prevent szc changes because hat_page_demote()
4976 * that started on this page when it had szc > 1 is done for this szc 1 area.
4978 * We are guaranteed that all constituent pages of pp's large page belong to
4979 * the same vnode with the consecutive offsets increasing in the direction of
4980 * the pfn i.e. the identity of constituent pages can't change until their
4981 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
4982 * large mappings to pp even though we don't lock any constituent page except
4983 * pp (i.e. we won't unload e.g. kernel locked page).
4986 page_demote_vp_pages(page_t
*pp
)
4990 ASSERT(PAGE_EXCL(pp
));
4991 ASSERT(!PP_ISFREE(pp
));
4992 ASSERT(pp
->p_vnode
!= NULL
);
4993 ASSERT(!IS_SWAPFSVP(pp
->p_vnode
));
4994 ASSERT(!PP_ISKAS(pp
));
4996 VM_STAT_ADD(pagecnt
.pc_demote_pages
[0]);
4998 mtx
= page_szc_lock(pp
);
5000 hat_page_demote(pp
);
5003 ASSERT(pp
->p_szc
== 0);
5007 * Mark any existing pages for migration in the given range
5010 page_mark_migrate(struct seg
*seg
, caddr_t addr
, size_t len
,
5011 struct anon_map
*amp
, ulong_t anon_index
, struct vmobject
*obj
,
5012 uoff_t objoff
, int rflag
)
5015 struct vmobject
*curobj
;
5027 anon_sync_obj_t cookie
;
5029 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
5032 * Don't do anything if don't need to do lgroup optimizations
5035 if (!lgrp_optimizations())
5039 * Align address and length to (potentially large) page boundary
5041 segpgsz
= page_get_pagesize(seg
->s_szc
);
5042 addr
= (caddr_t
)P2ALIGN((uintptr_t)addr
, segpgsz
);
5044 len
= P2ROUNDUP(len
, segpgsz
);
5047 * Do one (large) page at a time
5050 while (va
< addr
+ len
) {
5052 * Lookup (root) page for vnode and offset corresponding to
5053 * this virtual address
5054 * Try anonmap first since there may be copy-on-write
5055 * pages, but initialize object pointer and offset using
5056 * arguments just in case there isn't an amp.
5059 off
= objoff
+ va
- seg
->s_base
;
5061 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
5062 an_idx
= anon_index
+ seg_page(seg
, va
);
5063 anon_array_enter(amp
, an_idx
, &cookie
);
5064 ap
= anon_get_ptr(amp
->ahp
, an_idx
);
5068 swap_xlate(ap
, &vn
, &off
);
5070 curobj
= (vn
!= NULL
) ? &vn
->v_object
: NULL
;
5072 anon_array_exit(&cookie
);
5073 ANON_LOCK_EXIT(&
->a_rwlock
);
5078 pp
= page_lookup(curobj
, off
, SE_SHARED
);
5081 * If there isn't a page at this virtual address,
5090 * Figure out which lgroup this page is in for kstats
5092 pfn
= page_pptonum(pp
);
5093 from
= lgrp_pfn_to_lgrp(pfn
);
5096 * Get page size, and round up and skip to next page boundary
5097 * if unaligned address
5100 pgsz
= page_get_pagesize(pszc
);
5102 if (!IS_P2ALIGNED(va
, pgsz
) ||
5103 !IS_P2ALIGNED(pfn
, pages
) ||
5105 pgsz
= MIN(pgsz
, segpgsz
);
5107 pages
= btop(P2END((uintptr_t)va
, pgsz
) -
5109 va
= (caddr_t
)P2END((uintptr_t)va
, pgsz
);
5110 lgrp_stat_add(from
->lgrp_id
, LGRP_PMM_FAIL_PGS
, pages
);
5115 * Upgrade to exclusive lock on page
5117 if (!page_tryupgrade(pp
)) {
5120 lgrp_stat_add(from
->lgrp_id
, LGRP_PMM_FAIL_PGS
,
5129 * Lock constituent pages if this is large page
5133 * Lock all constituents except root page, since it
5134 * should be locked already.
5136 for (; nlocked
< pages
; nlocked
++) {
5137 if (!page_trylock(pp
, SE_EXCL
)) {
5140 if (PP_ISFREE(pp
) ||
5141 pp
->p_szc
!= pszc
) {
5143 * hat_page_demote() raced in with us.
5145 ASSERT(!IS_SWAPFSVP(curobj
->vnode
));
5154 * If all constituent pages couldn't be locked,
5155 * unlock pages locked so far and skip to next page.
5157 if (nlocked
< pages
) {
5162 lgrp_stat_add(from
->lgrp_id
, LGRP_PMM_FAIL_PGS
,
5168 * hat_page_demote() can no longer happen
5169 * since last cons page had the right p_szc after
5170 * all cons pages were locked. all cons pages
5171 * should now have the same p_szc.
5175 * All constituent pages locked successfully, so mark
5176 * large page for migration and unload the mappings of
5177 * constituent pages, so a fault will occur on any part of the
5182 (void) hat_pageunload(pp0
, HAT_FORCE_PGUNLOAD
);
5183 ASSERT(hat_page_getshare(pp0
) == 0);
5186 lgrp_stat_add(from
->lgrp_id
, LGRP_PMM_PGS
, nlocked
);
5193 * Migrate any pages that have been marked for migration in the given range
5212 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
5214 while (npages
> 0) {
5217 pgsz
= page_get_pagesize(pszc
);
5218 page_cnt
= btop(pgsz
);
5221 * Check to see whether this page is marked for migration
5223 * Assume that root page of large page is marked for
5224 * migration and none of the other constituent pages
5225 * are marked. This really simplifies clearing the
5226 * migrate bit by not having to clear it from each
5229 * note we don't want to relocate an entire large page if
5230 * someone is only using one subpage.
5232 if (npages
< page_cnt
)
5236 * Is it marked for migration?
5238 if (!PP_ISMIGRATE(pp
))
5242 * Determine lgroups that page is being migrated between
5244 pfn
= page_pptonum(pp
);
5245 if (!IS_P2ALIGNED(pfn
, page_cnt
)) {
5248 from
= lgrp_pfn_to_lgrp(pfn
);
5249 to
= lgrp_mem_choose(seg
, addr
, pgsz
);
5252 * Need to get exclusive lock's to migrate
5254 for (i
= 0; i
< page_cnt
; i
++) {
5255 ASSERT(PAGE_LOCKED(ppa
[i
]));
5256 if (page_pptonum(ppa
[i
]) != pfn
+ i
||
5257 ppa
[i
]->p_szc
!= pszc
) {
5260 if (!page_tryupgrade(ppa
[i
])) {
5261 lgrp_stat_add(from
->lgrp_id
,
5262 LGRP_PM_FAIL_LOCK_PGS
,
5268 * Check to see whether we are trying to migrate
5269 * page to lgroup where it is allocated already.
5270 * If so, clear the migrate bit and skip to next
5273 if (i
== 0 && to
== from
) {
5274 PP_CLRMIGRATE(ppa
[0]);
5275 page_downgrade(ppa
[0]);
5281 * If all constituent pages couldn't be locked,
5282 * unlock pages locked so far and skip to next page.
5284 if (i
!= page_cnt
) {
5286 page_downgrade(ppa
[i
]);
5291 (void) page_create_wait(page_cnt
, PG_WAIT
);
5292 newpp
= page_get_replacement_page(pp
, to
, PGR_SAMESZC
);
5293 if (newpp
== NULL
) {
5294 page_create_putback(page_cnt
);
5295 for (i
= 0; i
< page_cnt
; i
++) {
5296 page_downgrade(ppa
[i
]);
5298 lgrp_stat_add(to
->lgrp_id
, LGRP_PM_FAIL_ALLOC_PGS
,
5302 ASSERT(newpp
->p_szc
== pszc
);
5304 * Clear migrate bit and relocate page
5307 if (page_relocate(&pp
, &newpp
, 0, 1, &page_cnt
, to
)) {
5308 panic("page_migrate: page_relocate failed");
5310 ASSERT(page_cnt
* PAGESIZE
== pgsz
);
5313 * Keep stats for number of pages migrated from and to
5316 lgrp_stat_add(from
->lgrp_id
, LGRP_PM_SRC_PGS
, page_cnt
);
5317 lgrp_stat_add(to
->lgrp_id
, LGRP_PM_DEST_PGS
, page_cnt
);
5319 * update the page_t array we were passed in and
5320 * unlink constituent pages of a large page.
5322 for (i
= 0; i
< page_cnt
; ++i
, ++pp
) {
5323 ASSERT(PAGE_EXCL(newpp
));
5324 ASSERT(newpp
->p_szc
== pszc
);
5327 page_sub(&newpp
, pp
);
5330 ASSERT(newpp
== NULL
);
5338 uint_t page_reclaim_maxcnt
= 60; /* max total iterations */
5339 uint_t page_reclaim_nofree_maxcnt
= 3; /* max iterations without progress */
5341 * Reclaim/reserve availrmem for npages.
5342 * If there is not enough memory start reaping seg, kmem caches.
5343 * Start pageout scanner (via page_needfree()).
5344 * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5345 * Note: There is no guarantee that any availrmem will be freed as
5346 * this memory typically is locked (kernel heap) or reserved for swap.
5347 * Also due to memory fragmentation kmem allocator may not be able
5348 * to free any memory (single user allocated buffer will prevent
5349 * freeing slab or a page).
5352 page_reclaim_mem(pgcnt_t npages
, pgcnt_t epages
, int adjust
)
5358 pgcnt_t old_availrmem
= 0;
5360 mutex_enter(&freemem_lock
);
5361 while (availrmem
< tune
.t_minarmem
+ npages
+ epages
&&
5362 i
++ < page_reclaim_maxcnt
) {
5363 /* ensure we made some progress in the last few iterations */
5364 if (old_availrmem
< availrmem
) {
5365 old_availrmem
= availrmem
;
5367 } else if (i_nofree
++ >= page_reclaim_nofree_maxcnt
) {
5371 deficit
= tune
.t_minarmem
+ npages
+ epages
- availrmem
;
5372 mutex_exit(&freemem_lock
);
5373 page_needfree(deficit
);
5376 page_needfree(-(spgcnt_t
)deficit
);
5377 mutex_enter(&freemem_lock
);
5380 if (adjust
&& (availrmem
>= tune
.t_minarmem
+ npages
+ epages
)) {
5381 availrmem
-= npages
;
5385 mutex_exit(&freemem_lock
);
5391 * Search the memory segments to locate the desired page. Within a
5392 * segment, pages increase linearly with one page structure per
5393 * physical page frame (size PAGESIZE). The search begins
5394 * with the segment that was accessed last, to take advantage of locality.
5395 * If the hint misses, we start from the beginning of the sorted memseg list
5400 * Some data structures for pfn to pp lookup.
5402 ulong_t mhash_per_slot
;
5403 struct memseg
*memseg_hash
[N_MEM_SLOTS
];
5406 page_numtopp_nolock(pfn_t pfnum
)
5413 * We need to disable kernel preemption while referencing the
5414 * cpu_vm_data field in order to prevent us from being switched to
5415 * another cpu and trying to reference it after it has been freed.
5416 * This will keep us on cpu and prevent it from being removed while
5417 * we are still on it.
5419 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5420 * which is being resued by DR who will flush those references
5421 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5424 vc
= CPU
->cpu_vm_data
;
5427 MEMSEG_STAT_INCR(nsearch
);
5429 /* Try last winner first */
5430 if (((seg
= vc
->vc_pnum_memseg
) != NULL
) &&
5431 (pfnum
>= seg
->pages_base
) && (pfnum
< seg
->pages_end
)) {
5432 MEMSEG_STAT_INCR(nlastwon
);
5433 pp
= seg
->pages
+ (pfnum
- seg
->pages_base
);
5434 if (pp
->p_pagenum
== pfnum
) {
5436 return ((page_t
*)pp
);
5441 if (((seg
= memseg_hash
[MEMSEG_PFN_HASH(pfnum
)]) != NULL
) &&
5442 (pfnum
>= seg
->pages_base
) && (pfnum
< seg
->pages_end
)) {
5443 MEMSEG_STAT_INCR(nhashwon
);
5444 vc
->vc_pnum_memseg
= seg
;
5445 pp
= seg
->pages
+ (pfnum
- seg
->pages_base
);
5446 if (pp
->p_pagenum
== pfnum
) {
5448 return ((page_t
*)pp
);
5452 /* Else Brute force */
5453 for (seg
= memsegs
; seg
!= NULL
; seg
= seg
->next
) {
5454 if (pfnum
>= seg
->pages_base
&& pfnum
< seg
->pages_end
) {
5455 vc
->vc_pnum_memseg
= seg
;
5456 pp
= seg
->pages
+ (pfnum
- seg
->pages_base
);
5457 if (pp
->p_pagenum
== pfnum
) {
5459 return ((page_t
*)pp
);
5463 vc
->vc_pnum_memseg
= NULL
;
5465 MEMSEG_STAT_INCR(nnotfound
);
5471 page_numtomemseg_nolock(pfn_t pfnum
)
5477 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5478 * which is being resued by DR who will flush those references
5479 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5483 if (((seg
= memseg_hash
[MEMSEG_PFN_HASH(pfnum
)]) != NULL
) &&
5484 (pfnum
>= seg
->pages_base
) && (pfnum
< seg
->pages_end
)) {
5485 pp
= seg
->pages
+ (pfnum
- seg
->pages_base
);
5486 if (pp
->p_pagenum
== pfnum
) {
5492 /* Else Brute force */
5493 for (seg
= memsegs
; seg
!= NULL
; seg
= seg
->next
) {
5494 if (pfnum
>= seg
->pages_base
&& pfnum
< seg
->pages_end
) {
5495 pp
= seg
->pages
+ (pfnum
- seg
->pages_base
);
5496 if (pp
->p_pagenum
== pfnum
) {
5507 * Given a page and a count return the page struct that is
5508 * n structs away from the current one in the global page
5511 * This function wraps to the first page upon
5512 * reaching the end of the memseg list.
5515 page_nextn(page_t
*pp
, ulong_t n
)
5522 * We need to disable kernel preemption while referencing the
5523 * cpu_vm_data field in order to prevent us from being switched to
5524 * another cpu and trying to reference it after it has been freed.
5525 * This will keep us on cpu and prevent it from being removed while
5526 * we are still on it.
5528 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5529 * which is being resued by DR who will flush those references
5530 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5533 vc
= (vm_cpu_data_t
*)CPU
->cpu_vm_data
;
5537 if (((seg
= vc
->vc_pnext_memseg
) == NULL
) ||
5538 (seg
->pages_base
== seg
->pages_end
) ||
5539 !(pp
>= seg
->pages
&& pp
< seg
->epages
)) {
5541 for (seg
= memsegs
; seg
; seg
= seg
->next
) {
5542 if (pp
>= seg
->pages
&& pp
< seg
->epages
)
5547 /* Memory delete got in, return something valid. */
5554 /* check for wraparound - possible if n is large */
5555 while ((ppn
= (pp
+ n
)) >= seg
->epages
|| ppn
< pp
) {
5556 n
-= seg
->epages
- pp
;
5562 vc
->vc_pnext_memseg
= seg
;
5568 * Initialize for a loop using page_next_scan_large().
5571 page_next_scan_init(void **cookie
)
5573 ASSERT(cookie
!= NULL
);
5574 *cookie
= (void *)memsegs
;
5575 return ((page_t
*)memsegs
->pages
);
5579 * Return the next page in a scan of page_t's, assuming we want
5580 * to skip over sub-pages within larger page sizes.
5582 * The cookie is used to keep track of the current memseg.
5585 page_next_scan_large(
5590 struct memseg
*seg
= (struct memseg
*)*cookie
;
5597 * get the count of page_t's to skip based on the page size
5600 if (pp
->p_szc
== 0) {
5603 pfn
= page_pptonum(pp
);
5604 cnt
= page_get_pagecnt(pp
->p_szc
);
5605 cnt
-= pfn
& (cnt
- 1);
5611 * Catch if we went past the end of the current memory segment. If so,
5612 * just move to the next segment with pages.
5614 if (new_pp
>= seg
->epages
|| seg
->pages_base
== seg
->pages_end
) {
5619 } while (seg
->pages_base
== seg
->pages_end
);
5620 new_pp
= seg
->pages
;
5621 *cookie
= (void *)seg
;
5629 * Returns next page in list. Note: this function wraps
5630 * to the first page in the list upon reaching the end
5631 * of the list. Callers should be aware of this fact.
5634 /* We should change this be a #define */
5637 page_next(page_t
*pp
)
5639 return (page_nextn(pp
, 1));
5645 return ((page_t
*)memsegs
->pages
);
5650 * This routine is called at boot with the initial memory configuration
5651 * and when memory is added or removed.
5658 struct memseg
*pseg
;
5662 * Clear memseg_hash array.
5663 * Since memory add/delete is designed to operate concurrently
5664 * with normal operation, the hash rebuild must be able to run
5665 * concurrently with page_numtopp_nolock(). To support this
5666 * functionality, assignments to memseg_hash array members must
5667 * be done atomically.
5669 * NOTE: bzero() does not currently guarantee this for kernel
5670 * threads, and cannot be used here.
5672 for (i
= 0; i
< N_MEM_SLOTS
; i
++)
5673 memseg_hash
[i
] = NULL
;
5675 hat_kpm_mseghash_clear(N_MEM_SLOTS
);
5678 * Physmax is the last valid pfn.
5680 mhash_per_slot
= (physmax
+ 1) >> MEM_HASH_SHIFT
;
5681 for (pseg
= memsegs
; pseg
!= NULL
; pseg
= pseg
->next
) {
5682 index
= MEMSEG_PFN_HASH(pseg
->pages_base
);
5683 cur
= pseg
->pages_base
;
5685 if (index
>= N_MEM_SLOTS
)
5686 index
= MEMSEG_PFN_HASH(cur
);
5688 if (memseg_hash
[index
] == NULL
||
5689 memseg_hash
[index
]->pages_base
> pseg
->pages_base
) {
5690 memseg_hash
[index
] = pseg
;
5691 hat_kpm_mseghash_update(index
, pseg
);
5693 cur
+= mhash_per_slot
;
5695 } while (cur
< pseg
->pages_end
);
5700 * Return the pagenum for the pp
5703 page_pptonum(page_t
*pp
)
5705 return (pp
->p_pagenum
);
5709 * interface to the referenced and modified etc bits
5710 * in the PSM part of the page struct
5711 * when no locking is desired.
5714 page_set_props(page_t
*pp
, uint_t flags
)
5716 ASSERT((flags
& ~(P_MOD
| P_REF
| P_RO
)) == 0);
5717 pp
->p_nrm
|= (uchar_t
)flags
;
5721 page_clr_all_props(page_t
*pp
)
5727 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
5730 page_clear_lck_cow(page_t
*pp
, int adjust
)
5734 ASSERT(PAGE_EXCL(pp
));
5737 * The page_struct_lock need not be acquired here since
5738 * we require the caller hold the page exclusively locked.
5746 f_amount
+= pp
->p_cowcnt
;
5750 if (adjust
&& f_amount
) {
5751 mutex_enter(&freemem_lock
);
5752 availrmem
+= f_amount
;
5753 mutex_exit(&freemem_lock
);
5760 * The following functions is called from free_vp_pages()
5761 * for an inexact estimate of a newly free'd page...
5764 page_share_cnt(page_t
*pp
)
5766 return (hat_page_getshare(pp
));
5770 page_isshared(page_t
*pp
)
5772 return (hat_page_checkshare(pp
, 1));
5776 page_isfree(page_t
*pp
)
5778 return (PP_ISFREE(pp
));
5782 page_isref(page_t
*pp
)
5784 return (hat_page_getattr(pp
, P_REF
));
5788 page_ismod(page_t
*pp
)
5790 return (hat_page_getattr(pp
, P_MOD
));
5794 * The following code all currently relates to the page capture logic:
5796 * This logic is used for cases where there is a desire to claim a certain
5797 * physical page in the system for the caller. As it may not be possible
5798 * to capture the page immediately, the p_toxic bits are used in the page
5799 * structure to indicate that someone wants to capture this page. When the
5800 * page gets unlocked, the toxic flag will be noted and an attempt to capture
5801 * the page will be made. If it is successful, the original callers callback
5802 * will be called with the page to do with it what they please.
5804 * There is also an async thread which wakes up to attempt to capture
5805 * pages occasionally which have the capture bit set. All of the pages which
5806 * need to be captured asynchronously have been inserted into the
5807 * page_capture_hash and thus this thread walks that hash list. Items in the
5808 * hash have an expiration time so this thread handles that as well by removing
5809 * the item from the hash if it has expired.
5811 * Some important things to note are:
5812 * - if the PR_CAPTURE bit is set on a page, then the page is in the
5813 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed
5814 * to set and clear this bit, and while the lock is held is the only time
5815 * you can add or remove an entry from the hash.
5816 * - the PR_CAPTURE bit can only be set and cleared while holding the
5817 * page_capture_hash_head.pchh_mutex
5818 * - the t_flag field of the thread struct is used with the T_CAPTURING
5819 * flag to prevent recursion while dealing with large pages.
5820 * - pages which need to be retired never expire on the page_capture_hash.
5823 static void page_capture_thread(void);
5824 static kthread_t
*pc_thread_id
;
5826 static kmutex_t pc_thread_mutex
;
5827 static clock_t pc_thread_shortwait
;
5828 static clock_t pc_thread_longwait
;
5829 static int pc_thread_retry
;
5831 struct page_capture_callback pc_cb
[PC_NUM_CALLBACKS
];
5833 /* Note that this is a circular linked list */
5834 typedef struct page_capture_hash_bucket
{
5839 clock_t expires
; /* lbolt at which this request expires. */
5840 void *datap
; /* Cached data passed in for callback */
5841 struct page_capture_hash_bucket
*next
;
5842 struct page_capture_hash_bucket
*prev
;
5843 } page_capture_hash_bucket_t
;
5845 #define PC_PRI_HI 0 /* capture now */
5846 #define PC_PRI_LO 1 /* capture later */
5847 #define PC_NUM_PRI 2
5849 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
5853 * Each hash bucket will have it's own mutex and two lists which are:
5854 * active (0): represents requests which have not been processed by
5855 * the page_capture async thread yet.
5856 * walked (1): represents requests which have been processed by the
5857 * page_capture async thread within it's given walk of this bucket.
5859 * These are all needed so that we can synchronize all async page_capture
5860 * events. When the async thread moves to a new bucket, it will append the
5861 * walked list to the active list and walk each item one at a time, moving it
5862 * from the active list to the walked list. Thus if there is an async request
5863 * outstanding for a given page, it will always be in one of the two lists.
5864 * New requests will always be added to the active list.
5865 * If we were not able to capture a page before the request expired, we'd free
5866 * up the request structure which would indicate to page_capture that there is
5867 * no longer a need for the given page, and clear the PR_CAPTURE flag if
5870 typedef struct page_capture_hash_head
{
5871 kmutex_t pchh_mutex
;
5872 uint_t num_pages
[PC_NUM_PRI
];
5873 page_capture_hash_bucket_t lists
[2]; /* sentinel nodes */
5874 } page_capture_hash_head_t
;
5877 #define NUM_PAGE_CAPTURE_BUCKETS 4
5879 #define NUM_PAGE_CAPTURE_BUCKETS 64
5882 page_capture_hash_head_t page_capture_hash
[NUM_PAGE_CAPTURE_BUCKETS
];
5884 /* for now use a very simple hash based upon the size of a page struct */
5885 #define PAGE_CAPTURE_HASH(pp) \
5886 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
5888 extern pgcnt_t swapfs_minfree
;
5890 int page_trycapture(page_t
*pp
, uint_t szc
, uint_t flags
, void *datap
);
5893 * a callback function is required for page capture requests.
5896 page_capture_register_callback(uint_t index
, clock_t duration
,
5897 int (*cb_func
)(page_t
*, void *, uint_t
))
5899 ASSERT(pc_cb
[index
].cb_active
== 0);
5900 ASSERT(cb_func
!= NULL
);
5901 rw_enter(&pc_cb
[index
].cb_rwlock
, RW_WRITER
);
5902 pc_cb
[index
].duration
= duration
;
5903 pc_cb
[index
].cb_func
= cb_func
;
5904 pc_cb
[index
].cb_active
= 1;
5905 rw_exit(&pc_cb
[index
].cb_rwlock
);
5909 page_capture_unregister_callback(uint_t index
)
5912 struct page_capture_hash_bucket
*bp1
;
5913 struct page_capture_hash_bucket
*bp2
;
5914 struct page_capture_hash_bucket
*head
= NULL
;
5915 uint_t flags
= (1 << index
);
5917 rw_enter(&pc_cb
[index
].cb_rwlock
, RW_WRITER
);
5918 ASSERT(pc_cb
[index
].cb_active
== 1);
5919 pc_cb
[index
].duration
= 0; /* Paranoia */
5920 pc_cb
[index
].cb_func
= NULL
; /* Paranoia */
5921 pc_cb
[index
].cb_active
= 0;
5922 rw_exit(&pc_cb
[index
].cb_rwlock
);
5925 * Just move all the entries to a private list which we can walk
5926 * through without the need to hold any locks.
5927 * No more requests can get added to the hash lists for this consumer
5928 * as the cb_active field for the callback has been cleared.
5930 for (i
= 0; i
< NUM_PAGE_CAPTURE_BUCKETS
; i
++) {
5931 mutex_enter(&page_capture_hash
[i
].pchh_mutex
);
5932 for (j
= 0; j
< 2; j
++) {
5933 bp1
= page_capture_hash
[i
].lists
[j
].next
;
5934 /* walk through all but first (sentinel) element */
5935 while (bp1
!= &page_capture_hash
[i
].lists
[j
]) {
5937 if (bp2
->flags
& flags
) {
5939 bp1
->prev
= bp2
->prev
;
5940 bp2
->prev
->next
= bp1
;
5944 * Clear the PR_CAPTURE bit as we
5945 * hold appropriate locks here.
5947 page_clrtoxic(head
->pp
, PR_CAPTURE
);
5948 page_capture_hash
[i
].
5949 num_pages
[bp2
->pri
]--;
5955 mutex_exit(&page_capture_hash
[i
].pchh_mutex
);
5958 while (head
!= NULL
) {
5961 kmem_free(bp1
, sizeof (*bp1
));
5967 * Find pp in the active list and move it to the walked list if it
5969 * Note that most often pp should be at the front of the active list
5970 * as it is currently used and thus there is no other sort of optimization
5971 * being done here as this is a linked list data structure.
5972 * Returns 1 on successful move or 0 if page could not be found.
5975 page_capture_move_to_walked(page_t
*pp
)
5977 page_capture_hash_bucket_t
*bp
;
5980 index
= PAGE_CAPTURE_HASH(pp
);
5982 mutex_enter(&page_capture_hash
[index
].pchh_mutex
);
5983 bp
= page_capture_hash
[index
].lists
[0].next
;
5984 while (bp
!= &page_capture_hash
[index
].lists
[0]) {
5986 /* Remove from old list */
5987 bp
->next
->prev
= bp
->prev
;
5988 bp
->prev
->next
= bp
->next
;
5990 /* Add to new list */
5991 bp
->next
= page_capture_hash
[index
].lists
[1].next
;
5992 bp
->prev
= &page_capture_hash
[index
].lists
[1];
5993 page_capture_hash
[index
].lists
[1].next
= bp
;
5994 bp
->next
->prev
= bp
;
5997 * There is a small probability of page on a free
5998 * list being retired while being allocated
5999 * and before P_RAF is set on it. The page may
6000 * end up marked as high priority request instead
6001 * of low priority request.
6002 * If P_RAF page is not marked as low priority request
6003 * change it to low priority request.
6005 page_capture_hash
[index
].num_pages
[bp
->pri
]--;
6006 bp
->pri
= PAGE_CAPTURE_PRIO(pp
);
6007 page_capture_hash
[index
].num_pages
[bp
->pri
]++;
6008 mutex_exit(&page_capture_hash
[index
].pchh_mutex
);
6013 mutex_exit(&page_capture_hash
[index
].pchh_mutex
);
6018 * Add a new entry to the page capture hash. The only case where a new
6019 * entry is not added is when the page capture consumer is no longer registered.
6020 * In this case, we'll silently not add the page to the hash. We know that
6021 * page retire will always be registered for the case where we are currently
6022 * unretiring a page and thus there are no conflicts.
6025 page_capture_add_hash(page_t
*pp
, uint_t szc
, uint_t flags
, void *datap
)
6027 page_capture_hash_bucket_t
*bp1
;
6028 page_capture_hash_bucket_t
*bp2
;
6034 page_capture_hash_bucket_t
*tp1
;
6038 ASSERT(!(flags
& CAPTURE_ASYNC
));
6040 bp1
= kmem_alloc(sizeof (struct page_capture_hash_bucket
), KM_SLEEP
);
6047 for (cb_index
= 0; cb_index
< PC_NUM_CALLBACKS
; cb_index
++) {
6048 if ((flags
>> cb_index
) & 1) {
6053 ASSERT(cb_index
!= PC_NUM_CALLBACKS
);
6055 rw_enter(&pc_cb
[cb_index
].cb_rwlock
, RW_READER
);
6056 if (pc_cb
[cb_index
].cb_active
) {
6057 if (pc_cb
[cb_index
].duration
== -1) {
6058 bp1
->expires
= (clock_t)-1;
6060 bp1
->expires
= ddi_get_lbolt() +
6061 pc_cb
[cb_index
].duration
;
6064 /* There's no callback registered so don't add to the hash */
6065 rw_exit(&pc_cb
[cb_index
].cb_rwlock
);
6066 kmem_free(bp1
, sizeof (*bp1
));
6070 index
= PAGE_CAPTURE_HASH(pp
);
6073 * Only allow capture flag to be modified under this mutex.
6074 * Prevents multiple entries for same page getting added.
6076 mutex_enter(&page_capture_hash
[index
].pchh_mutex
);
6079 * if not already on the hash, set capture bit and add to the hash
6081 if (!(pp
->p_toxic
& PR_CAPTURE
)) {
6083 /* Check for duplicate entries */
6084 for (l
= 0; l
< 2; l
++) {
6085 tp1
= page_capture_hash
[index
].lists
[l
].next
;
6086 while (tp1
!= &page_capture_hash
[index
].lists
[l
]) {
6087 if (tp1
->pp
== pp
) {
6088 panic("page pp 0x%p already on hash "
6090 (void *)pp
, (void *)tp1
);
6097 page_settoxic(pp
, PR_CAPTURE
);
6098 pri
= PAGE_CAPTURE_PRIO(pp
);
6100 bp1
->next
= page_capture_hash
[index
].lists
[0].next
;
6101 bp1
->prev
= &page_capture_hash
[index
].lists
[0];
6102 bp1
->next
->prev
= bp1
;
6103 page_capture_hash
[index
].lists
[0].next
= bp1
;
6104 page_capture_hash
[index
].num_pages
[pri
]++;
6105 if (flags
& CAPTURE_RETIRE
) {
6106 page_retire_incr_pend_count(datap
);
6108 mutex_exit(&page_capture_hash
[index
].pchh_mutex
);
6109 rw_exit(&pc_cb
[cb_index
].cb_rwlock
);
6115 * A page retire request will replace any other request.
6116 * A second physmem request which is for a different process than
6117 * the currently registered one will be dropped as there is
6118 * no way to hold the private data for both calls.
6119 * In the future, once there are more callers, this will have to
6120 * be worked out better as there needs to be private storage for
6121 * at least each type of caller (maybe have datap be an array of
6122 * *void's so that we can index based upon callers index).
6125 /* walk hash list to update expire time */
6126 for (i
= 0; i
< 2; i
++) {
6127 bp2
= page_capture_hash
[index
].lists
[i
].next
;
6128 while (bp2
!= &page_capture_hash
[index
].lists
[i
]) {
6129 if (bp2
->pp
== pp
) {
6130 if (flags
& CAPTURE_RETIRE
) {
6131 if (!(bp2
->flags
& CAPTURE_RETIRE
)) {
6132 page_retire_incr_pend_count(
6135 bp2
->expires
= bp1
->expires
;
6139 ASSERT(flags
& CAPTURE_PHYSMEM
);
6140 if (!(bp2
->flags
& CAPTURE_RETIRE
) &&
6141 (datap
== bp2
->datap
)) {
6142 bp2
->expires
= bp1
->expires
;
6145 mutex_exit(&page_capture_hash
[index
].
6147 rw_exit(&pc_cb
[cb_index
].cb_rwlock
);
6148 kmem_free(bp1
, sizeof (*bp1
));
6156 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6157 * and thus it either has to be set or not set and can't change
6158 * while holding the mutex above.
6160 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6165 * We have a page in our hands, lets try and make it ours by turning
6166 * it into a clean page like it had just come off the freelists.
6168 * Returns 0 on success, with the page still EXCL locked.
6169 * On failure, the page will be unlocked, and returns EAGAIN
6172 page_capture_clean_page(page_t
*pp
)
6175 int skip_unlock
= 0;
6181 ASSERT(PAGE_EXCL(pp
));
6182 ASSERT(!PP_RETIRED(pp
));
6183 ASSERT(curthread
->t_flag
& T_CAPTURING
);
6185 if (PP_ISFREE(pp
)) {
6186 if (!page_reclaim(pp
, NULL
)) {
6191 ASSERT(pp
->p_szc
== 0);
6192 if (pp
->p_vnode
!= NULL
) {
6194 * Since this page came from the
6195 * cachelist, we must destroy the
6196 * old vnode association.
6198 page_hashout(pp
, false);
6204 * If we know page_relocate will fail, skip it
6205 * It could still fail due to a UE on another page but we
6206 * can't do anything about that.
6208 if (pp
->p_toxic
& PR_UE
) {
6213 * It's possible that pages can not have a vnode as fsflush comes
6214 * through and cleans up these pages. It's ugly but that's how it is.
6216 if (pp
->p_vnode
== NULL
) {
6221 * Page was not free, so lets try to relocate it.
6222 * page_relocate only works with root pages, so if this is not a root
6223 * page, we need to demote it to try and relocate it.
6224 * Unfortunately this is the best we can do right now.
6227 if ((pp
->p_szc
> 0) && (pp
!= PP_PAGEROOT(pp
))) {
6228 if (page_try_demote_pages(pp
) == 0) {
6233 ret
= page_relocate(&pp
, &newpp
, 1, 0, &count
, NULL
);
6236 /* unlock the new page(s) */
6237 while (count
-- > 0) {
6238 ASSERT(newpp
!= NULL
);
6240 page_sub(&newpp
, npp
);
6243 ASSERT(newpp
== NULL
);
6245 * Check to see if the page we have is too large.
6246 * If so, demote it freeing up the extra pages.
6248 if (pp
->p_szc
> 0) {
6249 /* For now demote extra pages to szc == 0 */
6250 extra
= page_get_pagecnt(pp
->p_szc
) - 1;
6258 /* Make sure to set our page to szc 0 as well */
6259 ASSERT(pp
->p_next
== pp
&& pp
->p_prev
== pp
);
6263 } else if (ret
== EIO
) {
6268 * Need to reset return type as we failed to relocate the page
6269 * but that does not mean that some of the next steps will not
6277 if (pp
->p_szc
> 0) {
6278 if (page_try_demote_pages(pp
) == 0) {
6284 ASSERT(pp
->p_szc
== 0);
6286 if (hat_ismod(pp
)) {
6294 if (pp
->p_lckcnt
|| pp
->p_cowcnt
) {
6299 (void) hat_pageunload(pp
, HAT_FORCE_PGUNLOAD
);
6300 ASSERT(!hat_page_is_mapped(pp
));
6302 if (hat_ismod(pp
)) {
6304 * This is a semi-odd case as the page is now modified but not
6305 * mapped as we just unloaded the mappings above.
6310 if (pp
->p_vnode
!= NULL
) {
6311 page_hashout(pp
, false);
6315 * At this point, the page should be in a clean state and
6316 * we can do whatever we want with it.
6325 ASSERT(pp
->p_szc
== 0);
6326 ASSERT(PAGE_EXCL(pp
));
6335 * Various callers of page_trycapture() can have different restrictions upon
6336 * what memory they have access to.
6337 * Returns 0 on success, with the following error codes on failure:
6338 * EPERM - The requested page is long term locked, and thus repeated
6339 * requests to capture this page will likely fail.
6340 * ENOMEM - There was not enough free memory in the system to safely
6341 * map the requested page.
6342 * ENOENT - The requested page was inside the kernel cage, and the
6343 * PHYSMEM_CAGE flag was not set.
6346 page_capture_pre_checks(page_t
*pp
, uint_t flags
)
6354 /* only physmem currently has the restrictions checked below */
6355 if (!(flags
& CAPTURE_PHYSMEM
)) {
6359 if (availrmem
< swapfs_minfree
) {
6361 * We won't try to capture this page as we are
6362 * running low on memory.
6370 * Once we have a page in our mits, go ahead and complete the capture
6372 * Returns 1 on failure where page is no longer needed
6373 * Returns 0 on success
6374 * Returns -1 if there was a transient failure.
6375 * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6378 page_capture_take_action(page_t
*pp
, uint_t flags
, void *datap
)
6382 page_capture_hash_bucket_t
*bp1
;
6383 page_capture_hash_bucket_t
*bp2
;
6388 ASSERT(PAGE_EXCL(pp
));
6389 ASSERT(curthread
->t_flag
& T_CAPTURING
);
6391 for (cb_index
= 0; cb_index
< PC_NUM_CALLBACKS
; cb_index
++) {
6392 if ((flags
>> cb_index
) & 1) {
6396 ASSERT(cb_index
< PC_NUM_CALLBACKS
);
6399 * Remove the entry from the page_capture hash, but don't free it yet
6400 * as we may need to put it back.
6401 * Since we own the page at this point in time, we should find it
6402 * in the hash if this is an ASYNC call. If we don't it's likely
6403 * that the page_capture_async() thread decided that this request
6404 * had expired, in which case we just continue on.
6406 if (flags
& CAPTURE_ASYNC
) {
6408 index
= PAGE_CAPTURE_HASH(pp
);
6410 mutex_enter(&page_capture_hash
[index
].pchh_mutex
);
6411 for (i
= 0; i
< 2 && !found
; i
++) {
6412 bp1
= page_capture_hash
[index
].lists
[i
].next
;
6413 while (bp1
!= &page_capture_hash
[index
].lists
[i
]) {
6414 if (bp1
->pp
== pp
) {
6415 bp1
->next
->prev
= bp1
->prev
;
6416 bp1
->prev
->next
= bp1
->next
;
6417 page_capture_hash
[index
].
6418 num_pages
[bp1
->pri
]--;
6419 page_clrtoxic(pp
, PR_CAPTURE
);
6426 mutex_exit(&page_capture_hash
[index
].pchh_mutex
);
6429 /* Synchronize with the unregister func. */
6430 rw_enter(&pc_cb
[cb_index
].cb_rwlock
, RW_READER
);
6431 if (!pc_cb
[cb_index
].cb_active
) {
6433 rw_exit(&pc_cb
[cb_index
].cb_rwlock
);
6435 kmem_free(bp1
, sizeof (*bp1
));
6441 * We need to remove the entry from the page capture hash and turn off
6442 * the PR_CAPTURE bit before calling the callback. We'll need to cache
6443 * the entry here, and then based upon the return value, cleanup
6444 * appropriately or re-add it to the hash, making sure that someone else
6445 * hasn't already done so.
6446 * It should be rare for the callback to fail and thus it's ok for
6447 * the failure path to be a bit complicated as the success path is
6448 * cleaner and the locking rules are easier to follow.
6451 ret
= pc_cb
[cb_index
].cb_func(pp
, datap
, flags
);
6453 rw_exit(&pc_cb
[cb_index
].cb_rwlock
);
6456 * If this was an ASYNC request, we need to cleanup the hash if the
6457 * callback was successful or if the request was no longer valid.
6458 * For non-ASYNC requests, we return failure to map and the caller
6459 * will take care of adding the request to the hash.
6460 * Note also that the callback itself is responsible for the page
6461 * at this point in time in terms of locking ... The most common
6462 * case for the failure path should just be a page_free.
6466 if (bp1
->flags
& CAPTURE_RETIRE
) {
6467 page_retire_decr_pend_count(datap
);
6469 kmem_free(bp1
, sizeof (*bp1
));
6477 ASSERT(flags
& CAPTURE_ASYNC
);
6480 * Check for expiration time first as we can just free it up if it's
6483 if (ddi_get_lbolt() > bp1
->expires
&& bp1
->expires
!= -1) {
6484 kmem_free(bp1
, sizeof (*bp1
));
6489 * The callback failed and there used to be an entry in the hash for
6490 * this page, so we need to add it back to the hash.
6492 mutex_enter(&page_capture_hash
[index
].pchh_mutex
);
6493 if (!(pp
->p_toxic
& PR_CAPTURE
)) {
6494 /* just add bp1 back to head of walked list */
6495 page_settoxic(pp
, PR_CAPTURE
);
6496 bp1
->next
= page_capture_hash
[index
].lists
[1].next
;
6497 bp1
->prev
= &page_capture_hash
[index
].lists
[1];
6498 bp1
->next
->prev
= bp1
;
6499 bp1
->pri
= PAGE_CAPTURE_PRIO(pp
);
6500 page_capture_hash
[index
].lists
[1].next
= bp1
;
6501 page_capture_hash
[index
].num_pages
[bp1
->pri
]++;
6502 mutex_exit(&page_capture_hash
[index
].pchh_mutex
);
6507 * Otherwise there was a new capture request added to list
6508 * Need to make sure that our original data is represented if
6511 for (i
= 0; i
< 2; i
++) {
6512 bp2
= page_capture_hash
[index
].lists
[i
].next
;
6513 while (bp2
!= &page_capture_hash
[index
].lists
[i
]) {
6514 if (bp2
->pp
== pp
) {
6515 if (bp1
->flags
& CAPTURE_RETIRE
) {
6516 if (!(bp2
->flags
& CAPTURE_RETIRE
)) {
6517 bp2
->szc
= bp1
->szc
;
6518 bp2
->flags
= bp1
->flags
;
6519 bp2
->expires
= bp1
->expires
;
6520 bp2
->datap
= bp1
->datap
;
6523 ASSERT(bp1
->flags
& CAPTURE_PHYSMEM
);
6524 if (!(bp2
->flags
& CAPTURE_RETIRE
)) {
6525 bp2
->szc
= bp1
->szc
;
6526 bp2
->flags
= bp1
->flags
;
6527 bp2
->expires
= bp1
->expires
;
6528 bp2
->datap
= bp1
->datap
;
6531 page_capture_hash
[index
].num_pages
[bp2
->pri
]--;
6532 bp2
->pri
= PAGE_CAPTURE_PRIO(pp
);
6533 page_capture_hash
[index
].num_pages
[bp2
->pri
]++;
6534 mutex_exit(&page_capture_hash
[index
].
6536 kmem_free(bp1
, sizeof (*bp1
));
6542 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp
);
6547 * Try to capture the given page for the caller specified in the flags
6548 * parameter. The page will either be captured and handed over to the
6549 * appropriate callback, or will be queued up in the page capture hash
6550 * to be captured asynchronously.
6551 * If the current request is due to an async capture, the page must be
6552 * exclusively locked before calling this function.
6553 * Currently szc must be 0 but in the future this should be expandable to
6555 * Returns 0 on success, with the following error codes on failure:
6556 * EPERM - The requested page is long term locked, and thus repeated
6557 * requests to capture this page will likely fail.
6558 * ENOMEM - There was not enough free memory in the system to safely
6559 * map the requested page.
6560 * ENOENT - The requested page was inside the kernel cage, and the
6561 * CAPTURE_GET_CAGE flag was not set.
6562 * EAGAIN - The requested page could not be capturead at this point in
6563 * time but future requests will likely work.
6564 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6568 page_itrycapture(page_t
*pp
, uint_t szc
, uint_t flags
, void *datap
)
6573 if (flags
& CAPTURE_ASYNC
) {
6574 ASSERT(PAGE_EXCL(pp
));
6578 /* Make sure there's enough availrmem ... */
6579 ret
= page_capture_pre_checks(pp
, flags
);
6584 if (!page_trylock(pp
, SE_EXCL
)) {
6585 for (cb_index
= 0; cb_index
< PC_NUM_CALLBACKS
; cb_index
++) {
6586 if ((flags
>> cb_index
) & 1) {
6590 ASSERT(cb_index
< PC_NUM_CALLBACKS
);
6592 /* Special case for retired pages */
6593 if (PP_RETIRED(pp
)) {
6594 if (flags
& CAPTURE_GET_RETIRED
) {
6595 if (!page_unretire_pp(pp
, PR_UNR_TEMP
)) {
6597 * Need to set capture bit and add to
6598 * hash so that the page will be
6599 * retired when freed.
6601 page_capture_add_hash(pp
, szc
,
6602 CAPTURE_RETIRE
, NULL
);
6610 page_capture_add_hash(pp
, szc
, flags
, datap
);
6615 ASSERT(PAGE_EXCL(pp
));
6617 /* Need to check for physmem async requests that availrmem is sane */
6618 if ((flags
& (CAPTURE_ASYNC
| CAPTURE_PHYSMEM
)) ==
6619 (CAPTURE_ASYNC
| CAPTURE_PHYSMEM
) &&
6620 (availrmem
< swapfs_minfree
)) {
6625 ret
= page_capture_clean_page(pp
);
6628 /* We failed to get the page, so lets add it to the hash */
6629 if (!(flags
& CAPTURE_ASYNC
)) {
6630 page_capture_add_hash(pp
, szc
, flags
, datap
);
6636 ASSERT(PAGE_EXCL(pp
));
6637 ASSERT(pp
->p_szc
== 0);
6639 /* Call the callback */
6640 ret
= page_capture_take_action(pp
, flags
, datap
);
6647 * Note that in the failure cases from page_capture_take_action, the
6648 * EXCL lock will have already been dropped.
6650 if ((ret
== -1) && (!(flags
& CAPTURE_ASYNC
))) {
6651 page_capture_add_hash(pp
, szc
, flags
, datap
);
6657 page_trycapture(page_t
*pp
, uint_t szc
, uint_t flags
, void *datap
)
6661 curthread
->t_flag
|= T_CAPTURING
;
6662 ret
= page_itrycapture(pp
, szc
, flags
, datap
);
6663 curthread
->t_flag
&= ~T_CAPTURING
; /* xor works as we know its set */
6668 * When unlocking a page which has the PR_CAPTURE bit set, this routine
6669 * gets called to try and capture the page.
6672 page_unlock_capture(page_t
*pp
)
6674 page_capture_hash_bucket_t
*bp
;
6681 extern vnode_t retired_pages
;
6684 * We need to protect against a possible deadlock here where we own
6685 * the vnode page hash mutex and want to acquire it again as there
6686 * are locations in the code, where we unlock a page while holding
6687 * the mutex which can lead to the page being captured and eventually
6688 * end up here. As we may be hashing out the old page and hashing into
6689 * the retire vnode, we need to make sure we don't own them.
6690 * Other callbacks who do hash operations also need to make sure that
6691 * before they hashin to a vnode that they do not currently own the
6692 * vphm mutex otherwise there will be a panic.
6694 if (VMOBJECT_LOCKED(&retired_pages
.v_object
)) {
6695 page_unlock_nocapture(pp
);
6698 if (pp
->p_vnode
!= NULL
&& VMOBJECT_LOCKED(&pp
->p_vnode
->v_object
)) {
6699 page_unlock_nocapture(pp
);
6703 index
= PAGE_CAPTURE_HASH(pp
);
6705 mp
= &page_capture_hash
[index
].pchh_mutex
;
6707 for (i
= 0; i
< 2; i
++) {
6708 bp
= page_capture_hash
[index
].lists
[i
].next
;
6709 while (bp
!= &page_capture_hash
[index
].lists
[i
]) {
6712 flags
= bp
->flags
| CAPTURE_ASYNC
;
6715 (void) page_trycapture(pp
, szc
, flags
, datap
);
6722 /* Failed to find page in hash so clear flags and unlock it. */
6723 page_clrtoxic(pp
, PR_CAPTURE
);
6733 for (i
= 0; i
< NUM_PAGE_CAPTURE_BUCKETS
; i
++) {
6734 page_capture_hash
[i
].lists
[0].next
=
6735 &page_capture_hash
[i
].lists
[0];
6736 page_capture_hash
[i
].lists
[0].prev
=
6737 &page_capture_hash
[i
].lists
[0];
6738 page_capture_hash
[i
].lists
[1].next
=
6739 &page_capture_hash
[i
].lists
[1];
6740 page_capture_hash
[i
].lists
[1].prev
=
6741 &page_capture_hash
[i
].lists
[1];
6744 pc_thread_shortwait
= 23 * hz
;
6745 pc_thread_longwait
= 1201 * hz
;
6746 pc_thread_retry
= 3;
6747 mutex_init(&pc_thread_mutex
, NULL
, MUTEX_DEFAULT
, NULL
);
6748 cv_init(&pc_cv
, NULL
, CV_DEFAULT
, NULL
);
6749 pc_thread_id
= thread_create(NULL
, 0, page_capture_thread
, NULL
, 0, &p0
,
6750 TS_RUN
, minclsyspri
);
6754 * It is necessary to scrub any failing pages prior to reboot in order to
6755 * prevent a latent error trap from occurring on the next boot.
6758 page_retire_mdboot()
6762 page_capture_hash_bucket_t
*bp
;
6765 /* walk lists looking for pages to scrub */
6766 for (i
= 0; i
< NUM_PAGE_CAPTURE_BUCKETS
; i
++) {
6767 for (pri
= 0; pri
< PC_NUM_PRI
; pri
++) {
6768 if (page_capture_hash
[i
].num_pages
[pri
] != 0) {
6772 if (pri
== PC_NUM_PRI
)
6775 mutex_enter(&page_capture_hash
[i
].pchh_mutex
);
6777 for (j
= 0; j
< 2; j
++) {
6778 bp
= page_capture_hash
[i
].lists
[j
].next
;
6779 while (bp
!= &page_capture_hash
[i
].lists
[j
]) {
6782 if (page_trylock(pp
, SE_EXCL
)) {
6784 pagescrub(pp
, 0, PAGESIZE
);
6791 mutex_exit(&page_capture_hash
[i
].pchh_mutex
);
6796 * Walk the page_capture_hash trying to capture pages and also cleanup old
6797 * entries which have expired.
6800 page_capture_async()
6805 page_capture_hash_bucket_t
*bp1
, *bp2
;
6811 /* If there are outstanding pages to be captured, get to work */
6812 for (i
= 0; i
< NUM_PAGE_CAPTURE_BUCKETS
; i
++) {
6813 for (pri
= 0; pri
< PC_NUM_PRI
; pri
++) {
6814 if (page_capture_hash
[i
].num_pages
[pri
] != 0)
6817 if (pri
== PC_NUM_PRI
)
6820 /* Append list 1 to list 0 and then walk through list 0 */
6821 mutex_enter(&page_capture_hash
[i
].pchh_mutex
);
6822 bp1
= &page_capture_hash
[i
].lists
[1];
6825 bp1
->prev
->next
= page_capture_hash
[i
].lists
[0].next
;
6826 bp2
->prev
= &page_capture_hash
[i
].lists
[0];
6827 page_capture_hash
[i
].lists
[0].next
->prev
= bp1
->prev
;
6828 page_capture_hash
[i
].lists
[0].next
= bp2
;
6833 /* list[1] will be empty now */
6835 bp1
= page_capture_hash
[i
].lists
[0].next
;
6836 while (bp1
!= &page_capture_hash
[i
].lists
[0]) {
6837 /* Check expiration time */
6838 if ((ddi_get_lbolt() > bp1
->expires
&&
6839 bp1
->expires
!= -1) ||
6840 page_deleted(bp1
->pp
)) {
6841 page_capture_hash
[i
].lists
[0].next
= bp1
->next
;
6843 &page_capture_hash
[i
].lists
[0];
6844 page_capture_hash
[i
].num_pages
[bp1
->pri
]--;
6847 * We can safely remove the PR_CAPTURE bit
6848 * without holding the EXCL lock on the page
6849 * as the PR_CAPTURE bit requres that the
6850 * page_capture_hash[].pchh_mutex be held
6853 page_clrtoxic(bp1
->pp
, PR_CAPTURE
);
6854 mutex_exit(&page_capture_hash
[i
].pchh_mutex
);
6855 kmem_free(bp1
, sizeof (*bp1
));
6856 mutex_enter(&page_capture_hash
[i
].pchh_mutex
);
6857 bp1
= page_capture_hash
[i
].lists
[0].next
;
6864 mutex_exit(&page_capture_hash
[i
].pchh_mutex
);
6865 if (page_trylock(pp
, SE_EXCL
)) {
6866 ret
= page_trycapture(pp
, szc
,
6867 flags
| CAPTURE_ASYNC
, datap
);
6869 ret
= 1; /* move to walked hash */
6873 /* Move to walked hash */
6874 (void) page_capture_move_to_walked(pp
);
6876 mutex_enter(&page_capture_hash
[i
].pchh_mutex
);
6877 bp1
= page_capture_hash
[i
].lists
[0].next
;
6880 mutex_exit(&page_capture_hash
[i
].pchh_mutex
);
6885 * This function is called by the page_capture_thread, and is needed in
6886 * in order to initiate aio cleanup, so that pages used in aio
6887 * will be unlocked and subsequently retired by page_capture_thread.
6890 do_aio_cleanup(void)
6893 int (*aio_cleanup_dr_delete_memory
)(proc_t
*);
6896 if (modload("sys", "kaio") == -1) {
6897 cmn_err(CE_WARN
, "do_aio_cleanup: cannot load kaio");
6901 * We use the aio_cleanup_dr_delete_memory function to
6902 * initiate the actual clean up; this function will wake
6903 * up the per-process aio_cleanup_thread.
6905 aio_cleanup_dr_delete_memory
= (int (*)(proc_t
*))
6906 modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
6907 if (aio_cleanup_dr_delete_memory
== NULL
) {
6909 "aio_cleanup_dr_delete_memory not found in kaio");
6912 mutex_enter(&pidlock
);
6913 for (procp
= practive
; (procp
!= NULL
); procp
= procp
->p_next
) {
6914 mutex_enter(&procp
->p_lock
);
6915 if (procp
->p_aio
!= NULL
) {
6916 /* cleanup proc's outstanding kaio */
6917 cleaned
+= (*aio_cleanup_dr_delete_memory
)(procp
);
6919 mutex_exit(&procp
->p_lock
);
6921 mutex_exit(&pidlock
);
6926 * helper function for page_capture_thread
6929 page_capture_handle_outstanding(void)
6933 /* Reap pages before attempting capture pages */
6936 if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
6937 hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
)) {
6939 * Note: Purging only for platforms that support
6940 * ISM hat_pageunload() - mainly SPARC. On x86/x64
6941 * platforms ISM pages SE_SHARED locked until destroyed.
6944 /* disable and purge seg_pcache */
6945 (void) seg_p_disable();
6946 for (ntry
= 0; ntry
< pc_thread_retry
; ntry
++) {
6947 if (!page_retire_pend_count())
6949 if (do_aio_cleanup()) {
6951 * allow the apps cleanup threads
6954 delay(pc_thread_shortwait
);
6956 page_capture_async();
6958 /* reenable seg_pcache */
6961 /* completed what can be done. break out */
6966 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
6967 * and then attempt to capture.
6970 page_capture_async();
6974 * The page_capture_thread loops forever, looking to see if there are
6975 * pages still waiting to be captured.
6978 page_capture_thread(void)
6986 CALLB_CPR_INIT(&c
, &pc_thread_mutex
, callb_generic_cpr
, "page_capture");
6988 mutex_enter(&pc_thread_mutex
);
6992 for (i
= 0; i
< NUM_PAGE_CAPTURE_BUCKETS
; i
++) {
6994 page_capture_hash
[i
].num_pages
[PC_PRI_HI
];
6996 page_capture_hash
[i
].num_pages
[PC_PRI_LO
];
6999 timeout
= pc_thread_longwait
;
7000 if (high_pri_pages
!= 0) {
7001 timeout
= pc_thread_shortwait
;
7002 page_capture_handle_outstanding();
7003 } else if (low_pri_pages
!= 0) {
7004 page_capture_async();
7006 CALLB_CPR_SAFE_BEGIN(&c
);
7007 (void) cv_reltimedwait(&pc_cv
, &pc_thread_mutex
,
7008 timeout
, TR_CLOCK_TICK
);
7009 CALLB_CPR_SAFE_END(&c
, &pc_thread_mutex
);
7014 * Attempt to locate a bucket that has enough pages to satisfy the request.
7015 * The initial check is done without the lock to avoid unneeded contention.
7016 * The function returns 1 if enough pages were found, else 0 if it could not
7017 * find enough pages in a bucket.
7020 pcf_decrement_bucket(pgcnt_t npages
)
7026 p
= &pcf
[PCF_INDEX()];
7027 q
= &pcf
[pcf_fanout
];
7028 for (i
= 0; i
< pcf_fanout
; i
++) {
7029 if (p
->pcf_count
> npages
) {
7031 * a good one to try.
7033 mutex_enter(&p
->pcf_lock
);
7034 if (p
->pcf_count
> npages
) {
7035 p
->pcf_count
-= (uint_t
)npages
;
7037 * freemem is not protected by any lock.
7038 * Thus, we cannot have any assertion
7039 * containing freemem here.
7042 mutex_exit(&p
->pcf_lock
);
7045 mutex_exit(&p
->pcf_lock
);
7057 * pcftotal_ret: If the value is not NULL and we have walked all the
7058 * buckets but did not find enough pages then it will
7059 * be set to the total number of pages in all the pcf
7061 * npages: Is the number of pages we have been requested to
7063 * unlock: If set to 0 we will leave the buckets locked if the
7064 * requested number of pages are not found.
7066 * Go and try to satisfy the page request from any number of buckets.
7067 * This can be a very expensive operation as we have to lock the buckets
7068 * we are checking (and keep them locked), starting at bucket 0.
7070 * The function returns 1 if enough pages were found, else 0 if it could not
7071 * find enough pages in the buckets.
7075 pcf_decrement_multiple(pgcnt_t
*pcftotal_ret
, pgcnt_t npages
, int unlock
)
7082 /* try to collect pages from several pcf bins */
7083 for (pcftotal
= 0, i
= 0; i
< pcf_fanout
; i
++) {
7084 mutex_enter(&p
->pcf_lock
);
7085 pcftotal
+= p
->pcf_count
;
7086 if (pcftotal
>= npages
) {
7088 * Wow! There are enough pages laying around
7089 * to satisfy the request. Do the accounting,
7090 * drop the locks we acquired, and go back.
7092 * freemem is not protected by any lock. So,
7093 * we cannot have any assertion containing
7098 if (p
->pcf_count
<= npages
) {
7099 npages
-= p
->pcf_count
;
7102 p
->pcf_count
-= (uint_t
)npages
;
7105 mutex_exit(&p
->pcf_lock
);
7108 ASSERT(npages
== 0);
7114 /* failed to collect pages - release the locks */
7115 while (--p
>= pcf
) {
7116 mutex_exit(&p
->pcf_lock
);
7119 if (pcftotal_ret
!= NULL
)
7120 *pcftotal_ret
= pcftotal
;
7125 vmobject_cmp(const void *va
, const void *vb
)
7127 const page_t
*a
= va
;
7128 const page_t
*b
= vb
;
7130 if (a
->p_offset
> b
->p_offset
)
7132 if (a
->p_offset
< b
->p_offset
)
7138 vmobject_init(struct vmobject
*obj
, struct vnode
*vnode
)
7140 avl_create(&obj
->tree
, vmobject_cmp
, sizeof (struct page
),
7141 offsetof(struct page
, p_object_node
));
7142 list_create(&obj
->list
, sizeof (struct page
),
7143 offsetof(struct page
, p_list
.vnode
));
7144 mutex_init(&obj
->lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7150 vmobject_fini(struct vmobject
*obj
)
7152 mutex_destroy(&obj
->lock
);
7153 list_destroy(&obj
->list
);
7154 avl_destroy(&obj
->tree
);