dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / arch / x86 / kernel / os / fpu.c
blobc7c4621381ae3ba8431ed68351b3ecb09d3acfbb
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
25 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
27 /* All Rights Reserved */
29 /* Copyright (c) 1987, 1988 Microsoft Corporation */
30 /* All Rights Reserved */
33 * Copyright (c) 2009, Intel Corporation.
34 * All rights reserved.
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/signal.h>
40 #include <sys/regset.h>
41 #include <sys/privregs.h>
42 #include <sys/psw.h>
43 #include <sys/trap.h>
44 #include <sys/fault.h>
45 #include <sys/systm.h>
46 #include <sys/user.h>
47 #include <sys/file.h>
48 #include <sys/proc.h>
49 #include <sys/pcb.h>
50 #include <sys/lwp.h>
51 #include <sys/cpuvar.h>
52 #include <sys/thread.h>
53 #include <sys/disp.h>
54 #include <sys/fp.h>
55 #include <sys/siginfo.h>
56 #include <sys/archsystm.h>
57 #include <sys/kmem.h>
58 #include <sys/debug.h>
59 #include <sys/x86_archext.h>
60 #include <sys/sysmacros.h>
61 #include <sys/cmn_err.h>
63 /* Legacy fxsave layout + xsave header + ymm */
64 #define AVX_XSAVE_SIZE (512 + 64 + 256)
66 /*CSTYLED*/
67 #pragma align 16 (sse_initial)
70 * Initial kfpu state for SSE/SSE2 used by fpinit()
72 const struct fxsave_state sse_initial = {
73 FPU_CW_INIT, /* fx_fcw */
74 0, /* fx_fsw */
75 0, /* fx_fctw */
76 0, /* fx_fop */
77 #if defined(__amd64)
78 0, /* fx_rip */
79 0, /* fx_rdp */
80 #else
81 0, /* fx_eip */
82 0, /* fx_cs */
83 0, /* __fx_ign0 */
84 0, /* fx_dp */
85 0, /* fx_ds */
86 0, /* __fx_ign1 */
87 #endif /* __amd64 */
88 SSE_MXCSR_INIT /* fx_mxcsr */
89 /* rest of structure is zero */
92 /*CSTYLED*/
93 #pragma align 64 (avx_initial)
96 * Initial kfpu state for AVX used by fpinit()
98 const struct xsave_state avx_initial = {
100 * The definition below needs to be identical with sse_initial
101 * defined above.
104 FPU_CW_INIT, /* fx_fcw */
105 0, /* fx_fsw */
106 0, /* fx_fctw */
107 0, /* fx_fop */
108 #if defined(__amd64)
109 0, /* fx_rip */
110 0, /* fx_rdp */
111 #else
112 0, /* fx_eip */
113 0, /* fx_cs */
114 0, /* __fx_ign0 */
115 0, /* fx_dp */
116 0, /* fx_ds */
117 0, /* __fx_ign1 */
118 #endif /* __amd64 */
119 SSE_MXCSR_INIT /* fx_mxcsr */
120 /* rest of structure is zero */
123 * bit0 = 1 for XSTATE_BV to indicate that legacy fields are valid,
124 * and CPU should initialize XMM/YMM.
127 {0, 0} /* These 2 bytes must be zero */
128 /* rest of structure is zero */
132 * mxcsr_mask value (possibly reset in fpu_probe); used to avoid
133 * the #gp exception caused by setting unsupported bits in the
134 * MXCSR register
136 uint32_t sse_mxcsr_mask = SSE_MXCSR_MASK_DEFAULT;
139 * Initial kfpu state for x87 used by fpinit()
141 const struct fnsave_state x87_initial = {
142 FPU_CW_INIT, /* f_fcw */
143 0, /* __f_ign0 */
144 0, /* f_fsw */
145 0, /* __f_ign1 */
146 0xffff, /* f_ftw */
147 /* rest of structure is zero */
150 #if defined(__amd64)
152 * This vector is patched to xsave_ctxt() if we discover we have an
153 * XSAVE-capable chip in fpu_probe.
155 void (*fpsave_ctxt)(void *) = fpxsave_ctxt;
156 #elif defined(__i386)
158 * This vector is patched to fpxsave_ctxt() if we discover we have an
159 * SSE-capable chip in fpu_probe(). It is patched to xsave_ctxt
160 * if we discover we have an XSAVE-capable chip in fpu_probe.
162 void (*fpsave_ctxt)(void *) = fpnsave_ctxt;
163 #endif
165 static int fpe_sicode(uint_t);
166 static int fpe_simd_sicode(uint_t);
169 * Copy the state of parent lwp's floating point context into the new lwp.
170 * Invoked for both fork() and lwp_create().
172 * Note that we inherit -only- the control state (e.g. exception masks,
173 * rounding, precision control, etc.); the FPU registers are otherwise
174 * reset to their initial state.
176 static void
177 fp_new_lwp(kthread_id_t t, kthread_id_t ct)
179 struct fpu_ctx *fp; /* parent fpu context */
180 struct fpu_ctx *cfp; /* new fpu context */
181 struct fxsave_state *fx, *cfx;
182 #if defined(__i386)
183 struct fnsave_state *fn, *cfn;
184 #endif
185 struct xsave_state *cxs;
187 ASSERT(fp_kind != FP_NO);
189 fp = &t->t_lwp->lwp_pcb.pcb_fpu;
190 cfp = &ct->t_lwp->lwp_pcb.pcb_fpu;
193 * If the parent FPU state is still in the FPU hw then save it;
194 * conveniently, fp_save() already does this for us nicely.
196 fp_save(fp);
198 cfp->fpu_flags = FPU_EN | FPU_VALID;
199 cfp->fpu_regs.kfpu_status = 0;
200 cfp->fpu_regs.kfpu_xstatus = 0;
202 switch (fp_save_mech) {
203 #if defined(__i386)
204 case FP_FNSAVE:
205 fn = &fp->fpu_regs.kfpu_u.kfpu_fn;
206 cfn = &cfp->fpu_regs.kfpu_u.kfpu_fn;
207 bcopy(&x87_initial, cfn, sizeof (*cfn));
208 cfn->f_fcw = fn->f_fcw;
209 break;
210 #endif
211 case FP_FXSAVE:
212 fx = &fp->fpu_regs.kfpu_u.kfpu_fx;
213 cfx = &cfp->fpu_regs.kfpu_u.kfpu_fx;
214 bcopy(&sse_initial, cfx, sizeof (*cfx));
215 cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS;
216 cfx->fx_fcw = fx->fx_fcw;
217 break;
219 case FP_XSAVE:
220 cfp->fpu_xsave_mask = fp->fpu_xsave_mask;
222 fx = &fp->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave;
223 cxs = &cfp->fpu_regs.kfpu_u.kfpu_xs;
224 cfx = &cxs->xs_fxsave;
226 bcopy(&avx_initial, cxs, sizeof (*cxs));
227 cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS;
228 cfx->fx_fcw = fx->fx_fcw;
229 cxs->xs_xstate_bv |= (get_xcr(XFEATURE_ENABLED_MASK) &
230 XFEATURE_FP_ALL);
231 break;
232 default:
233 panic("Invalid fp_save_mech");
234 /*NOTREACHED*/
237 installctx(ct, cfp,
238 fpsave_ctxt, NULL, fp_new_lwp, fp_new_lwp, NULL, fp_free);
240 * Now, when the new lwp starts running, it will take a trap
241 * that will be handled inline in the trap table to cause
242 * the appropriate f*rstor instruction to load the save area we
243 * constructed above directly into the hardware.
248 * Free any state associated with floating point context.
249 * Fp_free can be called in three cases:
250 * 1) from reaper -> thread_free -> ctxfree -> fp_free
251 * fp context belongs to a thread on deathrow
252 * nothing to do, thread will never be resumed
253 * thread calling ctxfree is reaper
255 * 2) from exec -> ctxfree -> fp_free
256 * fp context belongs to the current thread
257 * must disable fpu, thread calling ctxfree is curthread
259 * 3) from restorecontext -> setfpregs -> fp_free
260 * we have a modified context in the memory (lwp->pcb_fpu)
261 * disable fpu and release the fp context for the CPU
264 /*ARGSUSED*/
265 void
266 fp_free(struct fpu_ctx *fp, int isexec)
268 ASSERT(fp_kind != FP_NO);
270 if (fp->fpu_flags & FPU_VALID)
271 return;
273 kpreempt_disable();
275 * We want to do fpsave rather than fpdisable so that we can
276 * keep the fpu_flags as FPU_VALID tracking the CR0_TS bit
278 fp->fpu_flags |= FPU_VALID;
279 /* If for current thread disable FP to track FPU_VALID */
280 if (curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu) {
281 /* Clear errors if any to prevent frstor from complaining */
282 (void) fperr_reset();
283 if (fp_kind & __FP_SSE)
284 (void) fpxerr_reset();
285 fpdisable();
287 kpreempt_enable();
291 * Store the floating point state and disable the floating point unit.
293 void
294 fp_save(struct fpu_ctx *fp)
296 ASSERT(fp_kind != FP_NO);
298 kpreempt_disable();
299 if (!fp || fp->fpu_flags & FPU_VALID) {
300 kpreempt_enable();
301 return;
303 ASSERT(curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu);
305 switch (fp_save_mech) {
306 #if defined(__i386)
307 case FP_FNSAVE:
308 fpsave(&fp->fpu_regs.kfpu_u.kfpu_fn);
309 break;
310 #endif
311 case FP_FXSAVE:
312 fpxsave(&fp->fpu_regs.kfpu_u.kfpu_fx);
313 break;
315 case FP_XSAVE:
316 xsave(&fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask);
317 break;
318 default:
319 panic("Invalid fp_save_mech");
320 /*NOTREACHED*/
323 fp->fpu_flags |= FPU_VALID;
324 kpreempt_enable();
328 * Restore the FPU context for the thread:
329 * The possibilities are:
330 * 1. No active FPU context: Load the new context into the FPU hw
331 * and enable the FPU.
333 void
334 fp_restore(struct fpu_ctx *fp)
336 switch (fp_save_mech) {
337 #if defined(__i386)
338 case FP_FNSAVE:
339 fprestore(&fp->fpu_regs.kfpu_u.kfpu_fn);
340 break;
341 #endif
342 case FP_FXSAVE:
343 fpxrestore(&fp->fpu_regs.kfpu_u.kfpu_fx);
344 break;
346 case FP_XSAVE:
347 xrestore(&fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask);
348 break;
349 default:
350 panic("Invalid fp_save_mech");
351 /*NOTREACHED*/
354 fp->fpu_flags &= ~FPU_VALID;
359 * Seeds the initial state for the current thread. The possibilities are:
360 * 1. Another process has modified the FPU state before we have done any
361 * initialization: Load the FPU state from the LWP state.
362 * 2. The FPU state has not been externally modified: Load a clean state.
364 static void
365 fp_seed(void)
367 struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
369 ASSERT(curthread->t_preempt >= 1);
370 ASSERT((fp->fpu_flags & FPU_EN) == 0);
373 * Always initialize a new context and initialize the hardware.
375 if (fp_save_mech == FP_XSAVE) {
376 fp->fpu_xsave_mask = get_xcr(XFEATURE_ENABLED_MASK) &
377 XFEATURE_FP_ALL;
380 installctx(curthread, fp,
381 fpsave_ctxt, NULL, fp_new_lwp, fp_new_lwp, NULL, fp_free);
382 fpinit();
385 * If FPU_VALID is set, it means someone has modified registers via
386 * /proc. In this case, restore the current lwp's state.
388 if (fp->fpu_flags & FPU_VALID)
389 fp_restore(fp);
391 ASSERT((fp->fpu_flags & FPU_VALID) == 0);
392 fp->fpu_flags = FPU_EN;
396 * This routine is called from trap() when User thread takes No Extension
397 * Fault. The possiblities are:
398 * 1. User thread has executed a FP instruction for the first time.
399 * Save current FPU context if any. Initialize FPU, setup FPU
400 * context for the thread and enable FP hw.
401 * 2. Thread's pcb has a valid FPU state: Restore the FPU state and
402 * enable FP hw.
404 * Note that case #2 is inlined in the trap table.
407 fpnoextflt(struct regs *rp)
409 struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
411 ASSERT(sizeof (struct fxsave_state) == 512 &&
412 sizeof (struct fnsave_state) == 108);
413 ASSERT((offsetof(struct fxsave_state, fx_xmm[0]) & 0xf) == 0);
415 ASSERT(sizeof (struct xsave_state) >= AVX_XSAVE_SIZE);
417 #if defined(__i386)
418 ASSERT(sizeof (struct _fpu) == sizeof (struct __old_fpu));
419 #endif /* __i386 */
422 * save area MUST be 16-byte aligned, else will page fault
424 ASSERT(((uintptr_t)(&fp->fpu_regs.kfpu_u.kfpu_fx) & 0xf) == 0);
426 kpreempt_disable();
428 * Now we can enable the interrupts.
429 * (NOTE: fp-no-coprocessor comes thru interrupt gate)
431 sti();
433 if (!fpu_exists) { /* check for FPU hw exists */
434 if (fp_kind == FP_NO) {
435 uint32_t inst;
438 * When the system has no floating point support,
439 * i.e. no FP hardware and no emulator, skip the
440 * two kinds of FP instruction that occur in
441 * fpstart. Allows processes that do no real FP
442 * to run normally.
444 if (fuword32((void *)rp->r_pc, &inst) != -1 &&
445 ((inst & 0xFFFF) == 0x7dd9 ||
446 (inst & 0xFFFF) == 0x6dd9)) {
447 rp->r_pc += 3;
448 kpreempt_enable();
449 return (0);
454 * If we have neither a processor extension nor
455 * an emulator, kill the process OR panic the kernel.
457 kpreempt_enable();
458 return (1); /* error */
461 #if !defined(__xpv) /* XXPV Is this ifdef needed now? */
463 * A paranoid cross-check: for the SSE case, ensure that %cr4 is
464 * configured to enable fully fledged (%xmm) fxsave/fxrestor on
465 * this CPU. For the non-SSE case, ensure that it isn't.
467 ASSERT(((fp_kind & __FP_SSE) &&
468 (getcr4() & CR4_OSFXSR) == CR4_OSFXSR) ||
469 (!(fp_kind & __FP_SSE) &&
470 (getcr4() & (CR4_OSXMMEXCPT|CR4_OSFXSR)) == 0));
471 #endif
473 if (fp->fpu_flags & FPU_EN) {
474 /* case 2 */
475 fp_restore(fp);
476 } else {
477 /* case 1 */
478 fp_seed();
480 kpreempt_enable();
481 return (0);
486 * Handle a processor extension overrun fault
487 * Returns non zero for error.
489 * XXX Shouldn't this just be abolished given that we're not supporting
490 * anything prior to Pentium?
493 /* ARGSUSED */
495 fpextovrflt(struct regs *rp)
497 #if !defined(__xpv) /* XXPV Do we need this ifdef either */
498 ulong_t cur_cr0;
500 ASSERT(fp_kind != FP_NO);
502 cur_cr0 = getcr0();
503 fpinit(); /* initialize the FPU hardware */
504 setcr0(cur_cr0);
505 #endif
506 sti();
507 return (1); /* error, send SIGSEGV signal to the thread */
511 * Handle a processor extension error fault
512 * Returns non zero for error.
515 /*ARGSUSED*/
517 fpexterrflt(struct regs *rp)
519 uint32_t fpcw, fpsw;
520 fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
522 ASSERT(fp_kind != FP_NO);
525 * Now we can enable the interrupts.
526 * (NOTE: x87 fp exceptions come thru interrupt gate)
528 sti();
530 if (!fpu_exists)
531 return (FPE_FLTINV);
534 * Do an unconditional save of the FP state. If it's dirty (TS=0),
535 * it'll be saved into the fpu context area passed in (that of the
536 * current thread). If it's not dirty (it may not be, due to
537 * an intervening save due to a context switch between the sti(),
538 * above and here, then it's safe to just use the stored values in
539 * the context save area to determine the cause of the fault.
541 fp_save(fp);
543 /* clear exception flags in saved state, as if by fnclex */
544 switch (fp_save_mech) {
545 #if defined(__i386)
546 case FP_FNSAVE:
547 fpsw = fp->fpu_regs.kfpu_u.kfpu_fn.f_fsw;
548 fpcw = fp->fpu_regs.kfpu_u.kfpu_fn.f_fcw;
549 fp->fpu_regs.kfpu_u.kfpu_fn.f_fsw &= ~FPS_SW_EFLAGS;
550 break;
551 #endif
553 case FP_FXSAVE:
554 fpsw = fp->fpu_regs.kfpu_u.kfpu_fx.fx_fsw;
555 fpcw = fp->fpu_regs.kfpu_u.kfpu_fx.fx_fcw;
556 fp->fpu_regs.kfpu_u.kfpu_fx.fx_fsw &= ~FPS_SW_EFLAGS;
557 break;
559 case FP_XSAVE:
560 fpsw = fp->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave.fx_fsw;
561 fpcw = fp->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave.fx_fcw;
562 fp->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave.fx_fsw &= ~FPS_SW_EFLAGS;
564 * Always set LEGACY_FP as it may have been cleared by XSAVE
565 * instruction
567 fp->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |= XFEATURE_LEGACY_FP;
568 break;
569 default:
570 panic("Invalid fp_save_mech");
571 /*NOTREACHED*/
574 fp->fpu_regs.kfpu_status = fpsw;
576 if ((fpsw & FPS_ES) == 0)
577 return (0); /* No exception */
580 * "and" the exception flags with the complement of the mask
581 * bits to determine which exception occurred
583 return (fpe_sicode(fpsw & ~fpcw & 0x3f));
587 * Handle an SSE/SSE2 precise exception.
588 * Returns a non-zero sicode for error.
590 /*ARGSUSED*/
592 fpsimderrflt(struct regs *rp)
594 uint32_t mxcsr, xmask;
595 fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
597 ASSERT(fp_kind & __FP_SSE);
600 * NOTE: Interrupts are disabled during execution of this
601 * function. They are enabled by the caller in trap.c.
605 * The only way we could have gotten here if there is no FP unit
606 * is via a user executing an INT $19 instruction, so there is
607 * no fault in that case.
609 if (!fpu_exists)
610 return (0);
613 * Do an unconditional save of the FP state. If it's dirty (TS=0),
614 * it'll be saved into the fpu context area passed in (that of the
615 * current thread). If it's not dirty, then it's safe to just use
616 * the stored values in the context save area to determine the
617 * cause of the fault.
619 fp_save(fp); /* save the FPU state */
621 mxcsr = fp->fpu_regs.kfpu_u.kfpu_fx.fx_mxcsr;
623 fp->fpu_regs.kfpu_status = fp->fpu_regs.kfpu_u.kfpu_fx.fx_fsw;
625 fp->fpu_regs.kfpu_xstatus = mxcsr;
628 * compute the mask that determines which conditions can cause
629 * a #xm exception, and use this to clean the status bits so that
630 * we can identify the true cause of this one.
632 xmask = (mxcsr >> 7) & SSE_MXCSR_EFLAGS;
633 return (fpe_simd_sicode((mxcsr & SSE_MXCSR_EFLAGS) & ~xmask));
637 * In the unlikely event that someone is relying on this subcode being
638 * FPE_FLTILL for denormalize exceptions, it can always be patched back
639 * again to restore old behaviour.
641 int fpe_fltden = FPE_FLTDEN;
644 * Map from the FPU status word to the FP exception si_code.
646 static int
647 fpe_sicode(uint_t sw)
649 if (sw & FPS_IE)
650 return (FPE_FLTINV);
651 if (sw & FPS_ZE)
652 return (FPE_FLTDIV);
653 if (sw & FPS_DE)
654 return (fpe_fltden);
655 if (sw & FPS_OE)
656 return (FPE_FLTOVF);
657 if (sw & FPS_UE)
658 return (FPE_FLTUND);
659 if (sw & FPS_PE)
660 return (FPE_FLTRES);
661 return (FPE_FLTINV); /* default si_code for other exceptions */
665 * Map from the SSE status word to the FP exception si_code.
667 static int
668 fpe_simd_sicode(uint_t sw)
670 if (sw & SSE_IE)
671 return (FPE_FLTINV);
672 if (sw & SSE_ZE)
673 return (FPE_FLTDIV);
674 if (sw & SSE_DE)
675 return (FPE_FLTDEN);
676 if (sw & SSE_OE)
677 return (FPE_FLTOVF);
678 if (sw & SSE_UE)
679 return (FPE_FLTUND);
680 if (sw & SSE_PE)
681 return (FPE_FLTRES);
682 return (FPE_FLTINV); /* default si_code for other exceptions */
686 * This routine is invoked as part of libc's __fpstart implementation
687 * via sysi86(2).
689 * It may be called -before- any context has been assigned in which case
690 * we try and avoid touching the hardware. Or it may be invoked well
691 * after the context has been assigned and fiddled with, in which case
692 * just tweak it directly.
694 void
695 fpsetcw(uint16_t fcw, uint32_t mxcsr)
697 struct fpu_ctx *fp = &curthread->t_lwp->lwp_pcb.pcb_fpu;
698 struct fxsave_state *fx;
700 if (!fpu_exists || fp_kind == FP_NO)
701 return;
703 if ((fp->fpu_flags & FPU_EN) == 0) {
704 if (fcw == FPU_CW_INIT && mxcsr == SSE_MXCSR_INIT) {
706 * Common case. Floating point unit not yet
707 * enabled, and kernel already intends to initialize
708 * the hardware the way the caller wants.
710 return;
713 * Hmm. Userland wants a different default.
714 * Do a fake "first trap" to establish the context, then
715 * handle as if we already had a context before we came in.
717 kpreempt_disable();
718 fp_seed();
719 kpreempt_enable();
723 * Ensure that the current hardware state is flushed back to the
724 * pcb, then modify that copy. Next use of the fp will
725 * restore the context.
727 fp_save(fp);
729 switch (fp_save_mech) {
730 #if defined(__i386)
731 case FP_FNSAVE:
732 fp->fpu_regs.kfpu_u.kfpu_fn.f_fcw = fcw;
733 break;
734 #endif
735 case FP_FXSAVE:
736 fx = &fp->fpu_regs.kfpu_u.kfpu_fx;
737 fx->fx_fcw = fcw;
738 fx->fx_mxcsr = sse_mxcsr_mask & mxcsr;
739 break;
741 case FP_XSAVE:
742 fx = &fp->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave;
743 fx->fx_fcw = fcw;
744 fx->fx_mxcsr = sse_mxcsr_mask & mxcsr;
746 * Always set LEGACY_FP as it may have been cleared by XSAVE
747 * instruction
749 fp->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |= XFEATURE_LEGACY_FP;
750 break;
751 default:
752 panic("Invalid fp_save_mech");
753 /*NOTREACHED*/