4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
24 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
28 * The routines defined in this file are supporting routines for FIFOFS
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/debug.h>
35 #include <sys/errno.h>
38 #include <sys/inline.h>
42 #include <sys/sysmacros.h>
45 #include <sys/vnode.h>
47 #include <sys/signal.h>
50 #include <sys/flock.h>
51 #include <sys/stream.h>
52 #include <sys/fs/fifonode.h>
53 #include <sys/strsubr.h>
54 #include <sys/stropts.h>
55 #include <sys/cmn_err.h>
56 #include <sys/fs_subr.h>
61 int Fifo_fastmode
= 1; /* pipes/fifos will be opened in fast mode */
62 int Fifo_verbose
= 0; /* msg when switching out of fast mode */
63 int Fifohiwat
= FIFOHIWAT
; /* Modifiable FIFO high water mark */
67 * This is the loadable module wrapper.
69 #include <sys/modctl.h>
71 extern struct qinit fifo_strdata
;
73 /* yes, we want all defaults */
74 static const struct vfsops fifo_vfsops
;
76 static vfsdef_t vfw
= {
85 * Module linkage information for the kernel.
87 extern struct mod_ops mod_fsops
;
89 static struct modlfs modlfs
= {
90 &mod_fsops
, "filesystem for fifo", &vfw
93 static struct modlinkage modlinkage
= {
94 MODREV_1
, (void *)&modlfs
, NULL
100 return (mod_install(&modlinkage
));
104 _info(struct modinfo
*modinfop
)
106 return (mod_info(&modlinkage
, modinfop
));
110 * Define data structures within this file.
111 * XXX should the hash size be configurable ?
114 #define FIFO_HASHSZ 63
116 #if ((FIFO_HASHSZ & (FIFO_HASHSZ - 1)) == 0)
117 #define FIFOHASH(vp) (((uintptr_t)(vp) >> FIFOSHFT) & (FIFO_HASHSZ - 1))
119 #define FIFOHASH(vp) (((uintptr_t)(vp) >> FIFOSHFT) % FIFO_HASHSZ)
122 fifonode_t
*fifoalloc
[FIFO_HASHSZ
];
124 struct vfs
*fifovfsp
;
127 kmutex_t ftable_lock
;
128 static kmutex_t fino_lock
;
129 struct kmem_cache
*fnode_cache
;
130 struct kmem_cache
*pipe_cache
;
132 static void fifoinsert(fifonode_t
*);
133 static fifonode_t
*fifofind(vnode_t
*);
134 static int fifo_connld(struct vnode
**, int, cred_t
*);
135 static void fifo_fastturnoff(fifonode_t
*);
137 static void fifo_reinit_vp(vnode_t
*);
139 static void fnode_destructor(void *, void *);
142 * Constructor/destructor routines for fifos and pipes.
144 * In the interest of code sharing, we define a common fifodata structure
145 * which consists of a fifolock and one or two fnodes. A fifo contains
146 * one fnode; a pipe contains two. The fifolock is shared by the fnodes,
147 * each of which points to it:
149 * --> --> --------- --- ---
153 * | --- | fnode | | |
157 * ------- | fnode | |
161 * Since the fifolock is at the beginning of the fifodata structure,
162 * the fifolock address is the same as the fifodata address. Thus,
163 * we can determine the fifodata address from any of its member fnodes.
164 * This is essential for fifo_inactive.
166 * The fnode constructor is designed to handle any fifodata structure,
167 * deducing the number of fnodes from the total size. Thus, the fnode
168 * constructor does most of the work for the pipe constructor.
171 fnode_constructor(void *buf
, void *cdrarg
, int kmflags
)
173 fifodata_t
*fdp
= buf
;
174 fifolock_t
*flp
= &fdp
->fifo_lock
;
175 fifonode_t
*fnp
= &fdp
->fifo_fnode
[0];
176 size_t size
= (uintptr_t)cdrarg
;
178 mutex_init(&flp
->flk_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
179 cv_init(&flp
->flk_wait_cv
, NULL
, CV_DEFAULT
, NULL
);
182 while ((char *)fnp
< (char *)buf
+ size
) {
186 vp
= vn_alloc(kmflags
);
188 fnp
->fn_vnode
= NULL
; /* mark for destructor */
189 fnode_destructor(buf
, cdrarg
);
199 fnp
->fn_rsynccnt
= 0;
200 fnp
->fn_wsynccnt
= 0;
201 fnp
->fn_wwaitcnt
= 0;
203 fnp
->fn_pcredp
= NULL
;
206 * 32-bit stat(2) may fail if fn_ino isn't initialized
210 cv_init(&fnp
->fn_wait_cv
, NULL
, CV_DEFAULT
, NULL
);
212 vn_setops(vp
, &fifo_vnodeops
);
215 vp
->v_data
= (caddr_t
)fnp
;
216 vp
->v_flag
= VNOMAP
| VNOSWAP
;
224 fnode_destructor(void *buf
, void *cdrarg
)
226 fifodata_t
*fdp
= buf
;
227 fifolock_t
*flp
= &fdp
->fifo_lock
;
228 fifonode_t
*fnp
= &fdp
->fifo_fnode
[0];
229 size_t size
= (uintptr_t)cdrarg
;
231 mutex_destroy(&flp
->flk_lock
);
232 cv_destroy(&flp
->flk_wait_cv
);
233 ASSERT(flp
->flk_ocsync
== 0);
235 while ((char *)fnp
< (char *)buf
+ size
) {
237 vnode_t
*vp
= FTOV(fnp
);
240 return; /* constructor failed here */
243 ASSERT(fnp
->fn_mp
== NULL
);
244 ASSERT(fnp
->fn_count
== 0);
245 ASSERT(fnp
->fn_lock
== flp
);
246 ASSERT(fnp
->fn_open
== 0);
247 ASSERT(fnp
->fn_insync
== 0);
248 ASSERT(fnp
->fn_rsynccnt
== 0 && fnp
->fn_wsynccnt
== 0);
249 ASSERT(fnp
->fn_wwaitcnt
== 0);
250 ASSERT(fnp
->fn_pcredp
== NULL
);
251 ASSERT(vn_matchops(vp
, &fifo_vnodeops
));
252 ASSERT(vp
->v_stream
== NULL
);
253 ASSERT(vp
->v_type
== VFIFO
);
254 ASSERT(vp
->v_data
== (caddr_t
)fnp
);
255 ASSERT((vp
->v_flag
& (VNOMAP
|VNOSWAP
)) == (VNOMAP
|VNOSWAP
));
257 cv_destroy(&fnp
->fn_wait_cv
);
266 pipe_constructor(void *buf
, void *cdrarg
, int kmflags
)
268 fifodata_t
*fdp
= buf
;
269 fifonode_t
*fnp1
= &fdp
->fifo_fnode
[0];
270 fifonode_t
*fnp2
= &fdp
->fifo_fnode
[1];
274 (void) fnode_constructor(buf
, cdrarg
, kmflags
);
279 vp1
->v_vfsp
= vp2
->v_vfsp
= fifovfsp
;
280 vp1
->v_rdev
= vp2
->v_rdev
= fifodev
;
281 fnp1
->fn_realvp
= fnp2
->fn_realvp
= NULL
;
282 fnp1
->fn_dest
= fnp2
;
283 fnp2
->fn_dest
= fnp1
;
289 pipe_destructor(void *buf
, void *cdrarg
)
292 fifodata_t
*fdp
= buf
;
293 fifonode_t
*fnp1
= &fdp
->fifo_fnode
[0];
294 fifonode_t
*fnp2
= &fdp
->fifo_fnode
[1];
295 vnode_t
*vp1
= FTOV(fnp1
);
296 vnode_t
*vp2
= FTOV(fnp2
);
298 ASSERT(vp1
->v_vfsp
== fifovfsp
);
299 ASSERT(vp2
->v_vfsp
== fifovfsp
);
300 ASSERT(vp1
->v_rdev
== fifodev
);
301 ASSERT(vp2
->v_rdev
== fifodev
);
303 fnode_destructor(buf
, cdrarg
);
307 * Reinitialize a FIFO vnode (uses normal vnode reinit, but ensures that
308 * vnode type and flags are reset).
311 static void fifo_reinit_vp(vnode_t
*vp
)
316 vp
->v_flag
|= VNOMAP
| VNOSWAP
;
320 * Save file system type/index, initialize vfs operations vector, get
321 * unique device number for FIFOFS and initialize the FIFOFS hash.
322 * Create and initialize a "generic" vfs pointer that will be placed
323 * in the v_vfsp field of each pipe's vnode.
326 fifoinit(int fstype
, char *name
)
332 error
= vfs_setfsops(fstype
, &fifo_vfsops
);
334 cmn_err(CE_WARN
, "fifoinit: bad fstype");
338 if ((dev
= getudev()) == (major_t
)-1) {
339 cmn_err(CE_WARN
, "fifoinit: can't get unique device number");
342 fifodev
= makedevice(dev
, 0);
344 fifovfsp
= kmem_zalloc(sizeof (struct vfs
), KM_SLEEP
);
345 fifovfsp
->vfs_next
= NULL
;
346 vfs_setops(fifovfsp
, &fifo_vfsops
);
347 fifovfsp
->vfs_vnodecovered
= NULL
;
348 fifovfsp
->vfs_flag
= 0;
349 fifovfsp
->vfs_bsize
= 1024;
350 fifovfsp
->vfs_fstype
= fifofstype
;
351 vfs_make_fsid(&fifovfsp
->vfs_fsid
, fifodev
, fifofstype
);
352 fifovfsp
->vfs_data
= NULL
;
353 fifovfsp
->vfs_dev
= fifodev
;
354 fifovfsp
->vfs_bcount
= 0;
357 * It is necessary to initialize vfs_count here to 1.
358 * This prevents the fifovfsp from getting freed when
359 * a thread does a VFS_HOLD followed by a VFS_RELE
362 * The fifovfsp should never be freed.
364 fifovfsp
->vfs_count
= 1;
366 mutex_init(&ftable_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
367 mutex_init(&fino_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
370 * vnodes are cached aligned
372 fnode_cache
= kmem_cache_create("fnode_cache",
373 sizeof (fifodata_t
) - sizeof (fifonode_t
), 32,
374 fnode_constructor
, fnode_destructor
, NULL
,
375 (void *)(sizeof (fifodata_t
) - sizeof (fifonode_t
)), NULL
, 0);
377 pipe_cache
= kmem_cache_create("pipe_cache", sizeof (fifodata_t
), 32,
378 pipe_constructor
, pipe_destructor
, NULL
,
379 (void *)(sizeof (fifodata_t
)), NULL
, 0);
382 if (Fifohiwat
< FIFOHIWAT
)
383 Fifohiwat
= FIFOHIWAT
;
384 #endif /* FIFODEBUG */
385 fifo_strdata
.qi_minfo
->mi_hiwat
= Fifohiwat
;
391 * Provide a shadow for a vnode. We create a new shadow before checking for an
392 * existing one, to minimize the amount of time we need to hold ftable_lock.
393 * If a vp already has a shadow in the hash list, return its shadow. If not,
394 * we hash the new vnode and return its pointer to the caller.
397 fifovp(vnode_t
*vp
, cred_t
*crp
)
400 fifonode_t
*spec_fnp
; /* Speculative fnode ptr. */
408 fdp
= kmem_cache_alloc(fnode_cache
, KM_SLEEP
);
410 fdp
->fifo_lock
.flk_ref
= 1;
411 fnp
= &fdp
->fifo_fnode
[0];
414 * Its possible that fifo nodes on different lofs mountpoints
415 * shadow the same real filesystem fifo node.
416 * In this case its necessary to get and store the realvp.
417 * This way different fifo nodes sharing the same real vnode
418 * can use realvp for communication.
421 if (fop_realvp(vp
, &rvp
, NULL
) == 0)
429 if (! Fifo_fastmode
) {
432 fnp
->fn_flag
= FIFOFAST
;
434 #else /* FIFODEBUG */
435 fnp
->fn_flag
= FIFOFAST
;
436 #endif /* FIFODEBUG */
439 * initialize the times from vp.
441 va
.va_mask
= AT_TIMES
;
442 if (fop_getattr(vp
, &va
, 0, crp
, NULL
) == 0) {
443 fnp
->fn_atime
= va
.va_atime
.tv_sec
;
444 fnp
->fn_mtime
= va
.va_mtime
.tv_sec
;
445 fnp
->fn_ctime
= va
.va_ctime
.tv_sec
;
453 * Grab the VP here to avoid holding locks
454 * whilst trying to acquire others.
459 mutex_enter(&ftable_lock
);
461 if ((spec_fnp
= fifofind(vp
)) != NULL
) {
462 mutex_exit(&ftable_lock
);
465 * Release the vnode and free up our pre-prepared fnode.
466 * Zero the lock reference just to explicitly signal
470 fdp
->fifo_lock
.flk_ref
= 0;
471 kmem_cache_free(fnode_cache
, fdp
);
473 return (FTOV(spec_fnp
));
477 fifo_reinit_vp(newvp
);
479 * Since the fifo vnode's v_vfsp needs to point to the
480 * underlying filesystem's vfsp we need to bump up the
481 * underlying filesystem's vfs reference count.
482 * The count is decremented when the fifo node is
486 VFS_HOLD(vp
->v_vfsp
);
487 newvp
->v_vfsp
= vp
->v_vfsp
;
488 newvp
->v_rdev
= vp
->v_rdev
;
489 newvp
->v_flag
|= (vp
->v_flag
& VROOT
);
492 mutex_exit(&ftable_lock
);
498 * Create a pipe end by...
499 * allocating a vnode-fifonode pair and initializing the fifonode.
502 makepipe(vnode_t
**vpp1
, vnode_t
**vpp2
)
511 fdp
= kmem_cache_alloc(pipe_cache
, KM_SLEEP
);
512 fdp
->fifo_lock
.flk_ref
= 2;
513 fnp1
= &fdp
->fifo_fnode
[0];
514 fnp2
= &fdp
->fifo_fnode
[1];
516 fnp1
->fn_wcnt
= fnp2
->fn_wcnt
= 1;
517 fnp1
->fn_rcnt
= fnp2
->fn_rcnt
= 1;
519 if (! Fifo_fastmode
) {
520 fnp1
->fn_flag
= fnp2
->fn_flag
= ISPIPE
;
522 fnp1
->fn_flag
= fnp2
->fn_flag
= ISPIPE
| FIFOFAST
;
524 #else /* FIFODEBUG */
525 fnp1
->fn_flag
= fnp2
->fn_flag
= ISPIPE
| FIFOFAST
;
526 #endif /* FIFODEBUG */
527 now
= gethrestime_sec();
528 fnp1
->fn_atime
= fnp2
->fn_atime
= now
;
529 fnp1
->fn_mtime
= fnp2
->fn_mtime
= now
;
530 fnp1
->fn_ctime
= fnp2
->fn_ctime
= now
;
532 *vpp1
= nvp1
= FTOV(fnp1
);
533 *vpp2
= nvp2
= FTOV(fnp2
);
535 fifo_reinit_vp(nvp1
); /* Reinitialize vnodes for reuse... */
536 fifo_reinit_vp(nvp2
);
537 nvp1
->v_vfsp
= fifovfsp
; /* Need to re-establish VFS & device */
538 nvp2
->v_vfsp
= fifovfsp
; /* before we can reuse this vnode. */
539 nvp1
->v_rdev
= fifodev
;
540 nvp2
->v_rdev
= fifodev
;
544 * Attempt to establish a unique pipe id. Only un-named pipes use this
550 static ino_t fifo_ino
= 0;
553 mutex_enter(&fino_lock
);
555 mutex_exit(&fino_lock
);
561 * Stream a pipe/FIFO.
562 * The FIFOCONNLD flag is used when CONNLD has been pushed on the stream.
563 * If the flag is set, a new vnode is created by calling fifo_connld().
564 * Connld logic was moved to fifo_connld() to speed up the open
565 * operation, simplify the connld/fifo interaction, and remove inherent
566 * race conditions between the connld module and fifos.
567 * This routine is single threaded for two reasons.
568 * 1) connld requests are synchronous; that is, they must block
569 * until the server does an I_RECVFD (oh, well). Single threading is
570 * the simplest way to accomplish this.
571 * 2) fifo_close() must not send M_HANGUP or M_ERROR while we are
572 * in stropen. Stropen() has a tendency to reset things and
573 * we would like streams to remember that a hangup occurred.
576 fifo_stropen(vnode_t
**vpp
, int flag
, cred_t
*crp
, int dotwist
, int lockheld
)
579 vnode_t
*oldvp
= *vpp
;
580 fifonode_t
*fnp
= VTOF(*vpp
);
585 fn_lock
= fnp
->fn_lock
;
587 mutex_enter(&fn_lock
->flk_lock
);
588 ASSERT(MUTEX_HELD(&fnp
->fn_lock
->flk_lock
));
591 * FIFO is in the process of opening. Wait for it
592 * to complete before starting another open on it
593 * This prevents races associated with connld open
595 while (fnp
->fn_flag
& FIFOOPEN
) {
596 if (!cv_wait_sig(&fnp
->fn_wait_cv
, &fn_lock
->flk_lock
)) {
597 fifo_cleanup(oldvp
, flag
);
599 mutex_exit(&fn_lock
->flk_lock
);
605 * The other end of the pipe is almost closed so
606 * reject any other open on this end of the pipe
607 * This only happens with a pipe mounted under namefs
609 if ((fnp
->fn_flag
& (FIFOCLOSE
|ISPIPE
)) == (FIFOCLOSE
|ISPIPE
)) {
610 fifo_cleanup(oldvp
, flag
);
611 cv_broadcast(&fnp
->fn_wait_cv
);
613 mutex_exit(&fn_lock
->flk_lock
);
617 fnp
->fn_flag
|= FIFOOPEN
;
620 * can't allow close to happen while we are
621 * in the middle of stropen().
622 * M_HANGUP and M_ERROR could leave the stream in a strange state
624 while (fn_lock
->flk_ocsync
)
625 cv_wait(&fn_lock
->flk_wait_cv
, &fn_lock
->flk_lock
);
627 fn_lock
->flk_ocsync
= 1;
629 if (fnp
->fn_flag
& FIFOCONNLD
) {
631 * This is a reopen, so we should release the fifo lock
632 * just in case some strange module pushed on connld
633 * has some odd side effect.
634 * Note: this stropen is on the oldvp. It will
635 * have no impact on the connld vp returned and
636 * strclose() will only be called when we release
639 mutex_exit(&fn_lock
->flk_lock
);
640 if ((error
= stropen(oldvp
, &pdev
, flag
, crp
)) != 0) {
641 mutex_enter(&fn_lock
->flk_lock
);
642 fifo_cleanup(oldvp
, flag
);
643 fn_lock
->flk_ocsync
= 0;
644 cv_broadcast(&fn_lock
->flk_wait_cv
);
648 * streams open done, allow close on other end if
649 * required. Do this now.. it could
650 * be a very long time before fifo_connld returns.
652 mutex_enter(&fn_lock
->flk_lock
);
654 * we need to fake an open here so that if this
655 * end of the pipe closes, we don't loose the
656 * stream head (kind of like single threading
657 * open and close for this end of the pipe)
658 * We'll need to call fifo_close() to do clean
659 * up in case this end of the pipe was closed
660 * down while we were in fifo_connld()
662 ASSERT(fnp
->fn_open
> 0);
664 fn_lock
->flk_ocsync
= 0;
665 cv_broadcast(&fn_lock
->flk_wait_cv
);
666 mutex_exit(&fn_lock
->flk_lock
);
668 * Connld has been pushed onto the pipe
669 * Create new pipe on behalf of connld
671 if (error
= fifo_connld(vpp
, flag
, crp
)) {
672 (void) fifo_close(oldvp
, flag
, 1, 0, crp
, NULL
);
673 mutex_enter(&fn_lock
->flk_lock
);
677 * undo fake open. We need to call fifo_close
678 * because some other thread could have done
679 * a close and detach of the named pipe while
680 * we were in fifo_connld(), so
681 * we want to make sure the close completes (yuk)
683 (void) fifo_close(oldvp
, flag
, 1, 0, crp
, NULL
);
685 * fifo_connld has changed the vp, so we
686 * need to re-initialize locals
689 fn_lock
= fnp
->fn_lock
;
690 mutex_enter(&fn_lock
->flk_lock
);
693 * release lock in case there are modules pushed that
694 * could have some strange side effect
697 mutex_exit(&fn_lock
->flk_lock
);
700 * If this is the first open of a fifo (dotwist
701 * will be non-zero) we will need to twist the queues.
703 if (oldvp
->v_stream
== NULL
)
708 * normal open of pipe/fifo
711 if ((error
= stropen(oldvp
, &pdev
, flag
, crp
)) != 0) {
712 mutex_enter(&fn_lock
->flk_lock
);
713 fifo_cleanup(oldvp
, flag
);
714 ASSERT(fnp
->fn_open
!= 0 || oldvp
->v_stream
== NULL
);
715 fn_lock
->flk_ocsync
= 0;
716 cv_broadcast(&fn_lock
->flk_wait_cv
);
719 mutex_enter(&fn_lock
->flk_lock
);
722 * twist the ends of the fifo together
724 if (dotwist
&& firstopen
)
728 * Show that this open has succeeded
729 * and allow closes or other opens to proceed
732 fn_lock
->flk_ocsync
= 0;
733 cv_broadcast(&fn_lock
->flk_wait_cv
);
736 fnp
->fn_flag
&= ~FIFOOPEN
;
738 fnp
->fn_flag
|= FIFOISOPEN
;
740 * If this is a FIFO and has the close flag set
741 * and there are now writers, clear the close flag
742 * Note: close flag only gets set when last writer
743 * on a FIFO goes away.
745 if (((fnp
->fn_flag
& (ISPIPE
|FIFOCLOSE
)) == FIFOCLOSE
) &&
747 fnp
->fn_flag
&= ~FIFOCLOSE
;
749 cv_broadcast(&fnp
->fn_wait_cv
);
751 mutex_exit(&fn_lock
->flk_lock
);
756 * Clean up the state of a FIFO and/or mounted pipe in the
757 * event that a fifo_open() was interrupted while the
758 * process was blocked.
761 fifo_cleanup(vnode_t
*vp
, int flag
)
763 fifonode_t
*fnp
= VTOF(vp
);
765 ASSERT(MUTEX_HELD(&fnp
->fn_lock
->flk_lock
));
767 cleanlocks(vp
, curproc
->p_pid
, 0);
768 cleanshares(vp
, curproc
->p_pid
);
775 cv_broadcast(&fnp
->fn_wait_cv
);
780 * Insert a fifonode-vnode pair onto the fifoalloc hash list.
783 fifoinsert(fifonode_t
*fnp
)
785 int idx
= FIFOHASH(fnp
->fn_realvp
);
788 * We don't need to hold fn_lock since we're holding ftable_lock and
789 * this routine is only called right after we've allocated an fnode.
790 * FIFO is inserted at head of NULL terminated doubly linked list.
793 ASSERT(MUTEX_HELD(&ftable_lock
));
794 fnp
->fn_backp
= NULL
;
795 fnp
->fn_nextp
= fifoalloc
[idx
];
796 fifoalloc
[idx
] = fnp
;
798 fnp
->fn_nextp
->fn_backp
= fnp
;
802 * Find a fifonode-vnode pair on the fifoalloc hash list.
803 * vp is a vnode to be shadowed. If it's on the hash list,
804 * it already has a shadow, therefore return its corresponding
808 fifofind(vnode_t
*vp
)
812 ASSERT(MUTEX_HELD(&ftable_lock
));
813 for (fnode
= fifoalloc
[FIFOHASH(vp
)]; fnode
; fnode
= fnode
->fn_nextp
) {
814 if (fnode
->fn_realvp
== vp
) {
815 VN_HOLD(FTOV(fnode
));
823 * Remove a fifonode-vnode pair from the fifoalloc hash list.
824 * This routine is called from the fifo_inactive() routine when a
825 * FIFO is being released.
826 * If the link to be removed is the only link, set fifoalloc to NULL.
829 fiforemove(fifonode_t
*fnp
)
831 int idx
= FIFOHASH(fnp
->fn_realvp
);
834 ASSERT(MUTEX_HELD(&ftable_lock
));
835 fnode
= fifoalloc
[idx
];
837 * fast path... only 1 FIFO in this list entry
839 if (fnode
!= NULL
&& fnode
== fnp
&&
840 !fnode
->fn_nextp
&& !fnode
->fn_backp
) {
841 fifoalloc
[idx
] = NULL
;
844 for (; fnode
; fnode
= fnode
->fn_nextp
) {
847 * if we are first entry
849 if (fnp
== fifoalloc
[idx
])
850 fifoalloc
[idx
] = fnp
->fn_nextp
;
852 fnode
->fn_nextp
->fn_backp
=
855 fnode
->fn_backp
->fn_nextp
=
864 * Flush all data from a fifo's message queue
868 fifo_fastflush(fifonode_t
*fnp
)
871 ASSERT(MUTEX_HELD(&fnp
->fn_lock
->flk_lock
));
873 if ((bp
= fnp
->fn_mp
) != NULL
) {
878 fifo_wakewriter(fnp
->fn_dest
, fnp
->fn_lock
);
882 * Note: This routine is single threaded
883 * Protected by FIFOOPEN flag (i.e. flk_lock is not held)
884 * Upon successful completion, the original fifo is unlocked
885 * and FIFOOPEN is cleared for the original vpp.
886 * The new fifo returned has FIFOOPEN set.
889 fifo_connld(struct vnode
**vpp
, int flag
, cred_t
*crp
)
893 struct fifonode
*oldfnp
;
894 struct fifonode
*fn_dest
;
897 struct fifolock
*fn_lock
;
901 * Get two vnodes that will represent the pipe ends for the new pipe.
903 makepipe(&vp1
, &vp2
);
906 * Allocate a file descriptor and file pointer for one of the pipe
907 * ends. The file descriptor will be used to send that pipe end to
908 * the process on the other end of this stream. Note that we get
909 * the file structure only, there is no file list entry allocated.
911 if (error
= falloc(vp1
, FWRITE
|FREAD
, &filep
, NULL
)) {
916 mutex_exit(&filep
->f_tlock
);
918 fn_lock
= oldfnp
->fn_lock
;
919 fn_dest
= oldfnp
->fn_dest
;
922 * Create two new stream heads and attach them to the two vnodes for
925 if ((error
= fifo_stropen(&vp1
, FREAD
|FWRITE
, filep
->f_cred
, 0, 0)) !=
927 (error
= fifo_stropen(&vp2
, flag
, filep
->f_cred
, 0, 0)) != 0) {
929 cmn_err(CE_NOTE
, "fifo stropen failed error 0x%x", error
);
932 * this will call fifo_close and VN_RELE on vp1
934 (void) closef(filep
);
940 * twist the ends of the pipe together
945 * Set our end to busy in open
946 * Note: Don't need lock around this because we're the only
947 * one who knows about it
949 VTOF(vp2
)->fn_flag
|= FIFOOPEN
;
951 mutex_enter(&fn_lock
->flk_lock
);
953 fn_dest
->fn_flag
|= FIFOSEND
;
955 * check to make sure neither end of pipe has gone away
957 if (!(fn_dest
->fn_flag
& FIFOISOPEN
)) {
959 fn_dest
->fn_flag
&= ~FIFOSEND
;
960 mutex_exit(&fn_lock
->flk_lock
);
962 * this will call fifo_close and VN_RELE on vp1
966 mutex_exit(&fn_lock
->flk_lock
);
969 * Tag the sender's credential on the pipe descriptor.
971 crhold(VTOF(vp1
)->fn_pcredp
= crp
);
972 VTOF(vp1
)->fn_cpid
= curproc
->p_pid
;
975 * send the file descriptor to other end of pipe
977 if (error
= do_sendfp((*vpp
)->v_stream
, filep
, crp
)) {
978 mutex_enter(&fn_lock
->flk_lock
);
979 fn_dest
->fn_flag
&= ~FIFOSEND
;
980 mutex_exit(&fn_lock
->flk_lock
);
982 * this will call fifo_close and VN_RELE on vp1
987 mutex_enter(&fn_lock
->flk_lock
);
989 * Wait for other end to receive file descriptor
990 * FIFOCLOSE indicates that one or both sides of the pipe
993 while ((fn_dest
->fn_flag
& (FIFOCLOSE
| FIFOSEND
)) == FIFOSEND
) {
994 if (!cv_wait_sig(&oldfnp
->fn_wait_cv
, &fn_lock
->flk_lock
)) {
996 fn_dest
->fn_flag
&= ~FIFOSEND
;
997 mutex_exit(&fn_lock
->flk_lock
);
1002 * If either end of pipe has gone away and the other end did not
1003 * receive pipe, reject the connld open
1005 if ((fn_dest
->fn_flag
& FIFOSEND
)) {
1007 fn_dest
->fn_flag
&= ~FIFOSEND
;
1008 mutex_exit(&fn_lock
->flk_lock
);
1012 oldfnp
->fn_flag
&= ~FIFOOPEN
;
1013 cv_broadcast(&oldfnp
->fn_wait_cv
);
1014 mutex_exit(&fn_lock
->flk_lock
);
1018 (void) closef(filep
);
1023 (void) closef(filep
);
1024 VTOF(vp2
)->fn_flag
&= ~FIFOOPEN
;
1025 (void) fifo_close(vp2
, flag
, 1, (offset_t
)0, c
, NULL
);
1032 * Disable fastpath mode.
1035 fifo_fastoff(fifonode_t
*fnp
)
1037 ASSERT(MUTEX_HELD(&fnp
->fn_lock
->flk_lock
));
1038 ASSERT(FTOV(fnp
)->v_stream
);
1040 /* FIFOSTAYFAST is set => FIFOFAST is set */
1041 while ((fnp
->fn_flag
& FIFOSTAYFAST
) || ((fnp
->fn_flag
& ISPIPE
) &&
1042 (fnp
->fn_dest
->fn_flag
& FIFOSTAYFAST
))) {
1043 ASSERT(fnp
->fn_flag
& FIFOFAST
);
1044 /* indicate someone is waiting to turn into stream mode */
1045 fnp
->fn_flag
|= FIFOWAITMODE
;
1046 cv_wait(&fnp
->fn_wait_cv
, &fnp
->fn_lock
->flk_lock
);
1047 fnp
->fn_flag
&= ~FIFOWAITMODE
;
1050 /* as we may have relased the lock, test the FIFOFAST flag here */
1051 if (!(fnp
->fn_flag
& FIFOFAST
))
1055 cmn_err(CE_NOTE
, "Fifo reverting to streams mode\n");
1058 fifo_fastturnoff(fnp
);
1059 if (fnp
->fn_flag
& ISPIPE
) {
1060 fifo_fastturnoff(fnp
->fn_dest
);
1066 * flk_lock must be held while calling fifo_fastturnoff() to
1067 * preserve data ordering (no reads or writes allowed)
1071 fifo_fastturnoff(fifonode_t
*fnp
)
1073 fifonode_t
*fn_dest
= fnp
->fn_dest
;
1077 ASSERT(MUTEX_HELD(&fnp
->fn_lock
->flk_lock
));
1079 * Note: This end can't be closed if there
1082 if ((fn_mp
= fnp
->fn_mp
) != NULL
) {
1083 ASSERT(fnp
->fn_flag
& FIFOISOPEN
);
1084 ASSERT(FTOV(fnp
)->v_stream
!= NULL
);
1085 ASSERT(FTOV(fnp
)->v_stream
->sd_wrq
!= NULL
);
1086 ASSERT(RD(FTOV(fnp
)->v_stream
->sd_wrq
) != NULL
);
1087 ASSERT(strvp2wq(FTOV(fnp
)) != NULL
);
1091 * Don't need to drop flk_lock across the put()
1092 * since we're just moving the message from the fifo
1093 * node to the STREAM head...
1095 put(RD(strvp2wq(FTOV(fnp
))), fn_mp
);
1099 * Need to re-issue any pending poll requests
1100 * so that the STREAMS framework sees them
1101 * Writers would be waiting on fnp and readers on fn_dest
1103 if ((fnp
->fn_flag
& (FIFOISOPEN
| FIFOPOLLW
)) ==
1104 (FIFOISOPEN
| FIFOPOLLW
)) {
1105 strpollwakeup(FTOV(fnp
), POLLWRNORM
);
1107 fn_flag
= fn_dest
->fn_flag
;
1108 if ((fn_flag
& FIFOISOPEN
) == FIFOISOPEN
) {
1109 if ((fn_flag
& (FIFOPOLLR
| FIFOPOLLRBAND
))) {
1110 strpollwakeup(FTOV(fn_dest
), POLLIN
|POLLRDNORM
);
1114 * wake up any sleeping processes so they can notice we went
1117 fnp
->fn_flag
&= ~(FIFOFAST
|FIFOWANTW
|FIFOWANTR
);
1118 cv_broadcast(&fnp
->fn_wait_cv
);
1122 * Alternative version of fifo_fastoff()
1123 * optimized for putmsg/getmsg.
1126 fifo_vfastoff(vnode_t
*vp
)
1128 fifonode_t
*fnp
= VTOF(vp
);
1130 mutex_enter(&fnp
->fn_lock
->flk_lock
);
1131 if (!(fnp
->fn_flag
& FIFOFAST
)) {
1132 mutex_exit(&fnp
->fn_lock
->flk_lock
);
1136 mutex_exit(&fnp
->fn_lock
->flk_lock
);
1140 * Wake any sleeping writers, poll and send signals if necessary
1141 * This module is only called when we drop below the hi water mark
1142 * FIFOWANTW indicates that a process is sleeping in fifo_write()
1143 * FIFOHIWATW indicates that we have either attempted a poll or
1144 * non-blocking write and were over the high water mark
1145 * This routine assumes a low water mark of 0.
1149 fifo_wakewriter(fifonode_t
*fn_dest
, fifolock_t
*fn_lock
)
1151 int fn_dflag
= fn_dest
->fn_flag
;
1153 ASSERT(MUTEX_HELD(&fn_lock
->flk_lock
));
1154 ASSERT(fn_dest
->fn_dest
->fn_count
< Fifohiwat
);
1155 if ((fn_dflag
& FIFOWANTW
)) {
1156 cv_broadcast(&fn_dest
->fn_wait_cv
);
1158 if ((fn_dflag
& (FIFOHIWATW
| FIFOISOPEN
)) ==
1159 (FIFOHIWATW
| FIFOISOPEN
)) {
1160 if (fn_dflag
& FIFOPOLLW
)
1161 strpollwakeup(FTOV(fn_dest
), POLLWRNORM
);
1162 if (fn_dflag
& FIFOSETSIG
)
1163 str_sendsig(FTOV(fn_dest
), S_WRNORM
, 0, 0);
1166 * FIFOPOLLW can't be set without setting FIFOHIWAT
1167 * This allows us to clear both here.
1169 fn_dest
->fn_flag
= fn_dflag
& ~(FIFOWANTW
| FIFOHIWATW
| FIFOPOLLW
);
1173 * wake up any sleeping readers, poll or send signal if needed
1174 * FIFOWANTR indicates that a process is waiting in fifo_read() for data
1175 * FIFOSETSIG indicates that SIGPOLL should be sent to process
1176 * FIFOPOLLR indicates that a poll request for reading on the fifo was made
1180 fifo_wakereader(fifonode_t
*fn_dest
, fifolock_t
*fn_lock
)
1182 int fn_dflag
= fn_dest
->fn_flag
;
1184 ASSERT(MUTEX_HELD(&fn_lock
->flk_lock
));
1185 if (fn_dflag
& FIFOWANTR
) {
1186 cv_broadcast(&fn_dest
->fn_wait_cv
);
1188 if (fn_dflag
& FIFOISOPEN
) {
1189 if (fn_dflag
& FIFOPOLLR
)
1190 strpollwakeup(FTOV(fn_dest
), POLLIN
| POLLRDNORM
);
1191 if (fn_dflag
& FIFOSETSIG
)
1192 str_sendsig(FTOV(fn_dest
), S_INPUT
| S_RDNORM
, 0, 0);
1194 fn_dest
->fn_flag
= fn_dflag
& ~(FIFOWANTR
| FIFOPOLLR
);