dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / kernel / fs / nfs / nfs3_vnops.c
blob728f61ae77b3ee451ab8ab0cdcc3eb0ea44ece84
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 * All rights reserved.
32 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
33 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/cred.h>
40 #include <sys/time.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/uio.h>
46 #include <sys/buf.h>
47 #include <sys/mman.h>
48 #include <sys/pathname.h>
49 #include <sys/dirent.h>
50 #include <sys/debug.h>
51 #include <sys/vmsystm.h>
52 #include <sys/fcntl.h>
53 #include <sys/flock.h>
54 #include <sys/swap.h>
55 #include <sys/errno.h>
56 #include <sys/strsubr.h>
57 #include <sys/sysmacros.h>
58 #include <sys/kmem.h>
59 #include <sys/cmn_err.h>
60 #include <sys/pathconf.h>
61 #include <sys/utsname.h>
62 #include <sys/dnlc.h>
63 #include <sys/acl.h>
64 #include <sys/systeminfo.h>
65 #include <sys/atomic.h>
66 #include <sys/policy.h>
67 #include <sys/sdt.h>
68 #include <sys/zone.h>
70 #include <rpc/types.h>
71 #include <rpc/auth.h>
72 #include <rpc/clnt.h>
73 #include <rpc/rpc_rdma.h>
75 #include <nfs/nfs.h>
76 #include <nfs/nfs_clnt.h>
77 #include <nfs/rnode.h>
78 #include <nfs/nfs_acl.h>
79 #include <nfs/lm.h>
81 #include <vm/hat.h>
82 #include <vm/as.h>
83 #include <vm/page.h>
84 #include <vm/pvn.h>
85 #include <vm/seg.h>
86 #include <vm/seg_map.h>
87 #include <vm/seg_kpm.h>
88 #include <vm/seg_vn.h>
90 #include <sys/fs_subr.h>
92 #include <sys/ddi.h>
94 static int nfs3_rdwrlbn(vnode_t *, page_t *, uoff_t, size_t, int,
95 cred_t *);
96 static int nfs3write(vnode_t *, caddr_t, uoff_t, int, cred_t *,
97 stable_how *);
98 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
99 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
100 static int nfs3_accessx(void *, int, cred_t *);
101 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
102 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
103 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
104 int, vnode_t **, cred_t *, int);
105 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
106 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
107 int, vnode_t **, cred_t *);
108 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
109 caller_context_t *);
110 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
111 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
112 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
113 static int nfs3_bio(struct buf *, stable_how *, cred_t *);
114 static int nfs3_getapage(vnode_t *, uoff_t, size_t, uint_t *,
115 page_t *[], size_t, struct seg *, caddr_t,
116 enum seg_rw, cred_t *);
117 static void nfs3_readahead(vnode_t *, uoff_t, caddr_t, struct seg *,
118 cred_t *);
119 static int nfs3_sync_putapage(vnode_t *, page_t *, uoff_t, size_t,
120 int, cred_t *);
121 static int nfs3_sync_pageio(vnode_t *, page_t *, uoff_t, size_t,
122 int, cred_t *);
123 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *);
124 static void nfs3_set_mod(vnode_t *);
125 static void nfs3_get_commit(vnode_t *);
126 static void nfs3_get_commit_range(vnode_t *, uoff_t, size_t);
127 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
128 static int nfs3_commit_vp(vnode_t *, uoff_t, size_t, cred_t *);
129 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
130 cred_t *);
131 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
132 cred_t *);
133 static void nfs3_delmap_callback(struct as *, void *, uint_t);
136 * Error flags used to pass information about certain special errors
137 * which need to be handled specially.
139 #define NFS_EOF -98
140 #define NFS_VERF_MISMATCH -97
142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
143 #define ALIGN64(x, ptr, sz) \
144 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
145 if (x) { \
146 x = sizeof (uint64_t) - (x); \
147 sz -= (x); \
148 ptr += (x); \
152 * These are the vnode ops routines which implement the vnode interface to
153 * the networked file system. These routines just take their parameters,
154 * make them look networkish by putting the right info into interface structs,
155 * and then calling the appropriate remote routine(s) to do the work.
157 * Note on directory name lookup cacheing: If we detect a stale fhandle,
158 * we purge the directory cache relative to that vnode. This way, the
159 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
160 * more details on rnode locking.
163 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
164 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
165 caller_context_t *);
166 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *,
167 caller_context_t *);
168 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *,
169 caller_context_t *);
170 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
171 caller_context_t *);
172 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
173 caller_context_t *);
174 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
175 caller_context_t *);
176 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
177 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *,
178 caller_context_t *);
179 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
180 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
181 static int nfs3_lookup(vnode_t *, char *, vnode_t **,
182 struct pathname *, int, vnode_t *, cred_t *,
183 caller_context_t *, int *, pathname_t *);
184 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
185 int, vnode_t **, cred_t *, int, caller_context_t *,
186 vsecattr_t *);
187 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
188 int);
189 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
190 caller_context_t *, int);
191 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
192 caller_context_t *, int);
193 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
194 cred_t *, caller_context_t *, int, vsecattr_t *);
195 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
196 caller_context_t *, int);
197 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
198 cred_t *, caller_context_t *, int);
199 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
200 caller_context_t *, int);
201 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
202 static int nfs3_rwlock(vnode_t *, int, caller_context_t *);
203 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *);
204 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
205 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
206 page_t *[], size_t, struct seg *, caddr_t,
207 enum seg_rw, cred_t *, caller_context_t *);
208 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
209 caller_context_t *);
210 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
211 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
212 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
213 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
214 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
215 struct flk_callback *, cred_t *, caller_context_t *);
216 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
217 cred_t *, caller_context_t *);
218 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
219 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
220 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
221 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
222 caller_context_t *);
223 static int nfs3_pageio(vnode_t *, page_t *, uoff_t, size_t, int,
224 cred_t *, caller_context_t *);
225 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
226 caller_context_t *);
227 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
228 caller_context_t *);
229 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
230 caller_context_t *);
231 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
232 caller_context_t *);
234 const struct vnodeops nfs3_vnodeops = {
235 .vnop_name = "nfs3",
236 .vop_open = nfs3_open,
237 .vop_close = nfs3_close,
238 .vop_read = nfs3_read,
239 .vop_write = nfs3_write,
240 .vop_ioctl = nfs3_ioctl,
241 .vop_getattr = nfs3_getattr,
242 .vop_setattr = nfs3_setattr,
243 .vop_access = nfs3_access,
244 .vop_lookup = nfs3_lookup,
245 .vop_create = nfs3_create,
246 .vop_remove = nfs3_remove,
247 .vop_link = nfs3_link,
248 .vop_rename = nfs3_rename,
249 .vop_mkdir = nfs3_mkdir,
250 .vop_rmdir = nfs3_rmdir,
251 .vop_readdir = nfs3_readdir,
252 .vop_symlink = nfs3_symlink,
253 .vop_readlink = nfs3_readlink,
254 .vop_fsync = nfs3_fsync,
255 .vop_inactive = nfs3_inactive,
256 .vop_fid = nfs3_fid,
257 .vop_rwlock = nfs3_rwlock,
258 .vop_rwunlock = nfs3_rwunlock,
259 .vop_seek = nfs3_seek,
260 .vop_frlock = nfs3_frlock,
261 .vop_space = nfs3_space,
262 .vop_realvp = nfs3_realvp,
263 .vop_getpage = nfs3_getpage,
264 .vop_putpage = nfs3_putpage,
265 .vop_map = nfs3_map,
266 .vop_addmap = nfs3_addmap,
267 .vop_delmap = nfs3_delmap,
268 /* no separate nfs3_dump */
269 .vop_dump = nfs_dump,
270 .vop_pathconf = nfs3_pathconf,
271 .vop_pageio = nfs3_pageio,
272 .vop_dispose = nfs3_dispose,
273 .vop_setsecattr = nfs3_setsecattr,
274 .vop_getsecattr = nfs3_getsecattr,
275 .vop_shrlock = nfs3_shrlock,
276 .vop_vnevent = fs_vnevent_support,
280 * XXX: This is referenced in modstubs.s
282 const struct vnodeops *
283 nfs3_getvnodeops(void)
285 return (&nfs3_vnodeops);
288 /* ARGSUSED */
289 static int
290 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
292 int error;
293 struct vattr va;
294 rnode_t *rp;
295 vnode_t *vp;
297 vp = *vpp;
298 if (nfs_zone() != VTOMI(vp)->mi_zone)
299 return (EIO);
300 rp = VTOR(vp);
301 mutex_enter(&rp->r_statelock);
302 if (rp->r_cred == NULL) {
303 crhold(cr);
304 rp->r_cred = cr;
306 mutex_exit(&rp->r_statelock);
309 * If there is no cached data or if close-to-open
310 * consistency checking is turned off, we can avoid
311 * the over the wire getattr. Otherwise, if the
312 * file system is mounted readonly, then just verify
313 * the caches are up to date using the normal mechanism.
314 * Else, if the file is not mmap'd, then just mark
315 * the attributes as timed out. They will be refreshed
316 * and the caches validated prior to being used.
317 * Else, the file system is mounted writeable so
318 * force an over the wire GETATTR in order to ensure
319 * that all cached data is valid.
321 if (vp->v_count > 1 ||
322 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
323 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
324 if (vn_is_readonly(vp))
325 error = nfs3_validate_caches(vp, cr);
326 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
327 PURGE_ATTRCACHE(vp);
328 error = 0;
329 } else {
330 va.va_mask = AT_ALL;
331 error = nfs3_getattr_otw(vp, &va, cr);
333 } else
334 error = 0;
336 return (error);
339 /* ARGSUSED */
340 static int
341 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
342 caller_context_t *ct)
344 rnode_t *rp;
345 int error;
346 struct vattr va;
349 * zone_enter(2) prevents processes from changing zones with NFS files
350 * open; if we happen to get here from the wrong zone we can't do
351 * anything over the wire.
353 if (VTOMI(vp)->mi_zone != nfs_zone()) {
355 * We could attempt to clean up locks, except we're sure
356 * that the current process didn't acquire any locks on
357 * the file: any attempt to lock a file belong to another zone
358 * will fail, and one can't lock an NFS file and then change
359 * zones, as that fails too.
361 * Returning an error here is the sane thing to do. A
362 * subsequent call to VN_RELE() which translates to a
363 * nfs3_inactive() will clean up state: if the zone of the
364 * vnode's origin is still alive and kicking, an async worker
365 * thread will handle the request (from the correct zone), and
366 * everything (minus the commit and final nfs3_getattr_otw()
367 * call) should be OK. If the zone is going away
368 * nfs_async_inactive() will throw away cached pages inline.
370 return (EIO);
374 * If we are using local locking for this filesystem, then
375 * release all of the SYSV style record locks. Otherwise,
376 * we are doing network locking and we need to release all
377 * of the network locks. All of the locks held by this
378 * process on this file are released no matter what the
379 * incoming reference count is.
381 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
382 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
383 cleanshares(vp, ttoproc(curthread)->p_pid);
384 } else
385 nfs_lockrelease(vp, flag, offset, cr);
387 if (count > 1)
388 return (0);
391 * If the file has been `unlinked', then purge the
392 * DNLC so that this vnode will get reycled quicker
393 * and the .nfs* file on the server will get removed.
395 rp = VTOR(vp);
396 if (rp->r_unldvp != NULL)
397 dnlc_purge_vp(vp);
400 * If the file was open for write and there are pages,
401 * then if the file system was mounted using the "no-close-
402 * to-open" semantics, then start an asynchronous flush
403 * of the all of the pages in the file.
404 * else the file system was not mounted using the "no-close-
405 * to-open" semantics, then do a synchronous flush and
406 * commit of all of the dirty and uncommitted pages.
408 * The asynchronous flush of the pages in the "nocto" path
409 * mostly just associates a cred pointer with the rnode so
410 * writes which happen later will have a better chance of
411 * working. It also starts the data being written to the
412 * server, but without unnecessarily delaying the application.
414 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
415 if (VTOMI(vp)->mi_flags & MI_NOCTO) {
416 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
417 cr, ct);
418 if (error == EAGAIN)
419 error = 0;
420 } else
421 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
422 if (!error) {
423 mutex_enter(&rp->r_statelock);
424 error = rp->r_error;
425 rp->r_error = 0;
426 mutex_exit(&rp->r_statelock);
428 } else {
429 mutex_enter(&rp->r_statelock);
430 error = rp->r_error;
431 rp->r_error = 0;
432 mutex_exit(&rp->r_statelock);
436 * If RWRITEATTR is set, then issue an over the wire GETATTR to
437 * refresh the attribute cache with a set of attributes which
438 * weren't returned from a WRITE. This will enable the close-
439 * to-open processing to work.
441 if (rp->r_flags & RWRITEATTR)
442 (void) nfs3_getattr_otw(vp, &va, cr);
444 return (error);
447 /* ARGSUSED */
448 static int
449 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
451 mntinfo_t *mi;
452 READ3args args;
453 READ3uiores res;
454 int tsize;
455 offset_t offset;
456 ssize_t count;
457 int error;
458 int douprintf;
459 failinfo_t fi;
460 char *sv_hostname;
462 mi = VTOMI(vp);
463 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
464 sv_hostname = VTOR(vp)->r_server->sv_hostname;
466 douprintf = 1;
467 args.file = *VTOFH3(vp);
468 fi.vp = vp;
469 fi.fhp = (caddr_t)&args.file;
470 fi.copyproc = nfs3copyfh;
471 fi.lookupproc = nfs3lookup;
472 fi.xattrdirproc = acl_getxattrdir3;
474 res.uiop = uiop;
476 res.wlist = NULL;
478 offset = uiop->uio_loffset;
479 count = uiop->uio_resid;
481 do {
482 if (mi->mi_io_kstats) {
483 mutex_enter(&mi->mi_lock);
484 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
485 mutex_exit(&mi->mi_lock);
488 do {
489 tsize = MIN(mi->mi_tsize, count);
490 args.offset = (offset3)offset;
491 args.count = (count3)tsize;
492 res.size = (uint_t)tsize;
493 args.res_uiop = uiop;
494 args.res_data_val_alt = NULL;
496 error = rfs3call(mi, NFSPROC3_READ,
497 xdr_READ3args, (caddr_t)&args,
498 xdr_READ3uiores, (caddr_t)&res, cr,
499 &douprintf, &res.status, 0, &fi);
500 } while (error == ENFS_TRYAGAIN);
502 if (mi->mi_io_kstats) {
503 mutex_enter(&mi->mi_lock);
504 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
505 mutex_exit(&mi->mi_lock);
508 if (error)
509 return (error);
511 error = geterrno3(res.status);
512 if (error)
513 return (error);
515 if (res.count != res.size) {
516 zcmn_err(getzoneid(), CE_WARN,
517 "nfs3_directio_read: server %s returned incorrect amount",
518 sv_hostname);
519 return (EIO);
521 count -= res.count;
522 offset += res.count;
523 if (mi->mi_io_kstats) {
524 mutex_enter(&mi->mi_lock);
525 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
526 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
527 mutex_exit(&mi->mi_lock);
529 lwp_stat_update(LWP_STAT_INBLK, 1);
530 } while (count && !res.eof);
532 return (0);
535 /* ARGSUSED */
536 static int
537 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
538 caller_context_t *ct)
540 rnode_t *rp;
541 uoff_t off;
542 offset_t diff;
543 int on;
544 size_t n;
545 caddr_t base;
546 uint_t flags;
547 int error = 0;
548 mntinfo_t *mi;
550 rp = VTOR(vp);
551 mi = VTOMI(vp);
553 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
555 if (nfs_zone() != mi->mi_zone)
556 return (EIO);
558 if (vp->v_type != VREG)
559 return (EISDIR);
561 if (uiop->uio_resid == 0)
562 return (0);
564 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
565 return (EINVAL);
568 * Bypass VM if caching has been disabled (e.g., locking) or if
569 * using client-side direct I/O and the file is not mmap'd and
570 * there are no cached pages.
572 if ((vp->v_flag & VNOCACHE) ||
573 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
574 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
575 !vn_has_cached_data(vp))) {
576 return (nfs3_directio_read(vp, uiop, cr));
579 do {
580 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
581 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
582 n = MIN(MAXBSIZE - on, uiop->uio_resid);
584 error = nfs3_validate_caches(vp, cr);
585 if (error)
586 break;
588 mutex_enter(&rp->r_statelock);
589 while (rp->r_flags & RINCACHEPURGE) {
590 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
591 mutex_exit(&rp->r_statelock);
592 return (EINTR);
595 diff = rp->r_size - uiop->uio_loffset;
596 mutex_exit(&rp->r_statelock);
597 if (diff <= 0)
598 break;
599 if (diff < n)
600 n = (size_t)diff;
602 if (vpm_enable) {
604 * Copy data.
606 error = vpm_data_copy(vp, off + on, n, uiop,
607 1, NULL, 0, S_READ);
608 } else {
609 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
610 S_READ);
612 error = uiomove(base + on, n, UIO_READ, uiop);
615 if (!error) {
617 * If read a whole block or read to eof,
618 * won't need this buffer again soon.
620 mutex_enter(&rp->r_statelock);
621 if (n + on == MAXBSIZE ||
622 uiop->uio_loffset == rp->r_size)
623 flags = SM_DONTNEED;
624 else
625 flags = 0;
626 mutex_exit(&rp->r_statelock);
627 if (vpm_enable) {
628 error = vpm_sync_pages(vp, off, n, flags);
629 } else {
630 error = segmap_release(segkmap, base, flags);
632 } else {
633 if (vpm_enable) {
634 (void) vpm_sync_pages(vp, off, n, 0);
635 } else {
636 (void) segmap_release(segkmap, base, 0);
639 } while (!error && uiop->uio_resid > 0);
641 return (error);
644 /* ARGSUSED */
645 static int
646 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
647 caller_context_t *ct)
649 rlim64_t limit = uiop->uio_llimit;
650 rnode_t *rp;
651 uoff_t off;
652 caddr_t base;
653 uint_t flags;
654 int remainder;
655 size_t n;
656 int on;
657 int error;
658 int resid;
659 offset_t offset;
660 mntinfo_t *mi;
661 uint_t bsize;
663 rp = VTOR(vp);
665 if (vp->v_type != VREG)
666 return (EISDIR);
668 mi = VTOMI(vp);
669 if (nfs_zone() != mi->mi_zone)
670 return (EIO);
671 if (uiop->uio_resid == 0)
672 return (0);
674 if (ioflag & FAPPEND) {
675 struct vattr va;
678 * Must serialize if appending.
680 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
681 nfs_rw_exit(&rp->r_rwlock);
682 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
683 INTR(vp)))
684 return (EINTR);
687 va.va_mask = AT_SIZE;
688 error = nfs3getattr(vp, &va, cr);
689 if (error)
690 return (error);
691 uiop->uio_loffset = va.va_size;
694 offset = uiop->uio_loffset + uiop->uio_resid;
696 if (uiop->uio_loffset < 0 || offset < 0)
697 return (EINVAL);
699 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
700 limit = MAXOFFSET_T;
703 * Check to make sure that the process will not exceed
704 * its limit on file size. It is okay to write up to
705 * the limit, but not beyond. Thus, the write which
706 * reaches the limit will be short and the next write
707 * will return an error.
709 remainder = 0;
710 if (offset > limit) {
711 remainder = offset - limit;
712 uiop->uio_resid = limit - uiop->uio_loffset;
713 if (uiop->uio_resid <= 0) {
714 proc_t *p = ttoproc(curthread);
716 uiop->uio_resid += remainder;
717 mutex_enter(&p->p_lock);
718 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
719 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
720 mutex_exit(&p->p_lock);
721 return (EFBIG);
725 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
726 return (EINTR);
729 * Bypass VM if caching has been disabled (e.g., locking) or if
730 * using client-side direct I/O and the file is not mmap'd and
731 * there are no cached pages.
733 if ((vp->v_flag & VNOCACHE) ||
734 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
735 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
736 !vn_has_cached_data(vp))) {
737 size_t bufsize;
738 int count;
739 uoff_t org_offset;
740 stable_how stab_comm;
742 nfs3_fwrite:
743 if (rp->r_flags & RSTALE) {
744 resid = uiop->uio_resid;
745 offset = uiop->uio_loffset;
746 error = rp->r_error;
748 * A close may have cleared r_error, if so,
749 * propagate ESTALE error return properly
751 if (error == 0)
752 error = ESTALE;
753 goto bottom;
755 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
756 base = kmem_alloc(bufsize, KM_SLEEP);
757 do {
758 if (ioflag & FDSYNC)
759 stab_comm = DATA_SYNC;
760 else
761 stab_comm = FILE_SYNC;
762 resid = uiop->uio_resid;
763 offset = uiop->uio_loffset;
764 count = MIN(uiop->uio_resid, bufsize);
765 org_offset = uiop->uio_loffset;
766 error = uiomove(base, count, UIO_WRITE, uiop);
767 if (!error) {
768 error = nfs3write(vp, base, org_offset,
769 count, cr, &stab_comm);
771 } while (!error && uiop->uio_resid > 0);
772 kmem_free(base, bufsize);
773 goto bottom;
777 bsize = vp->v_vfsp->vfs_bsize;
779 do {
780 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
781 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
782 n = MIN(MAXBSIZE - on, uiop->uio_resid);
784 resid = uiop->uio_resid;
785 offset = uiop->uio_loffset;
787 if (rp->r_flags & RSTALE) {
788 error = rp->r_error;
790 * A close may have cleared r_error, if so,
791 * propagate ESTALE error return properly
793 if (error == 0)
794 error = ESTALE;
795 break;
799 * Don't create dirty pages faster than they
800 * can be cleaned so that the system doesn't
801 * get imbalanced. If the async queue is
802 * maxed out, then wait for it to drain before
803 * creating more dirty pages. Also, wait for
804 * any threads doing pagewalks in the vop_getattr
805 * entry points so that they don't block for
806 * long periods.
808 mutex_enter(&rp->r_statelock);
809 while ((mi->mi_max_threads != 0 &&
810 rp->r_awcount > 2 * mi->mi_max_threads) ||
811 rp->r_gcount > 0) {
812 if (INTR(vp)) {
813 klwp_t *lwp = ttolwp(curthread);
815 if (lwp != NULL)
816 lwp->lwp_nostop++;
817 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
818 mutex_exit(&rp->r_statelock);
819 if (lwp != NULL)
820 lwp->lwp_nostop--;
821 error = EINTR;
822 goto bottom;
824 if (lwp != NULL)
825 lwp->lwp_nostop--;
826 } else
827 cv_wait(&rp->r_cv, &rp->r_statelock);
829 mutex_exit(&rp->r_statelock);
832 * Touch the page and fault it in if it is not in core
833 * before segmap_getmapflt or vpm_data_copy can lock it.
834 * This is to avoid the deadlock if the buffer is mapped
835 * to the same file through mmap which we want to write.
837 uio_prefaultpages((long)n, uiop);
839 if (vpm_enable) {
841 * It will use kpm mappings, so no need to
842 * pass an address.
844 error = writerp(rp, NULL, n, uiop, 0);
845 } else {
846 if (segmap_kpm) {
847 int pon = uiop->uio_loffset & PAGEOFFSET;
848 size_t pn = MIN(PAGESIZE - pon,
849 uiop->uio_resid);
850 int pagecreate;
852 mutex_enter(&rp->r_statelock);
853 pagecreate = (pon == 0) && (pn == PAGESIZE ||
854 uiop->uio_loffset + pn >= rp->r_size);
855 mutex_exit(&rp->r_statelock);
857 base = segmap_getmapflt(segkmap, vp, off + on,
858 pn, !pagecreate, S_WRITE);
860 error = writerp(rp, base + pon, n, uiop,
861 pagecreate);
863 } else {
864 base = segmap_getmapflt(segkmap, vp, off + on,
865 n, 0, S_READ);
866 error = writerp(rp, base + on, n, uiop, 0);
870 if (!error) {
871 if (mi->mi_flags & MI_NOAC)
872 flags = SM_WRITE;
873 else if ((uiop->uio_loffset % bsize) == 0 ||
874 IS_SWAPVP(vp)) {
876 * Have written a whole block.
877 * Start an asynchronous write
878 * and mark the buffer to
879 * indicate that it won't be
880 * needed again soon.
882 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
883 } else
884 flags = 0;
885 if ((ioflag & (FSYNC|FDSYNC)) ||
886 (rp->r_flags & ROUTOFSPACE)) {
887 flags &= ~SM_ASYNC;
888 flags |= SM_WRITE;
890 if (vpm_enable) {
891 error = vpm_sync_pages(vp, off, n, flags);
892 } else {
893 error = segmap_release(segkmap, base, flags);
895 } else {
896 if (vpm_enable) {
897 (void) vpm_sync_pages(vp, off, n, 0);
898 } else {
899 (void) segmap_release(segkmap, base, 0);
902 * In the event that we got an access error while
903 * faulting in a page for a write-only file just
904 * force a write.
906 if (error == EACCES)
907 goto nfs3_fwrite;
909 } while (!error && uiop->uio_resid > 0);
911 bottom:
912 if (error) {
913 uiop->uio_resid = resid + remainder;
914 uiop->uio_loffset = offset;
915 } else
916 uiop->uio_resid += remainder;
918 nfs_rw_exit(&rp->r_lkserlock);
920 return (error);
924 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
926 static int
927 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, uoff_t off, size_t len,
928 int flags, cred_t *cr)
930 struct buf *bp;
931 int error;
932 page_t *savepp;
933 uchar_t fsdata;
934 stable_how stab_comm;
936 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
937 bp = pageio_setup(pp, len, vp, flags);
938 ASSERT(bp != NULL);
941 * pageio_setup should have set b_addr to 0. This
942 * is correct since we want to do I/O on a page
943 * boundary. bp_mapin will use this addr to calculate
944 * an offset, and then set b_addr to the kernel virtual
945 * address it allocated for us.
947 ASSERT(bp->b_un.b_addr == 0);
949 bp->b_edev = 0;
950 bp->b_dev = 0;
951 bp->b_lblkno = lbtodb(off);
952 bp->b_file = vp;
953 bp->b_offset = (offset_t)off;
954 bp_mapin(bp);
957 * Calculate the desired level of stability to write data
958 * on the server and then mark all of the pages to reflect
959 * this.
961 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
962 freemem > desfree) {
963 stab_comm = UNSTABLE;
964 fsdata = C_DELAYCOMMIT;
965 } else {
966 stab_comm = FILE_SYNC;
967 fsdata = C_NOCOMMIT;
970 savepp = pp;
971 do {
972 pp->p_fsdata = fsdata;
973 } while ((pp = pp->p_next) != savepp);
975 error = nfs3_bio(bp, &stab_comm, cr);
977 bp_mapout(bp);
978 pageio_done(bp);
981 * If the server wrote pages in a more stable fashion than
982 * was requested, then clear all of the marks in the pages
983 * indicating that COMMIT operations were required.
985 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
986 do {
987 pp->p_fsdata = C_NOCOMMIT;
988 } while ((pp = pp->p_next) != savepp);
991 return (error);
995 * Write to file. Writes to remote server in largest size
996 * chunks that the server can handle. Write is synchronous.
998 static int
999 nfs3write(vnode_t *vp, caddr_t base, uoff_t offset, int count, cred_t *cr,
1000 stable_how *stab_comm)
1002 mntinfo_t *mi;
1003 WRITE3args args;
1004 WRITE3res res;
1005 int error;
1006 int tsize;
1007 rnode_t *rp;
1008 int douprintf;
1010 rp = VTOR(vp);
1011 mi = VTOMI(vp);
1013 ASSERT(nfs_zone() == mi->mi_zone);
1015 args.file = *VTOFH3(vp);
1016 args.stable = *stab_comm;
1018 *stab_comm = FILE_SYNC;
1020 douprintf = 1;
1022 do {
1023 if ((vp->v_flag & VNOCACHE) ||
1024 (rp->r_flags & RDIRECTIO) ||
1025 (mi->mi_flags & MI_DIRECTIO))
1026 tsize = MIN(mi->mi_stsize, count);
1027 else
1028 tsize = MIN(mi->mi_curwrite, count);
1029 args.offset = (offset3)offset;
1030 args.count = (count3)tsize;
1031 args.data.data_len = (uint_t)tsize;
1032 args.data.data_val = base;
1034 if (mi->mi_io_kstats) {
1035 mutex_enter(&mi->mi_lock);
1036 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1037 mutex_exit(&mi->mi_lock);
1039 args.mblk = NULL;
1040 do {
1041 error = rfs3call(mi, NFSPROC3_WRITE,
1042 xdr_WRITE3args, (caddr_t)&args,
1043 xdr_WRITE3res, (caddr_t)&res, cr,
1044 &douprintf, &res.status, 0, NULL);
1045 } while (error == ENFS_TRYAGAIN);
1046 if (mi->mi_io_kstats) {
1047 mutex_enter(&mi->mi_lock);
1048 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1049 mutex_exit(&mi->mi_lock);
1052 if (error)
1053 return (error);
1054 error = geterrno3(res.status);
1055 if (!error) {
1056 if (res.resok.count > args.count) {
1057 zcmn_err(getzoneid(), CE_WARN,
1058 "nfs3write: server %s wrote %u, "
1059 "requested was %u",
1060 rp->r_server->sv_hostname,
1061 res.resok.count, args.count);
1062 return (EIO);
1064 if (res.resok.committed == UNSTABLE) {
1065 *stab_comm = UNSTABLE;
1066 if (args.stable == DATA_SYNC ||
1067 args.stable == FILE_SYNC) {
1068 zcmn_err(getzoneid(), CE_WARN,
1069 "nfs3write: server %s did not commit to stable storage",
1070 rp->r_server->sv_hostname);
1071 return (EIO);
1074 tsize = (int)res.resok.count;
1075 count -= tsize;
1076 base += tsize;
1077 offset += tsize;
1078 if (mi->mi_io_kstats) {
1079 mutex_enter(&mi->mi_lock);
1080 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
1081 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
1082 tsize;
1083 mutex_exit(&mi->mi_lock);
1085 lwp_stat_update(LWP_STAT_OUBLK, 1);
1086 mutex_enter(&rp->r_statelock);
1087 if (rp->r_flags & RHAVEVERF) {
1088 if (rp->r_verf != res.resok.verf) {
1089 nfs3_set_mod(vp);
1090 rp->r_verf = res.resok.verf;
1092 * If the data was written UNSTABLE,
1093 * then might as well stop because
1094 * the whole block will have to get
1095 * rewritten anyway.
1097 if (*stab_comm == UNSTABLE) {
1098 mutex_exit(&rp->r_statelock);
1099 break;
1102 } else {
1103 rp->r_verf = res.resok.verf;
1104 rp->r_flags |= RHAVEVERF;
1107 * Mark the attribute cache as timed out and
1108 * set RWRITEATTR to indicate that the file
1109 * was modified with a WRITE operation and
1110 * that the attributes can not be trusted.
1112 PURGE_ATTRCACHE_LOCKED(rp);
1113 rp->r_flags |= RWRITEATTR;
1114 mutex_exit(&rp->r_statelock);
1116 } while (!error && count);
1118 return (error);
1122 * Read from a file. Reads data in largest chunks our interface can handle.
1124 static int
1125 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count,
1126 size_t *residp, cred_t *cr)
1128 mntinfo_t *mi;
1129 READ3args args;
1130 READ3vres res;
1131 int tsize;
1132 int error;
1133 int douprintf;
1134 failinfo_t fi;
1135 rnode_t *rp;
1136 struct vattr va;
1137 hrtime_t t;
1139 rp = VTOR(vp);
1140 mi = VTOMI(vp);
1141 ASSERT(nfs_zone() == mi->mi_zone);
1142 douprintf = 1;
1144 args.file = *VTOFH3(vp);
1145 fi.vp = vp;
1146 fi.fhp = (caddr_t)&args.file;
1147 fi.copyproc = nfs3copyfh;
1148 fi.lookupproc = nfs3lookup;
1149 fi.xattrdirproc = acl_getxattrdir3;
1151 res.pov.fres.vp = vp;
1152 res.pov.fres.vap = &va;
1154 res.wlist = NULL;
1155 *residp = count;
1156 do {
1157 if (mi->mi_io_kstats) {
1158 mutex_enter(&mi->mi_lock);
1159 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1160 mutex_exit(&mi->mi_lock);
1163 do {
1164 if ((vp->v_flag & VNOCACHE) ||
1165 (rp->r_flags & RDIRECTIO) ||
1166 (mi->mi_flags & MI_DIRECTIO))
1167 tsize = MIN(mi->mi_tsize, count);
1168 else
1169 tsize = MIN(mi->mi_curread, count);
1170 res.data.data_val = base;
1171 res.data.data_len = tsize;
1172 args.offset = (offset3)offset;
1173 args.count = (count3)tsize;
1174 args.res_uiop = NULL;
1175 args.res_data_val_alt = base;
1177 t = gethrtime();
1178 error = rfs3call(mi, NFSPROC3_READ,
1179 xdr_READ3args, (caddr_t)&args,
1180 xdr_READ3vres, (caddr_t)&res, cr,
1181 &douprintf, &res.status, 0, &fi);
1182 } while (error == ENFS_TRYAGAIN);
1184 if (mi->mi_io_kstats) {
1185 mutex_enter(&mi->mi_lock);
1186 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1187 mutex_exit(&mi->mi_lock);
1190 if (error)
1191 return (error);
1193 error = geterrno3(res.status);
1194 if (error)
1195 return (error);
1197 if (res.count != res.data.data_len) {
1198 zcmn_err(getzoneid(), CE_WARN,
1199 "nfs3read: server %s returned incorrect amount",
1200 rp->r_server->sv_hostname);
1201 return (EIO);
1204 count -= res.count;
1205 *residp = count;
1206 base += res.count;
1207 offset += res.count;
1208 if (mi->mi_io_kstats) {
1209 mutex_enter(&mi->mi_lock);
1210 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1211 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1212 mutex_exit(&mi->mi_lock);
1214 lwp_stat_update(LWP_STAT_INBLK, 1);
1215 } while (count && !res.eof);
1217 if (res.pov.attributes) {
1218 mutex_enter(&rp->r_statelock);
1219 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1220 mutex_exit(&rp->r_statelock);
1221 PURGE_ATTRCACHE(vp);
1222 } else {
1223 if (rp->r_mtime <= t)
1224 nfs_attrcache_va(vp, &va);
1225 mutex_exit(&rp->r_statelock);
1229 return (0);
1232 /* ARGSUSED */
1233 static int
1234 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1235 caller_context_t *ct)
1238 if (nfs_zone() != VTOMI(vp)->mi_zone)
1239 return (EIO);
1240 switch (cmd) {
1241 case _FIODIRECTIO:
1242 return (nfs_directio(vp, (int)arg, cr));
1243 default:
1244 return (ENOTTY);
1248 /* ARGSUSED */
1249 static int
1250 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1251 caller_context_t *ct)
1253 int error;
1254 rnode_t *rp;
1256 if (nfs_zone() != VTOMI(vp)->mi_zone)
1257 return (EIO);
1259 * If it has been specified that the return value will
1260 * just be used as a hint, and we are only being asked
1261 * for size, fsid or rdevid, then return the client's
1262 * notion of these values without checking to make sure
1263 * that the attribute cache is up to date.
1264 * The whole point is to avoid an over the wire GETATTR
1265 * call.
1267 rp = VTOR(vp);
1268 if (flags & ATTR_HINT) {
1269 if (vap->va_mask ==
1270 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1271 mutex_enter(&rp->r_statelock);
1272 if (vap->va_mask | AT_SIZE)
1273 vap->va_size = rp->r_size;
1274 if (vap->va_mask | AT_FSID)
1275 vap->va_fsid = rp->r_attr.va_fsid;
1276 if (vap->va_mask | AT_RDEV)
1277 vap->va_rdev = rp->r_attr.va_rdev;
1278 mutex_exit(&rp->r_statelock);
1279 return (0);
1284 * Only need to flush pages if asking for the mtime
1285 * and if there any dirty pages or any outstanding
1286 * asynchronous (write) requests for this file.
1288 if (vap->va_mask & AT_MTIME) {
1289 if (vn_has_cached_data(vp) &&
1290 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1291 mutex_enter(&rp->r_statelock);
1292 rp->r_gcount++;
1293 mutex_exit(&rp->r_statelock);
1294 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1295 mutex_enter(&rp->r_statelock);
1296 if (error && (error == ENOSPC || error == EDQUOT)) {
1297 if (!rp->r_error)
1298 rp->r_error = error;
1300 if (--rp->r_gcount == 0)
1301 cv_broadcast(&rp->r_cv);
1302 mutex_exit(&rp->r_statelock);
1306 return (nfs3getattr(vp, vap, cr));
1309 /*ARGSUSED4*/
1310 static int
1311 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1312 caller_context_t *ct)
1314 int error;
1315 struct vattr va;
1317 if (vap->va_mask & AT_NOSET)
1318 return (EINVAL);
1319 if (nfs_zone() != VTOMI(vp)->mi_zone)
1320 return (EIO);
1322 va.va_mask = AT_UID | AT_MODE;
1323 error = nfs3getattr(vp, &va, cr);
1324 if (error)
1325 return (error);
1327 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1328 vp);
1329 if (error)
1330 return (error);
1332 error = nfs3setattr(vp, vap, flags, cr);
1334 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
1335 vnevent_truncate(vp, ct);
1337 return (error);
1340 static int
1341 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1343 int error;
1344 uint_t mask;
1345 SETATTR3args args;
1346 SETATTR3res res;
1347 int douprintf;
1348 rnode_t *rp;
1349 struct vattr va;
1350 mode_t omode;
1351 vsecattr_t *vsp;
1352 hrtime_t t;
1354 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1355 mask = vap->va_mask;
1357 rp = VTOR(vp);
1360 * Only need to flush pages if there are any pages and
1361 * if the file is marked as dirty in some fashion. The
1362 * file must be flushed so that we can accurately
1363 * determine the size of the file and the cached data
1364 * after the SETATTR returns. A file is considered to
1365 * be dirty if it is either marked with RDIRTY, has
1366 * outstanding i/o's active, or is mmap'd. In this
1367 * last case, we can't tell whether there are dirty
1368 * pages, so we flush just to be sure.
1370 if (vn_has_cached_data(vp) &&
1371 ((rp->r_flags & RDIRTY) ||
1372 rp->r_count > 0 ||
1373 rp->r_mapcnt > 0)) {
1374 ASSERT(vp->v_type != VCHR);
1375 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1376 if (error && (error == ENOSPC || error == EDQUOT)) {
1377 mutex_enter(&rp->r_statelock);
1378 if (!rp->r_error)
1379 rp->r_error = error;
1380 mutex_exit(&rp->r_statelock);
1384 args.object = *RTOFH3(rp);
1386 * If the intent is for the server to set the times,
1387 * there is no point in have the mask indicating set mtime or
1388 * atime, because the vap values may be junk, and so result
1389 * in an overflow error. Remove these flags from the vap mask
1390 * before calling in this case, and restore them afterwards.
1392 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1393 /* Use server times, so don't set the args time fields */
1394 vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1395 error = vattr_to_sattr3(vap, &args.new_attributes);
1396 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1397 if (mask & AT_ATIME) {
1398 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1400 if (mask & AT_MTIME) {
1401 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1403 } else {
1404 /* Either do not set times or use the client specified times */
1405 error = vattr_to_sattr3(vap, &args.new_attributes);
1408 if (error) {
1409 /* req time field(s) overflow - return immediately */
1410 return (error);
1413 va.va_mask = AT_MODE | AT_CTIME;
1414 error = nfs3getattr(vp, &va, cr);
1415 if (error)
1416 return (error);
1417 omode = va.va_mode;
1419 tryagain:
1420 if (mask & AT_SIZE) {
1421 args.guard.check = TRUE;
1422 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1423 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1424 } else
1425 args.guard.check = FALSE;
1427 douprintf = 1;
1429 t = gethrtime();
1431 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1432 xdr_SETATTR3args, (caddr_t)&args,
1433 xdr_SETATTR3res, (caddr_t)&res, cr,
1434 &douprintf, &res.status, 0, NULL);
1437 * Purge the access cache and ACL cache if changing either the
1438 * owner of the file, the group owner, or the mode. These may
1439 * change the access permissions of the file, so purge old
1440 * information and start over again.
1442 if (mask & (AT_UID | AT_GID | AT_MODE)) {
1443 (void) nfs_access_purge_rp(rp);
1444 if (rp->r_secattr != NULL) {
1445 mutex_enter(&rp->r_statelock);
1446 vsp = rp->r_secattr;
1447 rp->r_secattr = NULL;
1448 mutex_exit(&rp->r_statelock);
1449 if (vsp != NULL)
1450 nfs_acl_free(vsp);
1454 if (error) {
1455 PURGE_ATTRCACHE(vp);
1456 return (error);
1459 error = geterrno3(res.status);
1460 if (!error) {
1462 * If changing the size of the file, invalidate
1463 * any local cached data which is no longer part
1464 * of the file. We also possibly invalidate the
1465 * last page in the file. We could use
1466 * pvn_vpzero(), but this would mark the page as
1467 * modified and require it to be written back to
1468 * the server for no particularly good reason.
1469 * This way, if we access it, then we bring it
1470 * back in. A read should be cheaper than a
1471 * write.
1473 if (mask & AT_SIZE) {
1474 nfs_invalidate_pages(vp,
1475 (vap->va_size & PAGEMASK), cr);
1477 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1479 * Some servers will change the mode to clear the setuid
1480 * and setgid bits when changing the uid or gid. The
1481 * client needs to compensate appropriately.
1483 if (mask & (AT_UID | AT_GID)) {
1484 int terror;
1486 va.va_mask = AT_MODE;
1487 terror = nfs3getattr(vp, &va, cr);
1488 if (!terror &&
1489 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1490 (!(mask & AT_MODE) && va.va_mode != omode))) {
1491 va.va_mask = AT_MODE;
1492 if (mask & AT_MODE)
1493 va.va_mode = vap->va_mode;
1494 else
1495 va.va_mode = omode;
1496 (void) nfs3setattr(vp, &va, 0, cr);
1499 } else {
1500 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1502 * If we got back a "not synchronized" error, then
1503 * we need to retry with a new guard value. The
1504 * guard value used is the change time. If the
1505 * server returned post_op_attr, then we can just
1506 * retry because we have the latest attributes.
1507 * Otherwise, we issue a GETATTR to get the latest
1508 * attributes and then retry. If we couldn't get
1509 * the attributes this way either, then we give
1510 * up because we can't complete the operation as
1511 * required.
1513 if (res.status == NFS3ERR_NOT_SYNC) {
1514 va.va_mask = AT_CTIME;
1515 if (nfs3getattr(vp, &va, cr) == 0)
1516 goto tryagain;
1518 PURGE_STALE_FH(error, vp, cr);
1521 return (error);
1524 static int
1525 nfs3_accessx(void *vp, int mode, cred_t *cr)
1527 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1528 return (nfs3_access(vp, mode, 0, cr, NULL));
1531 /* ARGSUSED */
1532 static int
1533 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1535 int error;
1536 ACCESS3args args;
1537 ACCESS3res res;
1538 int douprintf;
1539 uint32 acc;
1540 rnode_t *rp;
1541 cred_t *cred, *ncr, *ncrfree = NULL;
1542 failinfo_t fi;
1543 nfs_access_type_t cacc;
1544 hrtime_t t;
1546 acc = 0;
1547 if (nfs_zone() != VTOMI(vp)->mi_zone)
1548 return (EIO);
1549 if (mode & VREAD)
1550 acc |= ACCESS3_READ;
1551 if (mode & VWRITE) {
1552 if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1553 return (EROFS);
1554 if (vp->v_type == VDIR)
1555 acc |= ACCESS3_DELETE;
1556 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1558 if (mode & VEXEC) {
1559 if (vp->v_type == VDIR)
1560 acc |= ACCESS3_LOOKUP;
1561 else
1562 acc |= ACCESS3_EXECUTE;
1565 rp = VTOR(vp);
1566 args.object = *VTOFH3(vp);
1567 if (vp->v_type == VDIR) {
1568 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1569 ACCESS3_EXTEND | ACCESS3_LOOKUP;
1570 } else {
1571 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1572 ACCESS3_EXECUTE;
1574 fi.vp = vp;
1575 fi.fhp = (caddr_t)&args.object;
1576 fi.copyproc = nfs3copyfh;
1577 fi.lookupproc = nfs3lookup;
1578 fi.xattrdirproc = acl_getxattrdir3;
1580 cred = cr;
1582 * ncr and ncrfree both initially
1583 * point to the memory area returned
1584 * by crnetadjust();
1585 * ncrfree not NULL when exiting means
1586 * that we need to release it
1588 ncr = crnetadjust(cred);
1589 ncrfree = ncr;
1590 tryagain:
1591 if (rp->r_acache != NULL) {
1592 cacc = nfs_access_check(rp, acc, cred);
1593 if (cacc == NFS_ACCESS_ALLOWED) {
1594 if (ncrfree != NULL)
1595 crfree(ncrfree);
1596 return (0);
1598 if (cacc == NFS_ACCESS_DENIED) {
1600 * If the cred can be adjusted, try again
1601 * with the new cred.
1603 if (ncr != NULL) {
1604 cred = ncr;
1605 ncr = NULL;
1606 goto tryagain;
1608 if (ncrfree != NULL)
1609 crfree(ncrfree);
1610 return (EACCES);
1614 douprintf = 1;
1616 t = gethrtime();
1618 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1619 xdr_ACCESS3args, (caddr_t)&args,
1620 xdr_ACCESS3res, (caddr_t)&res, cred,
1621 &douprintf, &res.status, 0, &fi);
1623 if (error) {
1624 if (ncrfree != NULL)
1625 crfree(ncrfree);
1626 return (error);
1629 error = geterrno3(res.status);
1630 if (!error) {
1631 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1632 nfs_access_cache(rp, args.access, res.resok.access, cred);
1634 * we just cached results with cred; if cred is the
1635 * adjusted credentials from crnetadjust, we do not want
1636 * to release them before exiting: hence setting ncrfree
1637 * to NULL
1639 if (cred != cr)
1640 ncrfree = NULL;
1641 if ((acc & res.resok.access) != acc) {
1643 * If the cred can be adjusted, try again
1644 * with the new cred.
1646 if (ncr != NULL) {
1647 cred = ncr;
1648 ncr = NULL;
1649 goto tryagain;
1651 error = EACCES;
1653 } else {
1654 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1655 PURGE_STALE_FH(error, vp, cr);
1658 if (ncrfree != NULL)
1659 crfree(ncrfree);
1661 return (error);
1664 static int nfs3_do_symlink_cache = 1;
1666 /* ARGSUSED */
1667 static int
1668 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1670 int error;
1671 READLINK3args args;
1672 READLINK3res res;
1673 nfspath3 resdata_backup;
1674 rnode_t *rp;
1675 int douprintf;
1676 int len;
1677 failinfo_t fi;
1678 hrtime_t t;
1681 * Can't readlink anything other than a symbolic link.
1683 if (vp->v_type != VLNK)
1684 return (EINVAL);
1685 if (nfs_zone() != VTOMI(vp)->mi_zone)
1686 return (EIO);
1688 rp = VTOR(vp);
1689 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1690 error = nfs3_validate_caches(vp, cr);
1691 if (error)
1692 return (error);
1693 mutex_enter(&rp->r_statelock);
1694 if (rp->r_symlink.contents != NULL) {
1695 error = uiomove(rp->r_symlink.contents,
1696 rp->r_symlink.len, UIO_READ, uiop);
1697 mutex_exit(&rp->r_statelock);
1698 return (error);
1700 mutex_exit(&rp->r_statelock);
1703 args.symlink = *VTOFH3(vp);
1704 fi.vp = vp;
1705 fi.fhp = (caddr_t)&args.symlink;
1706 fi.copyproc = nfs3copyfh;
1707 fi.lookupproc = nfs3lookup;
1708 fi.xattrdirproc = acl_getxattrdir3;
1710 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1712 resdata_backup = res.resok.data;
1714 douprintf = 1;
1716 t = gethrtime();
1718 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1719 xdr_READLINK3args, (caddr_t)&args,
1720 xdr_READLINK3res, (caddr_t)&res, cr,
1721 &douprintf, &res.status, 0, &fi);
1723 if (res.resok.data == nfs3nametoolong)
1724 error = EINVAL;
1726 if (error) {
1727 kmem_free(resdata_backup, MAXPATHLEN);
1728 return (error);
1731 error = geterrno3(res.status);
1732 if (!error) {
1733 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1734 cr);
1735 len = strlen(res.resok.data);
1736 error = uiomove(res.resok.data, len, UIO_READ, uiop);
1737 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1738 mutex_enter(&rp->r_statelock);
1739 if (rp->r_symlink.contents == NULL) {
1740 rp->r_symlink.contents = res.resok.data;
1741 rp->r_symlink.len = len;
1742 rp->r_symlink.size = MAXPATHLEN;
1743 mutex_exit(&rp->r_statelock);
1744 } else {
1745 mutex_exit(&rp->r_statelock);
1747 kmem_free((void *)res.resok.data, MAXPATHLEN);
1749 } else {
1750 kmem_free((void *)res.resok.data, MAXPATHLEN);
1752 } else {
1753 nfs3_cache_post_op_attr(vp,
1754 &res.resfail.symlink_attributes, t, cr);
1755 PURGE_STALE_FH(error, vp, cr);
1757 kmem_free((void *)res.resok.data, MAXPATHLEN);
1762 * The over the wire error for attempting to readlink something
1763 * other than a symbolic link is ENXIO. However, we need to
1764 * return EINVAL instead of ENXIO, so we map it here.
1766 return (error == ENXIO ? EINVAL : error);
1770 * Flush local dirty pages to stable storage on the server.
1772 * If FNODSYNC is specified, then there is nothing to do because
1773 * metadata changes are not cached on the client before being
1774 * sent to the server.
1776 /* ARGSUSED */
1777 static int
1778 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1780 int error;
1782 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1783 return (0);
1784 if (nfs_zone() != VTOMI(vp)->mi_zone)
1785 return (EIO);
1787 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1788 if (!error)
1789 error = VTOR(vp)->r_error;
1790 return (error);
1794 * Weirdness: if the file was removed or the target of a rename
1795 * operation while it was open, it got renamed instead. Here we
1796 * remove the renamed file.
1798 /* ARGSUSED */
1799 static void
1800 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1802 rnode_t *rp;
1804 ASSERT(vp != DNLC_NO_VNODE);
1807 * If this is coming from the wrong zone, we let someone in the right
1808 * zone take care of it asynchronously. We can get here due to
1809 * VN_RELE() being called from pageout() or fsflush(). This call may
1810 * potentially turn into an expensive no-op if, for instance, v_count
1811 * gets incremented in the meantime, but it's still correct.
1813 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1814 nfs_async_inactive(vp, cr, nfs3_inactive);
1815 return;
1818 rp = VTOR(vp);
1819 redo:
1820 if (rp->r_unldvp != NULL) {
1822 * Save the vnode pointer for the directory where the
1823 * unlinked-open file got renamed, then set it to NULL
1824 * to prevent another thread from getting here before
1825 * we're done with the remove. While we have the
1826 * statelock, make local copies of the pertinent rnode
1827 * fields. If we weren't to do this in an atomic way, the
1828 * the unl* fields could become inconsistent with respect
1829 * to each other due to a race condition between this
1830 * code and nfs_remove(). See bug report 1034328.
1832 mutex_enter(&rp->r_statelock);
1833 if (rp->r_unldvp != NULL) {
1834 vnode_t *unldvp;
1835 char *unlname;
1836 cred_t *unlcred;
1837 REMOVE3args args;
1838 REMOVE3res res;
1839 int douprintf;
1840 int error;
1841 hrtime_t t;
1843 unldvp = rp->r_unldvp;
1844 rp->r_unldvp = NULL;
1845 unlname = rp->r_unlname;
1846 rp->r_unlname = NULL;
1847 unlcred = rp->r_unlcred;
1848 rp->r_unlcred = NULL;
1849 mutex_exit(&rp->r_statelock);
1852 * If there are any dirty pages left, then flush
1853 * them. This is unfortunate because they just
1854 * may get thrown away during the remove operation,
1855 * but we have to do this for correctness.
1857 if (vn_has_cached_data(vp) &&
1858 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1859 ASSERT(vp->v_type != VCHR);
1860 error = nfs3_putpage(vp, (offset_t)0, 0, 0,
1861 cr, ct);
1862 if (error) {
1863 mutex_enter(&rp->r_statelock);
1864 if (!rp->r_error)
1865 rp->r_error = error;
1866 mutex_exit(&rp->r_statelock);
1871 * Do the remove operation on the renamed file
1873 setdiropargs3(&args.object, unlname, unldvp);
1875 douprintf = 1;
1877 t = gethrtime();
1879 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1880 xdr_diropargs3, (caddr_t)&args,
1881 xdr_REMOVE3res, (caddr_t)&res, unlcred,
1882 &douprintf, &res.status, 0, NULL);
1884 if (error) {
1885 PURGE_ATTRCACHE(unldvp);
1886 } else {
1887 error = geterrno3(res.status);
1888 if (!error) {
1889 nfs3_cache_wcc_data(unldvp,
1890 &res.resok.dir_wcc, t, cr);
1891 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1892 nfs_purge_rddir_cache(unldvp);
1893 } else {
1894 nfs3_cache_wcc_data(unldvp,
1895 &res.resfail.dir_wcc, t, cr);
1896 PURGE_STALE_FH(error, unldvp, cr);
1901 * Release stuff held for the remove
1903 VN_RELE(unldvp);
1904 kmem_free(unlname, MAXNAMELEN);
1905 crfree(unlcred);
1906 goto redo;
1908 mutex_exit(&rp->r_statelock);
1911 rp_addfree(rp, cr);
1915 * Remote file system operations having to do with directory manipulation.
1918 /* ARGSUSED */
1919 static int
1920 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1921 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1922 int *direntflags, pathname_t *realpnp)
1924 int error;
1925 vnode_t *vp;
1926 vnode_t *avp = NULL;
1927 rnode_t *drp;
1929 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1930 return (EPERM);
1932 drp = VTOR(dvp);
1935 * Are we looking up extended attributes? If so, "dvp" is
1936 * the file or directory for which we want attributes, and
1937 * we need a lookup of the hidden attribute directory
1938 * before we lookup the rest of the path.
1940 if (flags & LOOKUP_XATTR) {
1941 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1942 mntinfo_t *mi;
1944 mi = VTOMI(dvp);
1945 if (!(mi->mi_flags & MI_EXTATTR))
1946 return (EINVAL);
1948 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1949 return (EINTR);
1951 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1952 if (avp == NULL)
1953 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1954 else
1955 error = 0;
1957 nfs_rw_exit(&drp->r_rwlock);
1959 if (error) {
1960 if (mi->mi_flags & MI_EXTATTR)
1961 return (error);
1962 return (EINVAL);
1964 dvp = avp;
1965 drp = VTOR(dvp);
1968 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1969 error = EINTR;
1970 goto out;
1973 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1975 nfs_rw_exit(&drp->r_rwlock);
1978 * If vnode is a device, create special vnode.
1980 if (!error && IS_DEVVP(*vpp)) {
1981 vp = *vpp;
1982 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1983 VN_RELE(vp);
1986 out:
1987 if (avp != NULL)
1988 VN_RELE(avp);
1990 return (error);
1993 static int nfs3_lookup_neg_cache = 1;
1995 #ifdef DEBUG
1996 static int nfs3_lookup_dnlc_hits = 0;
1997 static int nfs3_lookup_dnlc_misses = 0;
1998 static int nfs3_lookup_dnlc_neg_hits = 0;
1999 static int nfs3_lookup_dnlc_disappears = 0;
2000 static int nfs3_lookup_dnlc_lookups = 0;
2001 #endif
2003 /* ARGSUSED */
2005 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
2006 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
2008 int error;
2009 rnode_t *drp;
2011 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2013 * If lookup is for "", just return dvp. Don't need
2014 * to send it over the wire, look it up in the dnlc,
2015 * or perform any access checks.
2017 if (*nm == '\0') {
2018 VN_HOLD(dvp);
2019 *vpp = dvp;
2020 return (0);
2024 * Can't do lookups in non-directories.
2026 if (dvp->v_type != VDIR)
2027 return (ENOTDIR);
2030 * If we're called with RFSCALL_SOFT, it's important that
2031 * the only rfscall is one we make directly; if we permit
2032 * an access call because we're looking up "." or validating
2033 * a dnlc hit, we'll deadlock because that rfscall will not
2034 * have the RFSCALL_SOFT set.
2036 if (rfscall_flags & RFSCALL_SOFT)
2037 goto callit;
2040 * If lookup is for ".", just return dvp. Don't need
2041 * to send it over the wire or look it up in the dnlc,
2042 * just need to check access.
2044 if (strcmp(nm, ".") == 0) {
2045 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2046 if (error)
2047 return (error);
2048 VN_HOLD(dvp);
2049 *vpp = dvp;
2050 return (0);
2053 drp = VTOR(dvp);
2054 if (!(drp->r_flags & RLOOKUP)) {
2055 mutex_enter(&drp->r_statelock);
2056 drp->r_flags |= RLOOKUP;
2057 mutex_exit(&drp->r_statelock);
2061 * Lookup this name in the DNLC. If there was a valid entry,
2062 * then return the results of the lookup.
2064 error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
2065 if (error || *vpp != NULL)
2066 return (error);
2068 callit:
2069 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
2071 return (error);
2074 static int
2075 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
2077 int error;
2078 vnode_t *vp;
2080 ASSERT(*nm != '\0');
2081 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2083 * Lookup this name in the DNLC. If successful, then validate
2084 * the caches and then recheck the DNLC. The DNLC is rechecked
2085 * just in case this entry got invalidated during the call
2086 * to nfs3_validate_caches.
2088 * An assumption is being made that it is safe to say that a
2089 * file exists which may not on the server. Any operations to
2090 * the server will fail with ESTALE.
2092 #ifdef DEBUG
2093 nfs3_lookup_dnlc_lookups++;
2094 #endif
2095 vp = dnlc_lookup(dvp, nm);
2096 if (vp != NULL) {
2097 VN_RELE(vp);
2098 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
2099 PURGE_ATTRCACHE(dvp);
2101 error = nfs3_validate_caches(dvp, cr);
2102 if (error)
2103 return (error);
2104 vp = dnlc_lookup(dvp, nm);
2105 if (vp != NULL) {
2106 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2107 if (error) {
2108 VN_RELE(vp);
2109 return (error);
2111 if (vp == DNLC_NO_VNODE) {
2112 VN_RELE(vp);
2113 #ifdef DEBUG
2114 nfs3_lookup_dnlc_neg_hits++;
2115 #endif
2116 return (ENOENT);
2118 *vpp = vp;
2119 #ifdef DEBUG
2120 nfs3_lookup_dnlc_hits++;
2121 #endif
2122 return (0);
2124 #ifdef DEBUG
2125 nfs3_lookup_dnlc_disappears++;
2126 #endif
2128 #ifdef DEBUG
2129 else
2130 nfs3_lookup_dnlc_misses++;
2131 #endif
2133 *vpp = NULL;
2135 return (0);
2138 static int
2139 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2140 int rfscall_flags)
2142 int error;
2143 LOOKUP3args args;
2144 LOOKUP3vres res;
2145 int douprintf;
2146 struct vattr vattr;
2147 struct vattr dvattr;
2148 vnode_t *vp;
2149 failinfo_t fi;
2150 hrtime_t t;
2152 ASSERT(*nm != '\0');
2153 ASSERT(dvp->v_type == VDIR);
2154 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2156 setdiropargs3(&args.what, nm, dvp);
2158 fi.vp = dvp;
2159 fi.fhp = (caddr_t)&args.what.dir;
2160 fi.copyproc = nfs3copyfh;
2161 fi.lookupproc = nfs3lookup;
2162 fi.xattrdirproc = acl_getxattrdir3;
2163 res.obj_attributes.fres.vp = dvp;
2164 res.obj_attributes.fres.vap = &vattr;
2165 res.dir_attributes.fres.vp = dvp;
2166 res.dir_attributes.fres.vap = &dvattr;
2168 douprintf = 1;
2170 t = gethrtime();
2172 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2173 xdr_diropargs3, (caddr_t)&args,
2174 xdr_LOOKUP3vres, (caddr_t)&res, cr,
2175 &douprintf, &res.status, rfscall_flags, &fi);
2177 if (error)
2178 return (error);
2180 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2182 error = geterrno3(res.status);
2183 if (error) {
2184 PURGE_STALE_FH(error, dvp, cr);
2185 if (error == ENOENT && nfs3_lookup_neg_cache)
2186 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2187 return (error);
2190 if (res.obj_attributes.attributes) {
2191 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2192 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2193 } else {
2194 vp = makenfs3node_va(&res.object, NULL,
2195 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2196 if (vp->v_type == VNON) {
2197 vattr.va_mask = AT_TYPE;
2198 error = nfs3getattr(vp, &vattr, cr);
2199 if (error) {
2200 VN_RELE(vp);
2201 return (error);
2203 vp->v_type = vattr.va_type;
2207 if (!(rfscall_flags & RFSCALL_SOFT))
2208 dnlc_update(dvp, nm, vp);
2210 *vpp = vp;
2212 return (error);
2215 #ifdef DEBUG
2216 static int nfs3_create_misses = 0;
2217 #endif
2219 /* ARGSUSED */
2220 static int
2221 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2222 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2223 vsecattr_t *vsecp)
2225 int error;
2226 vnode_t *vp;
2227 rnode_t *rp;
2228 struct vattr vattr;
2229 rnode_t *drp;
2230 vnode_t *tempvp;
2232 drp = VTOR(dvp);
2233 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2234 return (EPERM);
2235 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2236 return (EINTR);
2238 top:
2240 * We make a copy of the attributes because the caller does not
2241 * expect us to change what va points to.
2243 vattr = *va;
2246 * If the pathname is "", just use dvp. Don't need
2247 * to send it over the wire, look it up in the dnlc,
2248 * or perform any access checks.
2250 if (*nm == '\0') {
2251 error = 0;
2252 VN_HOLD(dvp);
2253 vp = dvp;
2255 * If the pathname is ".", just use dvp. Don't need
2256 * to send it over the wire or look it up in the dnlc,
2257 * just need to check access.
2259 } else if (strcmp(nm, ".") == 0) {
2260 error = nfs3_access(dvp, VEXEC, 0, cr, ct);
2261 if (error) {
2262 nfs_rw_exit(&drp->r_rwlock);
2263 return (error);
2265 VN_HOLD(dvp);
2266 vp = dvp;
2268 * We need to go over the wire, just to be sure whether the
2269 * file exists or not. Using the DNLC can be dangerous in
2270 * this case when making a decision regarding existence.
2272 } else {
2273 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2275 if (!error) {
2276 if (exclusive == EXCL)
2277 error = EEXIST;
2278 else if (vp->v_type == VDIR && (mode & VWRITE))
2279 error = EISDIR;
2280 else {
2282 * If vnode is a device, create special vnode.
2284 if (IS_DEVVP(vp)) {
2285 tempvp = vp;
2286 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2287 VN_RELE(tempvp);
2289 if (!(error = fop_access(vp, mode, 0, cr, ct))) {
2290 if ((vattr.va_mask & AT_SIZE) &&
2291 vp->v_type == VREG) {
2292 rp = VTOR(vp);
2294 * Check here for large file handled
2295 * by LF-unaware process (as
2296 * ufs_create() does)
2298 if (!(lfaware & FOFFMAX)) {
2299 mutex_enter(&rp->r_statelock);
2300 if (rp->r_size > MAXOFF32_T)
2301 error = EOVERFLOW;
2302 mutex_exit(&rp->r_statelock);
2304 if (!error) {
2305 vattr.va_mask = AT_SIZE;
2306 error = nfs3setattr(vp,
2307 &vattr, 0, cr);
2310 * Existing file was truncated;
2311 * emit a create event.
2313 vnevent_create(vp, ct);
2318 nfs_rw_exit(&drp->r_rwlock);
2319 if (error) {
2320 VN_RELE(vp);
2321 } else {
2322 *vpp = vp;
2325 return (error);
2328 dnlc_remove(dvp, nm);
2331 * Decide what the group-id of the created file should be.
2332 * Set it in attribute list as advisory...
2334 error = setdirgid(dvp, &vattr.va_gid, cr);
2335 if (error) {
2336 nfs_rw_exit(&drp->r_rwlock);
2337 return (error);
2339 vattr.va_mask |= AT_GID;
2341 ASSERT(vattr.va_mask & AT_TYPE);
2342 if (vattr.va_type == VREG) {
2343 ASSERT(vattr.va_mask & AT_MODE);
2344 if (MANDMODE(vattr.va_mode)) {
2345 nfs_rw_exit(&drp->r_rwlock);
2346 return (EACCES);
2348 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2349 lfaware);
2351 * If this is not an exclusive create, then the CREATE
2352 * request will be made with the GUARDED mode set. This
2353 * means that the server will return EEXIST if the file
2354 * exists. The file could exist because of a retransmitted
2355 * request. In this case, we recover by starting over and
2356 * checking to see whether the file exists. This second
2357 * time through it should and a CREATE request will not be
2358 * sent.
2360 * This handles the problem of a dangling CREATE request
2361 * which contains attributes which indicate that the file
2362 * should be truncated. This retransmitted request could
2363 * possibly truncate valid data in the file if not caught
2364 * by the duplicate request mechanism on the server or if
2365 * not caught by other means. The scenario is:
2367 * Client transmits CREATE request with size = 0
2368 * Client times out, retransmits request.
2369 * Response to the first request arrives from the server
2370 * and the client proceeds on.
2371 * Client writes data to the file.
2372 * The server now processes retransmitted CREATE request
2373 * and truncates file.
2375 * The use of the GUARDED CREATE request prevents this from
2376 * happening because the retransmitted CREATE would fail
2377 * with EEXIST and would not truncate the file.
2379 if (error == EEXIST && exclusive == NONEXCL) {
2380 #ifdef DEBUG
2381 nfs3_create_misses++;
2382 #endif
2383 goto top;
2385 nfs_rw_exit(&drp->r_rwlock);
2386 return (error);
2388 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2389 nfs_rw_exit(&drp->r_rwlock);
2390 return (error);
2393 /* ARGSUSED */
2394 static int
2395 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2396 int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2398 int error;
2399 CREATE3args args;
2400 CREATE3res res;
2401 int douprintf;
2402 vnode_t *vp;
2403 struct vattr vattr;
2404 nfstime3 *verfp;
2405 rnode_t *rp;
2406 timestruc_t now;
2407 hrtime_t t;
2409 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2410 setdiropargs3(&args.where, nm, dvp);
2411 if (exclusive == EXCL) {
2412 args.how.mode = EXCLUSIVE;
2414 * Construct the create verifier. This verifier needs
2415 * to be unique between different clients. It also needs
2416 * to vary for each exclusive create request generated
2417 * from the client to the server.
2419 * The first attempt is made to use the hostid and a
2420 * unique number on the client. If the hostid has not
2421 * been set, the high resolution time that the exclusive
2422 * create request is being made is used. This will work
2423 * unless two different clients, both with the hostid
2424 * not set, attempt an exclusive create request on the
2425 * same file, at exactly the same clock time. The
2426 * chances of this happening seem small enough to be
2427 * reasonable.
2429 verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2430 verfp->seconds = zone_get_hostid(NULL);
2431 if (verfp->seconds != 0)
2432 verfp->nseconds = newnum();
2433 else {
2434 gethrestime(&now);
2435 verfp->seconds = now.tv_sec;
2436 verfp->nseconds = now.tv_nsec;
2439 * Since the server will use this value for the mtime,
2440 * make sure that it can't overflow. Zero out the MSB.
2441 * The actual value does not matter here, only its uniqeness.
2443 verfp->seconds %= INT32_MAX;
2444 } else {
2446 * Issue the non-exclusive create in guarded mode. This
2447 * may result in some false EEXIST responses for
2448 * retransmitted requests, but these will be handled at
2449 * a higher level. By using GUARDED, duplicate requests
2450 * to do file truncation and possible access problems
2451 * can be avoided.
2453 args.how.mode = GUARDED;
2454 error = vattr_to_sattr3(va,
2455 &args.how.createhow3_u.obj_attributes);
2456 if (error) {
2457 /* req time field(s) overflow - return immediately */
2458 return (error);
2462 douprintf = 1;
2464 t = gethrtime();
2466 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2467 xdr_CREATE3args, (caddr_t)&args,
2468 xdr_CREATE3res, (caddr_t)&res, cr,
2469 &douprintf, &res.status, 0, NULL);
2471 if (error) {
2472 PURGE_ATTRCACHE(dvp);
2473 return (error);
2476 error = geterrno3(res.status);
2477 if (!error) {
2478 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2479 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2480 nfs_purge_rddir_cache(dvp);
2483 * On exclusive create the times need to be explicitly
2484 * set to clear any potential verifier that may be stored
2485 * in one of these fields (see comment below). This
2486 * is done here to cover the case where no post op attrs
2487 * were returned or a 'invalid' time was returned in
2488 * the attributes.
2490 if (exclusive == EXCL)
2491 va->va_mask |= (AT_MTIME | AT_ATIME);
2493 if (!res.resok.obj.handle_follows) {
2494 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2495 if (error)
2496 return (error);
2497 } else {
2498 if (res.resok.obj_attributes.attributes) {
2499 vp = makenfs3node(&res.resok.obj.handle,
2500 &res.resok.obj_attributes.attr,
2501 dvp->v_vfsp, t, cr, NULL, NULL);
2502 } else {
2503 vp = makenfs3node(&res.resok.obj.handle, NULL,
2504 dvp->v_vfsp, t, cr, NULL, NULL);
2507 * On an exclusive create, it is possible
2508 * that attributes were returned but those
2509 * postop attributes failed to decode
2510 * properly. If this is the case,
2511 * then most likely the atime or mtime
2512 * were invalid for our client; this
2513 * is caused by the server storing the
2514 * create verifier in one of the time
2515 * fields(most likely mtime).
2516 * So... we are going to setattr just the
2517 * atime/mtime to clear things up.
2519 if (exclusive == EXCL) {
2520 if (error =
2521 nfs3excl_create_settimes(vp,
2522 va, cr)) {
2524 * Setting the times failed.
2525 * Remove the file and return
2526 * the error.
2528 VN_RELE(vp);
2529 (void) nfs3_remove(dvp,
2530 nm, cr, NULL, 0);
2531 return (error);
2536 * This handles the non-exclusive case
2537 * and the exclusive case where no post op
2538 * attrs were returned.
2540 if (vp->v_type == VNON) {
2541 vattr.va_mask = AT_TYPE;
2542 error = nfs3getattr(vp, &vattr, cr);
2543 if (error) {
2544 VN_RELE(vp);
2545 return (error);
2547 vp->v_type = vattr.va_type;
2550 dnlc_update(dvp, nm, vp);
2553 rp = VTOR(vp);
2556 * Check here for large file handled by
2557 * LF-unaware process (as ufs_create() does)
2559 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2560 !(lfaware & FOFFMAX)) {
2561 mutex_enter(&rp->r_statelock);
2562 if (rp->r_size > MAXOFF32_T) {
2563 mutex_exit(&rp->r_statelock);
2564 VN_RELE(vp);
2565 return (EOVERFLOW);
2567 mutex_exit(&rp->r_statelock);
2570 if (exclusive == EXCL &&
2571 (va->va_mask & ~(AT_GID | AT_SIZE))) {
2573 * If doing an exclusive create, then generate
2574 * a SETATTR to set the initial attributes.
2575 * Try to set the mtime and the atime to the
2576 * server's current time. It is somewhat
2577 * expected that these fields will be used to
2578 * store the exclusive create cookie. If not,
2579 * server implementors will need to know that
2580 * a SETATTR will follow an exclusive create
2581 * and the cookie should be destroyed if
2582 * appropriate. This work may have been done
2583 * earlier in this function if post op attrs
2584 * were not available.
2586 * The AT_GID and AT_SIZE bits are turned off
2587 * so that the SETATTR request will not attempt
2588 * to process these. The gid will be set
2589 * separately if appropriate. The size is turned
2590 * off because it is assumed that a new file will
2591 * be created empty and if the file wasn't empty,
2592 * then the exclusive create will have failed
2593 * because the file must have existed already.
2594 * Therefore, no truncate operation is needed.
2596 va->va_mask &= ~(AT_GID | AT_SIZE);
2597 error = nfs3setattr(vp, va, 0, cr);
2598 if (error) {
2600 * Couldn't correct the attributes of
2601 * the newly created file and the
2602 * attributes are wrong. Remove the
2603 * file and return an error to the
2604 * application.
2606 VN_RELE(vp);
2607 (void) nfs3_remove(dvp, nm, cr, NULL, 0);
2608 return (error);
2612 if (va->va_gid != rp->r_attr.va_gid) {
2614 * If the gid on the file isn't right, then
2615 * generate a SETATTR to attempt to change
2616 * it. This may or may not work, depending
2617 * upon the server's semantics for allowing
2618 * file ownership changes.
2620 va->va_mask = AT_GID;
2621 (void) nfs3setattr(vp, va, 0, cr);
2625 * If vnode is a device create special vnode
2627 if (IS_DEVVP(vp)) {
2628 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2629 VN_RELE(vp);
2630 } else
2631 *vpp = vp;
2632 } else {
2633 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2634 PURGE_STALE_FH(error, dvp, cr);
2637 return (error);
2641 * Special setattr function to take care of rest of atime/mtime
2642 * after successful exclusive create. This function exists to avoid
2643 * handling attributes from the server; exclusive the atime/mtime fields
2644 * may be 'invalid' in client's view and therefore can not be trusted.
2646 static int
2647 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2649 int error;
2650 uint_t mask;
2651 SETATTR3args args;
2652 SETATTR3res res;
2653 int douprintf;
2654 rnode_t *rp;
2655 hrtime_t t;
2657 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2658 /* save the caller's mask so that it can be reset later */
2659 mask = vap->va_mask;
2661 rp = VTOR(vp);
2663 args.object = *RTOFH3(rp);
2664 args.guard.check = FALSE;
2666 /* Use the mask to initialize the arguments */
2667 vap->va_mask = 0;
2668 error = vattr_to_sattr3(vap, &args.new_attributes);
2670 /* We want to set just atime/mtime on this request */
2671 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2672 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2674 douprintf = 1;
2676 t = gethrtime();
2678 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2679 xdr_SETATTR3args, (caddr_t)&args,
2680 xdr_SETATTR3res, (caddr_t)&res, cr,
2681 &douprintf, &res.status, 0, NULL);
2683 if (error) {
2684 vap->va_mask = mask;
2685 return (error);
2688 error = geterrno3(res.status);
2689 if (!error) {
2691 * It is important to pick up the attributes.
2692 * Since this is the exclusive create path, the
2693 * attributes on the initial create were ignored
2694 * and we need these to have the correct info.
2696 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2698 * No need to do the atime/mtime work again so clear
2699 * the bits.
2701 mask &= ~(AT_ATIME | AT_MTIME);
2702 } else {
2703 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2706 vap->va_mask = mask;
2708 return (error);
2711 /* ARGSUSED */
2712 static int
2713 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2714 int mode, vnode_t **vpp, cred_t *cr)
2716 int error;
2717 MKNOD3args args;
2718 MKNOD3res res;
2719 int douprintf;
2720 vnode_t *vp;
2721 struct vattr vattr;
2722 hrtime_t t;
2724 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2725 switch (va->va_type) {
2726 case VCHR:
2727 case VBLK:
2728 setdiropargs3(&args.where, nm, dvp);
2729 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2730 error = vattr_to_sattr3(va,
2731 &args.what.mknoddata3_u.device.dev_attributes);
2732 if (error) {
2733 /* req time field(s) overflow - return immediately */
2734 return (error);
2736 args.what.mknoddata3_u.device.spec.specdata1 =
2737 getmajor(va->va_rdev);
2738 args.what.mknoddata3_u.device.spec.specdata2 =
2739 getminor(va->va_rdev);
2740 break;
2742 case VFIFO:
2743 case VSOCK:
2744 setdiropargs3(&args.where, nm, dvp);
2745 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2746 error = vattr_to_sattr3(va,
2747 &args.what.mknoddata3_u.pipe_attributes);
2748 if (error) {
2749 /* req time field(s) overflow - return immediately */
2750 return (error);
2752 break;
2754 default:
2755 return (EINVAL);
2758 douprintf = 1;
2760 t = gethrtime();
2762 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2763 xdr_MKNOD3args, (caddr_t)&args,
2764 xdr_MKNOD3res, (caddr_t)&res, cr,
2765 &douprintf, &res.status, 0, NULL);
2767 if (error) {
2768 PURGE_ATTRCACHE(dvp);
2769 return (error);
2772 error = geterrno3(res.status);
2773 if (!error) {
2774 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2775 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2776 nfs_purge_rddir_cache(dvp);
2778 if (!res.resok.obj.handle_follows) {
2779 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2780 if (error)
2781 return (error);
2782 } else {
2783 if (res.resok.obj_attributes.attributes) {
2784 vp = makenfs3node(&res.resok.obj.handle,
2785 &res.resok.obj_attributes.attr,
2786 dvp->v_vfsp, t, cr, NULL, NULL);
2787 } else {
2788 vp = makenfs3node(&res.resok.obj.handle, NULL,
2789 dvp->v_vfsp, t, cr, NULL, NULL);
2790 if (vp->v_type == VNON) {
2791 vattr.va_mask = AT_TYPE;
2792 error = nfs3getattr(vp, &vattr, cr);
2793 if (error) {
2794 VN_RELE(vp);
2795 return (error);
2797 vp->v_type = vattr.va_type;
2801 dnlc_update(dvp, nm, vp);
2804 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2805 va->va_mask = AT_GID;
2806 (void) nfs3setattr(vp, va, 0, cr);
2810 * If vnode is a device create special vnode
2812 if (IS_DEVVP(vp)) {
2813 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2814 VN_RELE(vp);
2815 } else
2816 *vpp = vp;
2817 } else {
2818 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2819 PURGE_STALE_FH(error, dvp, cr);
2821 return (error);
2825 * Weirdness: if the vnode to be removed is open
2826 * we rename it instead of removing it and nfs_inactive
2827 * will remove the new name.
2829 /* ARGSUSED */
2830 static int
2831 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2833 int error;
2834 REMOVE3args args;
2835 REMOVE3res res;
2836 vnode_t *vp;
2837 char *tmpname;
2838 int douprintf;
2839 rnode_t *rp;
2840 rnode_t *drp;
2841 hrtime_t t;
2843 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2844 return (EPERM);
2845 drp = VTOR(dvp);
2846 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2847 return (EINTR);
2849 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2850 if (error) {
2851 nfs_rw_exit(&drp->r_rwlock);
2852 return (error);
2855 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2856 VN_RELE(vp);
2857 nfs_rw_exit(&drp->r_rwlock);
2858 return (EPERM);
2862 * First just remove the entry from the name cache, as it
2863 * is most likely the only entry for this vp.
2865 dnlc_remove(dvp, nm);
2868 * If the file has a v_count > 1 then there may be more than one
2869 * entry in the name cache due multiple links or an open file,
2870 * but we don't have the real reference count so flush all
2871 * possible entries.
2873 if (vp->v_count > 1)
2874 dnlc_purge_vp(vp);
2877 * Now we have the real reference count on the vnode
2879 rp = VTOR(vp);
2880 mutex_enter(&rp->r_statelock);
2881 if (vp->v_count > 1 &&
2882 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2883 mutex_exit(&rp->r_statelock);
2884 tmpname = newname();
2885 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
2886 if (error)
2887 kmem_free(tmpname, MAXNAMELEN);
2888 else {
2889 mutex_enter(&rp->r_statelock);
2890 if (rp->r_unldvp == NULL) {
2891 VN_HOLD(dvp);
2892 rp->r_unldvp = dvp;
2893 if (rp->r_unlcred != NULL)
2894 crfree(rp->r_unlcred);
2895 crhold(cr);
2896 rp->r_unlcred = cr;
2897 rp->r_unlname = tmpname;
2898 } else {
2899 kmem_free(rp->r_unlname, MAXNAMELEN);
2900 rp->r_unlname = tmpname;
2902 mutex_exit(&rp->r_statelock);
2904 } else {
2905 mutex_exit(&rp->r_statelock);
2907 * We need to flush any dirty pages which happen to
2908 * be hanging around before removing the file. This
2909 * shouldn't happen very often and mostly on file
2910 * systems mounted "nocto".
2912 if (vn_has_cached_data(vp) &&
2913 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2914 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2915 if (error && (error == ENOSPC || error == EDQUOT)) {
2916 mutex_enter(&rp->r_statelock);
2917 if (!rp->r_error)
2918 rp->r_error = error;
2919 mutex_exit(&rp->r_statelock);
2923 setdiropargs3(&args.object, nm, dvp);
2925 douprintf = 1;
2927 t = gethrtime();
2929 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2930 xdr_diropargs3, (caddr_t)&args,
2931 xdr_REMOVE3res, (caddr_t)&res, cr,
2932 &douprintf, &res.status, 0, NULL);
2935 * The xattr dir may be gone after last attr is removed,
2936 * so flush it from dnlc.
2938 if (dvp->v_flag & V_XATTRDIR)
2939 dnlc_purge_vp(dvp);
2941 PURGE_ATTRCACHE(vp);
2943 if (error) {
2944 PURGE_ATTRCACHE(dvp);
2945 } else {
2946 error = geterrno3(res.status);
2947 if (!error) {
2948 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2949 cr);
2950 if (HAVE_RDDIR_CACHE(drp))
2951 nfs_purge_rddir_cache(dvp);
2952 } else {
2953 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2954 t, cr);
2955 PURGE_STALE_FH(error, dvp, cr);
2960 if (error == 0) {
2961 vnevent_remove(vp, dvp, nm, ct);
2963 VN_RELE(vp);
2965 nfs_rw_exit(&drp->r_rwlock);
2967 return (error);
2970 /* ARGSUSED */
2971 static int
2972 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2973 caller_context_t *ct, int flags)
2975 int error;
2976 LINK3args args;
2977 LINK3res res;
2978 vnode_t *realvp;
2979 int douprintf;
2980 mntinfo_t *mi;
2981 rnode_t *tdrp;
2982 hrtime_t t;
2984 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2985 return (EPERM);
2986 if (fop_realvp(svp, &realvp, ct) == 0)
2987 svp = realvp;
2989 mi = VTOMI(svp);
2991 if (!(mi->mi_flags & MI_LINK))
2992 return (EOPNOTSUPP);
2994 args.file = *VTOFH3(svp);
2995 setdiropargs3(&args.link, tnm, tdvp);
2997 tdrp = VTOR(tdvp);
2998 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
2999 return (EINTR);
3001 dnlc_remove(tdvp, tnm);
3003 douprintf = 1;
3005 t = gethrtime();
3007 error = rfs3call(mi, NFSPROC3_LINK,
3008 xdr_LINK3args, (caddr_t)&args,
3009 xdr_LINK3res, (caddr_t)&res, cr,
3010 &douprintf, &res.status, 0, NULL);
3012 if (error) {
3013 PURGE_ATTRCACHE(tdvp);
3014 PURGE_ATTRCACHE(svp);
3015 nfs_rw_exit(&tdrp->r_rwlock);
3016 return (error);
3019 error = geterrno3(res.status);
3021 if (!error) {
3022 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
3023 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
3024 if (HAVE_RDDIR_CACHE(tdrp))
3025 nfs_purge_rddir_cache(tdvp);
3026 dnlc_update(tdvp, tnm, svp);
3027 } else {
3028 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
3029 cr);
3030 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
3031 if (error == EOPNOTSUPP) {
3032 mutex_enter(&mi->mi_lock);
3033 mi->mi_flags &= ~MI_LINK;
3034 mutex_exit(&mi->mi_lock);
3038 nfs_rw_exit(&tdrp->r_rwlock);
3040 if (!error) {
3042 * Notify the source file of this link operation.
3044 vnevent_link(svp, ct);
3046 return (error);
3049 /* ARGSUSED */
3050 static int
3051 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3052 caller_context_t *ct, int flags)
3054 vnode_t *realvp;
3056 if (nfs_zone() != VTOMI(odvp)->mi_zone)
3057 return (EPERM);
3058 if (fop_realvp(ndvp, &realvp, ct) == 0)
3059 ndvp = realvp;
3061 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
3065 * nfs3rename does the real work of renaming in NFS Version 3.
3067 static int
3068 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3069 caller_context_t *ct)
3071 int error;
3072 RENAME3args args;
3073 RENAME3res res;
3074 int douprintf;
3075 vnode_t *nvp = NULL;
3076 vnode_t *ovp = NULL;
3077 char *tmpname;
3078 rnode_t *rp;
3079 rnode_t *odrp;
3080 rnode_t *ndrp;
3081 hrtime_t t;
3083 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
3085 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
3086 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
3087 return (EINVAL);
3089 odrp = VTOR(odvp);
3090 ndrp = VTOR(ndvp);
3091 if ((intptr_t)odrp < (intptr_t)ndrp) {
3092 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
3093 return (EINTR);
3094 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
3095 nfs_rw_exit(&odrp->r_rwlock);
3096 return (EINTR);
3098 } else {
3099 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
3100 return (EINTR);
3101 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
3102 nfs_rw_exit(&ndrp->r_rwlock);
3103 return (EINTR);
3108 * Lookup the target file. If it exists, it needs to be
3109 * checked to see whether it is a mount point and whether
3110 * it is active (open).
3112 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
3113 if (!error) {
3115 * If this file has been mounted on, then just
3116 * return busy because renaming to it would remove
3117 * the mounted file system from the name space.
3119 if (vn_mountedvfs(nvp) != NULL) {
3120 VN_RELE(nvp);
3121 nfs_rw_exit(&odrp->r_rwlock);
3122 nfs_rw_exit(&ndrp->r_rwlock);
3123 return (EBUSY);
3127 * Purge the name cache of all references to this vnode
3128 * so that we can check the reference count to infer
3129 * whether it is active or not.
3132 * First just remove the entry from the name cache, as it
3133 * is most likely the only entry for this vp.
3135 dnlc_remove(ndvp, nnm);
3137 * If the file has a v_count > 1 then there may be more
3138 * than one entry in the name cache due multiple links
3139 * or an open file, but we don't have the real reference
3140 * count so flush all possible entries.
3142 if (nvp->v_count > 1)
3143 dnlc_purge_vp(nvp);
3146 * If the vnode is active and is not a directory,
3147 * arrange to rename it to a
3148 * temporary file so that it will continue to be
3149 * accessible. This implements the "unlink-open-file"
3150 * semantics for the target of a rename operation.
3151 * Before doing this though, make sure that the
3152 * source and target files are not already the same.
3154 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3156 * Lookup the source name.
3158 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3159 cr, 0);
3162 * The source name *should* already exist.
3164 if (error) {
3165 VN_RELE(nvp);
3166 nfs_rw_exit(&odrp->r_rwlock);
3167 nfs_rw_exit(&ndrp->r_rwlock);
3168 return (error);
3172 * Compare the two vnodes. If they are the same,
3173 * just release all held vnodes and return success.
3175 if (ovp == nvp) {
3176 VN_RELE(ovp);
3177 VN_RELE(nvp);
3178 nfs_rw_exit(&odrp->r_rwlock);
3179 nfs_rw_exit(&ndrp->r_rwlock);
3180 return (0);
3184 * Can't mix and match directories and non-
3185 * directories in rename operations. We already
3186 * know that the target is not a directory. If
3187 * the source is a directory, return an error.
3189 if (ovp->v_type == VDIR) {
3190 VN_RELE(ovp);
3191 VN_RELE(nvp);
3192 nfs_rw_exit(&odrp->r_rwlock);
3193 nfs_rw_exit(&ndrp->r_rwlock);
3194 return (ENOTDIR);
3198 * The target file exists, is not the same as
3199 * the source file, and is active. Link it
3200 * to a temporary filename to avoid having
3201 * the server removing the file completely.
3203 tmpname = newname();
3204 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
3205 if (error == EOPNOTSUPP) {
3206 error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3207 cr, NULL, 0);
3209 if (error) {
3210 kmem_free(tmpname, MAXNAMELEN);
3211 VN_RELE(ovp);
3212 VN_RELE(nvp);
3213 nfs_rw_exit(&odrp->r_rwlock);
3214 nfs_rw_exit(&ndrp->r_rwlock);
3215 return (error);
3217 rp = VTOR(nvp);
3218 mutex_enter(&rp->r_statelock);
3219 if (rp->r_unldvp == NULL) {
3220 VN_HOLD(ndvp);
3221 rp->r_unldvp = ndvp;
3222 if (rp->r_unlcred != NULL)
3223 crfree(rp->r_unlcred);
3224 crhold(cr);
3225 rp->r_unlcred = cr;
3226 rp->r_unlname = tmpname;
3227 } else {
3228 kmem_free(rp->r_unlname, MAXNAMELEN);
3229 rp->r_unlname = tmpname;
3231 mutex_exit(&rp->r_statelock);
3235 if (ovp == NULL) {
3237 * When renaming directories to be a subdirectory of a
3238 * different parent, the dnlc entry for ".." will no
3239 * longer be valid, so it must be removed.
3241 * We do a lookup here to determine whether we are renaming
3242 * a directory and we need to check if we are renaming
3243 * an unlinked file. This might have already been done
3244 * in previous code, so we check ovp == NULL to avoid
3245 * doing it twice.
3248 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3250 * The source name *should* already exist.
3252 if (error) {
3253 nfs_rw_exit(&odrp->r_rwlock);
3254 nfs_rw_exit(&ndrp->r_rwlock);
3255 if (nvp) {
3256 VN_RELE(nvp);
3258 return (error);
3260 ASSERT(ovp != NULL);
3263 dnlc_remove(odvp, onm);
3264 dnlc_remove(ndvp, nnm);
3266 setdiropargs3(&args.from, onm, odvp);
3267 setdiropargs3(&args.to, nnm, ndvp);
3269 douprintf = 1;
3271 t = gethrtime();
3273 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3274 xdr_RENAME3args, (caddr_t)&args,
3275 xdr_RENAME3res, (caddr_t)&res, cr,
3276 &douprintf, &res.status, 0, NULL);
3278 if (error) {
3279 PURGE_ATTRCACHE(odvp);
3280 PURGE_ATTRCACHE(ndvp);
3281 VN_RELE(ovp);
3282 nfs_rw_exit(&odrp->r_rwlock);
3283 nfs_rw_exit(&ndrp->r_rwlock);
3284 if (nvp) {
3285 VN_RELE(nvp);
3287 return (error);
3290 error = geterrno3(res.status);
3292 if (!error) {
3293 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3294 if (HAVE_RDDIR_CACHE(odrp))
3295 nfs_purge_rddir_cache(odvp);
3296 if (ndvp != odvp) {
3297 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3298 if (HAVE_RDDIR_CACHE(ndrp))
3299 nfs_purge_rddir_cache(ndvp);
3302 * when renaming directories to be a subdirectory of a
3303 * different parent, the dnlc entry for ".." will no
3304 * longer be valid, so it must be removed
3306 rp = VTOR(ovp);
3307 if (ndvp != odvp) {
3308 if (ovp->v_type == VDIR) {
3309 dnlc_remove(ovp, "..");
3310 if (HAVE_RDDIR_CACHE(rp))
3311 nfs_purge_rddir_cache(ovp);
3316 * If we are renaming the unlinked file, update the
3317 * r_unldvp and r_unlname as needed.
3319 mutex_enter(&rp->r_statelock);
3320 if (rp->r_unldvp != NULL) {
3321 if (strcmp(rp->r_unlname, onm) == 0) {
3322 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3323 rp->r_unlname[MAXNAMELEN - 1] = '\0';
3325 if (ndvp != rp->r_unldvp) {
3326 VN_RELE(rp->r_unldvp);
3327 rp->r_unldvp = ndvp;
3328 VN_HOLD(ndvp);
3332 mutex_exit(&rp->r_statelock);
3333 } else {
3334 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3335 if (ndvp != odvp) {
3336 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3337 cr);
3340 * System V defines rename to return EEXIST, not
3341 * ENOTEMPTY if the target directory is not empty.
3342 * Over the wire, the error is NFSERR_ENOTEMPTY
3343 * which geterrno maps to ENOTEMPTY.
3345 if (error == ENOTEMPTY)
3346 error = EEXIST;
3349 if (error == 0) {
3350 if (nvp)
3351 vnevent_rename_dest(nvp, ndvp, nnm, ct);
3353 if (odvp != ndvp)
3354 vnevent_rename_dest_dir(ndvp, ct);
3355 ASSERT(ovp != NULL);
3356 vnevent_rename_src(ovp, odvp, onm, ct);
3359 if (nvp) {
3360 VN_RELE(nvp);
3362 VN_RELE(ovp);
3364 nfs_rw_exit(&odrp->r_rwlock);
3365 nfs_rw_exit(&ndrp->r_rwlock);
3367 return (error);
3370 /* ARGSUSED */
3371 static int
3372 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
3373 caller_context_t *ct, int flags, vsecattr_t *vsecp)
3375 int error;
3376 MKDIR3args args;
3377 MKDIR3res res;
3378 int douprintf;
3379 struct vattr vattr;
3380 vnode_t *vp;
3381 rnode_t *drp;
3382 hrtime_t t;
3384 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3385 return (EPERM);
3386 setdiropargs3(&args.where, nm, dvp);
3389 * Decide what the group-id and set-gid bit of the created directory
3390 * should be. May have to do a setattr to get the gid right.
3392 error = setdirgid(dvp, &va->va_gid, cr);
3393 if (error)
3394 return (error);
3395 error = setdirmode(dvp, &va->va_mode, cr);
3396 if (error)
3397 return (error);
3398 va->va_mask |= AT_MODE|AT_GID;
3400 error = vattr_to_sattr3(va, &args.attributes);
3401 if (error) {
3402 /* req time field(s) overflow - return immediately */
3403 return (error);
3406 drp = VTOR(dvp);
3407 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3408 return (EINTR);
3410 dnlc_remove(dvp, nm);
3412 douprintf = 1;
3414 t = gethrtime();
3416 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3417 xdr_MKDIR3args, (caddr_t)&args,
3418 xdr_MKDIR3res, (caddr_t)&res, cr,
3419 &douprintf, &res.status, 0, NULL);
3421 if (error) {
3422 PURGE_ATTRCACHE(dvp);
3423 nfs_rw_exit(&drp->r_rwlock);
3424 return (error);
3427 error = geterrno3(res.status);
3428 if (!error) {
3429 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3430 if (HAVE_RDDIR_CACHE(drp))
3431 nfs_purge_rddir_cache(dvp);
3433 if (!res.resok.obj.handle_follows) {
3434 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3435 if (error) {
3436 nfs_rw_exit(&drp->r_rwlock);
3437 return (error);
3439 } else {
3440 if (res.resok.obj_attributes.attributes) {
3441 vp = makenfs3node(&res.resok.obj.handle,
3442 &res.resok.obj_attributes.attr,
3443 dvp->v_vfsp, t, cr, NULL, NULL);
3444 } else {
3445 vp = makenfs3node(&res.resok.obj.handle, NULL,
3446 dvp->v_vfsp, t, cr, NULL, NULL);
3447 if (vp->v_type == VNON) {
3448 vattr.va_mask = AT_TYPE;
3449 error = nfs3getattr(vp, &vattr, cr);
3450 if (error) {
3451 VN_RELE(vp);
3452 nfs_rw_exit(&drp->r_rwlock);
3453 return (error);
3455 vp->v_type = vattr.va_type;
3458 dnlc_update(dvp, nm, vp);
3460 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3461 va->va_mask = AT_GID;
3462 (void) nfs3setattr(vp, va, 0, cr);
3464 *vpp = vp;
3465 } else {
3466 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3467 PURGE_STALE_FH(error, dvp, cr);
3470 nfs_rw_exit(&drp->r_rwlock);
3472 return (error);
3475 /* ARGSUSED */
3476 static int
3477 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
3478 caller_context_t *ct, int flags)
3480 int error;
3481 RMDIR3args args;
3482 RMDIR3res res;
3483 vnode_t *vp;
3484 int douprintf;
3485 rnode_t *drp;
3486 hrtime_t t;
3488 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3489 return (EPERM);
3490 drp = VTOR(dvp);
3491 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3492 return (EINTR);
3495 * Attempt to prevent a rmdir(".") from succeeding.
3497 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3498 if (error) {
3499 nfs_rw_exit(&drp->r_rwlock);
3500 return (error);
3503 if (vp == cdir) {
3504 VN_RELE(vp);
3505 nfs_rw_exit(&drp->r_rwlock);
3506 return (EINVAL);
3509 setdiropargs3(&args.object, nm, dvp);
3512 * First just remove the entry from the name cache, as it
3513 * is most likely an entry for this vp.
3515 dnlc_remove(dvp, nm);
3518 * If there vnode reference count is greater than one, then
3519 * there may be additional references in the DNLC which will
3520 * need to be purged. First, trying removing the entry for
3521 * the parent directory and see if that removes the additional
3522 * reference(s). If that doesn't do it, then use dnlc_purge_vp
3523 * to completely remove any references to the directory which
3524 * might still exist in the DNLC.
3526 if (vp->v_count > 1) {
3527 dnlc_remove(vp, "..");
3528 if (vp->v_count > 1)
3529 dnlc_purge_vp(vp);
3532 douprintf = 1;
3534 t = gethrtime();
3536 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3537 xdr_diropargs3, (caddr_t)&args,
3538 xdr_RMDIR3res, (caddr_t)&res, cr,
3539 &douprintf, &res.status, 0, NULL);
3541 PURGE_ATTRCACHE(vp);
3543 if (error) {
3544 PURGE_ATTRCACHE(dvp);
3545 VN_RELE(vp);
3546 nfs_rw_exit(&drp->r_rwlock);
3547 return (error);
3550 error = geterrno3(res.status);
3551 if (!error) {
3552 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3553 if (HAVE_RDDIR_CACHE(drp))
3554 nfs_purge_rddir_cache(dvp);
3555 if (HAVE_RDDIR_CACHE(VTOR(vp)))
3556 nfs_purge_rddir_cache(vp);
3557 } else {
3558 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3559 PURGE_STALE_FH(error, dvp, cr);
3561 * System V defines rmdir to return EEXIST, not
3562 * ENOTEMPTY if the directory is not empty. Over
3563 * the wire, the error is NFSERR_ENOTEMPTY which
3564 * geterrno maps to ENOTEMPTY.
3566 if (error == ENOTEMPTY)
3567 error = EEXIST;
3570 if (error == 0) {
3571 vnevent_rmdir(vp, dvp, nm, ct);
3573 VN_RELE(vp);
3575 nfs_rw_exit(&drp->r_rwlock);
3577 return (error);
3580 /* ARGSUSED */
3581 static int
3582 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
3583 caller_context_t *ct, int flags)
3585 int error;
3586 SYMLINK3args args;
3587 SYMLINK3res res;
3588 int douprintf;
3589 mntinfo_t *mi;
3590 vnode_t *vp;
3591 rnode_t *rp;
3592 char *contents;
3593 rnode_t *drp;
3594 hrtime_t t;
3596 mi = VTOMI(dvp);
3598 if (nfs_zone() != mi->mi_zone)
3599 return (EPERM);
3600 if (!(mi->mi_flags & MI_SYMLINK))
3601 return (EOPNOTSUPP);
3603 setdiropargs3(&args.where, lnm, dvp);
3604 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3605 if (error) {
3606 /* req time field(s) overflow - return immediately */
3607 return (error);
3609 args.symlink.symlink_data = tnm;
3611 drp = VTOR(dvp);
3612 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3613 return (EINTR);
3615 dnlc_remove(dvp, lnm);
3617 douprintf = 1;
3619 t = gethrtime();
3621 error = rfs3call(mi, NFSPROC3_SYMLINK,
3622 xdr_SYMLINK3args, (caddr_t)&args,
3623 xdr_SYMLINK3res, (caddr_t)&res, cr,
3624 &douprintf, &res.status, 0, NULL);
3626 if (error) {
3627 PURGE_ATTRCACHE(dvp);
3628 nfs_rw_exit(&drp->r_rwlock);
3629 return (error);
3632 error = geterrno3(res.status);
3633 if (!error) {
3634 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3635 if (HAVE_RDDIR_CACHE(drp))
3636 nfs_purge_rddir_cache(dvp);
3638 if (res.resok.obj.handle_follows) {
3639 if (res.resok.obj_attributes.attributes) {
3640 vp = makenfs3node(&res.resok.obj.handle,
3641 &res.resok.obj_attributes.attr,
3642 dvp->v_vfsp, t, cr, NULL, NULL);
3643 } else {
3644 vp = makenfs3node(&res.resok.obj.handle, NULL,
3645 dvp->v_vfsp, t, cr, NULL, NULL);
3646 vp->v_type = VLNK;
3647 vp->v_rdev = 0;
3649 dnlc_update(dvp, lnm, vp);
3650 rp = VTOR(vp);
3651 if (nfs3_do_symlink_cache &&
3652 rp->r_symlink.contents == NULL) {
3654 contents = kmem_alloc(MAXPATHLEN,
3655 KM_NOSLEEP);
3657 if (contents != NULL) {
3658 mutex_enter(&rp->r_statelock);
3659 if (rp->r_symlink.contents == NULL) {
3660 rp->r_symlink.len = strlen(tnm);
3661 bcopy(tnm, contents,
3662 rp->r_symlink.len);
3663 rp->r_symlink.contents =
3664 contents;
3665 rp->r_symlink.size = MAXPATHLEN;
3666 mutex_exit(&rp->r_statelock);
3667 } else {
3668 mutex_exit(&rp->r_statelock);
3669 kmem_free((void *)contents,
3670 MAXPATHLEN);
3674 VN_RELE(vp);
3676 } else {
3677 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3678 PURGE_STALE_FH(error, dvp, cr);
3679 if (error == EOPNOTSUPP) {
3680 mutex_enter(&mi->mi_lock);
3681 mi->mi_flags &= ~MI_SYMLINK;
3682 mutex_exit(&mi->mi_lock);
3686 nfs_rw_exit(&drp->r_rwlock);
3688 return (error);
3691 #ifdef DEBUG
3692 static int nfs3_readdir_cache_hits = 0;
3693 static int nfs3_readdir_cache_shorts = 0;
3694 static int nfs3_readdir_cache_waits = 0;
3695 static int nfs3_readdir_cache_misses = 0;
3696 static int nfs3_readdir_readahead = 0;
3697 #endif
3699 static int nfs3_shrinkreaddir = 0;
3702 * Read directory entries.
3703 * There are some weird things to look out for here. The uio_loffset
3704 * field is either 0 or it is the offset returned from a previous
3705 * readdir. It is an opaque value used by the server to find the
3706 * correct directory block to read. The count field is the number
3707 * of blocks to read on the server. This is advisory only, the server
3708 * may return only one block's worth of entries. Entries may be compressed
3709 * on the server.
3711 /* ARGSUSED */
3712 static int
3713 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
3714 caller_context_t *ct, int flags)
3716 int error;
3717 size_t count;
3718 rnode_t *rp;
3719 rddir_cache *rdc;
3720 rddir_cache *nrdc;
3721 rddir_cache *rrdc;
3722 #ifdef DEBUG
3723 int missed;
3724 #endif
3725 int doreadahead;
3726 rddir_cache srdc;
3727 avl_index_t where;
3729 if (nfs_zone() != VTOMI(vp)->mi_zone)
3730 return (EIO);
3731 rp = VTOR(vp);
3733 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3736 * Make sure that the directory cache is valid.
3738 if (HAVE_RDDIR_CACHE(rp)) {
3739 if (nfs_disable_rddir_cache) {
3741 * Setting nfs_disable_rddir_cache in /etc/system
3742 * allows interoperability with servers that do not
3743 * properly update the attributes of directories.
3744 * Any cached information gets purged before an
3745 * access is made to it.
3747 nfs_purge_rddir_cache(vp);
3748 } else {
3749 error = nfs3_validate_caches(vp, cr);
3750 if (error)
3751 return (error);
3756 * It is possible that some servers may not be able to correctly
3757 * handle a large READDIR or READDIRPLUS request due to bugs in
3758 * their implementation. In order to continue to interoperate
3759 * with them, this workaround is provided to limit the maximum
3760 * size of a READDIRPLUS request to 1024. In any case, the request
3761 * size is limited to MAXBSIZE.
3763 count = MIN(uiop->uio_iov->iov_len,
3764 nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3766 nrdc = NULL;
3767 #ifdef DEBUG
3768 missed = 0;
3769 #endif
3770 top:
3772 * Short circuit last readdir which always returns 0 bytes.
3773 * This can be done after the directory has been read through
3774 * completely at least once. This will set r_direof which
3775 * can be used to find the value of the last cookie.
3777 mutex_enter(&rp->r_statelock);
3778 if (rp->r_direof != NULL &&
3779 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3780 mutex_exit(&rp->r_statelock);
3781 #ifdef DEBUG
3782 nfs3_readdir_cache_shorts++;
3783 #endif
3784 if (eofp)
3785 *eofp = 1;
3786 if (nrdc != NULL)
3787 rddir_cache_rele(nrdc);
3788 return (0);
3791 * Look for a cache entry. Cache entries are identified
3792 * by the NFS cookie value and the byte count requested.
3794 srdc.nfs3_cookie = uiop->uio_loffset;
3795 srdc.buflen = count;
3796 rdc = avl_find(&rp->r_dir, &srdc, &where);
3797 if (rdc != NULL) {
3798 rddir_cache_hold(rdc);
3800 * If the cache entry is in the process of being
3801 * filled in, wait until this completes. The
3802 * RDDIRWAIT bit is set to indicate that someone
3803 * is waiting and then the thread currently
3804 * filling the entry is done, it should do a
3805 * cv_broadcast to wakeup all of the threads
3806 * waiting for it to finish.
3808 if (rdc->flags & RDDIR) {
3809 nfs_rw_exit(&rp->r_rwlock);
3810 rdc->flags |= RDDIRWAIT;
3811 #ifdef DEBUG
3812 nfs3_readdir_cache_waits++;
3813 #endif
3814 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3816 * We got interrupted, probably
3817 * the user typed ^C or an alarm
3818 * fired. We free the new entry
3819 * if we allocated one.
3821 mutex_exit(&rp->r_statelock);
3822 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3823 RW_READER, FALSE);
3824 rddir_cache_rele(rdc);
3825 if (nrdc != NULL)
3826 rddir_cache_rele(nrdc);
3827 return (EINTR);
3829 mutex_exit(&rp->r_statelock);
3830 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3831 RW_READER, FALSE);
3832 rddir_cache_rele(rdc);
3833 goto top;
3836 * Check to see if a readdir is required to
3837 * fill the entry. If so, mark this entry
3838 * as being filled, remove our reference,
3839 * and branch to the code to fill the entry.
3841 if (rdc->flags & RDDIRREQ) {
3842 rdc->flags &= ~RDDIRREQ;
3843 rdc->flags |= RDDIR;
3844 if (nrdc != NULL)
3845 rddir_cache_rele(nrdc);
3846 nrdc = rdc;
3847 mutex_exit(&rp->r_statelock);
3848 goto bottom;
3850 #ifdef DEBUG
3851 if (!missed)
3852 nfs3_readdir_cache_hits++;
3853 #endif
3855 * If an error occurred while attempting
3856 * to fill the cache entry, just return it.
3858 if (rdc->error) {
3859 error = rdc->error;
3860 mutex_exit(&rp->r_statelock);
3861 rddir_cache_rele(rdc);
3862 if (nrdc != NULL)
3863 rddir_cache_rele(nrdc);
3864 return (error);
3868 * The cache entry is complete and good,
3869 * copyout the dirent structs to the calling
3870 * thread.
3872 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3875 * If no error occurred during the copyout,
3876 * update the offset in the uio struct to
3877 * contain the value of the next cookie
3878 * and set the eof value appropriately.
3880 if (!error) {
3881 uiop->uio_loffset = rdc->nfs3_ncookie;
3882 if (eofp)
3883 *eofp = rdc->eof;
3887 * Decide whether to do readahead.
3889 * Don't if have already read to the end of
3890 * directory. There is nothing more to read.
3892 * Don't if the application is not doing
3893 * lookups in the directory. The readahead
3894 * is only effective if the application can
3895 * be doing work while an async thread is
3896 * handling the over the wire request.
3898 if (rdc->eof) {
3899 rp->r_direof = rdc;
3900 doreadahead = FALSE;
3901 } else if (!(rp->r_flags & RLOOKUP))
3902 doreadahead = FALSE;
3903 else
3904 doreadahead = TRUE;
3906 if (!doreadahead) {
3907 mutex_exit(&rp->r_statelock);
3908 rddir_cache_rele(rdc);
3909 if (nrdc != NULL)
3910 rddir_cache_rele(nrdc);
3911 return (error);
3915 * Check to see whether we found an entry
3916 * for the readahead. If so, we don't need
3917 * to do anything further, so free the new
3918 * entry if one was allocated. Otherwise,
3919 * allocate a new entry, add it to the cache,
3920 * and then initiate an asynchronous readdir
3921 * operation to fill it.
3923 srdc.nfs3_cookie = rdc->nfs3_ncookie;
3924 srdc.buflen = count;
3925 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3926 if (rrdc != NULL) {
3927 if (nrdc != NULL)
3928 rddir_cache_rele(nrdc);
3929 } else {
3930 if (nrdc != NULL)
3931 rrdc = nrdc;
3932 else {
3933 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3935 if (rrdc != NULL) {
3936 rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3937 rrdc->buflen = count;
3938 avl_insert(&rp->r_dir, rrdc, where);
3939 rddir_cache_hold(rrdc);
3940 mutex_exit(&rp->r_statelock);
3941 rddir_cache_rele(rdc);
3942 #ifdef DEBUG
3943 nfs3_readdir_readahead++;
3944 #endif
3945 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3946 return (error);
3950 mutex_exit(&rp->r_statelock);
3951 rddir_cache_rele(rdc);
3952 return (error);
3956 * Didn't find an entry in the cache. Construct a new empty
3957 * entry and link it into the cache. Other processes attempting
3958 * to access this entry will need to wait until it is filled in.
3960 * Since kmem_alloc may block, another pass through the cache
3961 * will need to be taken to make sure that another process
3962 * hasn't already added an entry to the cache for this request.
3964 if (nrdc == NULL) {
3965 mutex_exit(&rp->r_statelock);
3966 nrdc = rddir_cache_alloc(KM_SLEEP);
3967 nrdc->nfs3_cookie = uiop->uio_loffset;
3968 nrdc->buflen = count;
3969 goto top;
3973 * Add this entry to the cache.
3975 avl_insert(&rp->r_dir, nrdc, where);
3976 rddir_cache_hold(nrdc);
3977 mutex_exit(&rp->r_statelock);
3979 bottom:
3980 #ifdef DEBUG
3981 missed = 1;
3982 nfs3_readdir_cache_misses++;
3983 #endif
3985 * Do the readdir. This routine decides whether to use
3986 * READDIR or READDIRPLUS.
3988 error = do_nfs3readdir(vp, nrdc, cr);
3991 * If this operation failed, just return the error which occurred.
3993 if (error != 0)
3994 return (error);
3997 * Since the RPC operation will have taken sometime and blocked
3998 * this process, another pass through the cache will need to be
3999 * taken to find the correct cache entry. It is possible that
4000 * the correct cache entry will not be there (although one was
4001 * added) because the directory changed during the RPC operation
4002 * and the readdir cache was flushed. In this case, just start
4003 * over. It is hoped that this will not happen too often... :-)
4005 nrdc = NULL;
4006 goto top;
4007 /* NOTREACHED */
4010 static int
4011 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4013 int error;
4014 rnode_t *rp;
4015 mntinfo_t *mi;
4017 rp = VTOR(vp);
4018 mi = VTOMI(vp);
4019 ASSERT(nfs_zone() == mi->mi_zone);
4021 * Issue the proper request.
4023 * If the server does not support READDIRPLUS, then use READDIR.
4025 * Otherwise --
4026 * Issue a READDIRPLUS if reading to fill an empty cache or if
4027 * an application has performed a lookup in the directory which
4028 * required an over the wire lookup. The use of READDIRPLUS
4029 * will help to (re)populate the DNLC.
4031 if (!(mi->mi_flags & MI_READDIRONLY) &&
4032 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
4033 if (rp->r_flags & RREADDIRPLUS) {
4034 mutex_enter(&rp->r_statelock);
4035 rp->r_flags &= ~RREADDIRPLUS;
4036 mutex_exit(&rp->r_statelock);
4038 nfs3readdirplus(vp, rdc, cr);
4039 if (rdc->error == EOPNOTSUPP)
4040 nfs3readdir(vp, rdc, cr);
4041 } else
4042 nfs3readdir(vp, rdc, cr);
4044 mutex_enter(&rp->r_statelock);
4045 rdc->flags &= ~RDDIR;
4046 if (rdc->flags & RDDIRWAIT) {
4047 rdc->flags &= ~RDDIRWAIT;
4048 cv_broadcast(&rdc->cv);
4050 error = rdc->error;
4051 if (error)
4052 rdc->flags |= RDDIRREQ;
4053 mutex_exit(&rp->r_statelock);
4055 rddir_cache_rele(rdc);
4057 return (error);
4060 static void
4061 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4063 int error;
4064 READDIR3args args;
4065 READDIR3vres res;
4066 vattr_t dva;
4067 rnode_t *rp;
4068 int douprintf;
4069 failinfo_t fi, *fip = NULL;
4070 mntinfo_t *mi;
4071 hrtime_t t;
4073 rp = VTOR(vp);
4074 mi = VTOMI(vp);
4075 ASSERT(nfs_zone() == mi->mi_zone);
4077 args.dir = *RTOFH3(rp);
4078 args.cookie = (cookie3)rdc->nfs3_cookie;
4079 args.cookieverf = rp->r_cookieverf;
4080 args.count = rdc->buflen;
4083 * NFS client failover support
4084 * suppress failover unless we have a zero cookie
4086 if (args.cookie == (cookie3) 0) {
4087 fi.vp = vp;
4088 fi.fhp = (caddr_t)&args.dir;
4089 fi.copyproc = nfs3copyfh;
4090 fi.lookupproc = nfs3lookup;
4091 fi.xattrdirproc = acl_getxattrdir3;
4092 fip = &fi;
4095 #ifdef DEBUG
4096 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4097 #else
4098 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4099 #endif
4101 res.entries = (dirent64_t *)rdc->entries;
4102 res.entries_size = rdc->buflen;
4103 res.dir_attributes.fres.vap = &dva;
4104 res.dir_attributes.fres.vp = vp;
4105 res.loff = rdc->nfs3_cookie;
4107 douprintf = 1;
4109 if (mi->mi_io_kstats) {
4110 mutex_enter(&mi->mi_lock);
4111 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4112 mutex_exit(&mi->mi_lock);
4115 t = gethrtime();
4117 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
4118 xdr_READDIR3args, (caddr_t)&args,
4119 xdr_READDIR3vres, (caddr_t)&res, cr,
4120 &douprintf, &res.status, 0, fip);
4122 if (mi->mi_io_kstats) {
4123 mutex_enter(&mi->mi_lock);
4124 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4125 mutex_exit(&mi->mi_lock);
4128 if (error)
4129 goto err;
4131 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
4133 error = geterrno3(res.status);
4134 if (error) {
4135 PURGE_STALE_FH(error, vp, cr);
4136 goto err;
4139 if (mi->mi_io_kstats) {
4140 mutex_enter(&mi->mi_lock);
4141 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4142 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4143 mutex_exit(&mi->mi_lock);
4146 rdc->nfs3_ncookie = res.loff;
4147 rp->r_cookieverf = res.cookieverf;
4148 rdc->eof = res.eof ? 1 : 0;
4149 rdc->entlen = res.size;
4150 ASSERT(rdc->entlen <= rdc->buflen);
4151 rdc->error = 0;
4152 return;
4154 err:
4155 kmem_free(rdc->entries, rdc->buflen);
4156 rdc->entries = NULL;
4157 rdc->error = error;
4161 * Read directory entries.
4162 * There are some weird things to look out for here. The uio_loffset
4163 * field is either 0 or it is the offset returned from a previous
4164 * readdir. It is an opaque value used by the server to find the
4165 * correct directory block to read. The count field is the number
4166 * of blocks to read on the server. This is advisory only, the server
4167 * may return only one block's worth of entries. Entries may be compressed
4168 * on the server.
4170 static void
4171 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4173 int error;
4174 READDIRPLUS3args args;
4175 READDIRPLUS3vres res;
4176 vattr_t dva;
4177 rnode_t *rp;
4178 mntinfo_t *mi;
4179 int douprintf;
4180 failinfo_t fi, *fip = NULL;
4182 rp = VTOR(vp);
4183 mi = VTOMI(vp);
4184 ASSERT(nfs_zone() == mi->mi_zone);
4186 args.dir = *RTOFH3(rp);
4187 args.cookie = (cookie3)rdc->nfs3_cookie;
4188 args.cookieverf = rp->r_cookieverf;
4189 args.dircount = rdc->buflen;
4190 args.maxcount = mi->mi_tsize;
4193 * NFS client failover support
4194 * suppress failover unless we have a zero cookie
4196 if (args.cookie == (cookie3)0) {
4197 fi.vp = vp;
4198 fi.fhp = (caddr_t)&args.dir;
4199 fi.copyproc = nfs3copyfh;
4200 fi.lookupproc = nfs3lookup;
4201 fi.xattrdirproc = acl_getxattrdir3;
4202 fip = &fi;
4205 #ifdef DEBUG
4206 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4207 #else
4208 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4209 #endif
4211 res.entries = (dirent64_t *)rdc->entries;
4212 res.entries_size = rdc->buflen;
4213 res.dir_attributes.fres.vap = &dva;
4214 res.dir_attributes.fres.vp = vp;
4215 res.loff = rdc->nfs3_cookie;
4216 res.credentials = cr;
4218 douprintf = 1;
4220 if (mi->mi_io_kstats) {
4221 mutex_enter(&mi->mi_lock);
4222 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4223 mutex_exit(&mi->mi_lock);
4226 res.time = gethrtime();
4228 error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4229 xdr_READDIRPLUS3args, (caddr_t)&args,
4230 xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4231 &douprintf, &res.status, 0, fip);
4233 if (mi->mi_io_kstats) {
4234 mutex_enter(&mi->mi_lock);
4235 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4236 mutex_exit(&mi->mi_lock);
4239 if (error) {
4240 goto err;
4243 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4245 error = geterrno3(res.status);
4246 if (error) {
4247 PURGE_STALE_FH(error, vp, cr);
4248 if (error == EOPNOTSUPP) {
4249 mutex_enter(&mi->mi_lock);
4250 mi->mi_flags |= MI_READDIRONLY;
4251 mutex_exit(&mi->mi_lock);
4253 goto err;
4256 if (mi->mi_io_kstats) {
4257 mutex_enter(&mi->mi_lock);
4258 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4259 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4260 mutex_exit(&mi->mi_lock);
4263 rdc->nfs3_ncookie = res.loff;
4264 rp->r_cookieverf = res.cookieverf;
4265 rdc->eof = res.eof ? 1 : 0;
4266 rdc->entlen = res.size;
4267 ASSERT(rdc->entlen <= rdc->buflen);
4268 rdc->error = 0;
4270 return;
4272 err:
4273 kmem_free(rdc->entries, rdc->buflen);
4274 rdc->entries = NULL;
4275 rdc->error = error;
4278 #ifdef DEBUG
4279 static int nfs3_bio_do_stop = 0;
4280 #endif
4282 static int
4283 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4285 rnode_t *rp = VTOR(bp->b_vp);
4286 int count;
4287 int error;
4288 cred_t *cred;
4289 offset_t offset;
4291 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4292 offset = ldbtob(bp->b_lblkno);
4294 DTRACE_IO1(start, struct buf *, bp);
4296 if (bp->b_flags & B_READ) {
4297 mutex_enter(&rp->r_statelock);
4298 if (rp->r_cred != NULL) {
4299 cred = rp->r_cred;
4300 crhold(cred);
4301 } else {
4302 rp->r_cred = cr;
4303 crhold(cr);
4304 cred = cr;
4305 crhold(cred);
4307 mutex_exit(&rp->r_statelock);
4308 read_again:
4309 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4310 offset, bp->b_bcount, &bp->b_resid, cred);
4311 crfree(cred);
4312 if (!error) {
4313 if (bp->b_resid) {
4315 * Didn't get it all because we hit EOF,
4316 * zero all the memory beyond the EOF.
4318 /* bzero(rdaddr + */
4319 bzero(bp->b_un.b_addr +
4320 bp->b_bcount - bp->b_resid, bp->b_resid);
4322 mutex_enter(&rp->r_statelock);
4323 if (bp->b_resid == bp->b_bcount &&
4324 offset >= rp->r_size) {
4326 * We didn't read anything at all as we are
4327 * past EOF. Return an error indicator back
4328 * but don't destroy the pages (yet).
4330 error = NFS_EOF;
4332 mutex_exit(&rp->r_statelock);
4333 } else if (error == EACCES) {
4334 mutex_enter(&rp->r_statelock);
4335 if (cred != cr) {
4336 if (rp->r_cred != NULL)
4337 crfree(rp->r_cred);
4338 rp->r_cred = cr;
4339 crhold(cr);
4340 cred = cr;
4341 crhold(cred);
4342 mutex_exit(&rp->r_statelock);
4343 goto read_again;
4345 mutex_exit(&rp->r_statelock);
4347 } else {
4348 if (!(rp->r_flags & RSTALE)) {
4349 mutex_enter(&rp->r_statelock);
4350 if (rp->r_cred != NULL) {
4351 cred = rp->r_cred;
4352 crhold(cred);
4353 } else {
4354 rp->r_cred = cr;
4355 crhold(cr);
4356 cred = cr;
4357 crhold(cred);
4359 mutex_exit(&rp->r_statelock);
4360 write_again:
4361 mutex_enter(&rp->r_statelock);
4362 count = MIN(bp->b_bcount, rp->r_size - offset);
4363 mutex_exit(&rp->r_statelock);
4364 if (count < 0)
4365 cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4366 #ifdef DEBUG
4367 if (count == 0) {
4368 zcmn_err(getzoneid(), CE_WARN,
4369 "nfs3_bio: zero length write at %lld",
4370 offset);
4371 nfs_printfhandle(&rp->r_fh);
4372 if (nfs3_bio_do_stop)
4373 debug_enter("nfs3_bio");
4375 #endif
4376 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4377 count, cred, stab_comm);
4378 if (error == EACCES) {
4379 mutex_enter(&rp->r_statelock);
4380 if (cred != cr) {
4381 if (rp->r_cred != NULL)
4382 crfree(rp->r_cred);
4383 rp->r_cred = cr;
4384 crhold(cr);
4385 crfree(cred);
4386 cred = cr;
4387 crhold(cred);
4388 mutex_exit(&rp->r_statelock);
4389 goto write_again;
4391 mutex_exit(&rp->r_statelock);
4393 bp->b_error = error;
4394 if (error && error != EINTR) {
4396 * Don't print EDQUOT errors on the console.
4397 * Don't print asynchronous EACCES errors.
4398 * Don't print EFBIG errors.
4399 * Print all other write errors.
4401 if (error != EDQUOT && error != EFBIG &&
4402 (error != EACCES ||
4403 !(bp->b_flags & B_ASYNC)))
4404 nfs_write_error(bp->b_vp, error, cred);
4406 * Update r_error and r_flags as appropriate.
4407 * If the error was ESTALE, then mark the
4408 * rnode as not being writeable and save
4409 * the error status. Otherwise, save any
4410 * errors which occur from asynchronous
4411 * page invalidations. Any errors occurring
4412 * from other operations should be saved
4413 * by the caller.
4415 mutex_enter(&rp->r_statelock);
4416 if (error == ESTALE) {
4417 rp->r_flags |= RSTALE;
4418 if (!rp->r_error)
4419 rp->r_error = error;
4420 } else if (!rp->r_error &&
4421 (bp->b_flags &
4422 (B_INVAL|B_FORCE|B_ASYNC)) ==
4423 (B_INVAL|B_FORCE|B_ASYNC)) {
4424 rp->r_error = error;
4426 mutex_exit(&rp->r_statelock);
4428 crfree(cred);
4429 } else {
4430 error = rp->r_error;
4432 * A close may have cleared r_error, if so,
4433 * propagate ESTALE error return properly
4435 if (error == 0)
4436 error = ESTALE;
4440 if (error != 0 && error != NFS_EOF)
4441 bp->b_flags |= B_ERROR;
4443 DTRACE_IO1(done, struct buf *, bp);
4445 return (error);
4448 /* ARGSUSED */
4449 static int
4450 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4452 rnode_t *rp;
4454 if (nfs_zone() != VTOMI(vp)->mi_zone)
4455 return (EIO);
4456 rp = VTOR(vp);
4458 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4459 fidp->fid_len = rp->r_fh.fh_len;
4460 return (ENOSPC);
4462 fidp->fid_len = rp->r_fh.fh_len;
4463 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4464 return (0);
4467 /* ARGSUSED2 */
4468 static int
4469 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4471 rnode_t *rp = VTOR(vp);
4473 if (!write_lock) {
4474 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4475 return (V_WRITELOCK_FALSE);
4478 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4479 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4480 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4481 return (V_WRITELOCK_FALSE);
4482 nfs_rw_exit(&rp->r_rwlock);
4485 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4486 return (V_WRITELOCK_TRUE);
4489 /* ARGSUSED */
4490 static void
4491 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4493 rnode_t *rp = VTOR(vp);
4495 nfs_rw_exit(&rp->r_rwlock);
4498 /* ARGSUSED */
4499 static int
4500 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4504 * Because we stuff the readdir cookie into the offset field
4505 * someone may attempt to do an lseek with the cookie which
4506 * we want to succeed.
4508 if (vp->v_type == VDIR)
4509 return (0);
4510 if (*noffp < 0)
4511 return (EINVAL);
4512 return (0);
4516 * number of nfs3_bsize blocks to read ahead.
4518 static int nfs3_nra = 4;
4520 #ifdef DEBUG
4521 static int nfs3_lostpage = 0; /* number of times we lost original page */
4522 #endif
4525 * Return all the pages from [off..off+len) in file
4527 /* ARGSUSED */
4528 static int
4529 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4530 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4531 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4533 rnode_t *rp;
4534 int error;
4535 mntinfo_t *mi;
4537 if (vp->v_flag & VNOMAP)
4538 return (ENOSYS);
4540 if (nfs_zone() != VTOMI(vp)->mi_zone)
4541 return (EIO);
4542 if (protp != NULL)
4543 *protp = PROT_ALL;
4546 * Now valididate that the caches are up to date.
4548 error = nfs3_validate_caches(vp, cr);
4549 if (error)
4550 return (error);
4552 rp = VTOR(vp);
4553 mi = VTOMI(vp);
4554 retry:
4555 mutex_enter(&rp->r_statelock);
4558 * Don't create dirty pages faster than they
4559 * can be cleaned so that the system doesn't
4560 * get imbalanced. If the async queue is
4561 * maxed out, then wait for it to drain before
4562 * creating more dirty pages. Also, wait for
4563 * any threads doing pagewalks in the vop_getattr
4564 * entry points so that they don't block for
4565 * long periods.
4567 if (rw == S_CREATE) {
4568 while ((mi->mi_max_threads != 0 &&
4569 rp->r_awcount > 2 * mi->mi_max_threads) ||
4570 rp->r_gcount > 0)
4571 cv_wait(&rp->r_cv, &rp->r_statelock);
4575 * If we are getting called as a side effect of an nfs_write()
4576 * operation the local file size might not be extended yet.
4577 * In this case we want to be able to return pages of zeroes.
4579 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4580 mutex_exit(&rp->r_statelock);
4581 return (EFAULT); /* beyond EOF */
4584 mutex_exit(&rp->r_statelock);
4586 error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4587 pl, plsz, seg, addr, rw, cr);
4589 switch (error) {
4590 case NFS_EOF:
4591 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4592 goto retry;
4593 case ESTALE:
4594 PURGE_STALE_FH(error, vp, cr);
4597 return (error);
4601 * Called from pvn_getpages to get a particular page.
4603 /* ARGSUSED */
4604 static int
4605 nfs3_getapage(vnode_t *vp, uoff_t off, size_t len, uint_t *protp,
4606 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4607 enum seg_rw rw, cred_t *cr)
4609 rnode_t *rp;
4610 uint_t bsize;
4611 struct buf *bp;
4612 page_t *pp;
4613 uoff_t lbn;
4614 uoff_t io_off;
4615 uoff_t blkoff;
4616 uoff_t rablkoff;
4617 size_t io_len;
4618 uint_t blksize;
4619 int error;
4620 int readahead;
4621 int readahead_issued = 0;
4622 int ra_window; /* readahead window */
4623 page_t *pagefound;
4624 page_t *savepp;
4626 if (nfs_zone() != VTOMI(vp)->mi_zone)
4627 return (EIO);
4628 rp = VTOR(vp);
4629 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4631 reread:
4632 bp = NULL;
4633 pp = NULL;
4634 pagefound = NULL;
4636 if (pl != NULL)
4637 pl[0] = NULL;
4639 error = 0;
4640 lbn = off / bsize;
4641 blkoff = lbn * bsize;
4644 * Queueing up the readahead before doing the synchronous read
4645 * results in a significant increase in read throughput because
4646 * of the increased parallelism between the async threads and
4647 * the process context.
4649 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4650 rw != S_CREATE &&
4651 !(vp->v_flag & VNOCACHE)) {
4652 mutex_enter(&rp->r_statelock);
4655 * Calculate the number of readaheads to do.
4656 * a) No readaheads at offset = 0.
4657 * b) Do maximum(nfs3_nra) readaheads when the readahead
4658 * window is closed.
4659 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4660 * upon how far the readahead window is open or close.
4661 * d) No readaheads if rp->r_nextr is not within the scope
4662 * of the readahead window (random i/o).
4665 if (off == 0)
4666 readahead = 0;
4667 else if (blkoff == rp->r_nextr)
4668 readahead = nfs3_nra;
4669 else if (rp->r_nextr > blkoff &&
4670 ((ra_window = (rp->r_nextr - blkoff) / bsize)
4671 <= (nfs3_nra - 1)))
4672 readahead = nfs3_nra - ra_window;
4673 else
4674 readahead = 0;
4676 rablkoff = rp->r_nextr;
4677 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4678 mutex_exit(&rp->r_statelock);
4679 if (nfs_async_readahead(vp, rablkoff + bsize,
4680 addr + (rablkoff + bsize - off), seg, cr,
4681 nfs3_readahead) < 0) {
4682 mutex_enter(&rp->r_statelock);
4683 break;
4685 readahead--;
4686 rablkoff += bsize;
4688 * Indicate that we did a readahead so
4689 * readahead offset is not updated
4690 * by the synchronous read below.
4692 readahead_issued = 1;
4693 mutex_enter(&rp->r_statelock);
4695 * set readahead offset to
4696 * offset of last async readahead
4697 * request.
4699 rp->r_nextr = rablkoff;
4701 mutex_exit(&rp->r_statelock);
4704 again:
4705 if ((pagefound = page_exists(&vp->v_object, off)) == NULL) {
4706 if (pl == NULL) {
4707 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4708 nfs3_readahead);
4709 } else if (rw == S_CREATE) {
4711 * Block for this page is not allocated, or the offset
4712 * is beyond the current allocation size, or we're
4713 * allocating a swap slot and the page was not found,
4714 * so allocate it and return a zero page.
4716 if ((pp = page_create_va(&vp->v_object, off,
4717 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4718 cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4719 io_len = PAGESIZE;
4720 mutex_enter(&rp->r_statelock);
4721 rp->r_nextr = off + PAGESIZE;
4722 mutex_exit(&rp->r_statelock);
4723 } else {
4725 * Need to go to server to get a BLOCK, exception to
4726 * that being while reading at offset = 0 or doing
4727 * random i/o, in that case read only a PAGE.
4729 mutex_enter(&rp->r_statelock);
4730 if (blkoff < rp->r_size &&
4731 blkoff + bsize >= rp->r_size) {
4733 * If only a block or less is left in
4734 * the file, read all that is remaining.
4736 if (rp->r_size <= off) {
4738 * Trying to access beyond EOF,
4739 * set up to get at least one page.
4741 blksize = off + PAGESIZE - blkoff;
4742 } else
4743 blksize = rp->r_size - blkoff;
4744 } else if ((off == 0) ||
4745 (off != rp->r_nextr && !readahead_issued)) {
4746 blksize = PAGESIZE;
4747 blkoff = off; /* block = page here */
4748 } else
4749 blksize = bsize;
4750 mutex_exit(&rp->r_statelock);
4752 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4753 &io_len, blkoff, blksize, 0);
4756 * Some other thread has entered the page,
4757 * so just use it.
4759 if (pp == NULL)
4760 goto again;
4763 * Now round the request size up to page boundaries.
4764 * This ensures that the entire page will be
4765 * initialized to zeroes if EOF is encountered.
4767 io_len = ptob(btopr(io_len));
4769 bp = pageio_setup(pp, io_len, vp, B_READ);
4770 ASSERT(bp != NULL);
4773 * pageio_setup should have set b_addr to 0. This
4774 * is correct since we want to do I/O on a page
4775 * boundary. bp_mapin will use this addr to calculate
4776 * an offset, and then set b_addr to the kernel virtual
4777 * address it allocated for us.
4779 ASSERT(bp->b_un.b_addr == 0);
4781 bp->b_edev = 0;
4782 bp->b_dev = 0;
4783 bp->b_lblkno = lbtodb(io_off);
4784 bp->b_file = vp;
4785 bp->b_offset = (offset_t)off;
4786 bp_mapin(bp);
4789 * If doing a write beyond what we believe is EOF,
4790 * don't bother trying to read the pages from the
4791 * server, we'll just zero the pages here. We
4792 * don't check that the rw flag is S_WRITE here
4793 * because some implementations may attempt a
4794 * read access to the buffer before copying data.
4796 mutex_enter(&rp->r_statelock);
4797 if (io_off >= rp->r_size && seg == segkmap) {
4798 mutex_exit(&rp->r_statelock);
4799 bzero(bp->b_un.b_addr, io_len);
4800 } else {
4801 mutex_exit(&rp->r_statelock);
4802 error = nfs3_bio(bp, NULL, cr);
4806 * Unmap the buffer before freeing it.
4808 bp_mapout(bp);
4809 pageio_done(bp);
4811 savepp = pp;
4812 do {
4813 pp->p_fsdata = C_NOCOMMIT;
4814 } while ((pp = pp->p_next) != savepp);
4816 if (error == NFS_EOF) {
4818 * If doing a write system call just return
4819 * zeroed pages, else user tried to get pages
4820 * beyond EOF, return error. We don't check
4821 * that the rw flag is S_WRITE here because
4822 * some implementations may attempt a read
4823 * access to the buffer before copying data.
4825 if (seg == segkmap)
4826 error = 0;
4827 else
4828 error = EFAULT;
4831 if (!readahead_issued && !error) {
4832 mutex_enter(&rp->r_statelock);
4833 rp->r_nextr = io_off + io_len;
4834 mutex_exit(&rp->r_statelock);
4839 out:
4840 if (pl == NULL)
4841 return (error);
4843 if (error) {
4844 if (pp != NULL)
4845 pvn_read_done(pp, B_ERROR);
4846 return (error);
4849 if (pagefound) {
4850 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4853 * Page exists in the cache, acquire the appropriate lock.
4854 * If this fails, start all over again.
4856 if ((pp = page_lookup(&vp->v_object, off, se)) == NULL) {
4857 #ifdef DEBUG
4858 nfs3_lostpage++;
4859 #endif
4860 goto reread;
4862 pl[0] = pp;
4863 pl[1] = NULL;
4864 return (0);
4867 if (pp != NULL)
4868 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4870 return (error);
4873 static void
4874 nfs3_readahead(vnode_t *vp, uoff_t blkoff, caddr_t addr, struct seg *seg,
4875 cred_t *cr)
4877 int error;
4878 page_t *pp;
4879 uoff_t io_off;
4880 size_t io_len;
4881 struct buf *bp;
4882 uint_t bsize, blksize;
4883 rnode_t *rp = VTOR(vp);
4884 page_t *savepp;
4886 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4887 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4889 mutex_enter(&rp->r_statelock);
4890 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4892 * If less than a block left in file read less
4893 * than a block.
4895 blksize = rp->r_size - blkoff;
4896 } else
4897 blksize = bsize;
4898 mutex_exit(&rp->r_statelock);
4900 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4901 &io_off, &io_len, blkoff, blksize, 1);
4903 * The isra flag passed to the kluster function is 1, we may have
4904 * gotten a return value of NULL for a variety of reasons (# of free
4905 * pages < minfree, someone entered the page on the vnode etc). In all
4906 * cases, we want to punt on the readahead.
4908 if (pp == NULL)
4909 return;
4912 * Now round the request size up to page boundaries.
4913 * This ensures that the entire page will be
4914 * initialized to zeroes if EOF is encountered.
4916 io_len = ptob(btopr(io_len));
4918 bp = pageio_setup(pp, io_len, vp, B_READ);
4919 ASSERT(bp != NULL);
4922 * pageio_setup should have set b_addr to 0. This is correct since
4923 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4924 * to calculate an offset, and then set b_addr to the kernel virtual
4925 * address it allocated for us.
4927 ASSERT(bp->b_un.b_addr == 0);
4929 bp->b_edev = 0;
4930 bp->b_dev = 0;
4931 bp->b_lblkno = lbtodb(io_off);
4932 bp->b_file = vp;
4933 bp->b_offset = (offset_t)blkoff;
4934 bp_mapin(bp);
4937 * If doing a write beyond what we believe is EOF, don't bother trying
4938 * to read the pages from the server, we'll just zero the pages here.
4939 * We don't check that the rw flag is S_WRITE here because some
4940 * implementations may attempt a read access to the buffer before
4941 * copying data.
4943 mutex_enter(&rp->r_statelock);
4944 if (io_off >= rp->r_size && seg == segkmap) {
4945 mutex_exit(&rp->r_statelock);
4946 bzero(bp->b_un.b_addr, io_len);
4947 error = 0;
4948 } else {
4949 mutex_exit(&rp->r_statelock);
4950 error = nfs3_bio(bp, NULL, cr);
4951 if (error == NFS_EOF)
4952 error = 0;
4956 * Unmap the buffer before freeing it.
4958 bp_mapout(bp);
4959 pageio_done(bp);
4961 savepp = pp;
4962 do {
4963 pp->p_fsdata = C_NOCOMMIT;
4964 } while ((pp = pp->p_next) != savepp);
4966 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4969 * In case of error set readahead offset
4970 * to the lowest offset.
4971 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4973 if (error && rp->r_nextr > io_off) {
4974 mutex_enter(&rp->r_statelock);
4975 if (rp->r_nextr > io_off)
4976 rp->r_nextr = io_off;
4977 mutex_exit(&rp->r_statelock);
4982 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4983 * If len == 0, do from off to EOF.
4985 * The normal cases should be len == 0 && off == 0 (entire vp list),
4986 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4987 * (from pageout).
4989 /* ARGSUSED */
4990 static int
4991 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4992 caller_context_t *ct)
4994 int error;
4995 rnode_t *rp;
4997 ASSERT(cr != NULL);
5000 * XXX - Why should this check be made here?
5002 if (vp->v_flag & VNOMAP)
5003 return (ENOSYS);
5004 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
5005 return (0);
5006 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5007 return (EIO);
5009 rp = VTOR(vp);
5010 mutex_enter(&rp->r_statelock);
5011 rp->r_count++;
5012 mutex_exit(&rp->r_statelock);
5013 error = nfs_putpages(vp, off, len, flags, cr);
5014 mutex_enter(&rp->r_statelock);
5015 rp->r_count--;
5016 cv_broadcast(&rp->r_cv);
5017 mutex_exit(&rp->r_statelock);
5019 return (error);
5023 * Write out a single page, possibly klustering adjacent dirty pages.
5026 nfs3_putapage(vnode_t *vp, page_t *pp, uoff_t *offp, size_t *lenp,
5027 int flags, cred_t *cr)
5029 uoff_t io_off;
5030 uoff_t lbn_off;
5031 uoff_t lbn;
5032 size_t io_len;
5033 uint_t bsize;
5034 int error;
5035 rnode_t *rp;
5037 ASSERT(!vn_is_readonly(vp));
5038 ASSERT(pp != NULL);
5039 ASSERT(cr != NULL);
5040 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
5042 rp = VTOR(vp);
5043 ASSERT(rp->r_count > 0);
5045 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
5046 lbn = pp->p_offset / bsize;
5047 lbn_off = lbn * bsize;
5050 * Find a kluster that fits in one block, or in
5051 * one page if pages are bigger than blocks. If
5052 * there is less file space allocated than a whole
5053 * page, we'll shorten the i/o request below.
5055 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
5056 roundup(bsize, PAGESIZE), flags);
5059 * pvn_write_kluster shouldn't have returned a page with offset
5060 * behind the original page we were given. Verify that.
5062 ASSERT((pp->p_offset / bsize) >= lbn);
5065 * Now pp will have the list of kept dirty pages marked for
5066 * write back. It will also handle invalidation and freeing
5067 * of pages that are not dirty. Check for page length rounding
5068 * problems.
5070 if (io_off + io_len > lbn_off + bsize) {
5071 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
5072 io_len = lbn_off + bsize - io_off;
5075 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5076 * consistent value of r_size. RMODINPROGRESS is set in writerp().
5077 * When RMODINPROGRESS is set it indicates that a uiomove() is in
5078 * progress and the r_size has not been made consistent with the
5079 * new size of the file. When the uiomove() completes the r_size is
5080 * updated and the RMODINPROGRESS flag is cleared.
5082 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5083 * consistent value of r_size. Without this handshaking, it is
5084 * possible that nfs(3)_bio() picks up the old value of r_size
5085 * before the uiomove() in writerp() completes. This will result
5086 * in the write through nfs(3)_bio() being dropped.
5088 * More precisely, there is a window between the time the uiomove()
5089 * completes and the time the r_size is updated. If a fop_putpage()
5090 * operation intervenes in this window, the page will be picked up,
5091 * because it is dirty (it will be unlocked, unless it was
5092 * pagecreate'd). When the page is picked up as dirty, the dirty
5093 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
5094 * checked. This will still be the old size. Therefore the page will
5095 * not be written out. When segmap_release() calls fop_putpage(),
5096 * the page will be found to be clean and the write will be dropped.
5098 if (rp->r_flags & RMODINPROGRESS) {
5099 mutex_enter(&rp->r_statelock);
5100 if ((rp->r_flags & RMODINPROGRESS) &&
5101 rp->r_modaddr + MAXBSIZE > io_off &&
5102 rp->r_modaddr < io_off + io_len) {
5103 page_t *plist;
5105 * A write is in progress for this region of the file.
5106 * If we did not detect RMODINPROGRESS here then this
5107 * path through nfs_putapage() would eventually go to
5108 * nfs(3)_bio() and may not write out all of the data
5109 * in the pages. We end up losing data. So we decide
5110 * to set the modified bit on each page in the page
5111 * list and mark the rnode with RDIRTY. This write
5112 * will be restarted at some later time.
5114 plist = pp;
5115 while (plist != NULL) {
5116 pp = plist;
5117 page_sub(&plist, pp);
5118 hat_setmod(pp);
5119 page_io_unlock(pp);
5120 page_unlock(pp);
5122 rp->r_flags |= RDIRTY;
5123 mutex_exit(&rp->r_statelock);
5124 if (offp)
5125 *offp = io_off;
5126 if (lenp)
5127 *lenp = io_len;
5128 return (0);
5130 mutex_exit(&rp->r_statelock);
5133 if (flags & B_ASYNC) {
5134 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
5135 nfs3_sync_putapage);
5136 } else
5137 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
5139 if (offp)
5140 *offp = io_off;
5141 if (lenp)
5142 *lenp = io_len;
5143 return (error);
5146 static int
5147 nfs3_sync_putapage(vnode_t *vp, page_t *pp, uoff_t io_off, size_t io_len,
5148 int flags, cred_t *cr)
5150 int error;
5151 rnode_t *rp;
5153 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5155 flags |= B_WRITE;
5157 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5159 rp = VTOR(vp);
5161 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
5162 error == EACCES) &&
5163 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
5164 if (!(rp->r_flags & ROUTOFSPACE)) {
5165 mutex_enter(&rp->r_statelock);
5166 rp->r_flags |= ROUTOFSPACE;
5167 mutex_exit(&rp->r_statelock);
5169 flags |= B_ERROR;
5170 pvn_write_done(pp, flags);
5172 * If this was not an async thread, then try again to
5173 * write out the pages, but this time, also destroy
5174 * them whether or not the write is successful. This
5175 * will prevent memory from filling up with these
5176 * pages and destroying them is the only alternative
5177 * if they can't be written out.
5179 * Don't do this if this is an async thread because
5180 * when the pages are unlocked in pvn_write_done,
5181 * some other thread could have come along, locked
5182 * them, and queued for an async thread. It would be
5183 * possible for all of the async threads to be tied
5184 * up waiting to lock the pages again and they would
5185 * all already be locked and waiting for an async
5186 * thread to handle them. Deadlock.
5188 if (!(flags & B_ASYNC)) {
5189 error = nfs3_putpage(vp, io_off, io_len,
5190 B_INVAL | B_FORCE, cr, NULL);
5192 } else {
5193 if (error)
5194 flags |= B_ERROR;
5195 else if (rp->r_flags & ROUTOFSPACE) {
5196 mutex_enter(&rp->r_statelock);
5197 rp->r_flags &= ~ROUTOFSPACE;
5198 mutex_exit(&rp->r_statelock);
5200 pvn_write_done(pp, flags);
5201 if (freemem < desfree)
5202 (void) nfs3_commit_vp(vp, 0, 0, cr);
5205 return (error);
5208 /* ARGSUSED */
5209 static int
5210 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5211 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5212 cred_t *cr, caller_context_t *ct)
5214 struct segvn_crargs vn_a;
5215 int error;
5216 rnode_t *rp;
5217 struct vattr va;
5219 if (nfs_zone() != VTOMI(vp)->mi_zone)
5220 return (EIO);
5222 if (vp->v_flag & VNOMAP)
5223 return (ENOSYS);
5225 if (off < 0 || off + len < 0)
5226 return (ENXIO);
5228 if (vp->v_type != VREG)
5229 return (ENODEV);
5232 * If there is cached data and if close-to-open consistency
5233 * checking is not turned off and if the file system is not
5234 * mounted readonly, then force an over the wire getattr.
5235 * Otherwise, just invoke nfs3getattr to get a copy of the
5236 * attributes. The attribute cache will be used unless it
5237 * is timed out and if it is, then an over the wire getattr
5238 * will be issued.
5240 va.va_mask = AT_ALL;
5241 if (vn_has_cached_data(vp) &&
5242 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5243 error = nfs3_getattr_otw(vp, &va, cr);
5244 else
5245 error = nfs3getattr(vp, &va, cr);
5246 if (error)
5247 return (error);
5250 * Check to see if the vnode is currently marked as not cachable.
5251 * This means portions of the file are locked (through fop_frlock).
5252 * In this case the map request must be refused. We use
5253 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5255 rp = VTOR(vp);
5258 * Atomically increment r_inmap after acquiring r_rwlock. The
5259 * idea here is to acquire r_rwlock to block read/write and
5260 * not to protect r_inmap. r_inmap will inform nfs3_read/write()
5261 * that we are in nfs3_map(). Now, r_rwlock is acquired in order
5262 * and we can prevent the deadlock that would have occurred
5263 * when nfs3_addmap() would have acquired it out of order.
5265 * Since we are not protecting r_inmap by any lock, we do not
5266 * hold any lock when we decrement it. We atomically decrement
5267 * r_inmap after we release r_lkserlock.
5270 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5271 return (EINTR);
5272 atomic_inc_uint(&rp->r_inmap);
5273 nfs_rw_exit(&rp->r_rwlock);
5275 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
5276 atomic_dec_uint(&rp->r_inmap);
5277 return (EINTR);
5280 if (vp->v_flag & VNOCACHE) {
5281 error = EAGAIN;
5282 goto done;
5286 * Don't allow concurrent locks and mapping if mandatory locking is
5287 * enabled.
5289 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5290 MANDLOCK(vp, va.va_mode)) {
5291 error = EAGAIN;
5292 goto done;
5295 as_rangelock(as);
5296 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5297 if (error != 0) {
5298 as_rangeunlock(as);
5299 goto done;
5302 vn_a.vp = vp;
5303 vn_a.offset = off;
5304 vn_a.type = (flags & MAP_TYPE);
5305 vn_a.prot = (uchar_t)prot;
5306 vn_a.maxprot = (uchar_t)maxprot;
5307 vn_a.flags = (flags & ~MAP_TYPE);
5308 vn_a.cred = cr;
5309 vn_a.amp = NULL;
5310 vn_a.szc = 0;
5311 vn_a.lgrp_mem_policy_flags = 0;
5313 error = as_map(as, *addrp, len, segvn_create, &vn_a);
5314 as_rangeunlock(as);
5316 done:
5317 nfs_rw_exit(&rp->r_lkserlock);
5318 atomic_dec_uint(&rp->r_inmap);
5319 return (error);
5322 /* ARGSUSED */
5323 static int
5324 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5325 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5326 cred_t *cr, caller_context_t *ct)
5328 rnode_t *rp;
5330 if (vp->v_flag & VNOMAP)
5331 return (ENOSYS);
5332 if (nfs_zone() != VTOMI(vp)->mi_zone)
5333 return (EIO);
5335 rp = VTOR(vp);
5336 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5338 return (0);
5341 /* ARGSUSED */
5342 static int
5343 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5344 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
5345 caller_context_t *ct)
5347 netobj lm_fh3;
5348 int rc;
5349 uoff_t start, end;
5350 rnode_t *rp;
5351 int error = 0, intr = INTR(vp);
5353 if (nfs_zone() != VTOMI(vp)->mi_zone)
5354 return (EIO);
5355 /* check for valid cmd parameter */
5356 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
5357 return (EINVAL);
5359 /* Verify l_type. */
5360 switch (bfp->l_type) {
5361 case F_RDLCK:
5362 if (cmd != F_GETLK && !(flag & FREAD))
5363 return (EBADF);
5364 break;
5365 case F_WRLCK:
5366 if (cmd != F_GETLK && !(flag & FWRITE))
5367 return (EBADF);
5368 break;
5369 case F_UNLCK:
5370 intr = 0;
5371 break;
5373 default:
5374 return (EINVAL);
5377 /* check the validity of the lock range */
5378 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5379 return (rc);
5380 if (rc = flk_check_lock_data(start, end, MAXEND))
5381 return (rc);
5384 * If the filesystem is mounted using local locking, pass the
5385 * request off to the local locking code.
5387 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5388 if (cmd == F_SETLK || cmd == F_SETLKW) {
5390 * For complete safety, we should be holding
5391 * r_lkserlock. However, we can't call
5392 * lm_safelock and then fs_frlock while
5393 * holding r_lkserlock, so just invoke
5394 * lm_safelock and expect that this will
5395 * catch enough of the cases.
5397 if (!lm_safelock(vp, bfp, cr))
5398 return (EAGAIN);
5400 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
5403 rp = VTOR(vp);
5406 * Check whether the given lock request can proceed, given the
5407 * current file mappings.
5409 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5410 return (EINTR);
5411 if (cmd == F_SETLK || cmd == F_SETLKW) {
5412 if (!lm_safelock(vp, bfp, cr)) {
5413 rc = EAGAIN;
5414 goto done;
5419 * Flush the cache after waiting for async I/O to finish. For new
5420 * locks, this is so that the process gets the latest bits from the
5421 * server. For unlocks, this is so that other clients see the
5422 * latest bits once the file has been unlocked. If currently dirty
5423 * pages can't be flushed, then don't allow a lock to be set. But
5424 * allow unlocks to succeed, to avoid having orphan locks on the
5425 * server.
5427 if (cmd != F_GETLK) {
5428 mutex_enter(&rp->r_statelock);
5429 while (rp->r_count > 0) {
5430 if (intr) {
5431 klwp_t *lwp = ttolwp(curthread);
5433 if (lwp != NULL)
5434 lwp->lwp_nostop++;
5435 if (cv_wait_sig(&rp->r_cv,
5436 &rp->r_statelock) == 0) {
5437 if (lwp != NULL)
5438 lwp->lwp_nostop--;
5439 rc = EINTR;
5440 break;
5442 if (lwp != NULL)
5443 lwp->lwp_nostop--;
5444 } else
5445 cv_wait(&rp->r_cv, &rp->r_statelock);
5447 mutex_exit(&rp->r_statelock);
5448 if (rc != 0)
5449 goto done;
5450 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
5451 if (error) {
5452 if (error == ENOSPC || error == EDQUOT) {
5453 mutex_enter(&rp->r_statelock);
5454 if (!rp->r_error)
5455 rp->r_error = error;
5456 mutex_exit(&rp->r_statelock);
5458 if (bfp->l_type != F_UNLCK) {
5459 rc = ENOLCK;
5460 goto done;
5465 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5466 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5469 * Call the lock manager to do the real work of contacting
5470 * the server and obtaining the lock.
5472 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5474 if (rc == 0)
5475 nfs_lockcompletion(vp, cmd);
5477 done:
5478 nfs_rw_exit(&rp->r_lkserlock);
5479 return (rc);
5483 * Free storage space associated with the specified vnode. The portion
5484 * to be freed is specified by bfp->l_start and bfp->l_len (already
5485 * normalized to a "whence" of 0).
5487 * This is an experimental facility whose continued existence is not
5488 * guaranteed. Currently, we only support the special case
5489 * of l_len == 0, meaning free to end of file.
5491 /* ARGSUSED */
5492 static int
5493 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5494 offset_t offset, cred_t *cr, caller_context_t *ct)
5496 int error;
5498 ASSERT(vp->v_type == VREG);
5499 if (cmd != F_FREESP)
5500 return (EINVAL);
5501 if (nfs_zone() != VTOMI(vp)->mi_zone)
5502 return (EIO);
5504 error = convoff(vp, bfp, 0, offset);
5505 if (!error) {
5506 ASSERT(bfp->l_start >= 0);
5507 if (bfp->l_len == 0) {
5508 struct vattr va;
5511 * ftruncate should not change the ctime and
5512 * mtime if we truncate the file to its
5513 * previous size.
5515 va.va_mask = AT_SIZE;
5516 error = nfs3getattr(vp, &va, cr);
5517 if (error || va.va_size == bfp->l_start)
5518 return (error);
5519 va.va_mask = AT_SIZE;
5520 va.va_size = bfp->l_start;
5521 error = nfs3setattr(vp, &va, 0, cr);
5523 if (error == 0 && bfp->l_start == 0)
5524 vnevent_truncate(vp, ct);
5525 } else
5526 error = EINVAL;
5529 return (error);
5532 /* ARGSUSED */
5533 static int
5534 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
5537 return (EINVAL);
5541 * Setup and add an address space callback to do the work of the delmap call.
5542 * The callback will (and must be) deleted in the actual callback function.
5544 * This is done in order to take care of the problem that we have with holding
5545 * the address space's a_lock for a long period of time (e.g. if the NFS server
5546 * is down). Callbacks will be executed in the address space code while the
5547 * a_lock is not held. Holding the address space's a_lock causes things such
5548 * as ps and fork to hang because they are trying to acquire this lock as well.
5550 /* ARGSUSED */
5551 static int
5552 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5553 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5554 cred_t *cr, caller_context_t *ct)
5556 int caller_found;
5557 int error;
5558 rnode_t *rp;
5559 nfs_delmap_args_t *dmapp;
5560 nfs_delmapcall_t *delmap_call;
5562 if (vp->v_flag & VNOMAP)
5563 return (ENOSYS);
5565 * A process may not change zones if it has NFS pages mmap'ed
5566 * in, so we can't legitimately get here from the wrong zone.
5568 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5570 rp = VTOR(vp);
5573 * The way that the address space of this process deletes its mapping
5574 * of this file is via the following call chains:
5575 * - as_free()->segop_unmap()/segvn_unmap()->fop_delmap()/nfs3_delmap()
5576 * - as_unmap()->segop_unmap()/segvn_unmap()->fop_delmap()/nfs3_delmap()
5578 * With the use of address space callbacks we are allowed to drop the
5579 * address space lock, a_lock, while executing the NFS operations that
5580 * need to go over the wire. Returning EAGAIN to the caller of this
5581 * function is what drives the execution of the callback that we add
5582 * below. The callback will be executed by the address space code
5583 * after dropping the a_lock. When the callback is finished, since
5584 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5585 * is called again on the same segment to finish the rest of the work
5586 * that needs to happen during unmapping.
5588 * This action of calling back into the segment driver causes
5589 * nfs3_delmap() to get called again, but since the callback was
5590 * already executed at this point, it already did the work and there
5591 * is nothing left for us to do.
5593 * To Summarize:
5594 * - The first time nfs3_delmap is called by the current thread is when
5595 * we add the caller associated with this delmap to the delmap caller
5596 * list, add the callback, and return EAGAIN.
5597 * - The second time in this call chain when nfs3_delmap is called we
5598 * will find this caller in the delmap caller list and realize there
5599 * is no more work to do thus removing this caller from the list and
5600 * returning the error that was set in the callback execution.
5602 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5603 if (caller_found) {
5605 * 'error' is from the actual delmap operations. To avoid
5606 * hangs, we need to handle the return of EAGAIN differently
5607 * since this is what drives the callback execution.
5608 * In this case, we don't want to return EAGAIN and do the
5609 * callback execution because there are none to execute.
5611 if (error == EAGAIN)
5612 return (0);
5613 else
5614 return (error);
5617 /* current caller was not in the list */
5618 delmap_call = nfs_init_delmapcall();
5620 mutex_enter(&rp->r_statelock);
5621 list_insert_tail(&rp->r_indelmap, delmap_call);
5622 mutex_exit(&rp->r_statelock);
5624 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5626 dmapp->vp = vp;
5627 dmapp->off = off;
5628 dmapp->addr = addr;
5629 dmapp->len = len;
5630 dmapp->prot = prot;
5631 dmapp->maxprot = maxprot;
5632 dmapp->flags = flags;
5633 dmapp->cr = cr;
5634 dmapp->caller = delmap_call;
5636 error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5637 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5639 return (error ? error : EAGAIN);
5643 * Remove some pages from an mmap'd vnode. Just update the
5644 * count of pages. If doing close-to-open, then flush and
5645 * commit all of the pages associated with this file.
5646 * Otherwise, start an asynchronous page flush to write out
5647 * any dirty pages. This will also associate a credential
5648 * with the rnode which can be used to write the pages.
5650 /* ARGSUSED */
5651 static void
5652 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5654 int error;
5655 rnode_t *rp;
5656 mntinfo_t *mi;
5657 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
5659 rp = VTOR(dmapp->vp);
5660 mi = VTOMI(dmapp->vp);
5662 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5663 ASSERT(rp->r_mapcnt >= 0);
5666 * Initiate a page flush and potential commit if there are
5667 * pages, the file system was not mounted readonly, the segment
5668 * was mapped shared, and the pages themselves were writeable.
5670 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5671 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5672 mutex_enter(&rp->r_statelock);
5673 rp->r_flags |= RDIRTY;
5674 mutex_exit(&rp->r_statelock);
5676 * If this is a cross-zone access a sync putpage won't work, so
5677 * the best we can do is try an async putpage. That seems
5678 * better than something more draconian such as discarding the
5679 * dirty pages.
5681 if ((mi->mi_flags & MI_NOCTO) ||
5682 nfs_zone() != mi->mi_zone)
5683 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5684 B_ASYNC, dmapp->cr, NULL);
5685 else
5686 error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5687 dmapp->len, dmapp->cr);
5688 if (!error) {
5689 mutex_enter(&rp->r_statelock);
5690 error = rp->r_error;
5691 rp->r_error = 0;
5692 mutex_exit(&rp->r_statelock);
5694 } else
5695 error = 0;
5697 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5698 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5699 B_INVAL, dmapp->cr, NULL);
5701 dmapp->caller->error = error;
5702 (void) as_delete_callback(as, arg);
5703 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5706 static int nfs3_pathconf_disable_cache = 0;
5708 #ifdef DEBUG
5709 static int nfs3_pathconf_cache_hits = 0;
5710 static int nfs3_pathconf_cache_misses = 0;
5711 #endif
5713 /* ARGSUSED */
5714 static int
5715 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5716 caller_context_t *ct)
5718 int error;
5719 PATHCONF3args args;
5720 PATHCONF3res res;
5721 int douprintf;
5722 failinfo_t fi;
5723 rnode_t *rp;
5724 hrtime_t t;
5726 if (nfs_zone() != VTOMI(vp)->mi_zone)
5727 return (EIO);
5729 * Large file spec - need to base answer on info stored
5730 * on original FSINFO response.
5732 if (cmd == _PC_FILESIZEBITS) {
5733 unsigned long long ll;
5734 long l = 1;
5736 ll = VTOMI(vp)->mi_maxfilesize;
5738 if (ll == 0) {
5739 *valp = 0;
5740 return (0);
5743 if (ll & 0xffffffff00000000) {
5744 l += 32; ll >>= 32;
5746 if (ll & 0xffff0000) {
5747 l += 16; ll >>= 16;
5749 if (ll & 0xff00) {
5750 l += 8; ll >>= 8;
5752 if (ll & 0xf0) {
5753 l += 4; ll >>= 4;
5755 if (ll & 0xc) {
5756 l += 2; ll >>= 2;
5758 if (ll & 0x2)
5759 l += 2;
5760 else if (ll & 0x1)
5761 l += 1;
5762 *valp = l;
5763 return (0);
5766 if (cmd == _PC_ACL_ENABLED) {
5767 *valp = _ACL_ACLENT_ENABLED;
5768 return (0);
5771 if (cmd == _PC_XATTR_EXISTS) {
5772 error = 0;
5773 *valp = 0;
5774 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5775 vnode_t *avp;
5776 rnode_t *rp;
5777 int error = 0;
5778 mntinfo_t *mi = VTOMI(vp);
5780 if (!(mi->mi_flags & MI_EXTATTR))
5781 return (0);
5783 rp = VTOR(vp);
5784 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5785 INTR(vp)))
5786 return (EINTR);
5788 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5789 if (error || avp == NULL)
5790 error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5792 nfs_rw_exit(&rp->r_rwlock);
5794 if (error == 0 && avp != NULL) {
5795 error = do_xattr_exists_check(avp, valp, cr);
5796 VN_RELE(avp);
5797 } else if (error == ENOENT) {
5798 error = 0;
5799 *valp = 0;
5802 return (error);
5805 rp = VTOR(vp);
5806 if (rp->r_pathconf != NULL) {
5807 mutex_enter(&rp->r_statelock);
5808 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5809 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5810 rp->r_pathconf = NULL;
5812 if (rp->r_pathconf != NULL) {
5813 error = 0;
5814 switch (cmd) {
5815 case _PC_LINK_MAX:
5816 *valp = rp->r_pathconf->link_max;
5817 break;
5818 case _PC_NAME_MAX:
5819 *valp = rp->r_pathconf->name_max;
5820 break;
5821 case _PC_PATH_MAX:
5822 case _PC_SYMLINK_MAX:
5823 *valp = MAXPATHLEN;
5824 break;
5825 case _PC_CHOWN_RESTRICTED:
5826 *valp = rp->r_pathconf->chown_restricted;
5827 break;
5828 case _PC_NO_TRUNC:
5829 *valp = rp->r_pathconf->no_trunc;
5830 break;
5831 default:
5832 error = EINVAL;
5833 break;
5835 mutex_exit(&rp->r_statelock);
5836 #ifdef DEBUG
5837 nfs3_pathconf_cache_hits++;
5838 #endif
5839 return (error);
5841 mutex_exit(&rp->r_statelock);
5843 #ifdef DEBUG
5844 nfs3_pathconf_cache_misses++;
5845 #endif
5847 args.object = *VTOFH3(vp);
5848 fi.vp = vp;
5849 fi.fhp = (caddr_t)&args.object;
5850 fi.copyproc = nfs3copyfh;
5851 fi.lookupproc = nfs3lookup;
5852 fi.xattrdirproc = acl_getxattrdir3;
5854 douprintf = 1;
5856 t = gethrtime();
5858 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5859 xdr_nfs_fh3, (caddr_t)&args,
5860 xdr_PATHCONF3res, (caddr_t)&res, cr,
5861 &douprintf, &res.status, 0, &fi);
5863 if (error)
5864 return (error);
5866 error = geterrno3(res.status);
5868 if (!error) {
5869 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5870 if (!nfs3_pathconf_disable_cache) {
5871 mutex_enter(&rp->r_statelock);
5872 if (rp->r_pathconf == NULL) {
5873 rp->r_pathconf = kmem_alloc(
5874 sizeof (*rp->r_pathconf), KM_NOSLEEP);
5875 if (rp->r_pathconf != NULL)
5876 *rp->r_pathconf = res.resok.info;
5878 mutex_exit(&rp->r_statelock);
5880 switch (cmd) {
5881 case _PC_LINK_MAX:
5882 *valp = res.resok.info.link_max;
5883 break;
5884 case _PC_NAME_MAX:
5885 *valp = res.resok.info.name_max;
5886 break;
5887 case _PC_PATH_MAX:
5888 case _PC_SYMLINK_MAX:
5889 *valp = MAXPATHLEN;
5890 break;
5891 case _PC_CHOWN_RESTRICTED:
5892 *valp = res.resok.info.chown_restricted;
5893 break;
5894 case _PC_NO_TRUNC:
5895 *valp = res.resok.info.no_trunc;
5896 break;
5897 default:
5898 return (EINVAL);
5900 } else {
5901 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5902 PURGE_STALE_FH(error, vp, cr);
5905 return (error);
5909 * Called by async thread to do synchronous pageio. Do the i/o, wait
5910 * for it to complete, and cleanup the page list when done.
5912 static int
5913 nfs3_sync_pageio(vnode_t *vp, page_t *pp, uoff_t io_off, size_t io_len,
5914 int flags, cred_t *cr)
5916 int error;
5918 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5919 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5920 if (flags & B_READ)
5921 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5922 else
5923 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5924 return (error);
5927 /* ARGSUSED */
5928 static int
5929 nfs3_pageio(vnode_t *vp, page_t *pp, uoff_t io_off, size_t io_len,
5930 int flags, cred_t *cr, caller_context_t *ct)
5932 int error;
5933 rnode_t *rp;
5935 if (pp == NULL)
5936 return (EINVAL);
5937 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5938 return (EIO);
5940 rp = VTOR(vp);
5941 mutex_enter(&rp->r_statelock);
5942 rp->r_count++;
5943 mutex_exit(&rp->r_statelock);
5945 if (flags & B_ASYNC) {
5946 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5947 nfs3_sync_pageio);
5948 } else
5949 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5950 mutex_enter(&rp->r_statelock);
5951 rp->r_count--;
5952 cv_broadcast(&rp->r_cv);
5953 mutex_exit(&rp->r_statelock);
5954 return (error);
5957 /* ARGSUSED */
5958 static void
5959 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
5960 caller_context_t *ct)
5962 int error;
5963 rnode_t *rp;
5964 page_t *plist;
5965 page_t *pptr;
5966 offset3 offset;
5967 count3 len;
5968 k_sigset_t smask;
5971 * We should get called with fl equal to either B_FREE or
5972 * B_INVAL. Any other value is illegal.
5974 * The page that we are either supposed to free or destroy
5975 * should be exclusive locked and its io lock should not
5976 * be held.
5978 ASSERT(fl == B_FREE || fl == B_INVAL);
5979 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5980 rp = VTOR(vp);
5983 * If the page doesn't need to be committed or we shouldn't
5984 * even bother attempting to commit it, then just make sure
5985 * that the p_fsdata byte is clear and then either free or
5986 * destroy the page as appropriate.
5988 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
5989 pp->p_fsdata = C_NOCOMMIT;
5990 if (fl == B_FREE)
5991 page_free(pp, dn);
5992 else
5993 page_destroy(pp, dn);
5994 return;
5998 * If there is a page invalidation operation going on, then
5999 * if this is one of the pages being destroyed, then just
6000 * clear the p_fsdata byte and then either free or destroy
6001 * the page as appropriate.
6003 mutex_enter(&rp->r_statelock);
6004 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
6005 mutex_exit(&rp->r_statelock);
6006 pp->p_fsdata = C_NOCOMMIT;
6007 if (fl == B_FREE)
6008 page_free(pp, dn);
6009 else
6010 page_destroy(pp, dn);
6011 return;
6015 * If we are freeing this page and someone else is already
6016 * waiting to do a commit, then just unlock the page and
6017 * return. That other thread will take care of commiting
6018 * this page. The page can be freed sometime after the
6019 * commit has finished. Otherwise, if the page is marked
6020 * as delay commit, then we may be getting called from
6021 * pvn_write_done, one page at a time. This could result
6022 * in one commit per page, so we end up doing lots of small
6023 * commits instead of fewer larger commits. This is bad,
6024 * we want do as few commits as possible.
6026 if (fl == B_FREE) {
6027 if (rp->r_flags & RCOMMITWAIT) {
6028 page_unlock(pp);
6029 mutex_exit(&rp->r_statelock);
6030 return;
6032 if (pp->p_fsdata == C_DELAYCOMMIT) {
6033 pp->p_fsdata = C_COMMIT;
6034 page_unlock(pp);
6035 mutex_exit(&rp->r_statelock);
6036 return;
6041 * Check to see if there is a signal which would prevent an
6042 * attempt to commit the pages from being successful. If so,
6043 * then don't bother with all of the work to gather pages and
6044 * generate the unsuccessful RPC. Just return from here and
6045 * let the page be committed at some later time.
6047 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
6048 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
6049 sigunintr(&smask);
6050 page_unlock(pp);
6051 mutex_exit(&rp->r_statelock);
6052 return;
6054 sigunintr(&smask);
6057 * We are starting to need to commit pages, so let's try
6058 * to commit as many as possible at once to reduce the
6059 * overhead.
6061 * Set the `commit inprogress' state bit. We must
6062 * first wait until any current one finishes. Then
6063 * we initialize the c_pages list with this page.
6065 while (rp->r_flags & RCOMMIT) {
6066 rp->r_flags |= RCOMMITWAIT;
6067 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6068 rp->r_flags &= ~RCOMMITWAIT;
6070 rp->r_flags |= RCOMMIT;
6071 mutex_exit(&rp->r_statelock);
6072 ASSERT(rp->r_commit.c_pages == NULL);
6073 rp->r_commit.c_pages = pp;
6074 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6075 rp->r_commit.c_commlen = PAGESIZE;
6078 * Gather together all other pages which can be committed.
6079 * They will all be chained off r_commit.c_pages.
6081 nfs3_get_commit(vp);
6084 * Clear the `commit inprogress' status and disconnect
6085 * the list of pages to be committed from the rnode.
6086 * At this same time, we also save the starting offset
6087 * and length of data to be committed on the server.
6089 plist = rp->r_commit.c_pages;
6090 rp->r_commit.c_pages = NULL;
6091 offset = rp->r_commit.c_commbase;
6092 len = rp->r_commit.c_commlen;
6093 mutex_enter(&rp->r_statelock);
6094 rp->r_flags &= ~RCOMMIT;
6095 cv_broadcast(&rp->r_commit.c_cv);
6096 mutex_exit(&rp->r_statelock);
6098 if (curproc == proc_pageout || curproc == proc_fsflush ||
6099 nfs_zone() != VTOMI(vp)->mi_zone) {
6100 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
6101 return;
6105 * Actually generate the COMMIT3 over the wire operation.
6107 error = nfs3_commit(vp, offset, len, cr);
6110 * If we got an error during the commit, just unlock all
6111 * of the pages. The pages will get retransmitted to the
6112 * server during a putpage operation.
6114 if (error) {
6115 while (plist != NULL) {
6116 pptr = plist;
6117 page_sub(&plist, pptr);
6118 page_unlock(pptr);
6120 return;
6124 * We've tried as hard as we can to commit the data to stable
6125 * storage on the server. We release the rest of the pages
6126 * and clear the commit required state. They will be put
6127 * onto the tail of the cachelist if they are nolonger
6128 * mapped.
6130 while (plist != pp) {
6131 pptr = plist;
6132 page_sub(&plist, pptr);
6133 pptr->p_fsdata = C_NOCOMMIT;
6134 (void) page_release(pptr, 1);
6138 * It is possible that nfs3_commit didn't return error but
6139 * some other thread has modified the page we are going
6140 * to free/destroy.
6141 * In this case we need to rewrite the page. Do an explicit check
6142 * before attempting to free/destroy the page. If modified, needs to
6143 * be rewritten so unlock the page and return.
6145 if (hat_ismod(pp)) {
6146 pp->p_fsdata = C_NOCOMMIT;
6147 page_unlock(pp);
6148 return;
6152 * Now, as appropriate, either free or destroy the page
6153 * that we were called with.
6155 pp->p_fsdata = C_NOCOMMIT;
6156 if (fl == B_FREE)
6157 page_free(pp, dn);
6158 else
6159 page_destroy(pp, dn);
6162 static int
6163 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
6165 int error;
6166 rnode_t *rp;
6167 COMMIT3args args;
6168 COMMIT3res res;
6169 int douprintf;
6170 cred_t *cred;
6172 rp = VTOR(vp);
6173 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6175 mutex_enter(&rp->r_statelock);
6176 if (rp->r_cred != NULL) {
6177 cred = rp->r_cred;
6178 crhold(cred);
6179 } else {
6180 rp->r_cred = cr;
6181 crhold(cr);
6182 cred = cr;
6183 crhold(cred);
6185 mutex_exit(&rp->r_statelock);
6187 args.file = *VTOFH3(vp);
6188 args.offset = offset;
6189 args.count = count;
6191 doitagain:
6192 douprintf = 1;
6193 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
6194 xdr_COMMIT3args, (caddr_t)&args,
6195 xdr_COMMIT3res, (caddr_t)&res, cred,
6196 &douprintf, &res.status, 0, NULL);
6198 crfree(cred);
6200 if (error)
6201 return (error);
6203 error = geterrno3(res.status);
6204 if (!error) {
6205 ASSERT(rp->r_flags & RHAVEVERF);
6206 mutex_enter(&rp->r_statelock);
6207 if (rp->r_verf == res.resok.verf) {
6208 mutex_exit(&rp->r_statelock);
6209 return (0);
6211 nfs3_set_mod(vp);
6212 rp->r_verf = res.resok.verf;
6213 mutex_exit(&rp->r_statelock);
6214 error = NFS_VERF_MISMATCH;
6215 } else {
6216 if (error == EACCES) {
6217 mutex_enter(&rp->r_statelock);
6218 if (cred != cr) {
6219 if (rp->r_cred != NULL)
6220 crfree(rp->r_cred);
6221 rp->r_cred = cr;
6222 crhold(cr);
6223 cred = cr;
6224 crhold(cred);
6225 mutex_exit(&rp->r_statelock);
6226 goto doitagain;
6228 mutex_exit(&rp->r_statelock);
6231 * Can't do a PURGE_STALE_FH here because this
6232 * can cause a deadlock. nfs3_commit can
6233 * be called from nfs3_dispose which can be called
6234 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH
6235 * can call back to pvn_vplist_dirty.
6237 if (error == ESTALE) {
6238 mutex_enter(&rp->r_statelock);
6239 rp->r_flags |= RSTALE;
6240 if (!rp->r_error)
6241 rp->r_error = error;
6242 mutex_exit(&rp->r_statelock);
6243 PURGE_ATTRCACHE(vp);
6244 } else {
6245 mutex_enter(&rp->r_statelock);
6246 if (!rp->r_error)
6247 rp->r_error = error;
6248 mutex_exit(&rp->r_statelock);
6252 return (error);
6255 static void
6256 nfs3_set_mod(vnode_t *vp)
6258 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6260 pvn_vplist_setdirty(vp, nfs_setmod_check);
6264 * This routine is used to gather together a page list of the pages
6265 * which are to be committed on the server. This routine must not
6266 * be called if the calling thread holds any locked pages.
6268 * The calling thread must have set RCOMMIT. This bit is used to
6269 * serialize access to the commit structure in the rnode. As long
6270 * as the thread has set RCOMMIT, then it can manipulate the commit
6271 * structure without requiring any other locks.
6273 static void
6274 nfs3_get_commit(vnode_t *vp)
6276 rnode_t *rp;
6277 page_t *pp;
6279 rp = VTOR(vp);
6281 ASSERT(rp->r_flags & RCOMMIT);
6283 vmobject_lock(&vp->v_object);
6286 * Step through all of the pages associated with this vnode
6287 * looking for pages which need to be committed.
6289 for (pp = vmobject_get_head(&vp->v_object);
6290 pp != NULL;
6291 pp = vmobject_get_next(&vp->v_object, pp)) {
6292 /* Skip marker pages. */
6293 if (PP_ISPVN_TAG(pp))
6294 continue;
6297 * If this page does not need to be committed or is
6298 * modified, then just skip it.
6300 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6301 continue;
6304 * Attempt to lock the page. If we can't, then
6305 * someone else is messing with it and we will
6306 * just skip it.
6308 if (!page_trylock(pp, SE_EXCL))
6309 continue;
6312 * If this page does not need to be committed or is
6313 * modified, then just skip it. Recheck now that
6314 * the page is locked.
6316 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6317 page_unlock(pp);
6318 continue;
6321 if (PP_ISFREE(pp)) {
6322 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6323 (void *)pp);
6327 * The page needs to be committed and we locked it.
6328 * Update the base and length parameters and add it
6329 * to r_pages.
6331 if (rp->r_commit.c_pages == NULL) {
6332 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6333 rp->r_commit.c_commlen = PAGESIZE;
6334 } else if (pp->p_offset < rp->r_commit.c_commbase) {
6335 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6336 (offset3)pp->p_offset + rp->r_commit.c_commlen;
6337 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6338 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6339 <= pp->p_offset) {
6340 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6341 rp->r_commit.c_commbase + PAGESIZE;
6343 page_add(&rp->r_commit.c_pages, pp);
6346 vmobject_unlock(&vp->v_object);
6350 * This routine is used to gather together a page list of the pages
6351 * which are to be committed on the server. This routine must not
6352 * be called if the calling thread holds any locked pages.
6354 * The calling thread must have set RCOMMIT. This bit is used to
6355 * serialize access to the commit structure in the rnode. As long
6356 * as the thread has set RCOMMIT, then it can manipulate the commit
6357 * structure without requiring any other locks.
6359 static void
6360 nfs3_get_commit_range(vnode_t *vp, uoff_t soff, size_t len)
6363 rnode_t *rp;
6364 page_t *pp;
6365 uoff_t end;
6366 uoff_t off;
6368 ASSERT(len != 0);
6370 rp = VTOR(vp);
6372 ASSERT(rp->r_flags & RCOMMIT);
6373 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6376 * If there are no pages associated with this vnode, then
6377 * just return.
6379 if (!vn_has_cached_data(vp))
6380 return;
6383 * Calculate the ending offset.
6385 end = soff + len;
6387 for (off = soff; off < end; off += PAGESIZE) {
6389 * Lookup each page by vp, offset.
6391 if ((pp = page_lookup_nowait(&vp->v_object, off, SE_EXCL)) == NULL)
6392 continue;
6395 * If this page does not need to be committed or is
6396 * modified, then just skip it.
6398 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6399 page_unlock(pp);
6400 continue;
6403 ASSERT(PP_ISFREE(pp) == 0);
6406 * The page needs to be committed and we locked it.
6407 * Update the base and length parameters and add it
6408 * to r_pages.
6410 if (rp->r_commit.c_pages == NULL) {
6411 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6412 rp->r_commit.c_commlen = PAGESIZE;
6413 } else {
6414 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6415 rp->r_commit.c_commbase + PAGESIZE;
6417 page_add(&rp->r_commit.c_pages, pp);
6421 static int
6422 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6424 int error;
6425 writeverf3 write_verf;
6426 rnode_t *rp = VTOR(vp);
6428 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6430 * Flush the data portion of the file and then commit any
6431 * portions which need to be committed. This may need to
6432 * be done twice if the server has changed state since
6433 * data was last written. The data will need to be
6434 * rewritten to the server and then a new commit done.
6436 * In fact, this may need to be done several times if the
6437 * server is having problems and crashing while we are
6438 * attempting to do this.
6441 top:
6443 * Do a flush based on the poff and plen arguments. This
6444 * will asynchronously write out any modified pages in the
6445 * range specified by (poff, plen). This starts all of the
6446 * i/o operations which will be waited for in the next
6447 * call to nfs3_putpage
6450 mutex_enter(&rp->r_statelock);
6451 write_verf = rp->r_verf;
6452 mutex_exit(&rp->r_statelock);
6454 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
6455 if (error == EAGAIN)
6456 error = 0;
6459 * Do a flush based on the poff and plen arguments. This
6460 * will synchronously write out any modified pages in the
6461 * range specified by (poff, plen) and wait until all of
6462 * the asynchronous i/o's in that range are done as well.
6464 if (!error)
6465 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
6467 if (error)
6468 return (error);
6470 mutex_enter(&rp->r_statelock);
6471 if (rp->r_verf != write_verf) {
6472 mutex_exit(&rp->r_statelock);
6473 goto top;
6475 mutex_exit(&rp->r_statelock);
6478 * Now commit any pages which might need to be committed.
6479 * If the error, NFS_VERF_MISMATCH, is returned, then
6480 * start over with the flush operation.
6483 error = nfs3_commit_vp(vp, poff, plen, cr);
6485 if (error == NFS_VERF_MISMATCH)
6486 goto top;
6488 return (error);
6491 static int
6492 nfs3_commit_vp(vnode_t *vp, uoff_t poff, size_t plen, cred_t *cr)
6494 rnode_t *rp;
6495 page_t *plist;
6496 offset3 offset;
6497 count3 len;
6500 rp = VTOR(vp);
6502 if (nfs_zone() != VTOMI(vp)->mi_zone)
6503 return (EIO);
6505 * Set the `commit inprogress' state bit. We must
6506 * first wait until any current one finishes.
6508 mutex_enter(&rp->r_statelock);
6509 while (rp->r_flags & RCOMMIT) {
6510 rp->r_flags |= RCOMMITWAIT;
6511 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6512 rp->r_flags &= ~RCOMMITWAIT;
6514 rp->r_flags |= RCOMMIT;
6515 mutex_exit(&rp->r_statelock);
6518 * Gather together all of the pages which need to be
6519 * committed.
6521 if (plen == 0)
6522 nfs3_get_commit(vp);
6523 else
6524 nfs3_get_commit_range(vp, poff, plen);
6527 * Clear the `commit inprogress' bit and disconnect the
6528 * page list which was gathered together in nfs3_get_commit.
6530 plist = rp->r_commit.c_pages;
6531 rp->r_commit.c_pages = NULL;
6532 offset = rp->r_commit.c_commbase;
6533 len = rp->r_commit.c_commlen;
6534 mutex_enter(&rp->r_statelock);
6535 rp->r_flags &= ~RCOMMIT;
6536 cv_broadcast(&rp->r_commit.c_cv);
6537 mutex_exit(&rp->r_statelock);
6540 * If any pages need to be committed, commit them and
6541 * then unlock them so that they can be freed some
6542 * time later.
6544 if (plist != NULL) {
6546 * No error occurred during the flush portion
6547 * of this operation, so now attempt to commit
6548 * the data to stable storage on the server.
6550 * This will unlock all of the pages on the list.
6552 return (nfs3_sync_commit(vp, plist, offset, len, cr));
6554 return (0);
6557 static int
6558 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6559 cred_t *cr)
6561 int error;
6562 page_t *pp;
6564 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6565 error = nfs3_commit(vp, offset, count, cr);
6568 * If we got an error, then just unlock all of the pages
6569 * on the list.
6571 if (error) {
6572 while (plist != NULL) {
6573 pp = plist;
6574 page_sub(&plist, pp);
6575 page_unlock(pp);
6577 return (error);
6580 * We've tried as hard as we can to commit the data to stable
6581 * storage on the server. We just unlock the pages and clear
6582 * the commit required state. They will get freed later.
6584 while (plist != NULL) {
6585 pp = plist;
6586 page_sub(&plist, pp);
6587 pp->p_fsdata = C_NOCOMMIT;
6588 page_unlock(pp);
6591 return (error);
6594 static void
6595 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6596 cred_t *cr)
6598 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6599 (void) nfs3_sync_commit(vp, plist, offset, count, cr);
6602 /* ARGSUSED */
6603 static int
6604 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6605 caller_context_t *ct)
6607 int error;
6608 mntinfo_t *mi;
6610 mi = VTOMI(vp);
6612 if (nfs_zone() != mi->mi_zone)
6613 return (EIO);
6615 if (mi->mi_flags & MI_ACL) {
6616 error = acl_setacl3(vp, vsecattr, flag, cr);
6617 if (mi->mi_flags & MI_ACL)
6618 return (error);
6621 return (ENOSYS);
6624 /* ARGSUSED */
6625 static int
6626 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6627 caller_context_t *ct)
6629 int error;
6630 mntinfo_t *mi;
6632 mi = VTOMI(vp);
6634 if (nfs_zone() != mi->mi_zone)
6635 return (EIO);
6637 if (mi->mi_flags & MI_ACL) {
6638 error = acl_getacl3(vp, vsecattr, flag, cr);
6639 if (mi->mi_flags & MI_ACL)
6640 return (error);
6643 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
6646 /* ARGSUSED */
6647 static int
6648 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
6649 caller_context_t *ct)
6651 int error;
6652 struct shrlock nshr;
6653 struct nfs_owner nfs_owner;
6654 netobj lm_fh3;
6656 if (nfs_zone() != VTOMI(vp)->mi_zone)
6657 return (EIO);
6660 * check for valid cmd parameter
6662 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6663 return (EINVAL);
6666 * Check access permissions
6668 if (cmd == F_SHARE &&
6669 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6670 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6671 return (EBADF);
6674 * If the filesystem is mounted using local locking, pass the
6675 * request off to the local share code.
6677 if (VTOMI(vp)->mi_flags & MI_LLOCK)
6678 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
6680 switch (cmd) {
6681 case F_SHARE:
6682 case F_UNSHARE:
6683 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6684 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6687 * If passed an owner that is too large to fit in an
6688 * nfs_owner it is likely a recursive call from the
6689 * lock manager client and pass it straight through. If
6690 * it is not a nfs_owner then simply return an error.
6692 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6693 if (((struct nfs_owner *)shr->s_owner)->magic !=
6694 NFS_OWNER_MAGIC)
6695 return (EINVAL);
6697 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6698 error = set_errno(error);
6700 return (error);
6703 * Remote share reservations owner is a combination of
6704 * a magic number, hostname, and the local owner
6706 bzero(&nfs_owner, sizeof (nfs_owner));
6707 nfs_owner.magic = NFS_OWNER_MAGIC;
6708 (void) strncpy(nfs_owner.hname, uts_nodename(),
6709 sizeof (nfs_owner.hname));
6710 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6711 nshr.s_access = shr->s_access;
6712 nshr.s_deny = shr->s_deny;
6713 nshr.s_sysid = 0;
6714 nshr.s_pid = ttoproc(curthread)->p_pid;
6715 nshr.s_own_len = sizeof (nfs_owner);
6716 nshr.s_owner = (caddr_t)&nfs_owner;
6718 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6719 error = set_errno(error);
6722 break;
6724 case F_HASREMOTELOCKS:
6726 * NFS client can't store remote locks itself
6728 shr->s_access = 0;
6729 error = 0;
6730 break;
6732 default:
6733 error = EINVAL;
6734 break;
6737 return (error);