4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2015 by Delphix. All rights reserved.
28 #include <sys/param.h>
29 #include <sys/errno.h>
31 #include <sys/vnode.h>
33 #include <sys/cmn_err.h>
34 #include <sys/systm.h>
36 #include <sys/pathname.h>
37 #include <sys/utsname.h>
38 #include <sys/debug.h>
41 #include <sys/thread.h>
44 #include <rpc/types.h>
49 #include <nfs/export.h>
50 #include <nfs/nfs_clnt.h>
53 static struct kmem_cache
*exi_cache_handle
;
54 static void exi_cache_reclaim(void *);
55 static void exi_cache_trim(struct exportinfo
*exi
);
57 extern pri_t minclsyspri
;
59 volatile uint_t nfsauth_cache_hit
;
60 volatile uint_t nfsauth_cache_miss
;
61 volatile uint_t nfsauth_cache_refresh
;
62 volatile uint_t nfsauth_cache_reclaim
;
63 volatile uint_t exi_cache_auth_reclaim_failed
;
64 volatile uint_t exi_cache_clnt_reclaim_failed
;
67 * The lifetime of an auth cache entry:
68 * ------------------------------------
70 * An auth cache entry is created with both the auth_time
71 * and auth_freshness times set to the current time.
73 * Upon every client access which results in a hit, the
74 * auth_time will be updated.
76 * If a client access determines that the auth_freshness
77 * indicates that the entry is STALE, then it will be
78 * refreshed. Note that this will explicitly reset
81 * When the REFRESH successfully occurs, then the
82 * auth_freshness is updated.
84 * There are two ways for an entry to leave the cache:
86 * 1) Purged by an action on the export (remove or changed)
87 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
89 * For 2) we check the timeout value against auth_time.
93 * Number of seconds until we mark for refresh an auth cache entry.
95 #define NFSAUTH_CACHE_REFRESH 600
98 * Number of idle seconds until we yield to backpressure
99 * to trim a cache entry.
101 #define NFSAUTH_CACHE_TRIM 3600
104 * While we could encapuslate the exi_list inside the
105 * exi structure, we can't do that for the auth_list.
106 * So, to keep things looking clean, we keep them both
107 * in these external lists.
109 typedef struct refreshq_exi_node
{
110 struct exportinfo
*ren_exi
;
112 list_node_t ren_node
;
113 } refreshq_exi_node_t
;
115 typedef struct refreshq_auth_node
{
116 struct auth_cache
*ran_auth
;
118 list_node_t ran_node
;
119 } refreshq_auth_node_t
;
122 * Used to manipulate things on the refreshq_queue.
123 * Note that the refresh thread will effectively
124 * pop a node off of the queue, at which point it
125 * will no longer need to hold the mutex.
127 static kmutex_t refreshq_lock
;
128 static list_t refreshq_queue
;
129 static kcondvar_t refreshq_cv
;
132 * If there is ever a problem with loading the
133 * module, then nfsauth_fini() needs to be called
134 * to remove state. In that event, since the
135 * refreshq thread has been started, they need to
136 * work together to get rid of state.
138 typedef enum nfsauth_refreshq_thread_state
{
139 REFRESHQ_THREAD_RUNNING
,
140 REFRESHQ_THREAD_FINI_REQ
,
141 REFRESHQ_THREAD_HALTED
142 } nfsauth_refreshq_thread_state_t
;
144 nfsauth_refreshq_thread_state_t
145 refreshq_thread_state
= REFRESHQ_THREAD_HALTED
;
147 static void nfsauth_free_node(struct auth_cache
*);
148 static void nfsauth_refresh_thread(void);
150 static int nfsauth_cache_compar(const void *, const void *);
153 * mountd is a server-side only daemon. This will need to be
154 * revisited if the NFS server is ever made zones-aware.
156 kmutex_t mountd_lock
;
157 door_handle_t mountd_dh
;
160 mountd_args(uint_t did
)
162 mutex_enter(&mountd_lock
);
163 if (mountd_dh
!= NULL
)
164 door_ki_rele(mountd_dh
);
165 mountd_dh
= door_ki_lookup(did
);
166 mutex_exit(&mountd_lock
);
173 * mountd can be restarted by smf(5). We need to make sure
174 * the updated door handle will safely make it to mountd_dh
176 mutex_init(&mountd_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
178 mutex_init(&refreshq_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
179 list_create(&refreshq_queue
, sizeof (refreshq_exi_node_t
),
180 offsetof(refreshq_exi_node_t
, ren_node
));
182 cv_init(&refreshq_cv
, NULL
, CV_DEFAULT
, NULL
);
185 * Allocate nfsauth cache handle
187 exi_cache_handle
= kmem_cache_create("exi_cache_handle",
188 sizeof (struct auth_cache
), 0, NULL
, NULL
,
189 exi_cache_reclaim
, NULL
, NULL
, 0);
191 refreshq_thread_state
= REFRESHQ_THREAD_RUNNING
;
192 (void) zthread_create(NULL
, 0, nfsauth_refresh_thread
,
193 NULL
, 0, minclsyspri
);
197 * Finalization routine for nfsauth. It is important to call this routine
198 * before destroying the exported_lock.
203 refreshq_exi_node_t
*ren
;
206 * Prevent the nfsauth_refresh_thread from getting new
209 mutex_enter(&refreshq_lock
);
210 if (refreshq_thread_state
!= REFRESHQ_THREAD_HALTED
) {
211 refreshq_thread_state
= REFRESHQ_THREAD_FINI_REQ
;
212 cv_broadcast(&refreshq_cv
);
215 * Also, wait for nfsauth_refresh_thread() to exit.
217 while (refreshq_thread_state
!= REFRESHQ_THREAD_HALTED
) {
218 cv_wait(&refreshq_cv
, &refreshq_lock
);
221 mutex_exit(&refreshq_lock
);
224 * Walk the exi_list and in turn, walk the auth_lists and free all
225 * lists. In addition, free INVALID auth_cache entries.
227 while ((ren
= list_remove_head(&refreshq_queue
))) {
228 refreshq_auth_node_t
*ran
;
230 while ((ran
= list_remove_head(&ren
->ren_authlist
)) != NULL
) {
231 struct auth_cache
*p
= ran
->ran_auth
;
232 if (p
->auth_state
== NFS_AUTH_INVALID
)
233 nfsauth_free_node(p
);
234 strfree(ran
->ran_netid
);
235 kmem_free(ran
, sizeof (refreshq_auth_node_t
));
238 list_destroy(&ren
->ren_authlist
);
239 exi_rele(ren
->ren_exi
);
240 kmem_free(ren
, sizeof (refreshq_exi_node_t
));
242 list_destroy(&refreshq_queue
);
244 cv_destroy(&refreshq_cv
);
245 mutex_destroy(&refreshq_lock
);
247 mutex_destroy(&mountd_lock
);
250 * Deallocate nfsauth cache handle
252 kmem_cache_destroy(exi_cache_handle
);
256 * Convert the address in a netbuf to
257 * a hash index for the auth_cache table.
260 hash(struct netbuf
*a
)
264 for (i
= 0; i
< a
->len
; i
++)
267 return (h
& (AUTH_TABLESIZE
- 1));
271 * Mask out the components of an
272 * address that do not identify
273 * a host. For socket addresses the
274 * masking gets rid of the port number.
277 addrmask(struct netbuf
*addr
, struct netbuf
*mask
)
281 for (i
= 0; i
< addr
->len
; i
++)
282 addr
->buf
[i
] &= mask
->buf
[i
];
286 * nfsauth4_access is used for NFS V4 auth checking. Besides doing
287 * the common nfsauth_access(), it will check if the client can
288 * have a limited access to this vnode even if the security flavor
289 * used does not meet the policy.
292 nfsauth4_access(struct exportinfo
*exi
, vnode_t
*vp
, struct svc_req
*req
,
293 cred_t
*cr
, uid_t
*uid
, gid_t
*gid
, uint_t
*ngids
, gid_t
**gids
)
297 access
= nfsauth_access(exi
, req
, cr
, uid
, gid
, ngids
, gids
);
300 * There are cases that the server needs to allow the client
301 * to have a limited view.
304 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
305 * /export/home is shared as "sec=sys,rw"
307 * When the client mounts /export with sec=sys, the client
308 * would get a limited view with RO access on /export to see
309 * "home" only because the client is allowed to access
310 * /export/home with auth_sys.
312 if (access
& NFSAUTH_DENIED
|| access
& NFSAUTH_WRONGSEC
) {
314 * Allow ro permission with LIMITED view if there is a
315 * sub-dir exported under vp.
317 if (has_visible(exi
, vp
))
318 return (NFSAUTH_LIMITED
);
325 sys_log(const char *msg
)
327 static time_t tstamp
= 0;
331 * msg is shown (at most) once per minute
333 now
= gethrestime_sec();
334 if ((tstamp
+ 60) < now
) {
336 cmn_err(CE_WARN
, msg
);
341 * Callup to the mountd to get access information in the kernel.
344 nfsauth_retrieve(struct exportinfo
*exi
, char *req_netid
, int flavor
,
345 struct netbuf
*addr
, int *access
, cred_t
*clnt_cred
, uid_t
*srv_uid
,
346 gid_t
*srv_gid
, uint_t
*srv_gids_cnt
, gid_t
**srv_gids
)
349 nfsauth_res_t res
= {0};
360 * No entry in the cache for this client/flavor
361 * so we need to call the nfsauth service in the
366 varg
.arg_u
.arg
.cmd
= NFSAUTH_ACCESS
;
367 varg
.arg_u
.arg
.areq
.req_client
.n_len
= addr
->len
;
368 varg
.arg_u
.arg
.areq
.req_client
.n_bytes
= addr
->buf
;
369 varg
.arg_u
.arg
.areq
.req_netid
= req_netid
;
370 varg
.arg_u
.arg
.areq
.req_path
= exi
->exi_export
.ex_path
;
371 varg
.arg_u
.arg
.areq
.req_flavor
= flavor
;
372 varg
.arg_u
.arg
.areq
.req_clnt_uid
= crgetuid(clnt_cred
);
373 varg
.arg_u
.arg
.areq
.req_clnt_gid
= crgetgid(clnt_cred
);
374 varg
.arg_u
.arg
.areq
.req_clnt_gids
.len
= crgetngroups(clnt_cred
);
375 varg
.arg_u
.arg
.areq
.req_clnt_gids
.val
= (gid_t
*)crgetgroups(clnt_cred
);
377 DTRACE_PROBE1(nfsserv__func__nfsauth__varg
, varg_t
*, &varg
);
380 * Setup the XDR stream for encoding the arguments. Notice that
381 * in addition to the args having variable fields (req_netid and
382 * req_path), the argument data structure is itself versioned,
383 * so we need to make sure we can size the arguments buffer
384 * appropriately to encode all the args. If we can't get sizing
385 * info _or_ properly encode the arguments, there's really no
386 * point in continuting, so we fail the request.
388 if ((absz
= xdr_sizeof(xdr_varg
, &varg
)) == 0) {
389 *access
= NFSAUTH_DENIED
;
393 abuf
= kmem_alloc(absz
, KM_SLEEP
);
394 xdrmem_create(&xdrs
, abuf
, absz
, XDR_ENCODE
);
395 if (!xdr_varg(&xdrs
, &varg
)) {
402 * Prepare the door arguments
404 * We don't know the size of the message the daemon
405 * will pass back to us. By setting rbuf to NULL,
406 * we force the door code to allocate a buf of the
407 * appropriate size. We must set rsize > 0, however,
408 * else the door code acts as if no response was
409 * expected and doesn't pass the data to us.
411 da
.data_ptr
= (char *)abuf
;
419 mutex_enter(&mountd_lock
);
423 mutex_exit(&mountd_lock
);
427 * The rendezvous point has not been established yet!
428 * This could mean that either mountd(1m) has not yet
429 * been started or that _this_ routine nuked the door
430 * handle after receiving an EINTR for a REVOKED door.
432 * Returning NFSAUTH_DROP will cause the NFS client
433 * to retransmit the request, so let's try to be more
434 * rescillient and attempt for ntries before we bail.
436 if (++ntries
% NFSAUTH_DR_TRYCNT
) {
441 kmem_free(abuf
, absz
);
443 sys_log("nfsauth: mountd has not established door");
444 *access
= NFSAUTH_DROP
;
451 * Now that we've got what we need, place the call.
453 switch (door_ki_upcall_limited(dh
, &da
, NULL
, SIZE_MAX
, 0)) {
454 case 0: /* Success */
457 if (da
.data_ptr
== NULL
&& da
.data_size
== 0) {
459 * The door_return that contained the data
460 * failed! We're here because of the 2nd
461 * door_return (w/o data) such that we can
462 * get control of the thread (and exit
465 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil
,
474 * Server out of resources; back off for a bit
482 if (!door_ki_info(dh
, &di
)) {
485 if (di
.di_attributes
& DOOR_REVOKED
) {
487 * The server barfed and revoked
488 * the (existing) door on us; we
489 * want to wait to give smf(5) a
490 * chance to restart mountd(1m)
491 * and establish a new door handle.
493 mutex_enter(&mountd_lock
);
494 if (dh
== mountd_dh
) {
495 door_ki_rele(mountd_dh
);
498 mutex_exit(&mountd_lock
);
503 * If the door was _not_ revoked on us,
504 * then more than likely we took an INTR,
505 * so we need to fail the operation.
510 * The only failure that can occur from getting
511 * the door info is EINVAL, so we let the code
520 * If we have a stale door handle, give smf a last
521 * chance to start it by sleeping for a little bit.
522 * If we're still hosed, we'll fail the call.
524 * Since we're going to reacquire the door handle
525 * upon the retry, we opt to sleep for a bit and
526 * _not_ to clear mountd_dh. If mountd restarted
527 * and was able to set mountd_dh, we should see
528 * the new instance; if not, we won't get caught
529 * up in the retry/DELAY loop.
537 sys_log("nfsauth: stale mountd door handle");
541 ASSERT(da
.rbuf
!= NULL
);
544 * No door errors encountered; setup the XDR stream for decoding
545 * the results. If we fail to decode the results, we've got no
546 * other recourse than to fail the request.
548 xdrmem_create(&xdrs
, da
.rbuf
, da
.rsize
, XDR_DECODE
);
549 if (!xdr_nfsauth_res(&xdrs
, &res
)) {
550 xdr_free(xdr_nfsauth_res
, (char *)&res
);
552 kmem_free(da
.rbuf
, da
.rsize
);
556 kmem_free(da
.rbuf
, da
.rsize
);
558 DTRACE_PROBE1(nfsserv__func__nfsauth__results
, nfsauth_res_t
*, &res
);
560 case NFSAUTH_DR_OKAY
:
561 *access
= res
.ares
.auth_perm
;
562 *srv_uid
= res
.ares
.auth_srv_uid
;
563 *srv_gid
= res
.ares
.auth_srv_gid
;
564 *srv_gids_cnt
= res
.ares
.auth_srv_gids
.len
;
565 *srv_gids
= kmem_alloc(*srv_gids_cnt
* sizeof (gid_t
),
567 bcopy(res
.ares
.auth_srv_gids
.val
, *srv_gids
,
568 *srv_gids_cnt
* sizeof (gid_t
));
571 case NFSAUTH_DR_EFAIL
:
572 case NFSAUTH_DR_DECERR
:
573 case NFSAUTH_DR_BADCMD
:
575 xdr_free(xdr_nfsauth_res
, (char *)&res
);
577 *access
= NFSAUTH_DENIED
;
578 kmem_free(abuf
, absz
);
583 xdr_free(xdr_nfsauth_res
, (char *)&res
);
584 kmem_free(abuf
, absz
);
590 nfsauth_refresh_thread(void)
592 refreshq_exi_node_t
*ren
;
593 refreshq_auth_node_t
*ran
;
595 struct exportinfo
*exi
;
602 CALLB_CPR_INIT(&cprinfo
, &refreshq_lock
, callb_generic_cpr
,
606 mutex_enter(&refreshq_lock
);
607 if (refreshq_thread_state
!= REFRESHQ_THREAD_RUNNING
) {
608 /* Keep the hold on the lock! */
612 ren
= list_remove_head(&refreshq_queue
);
614 CALLB_CPR_SAFE_BEGIN(&cprinfo
);
615 cv_wait(&refreshq_cv
, &refreshq_lock
);
616 CALLB_CPR_SAFE_END(&cprinfo
, &refreshq_lock
);
617 mutex_exit(&refreshq_lock
);
620 mutex_exit(&refreshq_lock
);
626 * Since the ren was removed from the refreshq_queue above,
627 * this is the only thread aware about the ren existence, so we
628 * have the exclusive ownership of it and we do not need to
629 * protect it by any lock.
631 while ((ran
= list_remove_head(&ren
->ren_authlist
))) {
636 struct auth_cache
*p
= ran
->ran_auth
;
637 char *netid
= ran
->ran_netid
;
640 ASSERT(netid
!= NULL
);
642 kmem_free(ran
, sizeof (refreshq_auth_node_t
));
644 mutex_enter(&p
->auth_lock
);
647 * Once the entry goes INVALID, it can not change
650 * No need to refresh entries also in a case we are
651 * just shutting down.
653 * In general, there is no need to hold the
654 * refreshq_lock to test the refreshq_thread_state. We
655 * do hold it at other places because there is some
656 * related thread synchronization (or some other tasks)
657 * close to the refreshq_thread_state check.
659 * The check for the refreshq_thread_state value here
660 * is purely advisory to allow the faster
661 * nfsauth_refresh_thread() shutdown. In a case we
662 * will miss such advisory, nothing catastrophic
663 * happens: we will just spin longer here before the
666 if (p
->auth_state
== NFS_AUTH_INVALID
||
667 refreshq_thread_state
!= REFRESHQ_THREAD_RUNNING
) {
668 mutex_exit(&p
->auth_lock
);
670 if (p
->auth_state
== NFS_AUTH_INVALID
)
671 nfsauth_free_node(p
);
679 * Make sure the state is valid. Note that once we
680 * change the state to NFS_AUTH_REFRESHING, no other
681 * thread will be able to work on this entry.
683 ASSERT(p
->auth_state
== NFS_AUTH_STALE
);
685 p
->auth_state
= NFS_AUTH_REFRESHING
;
686 mutex_exit(&p
->auth_lock
);
688 DTRACE_PROBE2(nfsauth__debug__cache__refresh
,
689 struct exportinfo
*, exi
,
690 struct auth_cache
*, p
);
693 * The first caching of the access rights
694 * is done with the netid pulled out of the
695 * request from the client. All subsequent
696 * users of the cache may or may not have
697 * the same netid. It doesn't matter. So
698 * when we refresh, we simply use the netid
699 * of the request which triggered the
702 retrieval
= nfsauth_retrieve(exi
, netid
,
703 p
->auth_flavor
, &p
->auth_clnt
->authc_addr
, &access
,
704 p
->auth_clnt_cred
, &uid
, &gid
, &ngids
, &gids
);
707 * This can only be set in one other place
708 * and the state has to be NFS_AUTH_FRESH.
712 mutex_enter(&p
->auth_lock
);
713 if (p
->auth_state
== NFS_AUTH_INVALID
) {
714 mutex_exit(&p
->auth_lock
);
715 nfsauth_free_node(p
);
716 if (retrieval
== TRUE
)
717 kmem_free(gids
, ngids
* sizeof (gid_t
));
720 * If we got an error, do not reset the
721 * time. This will cause the next access
722 * check for the client to reschedule this
725 if (retrieval
== TRUE
) {
726 p
->auth_access
= access
;
728 p
->auth_srv_uid
= uid
;
729 p
->auth_srv_gid
= gid
;
730 kmem_free(p
->auth_srv_gids
,
731 p
->auth_srv_ngids
* sizeof (gid_t
));
732 p
->auth_srv_ngids
= ngids
;
733 p
->auth_srv_gids
= gids
;
735 p
->auth_freshness
= gethrestime_sec();
737 p
->auth_state
= NFS_AUTH_FRESH
;
739 cv_broadcast(&p
->auth_cv
);
740 mutex_exit(&p
->auth_lock
);
744 list_destroy(&ren
->ren_authlist
);
745 exi_rele(ren
->ren_exi
);
746 kmem_free(ren
, sizeof (refreshq_exi_node_t
));
749 refreshq_thread_state
= REFRESHQ_THREAD_HALTED
;
750 cv_broadcast(&refreshq_cv
);
751 CALLB_CPR_EXIT(&cprinfo
);
756 nfsauth_cache_clnt_compar(const void *v1
, const void *v2
)
760 const struct auth_cache_clnt
*a1
= (const struct auth_cache_clnt
*)v1
;
761 const struct auth_cache_clnt
*a2
= (const struct auth_cache_clnt
*)v2
;
763 if (a1
->authc_addr
.len
< a2
->authc_addr
.len
)
765 if (a1
->authc_addr
.len
> a2
->authc_addr
.len
)
768 c
= memcmp(a1
->authc_addr
.buf
, a2
->authc_addr
.buf
, a1
->authc_addr
.len
);
778 nfsauth_cache_compar(const void *v1
, const void *v2
)
782 const struct auth_cache
*a1
= (const struct auth_cache
*)v1
;
783 const struct auth_cache
*a2
= (const struct auth_cache
*)v2
;
785 if (a1
->auth_flavor
< a2
->auth_flavor
)
787 if (a1
->auth_flavor
> a2
->auth_flavor
)
790 if (crgetuid(a1
->auth_clnt_cred
) < crgetuid(a2
->auth_clnt_cred
))
792 if (crgetuid(a1
->auth_clnt_cred
) > crgetuid(a2
->auth_clnt_cred
))
795 if (crgetgid(a1
->auth_clnt_cred
) < crgetgid(a2
->auth_clnt_cred
))
797 if (crgetgid(a1
->auth_clnt_cred
) > crgetgid(a2
->auth_clnt_cred
))
800 if (crgetngroups(a1
->auth_clnt_cred
) < crgetngroups(a2
->auth_clnt_cred
))
802 if (crgetngroups(a1
->auth_clnt_cred
) > crgetngroups(a2
->auth_clnt_cred
))
805 c
= memcmp(crgetgroups(a1
->auth_clnt_cred
),
806 crgetgroups(a2
->auth_clnt_cred
), crgetngroups(a1
->auth_clnt_cred
));
816 * Get the access information from the cache or callup to the mountd
817 * to get and cache the access information in the kernel.
820 nfsauth_cache_get(struct exportinfo
*exi
, struct svc_req
*req
, int flavor
,
821 cred_t
*cr
, uid_t
*uid
, gid_t
*gid
, uint_t
*ngids
, gid_t
**gids
)
823 struct netbuf
*taddrmask
;
824 struct netbuf addr
; /* temporary copy of client's address */
825 const struct netbuf
*claddr
;
827 struct auth_cache ac
; /* used as a template for avl_find() */
828 struct auth_cache_clnt
*c
;
829 struct auth_cache_clnt acc
; /* used as a template for avl_find() */
830 struct auth_cache
*p
= NULL
;
838 avl_index_t where
; /* used for avl_find()/avl_insert() */
843 * Now check whether this client already
844 * has an entry for this flavor in the cache
846 * Get the caller's address, mask off the
847 * parts of the address that do not identify
848 * the host (port number, etc), and then hash
849 * it to find the chain of cache entries.
852 claddr
= svc_getrpccaller(req
->rq_xprt
);
854 addr
.buf
= kmem_alloc(addr
.maxlen
, KM_SLEEP
);
855 bcopy(claddr
->buf
, addr
.buf
, claddr
->len
);
857 SVC_GETADDRMASK(req
->rq_xprt
, SVC_TATTR_ADDRMASK
, (void **)&taddrmask
);
858 ASSERT(taddrmask
!= NULL
);
859 addrmask(&addr
, taddrmask
);
861 ac
.auth_flavor
= flavor
;
862 ac
.auth_clnt_cred
= crdup(cr
);
864 acc
.authc_addr
= addr
;
866 tree
= exi
->exi_cache
[hash(&addr
)];
868 rw_enter(&exi
->exi_cache_lock
, RW_READER
);
869 c
= (struct auth_cache_clnt
*)avl_find(tree
, &acc
, NULL
);
872 struct auth_cache_clnt
*nc
;
874 rw_exit(&exi
->exi_cache_lock
);
876 nc
= kmem_alloc(sizeof (*nc
), KM_NOSLEEP
| KM_NORMALPRI
);
881 * Initialize the new auth_cache_clnt
883 nc
->authc_addr
= addr
;
884 nc
->authc_addr
.buf
= kmem_alloc(addr
.maxlen
,
885 KM_NOSLEEP
| KM_NORMALPRI
);
886 if (addr
.maxlen
!= 0 && nc
->authc_addr
.buf
== NULL
) {
887 kmem_free(nc
, sizeof (*nc
));
890 bcopy(addr
.buf
, nc
->authc_addr
.buf
, addr
.len
);
891 rw_init(&nc
->authc_lock
, NULL
, RW_DEFAULT
, NULL
);
892 avl_create(&nc
->authc_tree
, nfsauth_cache_compar
,
893 sizeof (struct auth_cache
),
894 offsetof(struct auth_cache
, auth_link
));
896 rw_enter(&exi
->exi_cache_lock
, RW_WRITER
);
897 c
= (struct auth_cache_clnt
*)avl_find(tree
, &acc
, &where
);
899 avl_insert(tree
, nc
, where
);
900 rw_downgrade(&exi
->exi_cache_lock
);
903 rw_downgrade(&exi
->exi_cache_lock
);
905 avl_destroy(&nc
->authc_tree
);
906 rw_destroy(&nc
->authc_lock
);
907 kmem_free(nc
->authc_addr
.buf
, nc
->authc_addr
.maxlen
);
908 kmem_free(nc
, sizeof (*nc
));
914 rw_enter(&c
->authc_lock
, RW_READER
);
915 p
= (struct auth_cache
*)avl_find(&c
->authc_tree
, &ac
, NULL
);
918 struct auth_cache
*np
;
920 rw_exit(&c
->authc_lock
);
922 np
= kmem_cache_alloc(exi_cache_handle
,
923 KM_NOSLEEP
| KM_NORMALPRI
);
925 rw_exit(&exi
->exi_cache_lock
);
930 * Initialize the new auth_cache
933 np
->auth_flavor
= flavor
;
934 np
->auth_clnt_cred
= ac
.auth_clnt_cred
;
935 np
->auth_srv_ngids
= 0;
936 np
->auth_srv_gids
= NULL
;
937 np
->auth_time
= np
->auth_freshness
= gethrestime_sec();
938 np
->auth_state
= NFS_AUTH_NEW
;
939 mutex_init(&np
->auth_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
940 cv_init(&np
->auth_cv
, NULL
, CV_DEFAULT
, NULL
);
942 rw_enter(&c
->authc_lock
, RW_WRITER
);
943 rw_exit(&exi
->exi_cache_lock
);
945 p
= (struct auth_cache
*)avl_find(&c
->authc_tree
, &ac
, &where
);
947 avl_insert(&c
->authc_tree
, np
, where
);
948 rw_downgrade(&c
->authc_lock
);
951 rw_downgrade(&c
->authc_lock
);
953 cv_destroy(&np
->auth_cv
);
954 mutex_destroy(&np
->auth_lock
);
955 crfree(ac
.auth_clnt_cred
);
956 kmem_cache_free(exi_cache_handle
, np
);
959 rw_exit(&exi
->exi_cache_lock
);
960 crfree(ac
.auth_clnt_cred
);
963 mutex_enter(&p
->auth_lock
);
964 rw_exit(&c
->authc_lock
);
967 * If the entry is in the WAITING state then some other thread is just
968 * retrieving the required info. The entry was either NEW, or the list
969 * of client's supplemental groups is going to be changed (either by
970 * this thread, or by some other thread). We need to wait until the
971 * nfsauth_retrieve() is done.
973 while (p
->auth_state
== NFS_AUTH_WAITING
)
974 cv_wait(&p
->auth_cv
, &p
->auth_lock
);
977 * Here the entry cannot be in WAITING or INVALID state.
979 ASSERT(p
->auth_state
!= NFS_AUTH_WAITING
);
980 ASSERT(p
->auth_state
!= NFS_AUTH_INVALID
);
983 * If the cache entry is not valid yet, we need to retrieve the
986 if (p
->auth_state
== NFS_AUTH_NEW
) {
989 * NFS_AUTH_NEW is the default output auth_state value in a
990 * case we failed somewhere below.
992 auth_state_t state
= NFS_AUTH_NEW
;
994 p
->auth_state
= NFS_AUTH_WAITING
;
995 mutex_exit(&p
->auth_lock
);
996 kmem_free(addr
.buf
, addr
.maxlen
);
997 addr
= p
->auth_clnt
->authc_addr
;
999 atomic_inc_uint(&nfsauth_cache_miss
);
1001 res
= nfsauth_retrieve(exi
, svc_getnetid(req
->rq_xprt
), flavor
,
1002 &addr
, &access
, cr
, &tmpuid
, &tmpgid
, &tmpngids
, &tmpgids
);
1004 p
->auth_access
= access
;
1005 p
->auth_time
= p
->auth_freshness
= gethrestime_sec();
1012 if (ngids
!= NULL
&& gids
!= NULL
) {
1017 * We need a copy of gids for the
1020 tmpgids
= kmem_alloc(tmpngids
* sizeof (gid_t
),
1021 KM_NOSLEEP
| KM_NORMALPRI
);
1022 if (tmpgids
!= NULL
)
1023 bcopy(*gids
, tmpgids
,
1024 tmpngids
* sizeof (gid_t
));
1027 if (tmpgids
!= NULL
|| tmpngids
== 0) {
1028 p
->auth_srv_uid
= tmpuid
;
1029 p
->auth_srv_gid
= tmpgid
;
1030 p
->auth_srv_ngids
= tmpngids
;
1031 p
->auth_srv_gids
= tmpgids
;
1033 state
= NFS_AUTH_FRESH
;
1038 * Set the auth_state and notify waiters.
1040 mutex_enter(&p
->auth_lock
);
1041 p
->auth_state
= state
;
1042 cv_broadcast(&p
->auth_cv
);
1043 mutex_exit(&p
->auth_lock
);
1048 refresh
= gethrestime_sec() - p
->auth_freshness
;
1050 p
->auth_time
= gethrestime_sec();
1053 *uid
= p
->auth_srv_uid
;
1055 *gid
= p
->auth_srv_gid
;
1056 if (ngids
!= NULL
&& gids
!= NULL
) {
1057 *ngids
= p
->auth_srv_ngids
;
1058 *gids
= kmem_alloc(*ngids
* sizeof (gid_t
), KM_SLEEP
);
1059 bcopy(p
->auth_srv_gids
, *gids
, *ngids
* sizeof (gid_t
));
1062 access
= p
->auth_access
;
1064 if ((refresh
> NFSAUTH_CACHE_REFRESH
) &&
1065 p
->auth_state
== NFS_AUTH_FRESH
) {
1066 refreshq_auth_node_t
*ran
;
1069 p
->auth_state
= NFS_AUTH_STALE
;
1070 mutex_exit(&p
->auth_lock
);
1072 nacr
= atomic_inc_uint_nv(&nfsauth_cache_refresh
);
1073 DTRACE_PROBE3(nfsauth__debug__cache__stale
,
1074 struct exportinfo
*, exi
,
1075 struct auth_cache
*, p
,
1078 ran
= kmem_alloc(sizeof (refreshq_auth_node_t
),
1081 ran
->ran_netid
= strdup(svc_getnetid(req
->rq_xprt
));
1083 mutex_enter(&refreshq_lock
);
1085 * We should not add a work queue
1086 * item if the thread is not
1089 if (refreshq_thread_state
== REFRESHQ_THREAD_RUNNING
) {
1090 refreshq_exi_node_t
*ren
;
1093 * Is there an existing exi_list?
1095 for (ren
= list_head(&refreshq_queue
);
1097 ren
= list_next(&refreshq_queue
, ren
)) {
1098 if (ren
->ren_exi
== exi
) {
1100 &ren
->ren_authlist
, ran
);
1107 sizeof (refreshq_exi_node_t
),
1113 list_create(&ren
->ren_authlist
,
1114 sizeof (refreshq_auth_node_t
),
1115 offsetof(refreshq_auth_node_t
,
1118 list_insert_tail(&ren
->ren_authlist
,
1120 list_insert_tail(&refreshq_queue
, ren
);
1123 cv_broadcast(&refreshq_cv
);
1125 strfree(ran
->ran_netid
);
1126 kmem_free(ran
, sizeof (refreshq_auth_node_t
));
1129 mutex_exit(&refreshq_lock
);
1131 mutex_exit(&p
->auth_lock
);
1134 nach
= atomic_inc_uint_nv(&nfsauth_cache_hit
);
1135 DTRACE_PROBE2(nfsauth__debug__cache__hit
,
1139 kmem_free(addr
.buf
, addr
.maxlen
);
1145 crfree(ac
.auth_clnt_cred
);
1148 * Retrieve the required data without caching.
1153 atomic_inc_uint(&nfsauth_cache_miss
);
1155 if (nfsauth_retrieve(exi
, svc_getnetid(req
->rq_xprt
), flavor
, &addr
,
1156 &access
, cr
, &tmpuid
, &tmpgid
, &tmpngids
, &tmpgids
)) {
1161 if (ngids
!= NULL
&& gids
!= NULL
) {
1165 kmem_free(tmpgids
, tmpngids
* sizeof (gid_t
));
1169 kmem_free(addr
.buf
, addr
.maxlen
);
1175 * Check if the requesting client has access to the filesystem with
1176 * a given nfs flavor number which is an explicitly shared flavor.
1179 nfsauth4_secinfo_access(struct exportinfo
*exi
, struct svc_req
*req
,
1180 int flavor
, int perm
, cred_t
*cr
)
1184 if (! (perm
& M_4SEC_EXPORTED
)) {
1185 return (NFSAUTH_DENIED
);
1189 * Optimize if there are no lists
1191 if ((perm
& (M_ROOT
| M_NONE
| M_MAP
)) == 0) {
1192 perm
&= ~M_4SEC_EXPORTED
;
1194 return (NFSAUTH_RO
);
1196 return (NFSAUTH_RW
);
1199 access
= nfsauth_cache_get(exi
, req
, flavor
, cr
, NULL
, NULL
, NULL
,
1206 nfsauth_access(struct exportinfo
*exi
, struct svc_req
*req
, cred_t
*cr
,
1207 uid_t
*uid
, gid_t
*gid
, uint_t
*ngids
, gid_t
**gids
)
1209 int access
, mapaccess
;
1211 int i
, flavor
, perm
;
1212 int authnone_entry
= -1;
1215 * By default root is mapped to anonymous user.
1216 * This might get overriden later in nfsauth_cache_get().
1218 if (crgetuid(cr
) == 0) {
1220 *uid
= exi
->exi_export
.ex_anon
;
1222 *gid
= exi
->exi_export
.ex_anon
;
1225 *uid
= crgetuid(cr
);
1227 *gid
= crgetgid(cr
);
1236 * Get the nfs flavor number from xprt.
1238 flavor
= (int)(uintptr_t)req
->rq_xprt
->xp_cookie
;
1241 * First check the access restrictions on the filesystem. If
1242 * there are no lists associated with this flavor then there's no
1243 * need to make an expensive call to the nfsauth service or to
1247 sp
= exi
->exi_export
.ex_secinfo
;
1248 for (i
= 0; i
< exi
->exi_export
.ex_seccnt
; i
++) {
1249 if (flavor
!= sp
[i
].s_secinfo
.sc_nfsnum
) {
1250 if (sp
[i
].s_secinfo
.sc_nfsnum
== AUTH_NONE
)
1259 if (i
>= exi
->exi_export
.ex_seccnt
) {
1261 * Flavor not found, but use AUTH_NONE if it exists
1263 if (authnone_entry
== -1)
1264 return (NFSAUTH_DENIED
);
1266 mapaccess
= NFSAUTH_MAPNONE
;
1271 * If the flavor is in the ex_secinfo list, but not an explicitly
1272 * shared flavor by the user, it is a result of the nfsv4 server
1273 * namespace setup. We will grant an RO permission similar for
1274 * a pseudo node except that this node is a shared one.
1276 * e.g. flavor in (flavor) indicates that it is not explictly
1277 * shared by the user:
1281 * export #share -o sec=sys (krb5)
1283 * secure #share -o sec=krb5
1285 * In this case, when a krb5 request coming in to access
1286 * /export, RO permission is granted.
1288 if (!(sp
[i
].s_flags
& M_4SEC_EXPORTED
))
1289 return (mapaccess
| NFSAUTH_RO
);
1292 * Optimize if there are no lists.
1293 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1295 perm
= sp
[i
].s_flags
;
1296 if ((perm
& (M_ROOT
| M_NONE
| M_MAP
)) == 0 && (ngroups_max
<= NGRPS
||
1297 flavor
!= AUTH_SYS
|| crgetngroups(cr
) < NGRPS
)) {
1298 perm
&= ~M_4SEC_EXPORTED
;
1300 return (mapaccess
| NFSAUTH_RO
);
1302 return (mapaccess
| NFSAUTH_RW
);
1305 access
= nfsauth_cache_get(exi
, req
, flavor
, cr
, uid
, gid
, ngids
, gids
);
1308 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1309 * the supplemental groups.
1311 if (access
& NFSAUTH_DENIED
|| access
& NFSAUTH_WRONGSEC
) {
1312 if (ngids
!= NULL
&& gids
!= NULL
) {
1313 kmem_free(*gids
, *ngids
* sizeof (gid_t
));
1320 * Client's security flavor doesn't match with "ro" or
1321 * "rw" list. Try again using AUTH_NONE if present.
1323 if ((access
& NFSAUTH_WRONGSEC
) && (flavor
!= AUTH_NONE
)) {
1325 * Have we already encountered AUTH_NONE ?
1327 if (authnone_entry
!= -1) {
1328 mapaccess
= NFSAUTH_MAPNONE
;
1329 access
= nfsauth_cache_get(exi
, req
, AUTH_NONE
, cr
,
1330 NULL
, NULL
, NULL
, NULL
);
1333 * Check for AUTH_NONE presence.
1335 for (; i
< exi
->exi_export
.ex_seccnt
; i
++) {
1336 if (sp
[i
].s_secinfo
.sc_nfsnum
== AUTH_NONE
) {
1337 mapaccess
= NFSAUTH_MAPNONE
;
1338 access
= nfsauth_cache_get(exi
, req
,
1339 AUTH_NONE
, cr
, NULL
, NULL
, NULL
,
1347 if (access
& NFSAUTH_DENIED
)
1348 access
= NFSAUTH_DENIED
;
1350 return (access
| mapaccess
);
1354 nfsauth_free_clnt_node(struct auth_cache_clnt
*p
)
1356 void *cookie
= NULL
;
1357 struct auth_cache
*node
;
1359 while ((node
= avl_destroy_nodes(&p
->authc_tree
, &cookie
)) != NULL
)
1360 nfsauth_free_node(node
);
1361 avl_destroy(&p
->authc_tree
);
1363 kmem_free(p
->authc_addr
.buf
, p
->authc_addr
.maxlen
);
1364 rw_destroy(&p
->authc_lock
);
1366 kmem_free(p
, sizeof (*p
));
1370 nfsauth_free_node(struct auth_cache
*p
)
1372 crfree(p
->auth_clnt_cred
);
1373 kmem_free(p
->auth_srv_gids
, p
->auth_srv_ngids
* sizeof (gid_t
));
1374 mutex_destroy(&p
->auth_lock
);
1375 cv_destroy(&p
->auth_cv
);
1376 kmem_cache_free(exi_cache_handle
, p
);
1380 * Free the nfsauth cache for a given export
1383 nfsauth_cache_free(struct exportinfo
*exi
)
1388 * The only way we got here was with an exi_rele, which means that no
1389 * auth cache entry is being refreshed.
1392 for (i
= 0; i
< AUTH_TABLESIZE
; i
++) {
1393 avl_tree_t
*tree
= exi
->exi_cache
[i
];
1394 void *cookie
= NULL
;
1395 struct auth_cache_clnt
*node
;
1397 while ((node
= avl_destroy_nodes(tree
, &cookie
)) != NULL
)
1398 nfsauth_free_clnt_node(node
);
1403 * Called by the kernel memory allocator when
1404 * memory is low. Free unused cache entries.
1405 * If that's not enough, the VM system will
1406 * call again for some more.
1410 exi_cache_reclaim(void *cdrarg
)
1413 struct exportinfo
*exi
;
1415 rw_enter(&exported_lock
, RW_READER
);
1417 for (i
= 0; i
< EXPTABLESIZE
; i
++) {
1418 for (exi
= exptable
[i
]; exi
; exi
= exi
->fid_hash
.next
) {
1419 exi_cache_trim(exi
);
1423 rw_exit(&exported_lock
);
1425 atomic_inc_uint(&nfsauth_cache_reclaim
);
1429 exi_cache_trim(struct exportinfo
*exi
)
1431 struct auth_cache_clnt
*c
;
1432 struct auth_cache_clnt
*nextc
;
1433 struct auth_cache
*p
;
1434 struct auth_cache
*next
;
1439 for (i
= 0; i
< AUTH_TABLESIZE
; i
++) {
1440 tree
= exi
->exi_cache
[i
];
1441 stale_time
= gethrestime_sec() - NFSAUTH_CACHE_TRIM
;
1442 rw_enter(&exi
->exi_cache_lock
, RW_READER
);
1445 * Free entries that have not been
1446 * used for NFSAUTH_CACHE_TRIM seconds.
1448 for (c
= avl_first(tree
); c
!= NULL
; c
= AVL_NEXT(tree
, c
)) {
1450 * We are being called by the kmem subsystem to reclaim
1451 * memory so don't block if we can't get the lock.
1453 if (rw_tryenter(&c
->authc_lock
, RW_WRITER
) == 0) {
1454 exi_cache_auth_reclaim_failed
++;
1455 rw_exit(&exi
->exi_cache_lock
);
1459 for (p
= avl_first(&c
->authc_tree
); p
!= NULL
;
1461 next
= AVL_NEXT(&c
->authc_tree
, p
);
1463 ASSERT(p
->auth_state
!= NFS_AUTH_INVALID
);
1465 mutex_enter(&p
->auth_lock
);
1468 * We won't trim recently used and/or WAITING
1471 if (p
->auth_time
> stale_time
||
1472 p
->auth_state
== NFS_AUTH_WAITING
) {
1473 mutex_exit(&p
->auth_lock
);
1477 DTRACE_PROBE1(nfsauth__debug__trim__state
,
1478 auth_state_t
, p
->auth_state
);
1481 * STALE and REFRESHING entries needs to be
1482 * marked INVALID only because they are
1483 * referenced by some other structures or
1484 * threads. They will be freed later.
1486 if (p
->auth_state
== NFS_AUTH_STALE
||
1487 p
->auth_state
== NFS_AUTH_REFRESHING
) {
1488 p
->auth_state
= NFS_AUTH_INVALID
;
1489 mutex_exit(&p
->auth_lock
);
1491 avl_remove(&c
->authc_tree
, p
);
1493 mutex_exit(&p
->auth_lock
);
1495 avl_remove(&c
->authc_tree
, p
);
1496 nfsauth_free_node(p
);
1499 rw_exit(&c
->authc_lock
);
1502 if (rw_tryupgrade(&exi
->exi_cache_lock
) == 0) {
1503 rw_exit(&exi
->exi_cache_lock
);
1504 exi_cache_clnt_reclaim_failed
++;
1508 for (c
= avl_first(tree
); c
!= NULL
; c
= nextc
) {
1509 nextc
= AVL_NEXT(tree
, c
);
1511 if (avl_is_empty(&c
->authc_tree
) == B_FALSE
)
1514 avl_remove(tree
, c
);
1516 nfsauth_free_clnt_node(c
);
1519 rw_exit(&exi
->exi_cache_lock
);