dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / kernel / vm / page_lock.c
blob428194a3b9200e753cae4e25bd9c83ec23730deb
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
27 * VM - page locking primitives
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/vtrace.h>
32 #include <sys/debug.h>
33 #include <sys/cmn_err.h>
34 #include <sys/bitmap.h>
35 #include <sys/lockstat.h>
36 #include <sys/sysmacros.h>
37 #include <sys/condvar_impl.h>
38 #include <vm/page.h>
39 #include <vm/seg_enum.h>
40 #include <vm/vm_dep.h>
41 #include <vm/seg_kmem.h>
44 * This global mutex array is for logical page locking.
45 * The following fields in the page structure are protected
46 * by this lock:
48 * p_lckcnt
49 * p_cowcnt
51 pad_mutex_t page_llocks[8 * NCPU_P2];
54 * This is a global lock for the logical page free list. The
55 * logical free list, in this implementation, is maintained as two
56 * separate physical lists - the cache list and the free list.
58 kmutex_t page_freelock;
61 * The hash table, page_hash[], the p_selock fields, and the
62 * list of pages associated with vnodes are protected by arrays of mutexes.
64 * Unless the hashes are changed radically, the table sizes must be
65 * a power of two. Also, we typically need more mutexes for the
66 * vnodes since these locks are occasionally held for long periods.
67 * And since there seem to be two special vnodes (kvp and swapvp),
68 * we make room for private mutexes for them.
70 * The pse_mutex[] array holds the mutexes to protect the p_selock
71 * fields of all page_t structures.
73 * PAGE_SE_MUTEX(pp) returns the address of the appropriate mutex
74 * when given a pointer to a page_t.
76 * PIO_TABLE_SIZE must be a power of two. One could argue that we
77 * should go to the trouble of setting it up at run time and base it
78 * on memory size rather than the number of compile time CPUs.
80 * XX64 We should be using physmem size to calculate PIO_SHIFT.
82 * These might break in 64 bit world.
84 #define PIO_SHIFT 7 /* log2(sizeof(page_t)) */
85 #define PIO_TABLE_SIZE 128 /* number of io mutexes to have */
87 kmutex_t pio_mutex[PIO_TABLE_SIZE];
89 #define PAGE_IO_MUTEX(pp) \
90 &pio_mutex[(((uintptr_t)pp) >> PIO_SHIFT) & (PIO_TABLE_SIZE - 1)]
93 * The pse_mutex[] array is allocated in the platform startup code
94 * based on the size of the machine at startup.
96 extern pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
97 extern size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
98 extern int pse_shift; /* log2(pse_table_size) */
99 #define PAGE_SE_MUTEX(pp) &pse_mutex[ \
100 ((((uintptr_t)(pp) >> pse_shift) ^ ((uintptr_t)(pp))) >> 7) & \
101 (pse_table_size - 1)].pad_mutex
103 #define PSZC_MTX_TABLE_SIZE 128
104 #define PSZC_MTX_TABLE_SHIFT 7
106 static pad_mutex_t pszc_mutex[PSZC_MTX_TABLE_SIZE];
108 #define PAGE_SZC_MUTEX(_pp) \
109 &pszc_mutex[((((uintptr_t)(_pp) >> PSZC_MTX_TABLE_SHIFT) ^ \
110 ((uintptr_t)(_pp) >> (PSZC_MTX_TABLE_SHIFT << 1)) ^ \
111 ((uintptr_t)(_pp) >> (3 * PSZC_MTX_TABLE_SHIFT))) & \
112 (PSZC_MTX_TABLE_SIZE - 1))].pad_mutex
115 * Initialize the locks used by the Virtual Memory Management system.
117 void
118 page_lock_init()
123 * Return a value for pse_shift based on npg (the number of physical pages)
124 * and ncpu (the maximum number of CPUs). This is called by platform startup
125 * code.
127 * Lockstat data from TPC-H runs showed that contention on the pse_mutex[]
128 * locks grew approximately as the square of the number of threads executing.
129 * So the primary scaling factor used is NCPU^2. The size of the machine in
130 * megabytes is used as an upper bound, particularly for sun4v machines which
131 * all claim to have 256 CPUs maximum, and the old value of PSE_TABLE_SIZE
132 * (128) is used as a minimum. Since the size of the table has to be a power
133 * of two, the calculated size is rounded up to the next power of two.
135 /*ARGSUSED*/
137 size_pse_array(pgcnt_t npg, int ncpu)
139 size_t size;
140 pgcnt_t pp_per_mb = (1024 * 1024) / PAGESIZE;
142 size = MAX(128, MIN(npg / pp_per_mb, 2 * ncpu * ncpu));
143 size += (1 << (highbit(size) - 1)) - 1;
144 return (highbit(size) - 1);
148 * At present we only use page ownership to aid debugging, so it's
149 * OK if the owner field isn't exact. In the 32-bit world two thread ids
150 * can map to the same owner because we just 'or' in 0x80000000 and
151 * then clear the second highest bit, so that (for example) 0x2faced00
152 * and 0xafaced00 both map to 0xafaced00.
153 * In the 64-bit world, p_selock may not be large enough to hold a full
154 * thread pointer. If we ever need precise ownership (e.g. if we implement
155 * priority inheritance for page locks) then p_selock should become a
156 * uintptr_t and SE_WRITER should be -((uintptr_t)curthread >> 2).
158 #define SE_WRITER (((selock_t)(ulong_t)curthread | INT_MIN) & ~SE_EWANTED)
159 #define SE_READER 1
162 * A page that is deleted must be marked as such using the
163 * page_lock_delete() function. The page must be exclusively locked.
164 * The SE_DELETED marker is put in p_selock when this function is called.
165 * SE_DELETED must be distinct from any SE_WRITER value.
167 #define SE_DELETED (1 | INT_MIN)
169 #ifdef VM_STATS
170 uint_t vph_kvp_count;
171 uint_t vph_swapfsvp_count;
172 uint_t vph_other;
174 uint_t page_lock_count;
175 uint_t page_lock_miss;
176 uint_t page_lock_miss_lock;
177 uint_t page_lock_reclaim;
178 uint_t page_lock_bad_reclaim;
179 uint_t page_lock_same_page;
180 uint_t page_lock_upgrade;
181 uint_t page_lock_retired;
182 uint_t page_lock_upgrade_failed;
183 uint_t page_lock_deleted;
185 uint_t page_trylock_locked;
186 uint_t page_trylock_failed;
187 uint_t page_trylock_missed;
189 uint_t page_try_reclaim_upgrade;
190 #endif /* VM_STATS */
193 * Acquire the "shared/exclusive" lock on a page.
195 * Returns 1 on success and locks the page appropriately.
196 * 0 on failure and does not lock the page.
198 * If `lock' is non-NULL, it will be dropped and reacquired in the
199 * failure case. This routine can block, and if it does
200 * it will always return a failure since the page identity [vp, off]
201 * or state may have changed.
205 page_lock(struct page *page, se_t se, struct vmobject *obj, reclaim_t reclaim)
207 return (page_lock_es(page, se, obj, reclaim, 0));
211 * With the addition of reader-writer lock semantics to page_lock_es,
212 * callers wanting an exclusive (writer) lock may prevent shared-lock
213 * (reader) starvation by setting the es parameter to SE_EXCL_WANTED.
214 * In this case, when an exclusive lock cannot be acquired, p_selock's
215 * SE_EWANTED bit is set. Shared-lock (reader) requests are also denied
216 * if the page is slated for retirement.
218 * The se and es parameters determine if the lock should be granted
219 * based on the following decision table:
221 * Lock wanted es flags p_selock/SE_EWANTED Action
222 * ----------- -------------- ------------------- ---------
223 * SE_EXCL any [1][2] unlocked/any grant lock, clear SE_EWANTED
224 * SE_EXCL SE_EWANTED any lock/any deny, set SE_EWANTED
225 * SE_EXCL none any lock/any deny
226 * SE_SHARED n/a [2] shared/0 grant
227 * SE_SHARED n/a [2] unlocked/0 grant
228 * SE_SHARED n/a shared/1 deny
229 * SE_SHARED n/a unlocked/1 deny
230 * SE_SHARED n/a excl/any deny
232 * Notes:
233 * [1] The code grants an exclusive lock to the caller and clears the bit
234 * SE_EWANTED whenever p_selock is unlocked, regardless of the SE_EWANTED
235 * bit's value. This was deemed acceptable as we are not concerned about
236 * exclusive-lock starvation. If this ever becomes an issue, a priority or
237 * fifo mechanism should also be implemented. Meantime, the thread that
238 * set SE_EWANTED should be prepared to catch this condition and reset it
240 * [2] Retired pages may not be locked at any time, regardless of the
241 * dispostion of se, unless the es parameter has SE_RETIRED flag set.
243 * Notes on values of "es":
245 * es & 1: page_lookup_create will attempt page relocation
246 * es & SE_EXCL_WANTED: caller wants SE_EWANTED set (eg. delete
247 * memory thread); this prevents reader-starvation of waiting
248 * writer thread(s) by giving priority to writers over readers.
249 * es & SE_RETIRED: caller wants to lock pages even if they are
250 * retired. Default is to deny the lock if the page is retired.
252 * And yes, we know, the semantics of this function are too complicated.
253 * It's on the list to be cleaned up.
256 page_lock_es(struct page *pp, se_t se, struct vmobject *obj, reclaim_t reclaim,
257 int es)
259 int retval;
260 kmutex_t *pse = PAGE_SE_MUTEX(pp);
261 int upgraded;
262 int reclaim_it;
264 ASSERT(obj != NULL ? VMOBJECT_LOCKED(obj) : 1);
266 VM_STAT_ADD(page_lock_count);
268 upgraded = 0;
269 reclaim_it = 0;
271 mutex_enter(pse);
273 ASSERT(((es & SE_EXCL_WANTED) == 0) ||
274 ((es & SE_EXCL_WANTED) && (se == SE_EXCL)));
276 if (PP_RETIRED(pp) && !(es & SE_RETIRED)) {
277 mutex_exit(pse);
278 VM_STAT_ADD(page_lock_retired);
279 return (0);
282 if (se == SE_SHARED && es == 1 && pp->p_selock == 0) {
283 se = SE_EXCL;
286 if ((reclaim == P_RECLAIM) && (PP_ISFREE(pp))) {
288 reclaim_it = 1;
289 if (se == SE_SHARED) {
291 * This is an interesting situation.
293 * Remember that p_free can only change if
294 * p_selock < 0.
295 * p_free does not depend on our holding `pse'.
296 * And, since we hold `pse', p_selock can not change.
297 * So, if p_free changes on us, the page is already
298 * exclusively held, and we would fail to get p_selock
299 * regardless.
301 * We want to avoid getting the share
302 * lock on a free page that needs to be reclaimed.
303 * It is possible that some other thread has the share
304 * lock and has left the free page on the cache list.
305 * pvn_vplist_dirty() does this for brief periods.
306 * If the se_share is currently SE_EXCL, we will fail
307 * to acquire p_selock anyway. Blocking is the
308 * right thing to do.
309 * If we need to reclaim this page, we must get
310 * exclusive access to it, force the upgrade now.
311 * Again, we will fail to acquire p_selock if the
312 * page is not free and block.
314 upgraded = 1;
315 se = SE_EXCL;
316 VM_STAT_ADD(page_lock_upgrade);
320 if (se == SE_EXCL) {
321 if (!(es & SE_EXCL_WANTED) && (pp->p_selock & SE_EWANTED)) {
323 * if the caller wants a writer lock (but did not
324 * specify exclusive access), and there is a pending
325 * writer that wants exclusive access, return failure
327 retval = 0;
328 } else if ((pp->p_selock & ~SE_EWANTED) == 0) {
329 /* no reader/writer lock held */
330 THREAD_KPRI_REQUEST();
331 /* this clears our setting of the SE_EWANTED bit */
332 pp->p_selock = SE_WRITER;
333 retval = 1;
334 } else {
335 /* page is locked */
336 if (es & SE_EXCL_WANTED) {
337 /* set the SE_EWANTED bit */
338 pp->p_selock |= SE_EWANTED;
340 retval = 0;
342 } else {
343 retval = 0;
344 if (pp->p_selock >= 0) {
345 if ((pp->p_selock & SE_EWANTED) == 0) {
346 pp->p_selock += SE_READER;
347 retval = 1;
352 if (retval == 0) {
353 if ((pp->p_selock & ~SE_EWANTED) == SE_DELETED) {
354 VM_STAT_ADD(page_lock_deleted);
355 mutex_exit(pse);
356 return (retval);
359 VM_STAT_ADD(page_lock_miss);
360 VM_STAT_COND_ADD(upgraded, page_lock_upgrade_failed);
362 if (obj != NULL) {
363 VM_STAT_ADD(page_lock_miss_lock);
364 vmobject_unlock(obj);
368 * Now, wait for the page to be unlocked and
369 * release the lock protecting p_cv and p_selock.
371 cv_wait(&pp->p_cv, pse);
372 mutex_exit(pse);
375 * The page identity may have changed while we were
376 * blocked. If we are willing to depend on "pp"
377 * still pointing to a valid page structure (i.e.,
378 * assuming page structures are not dynamically allocated
379 * or freed), we could try to lock the page if its
380 * identity hasn't changed.
382 * This needs to be measured, since we come back from
383 * cv_wait holding pse (the expensive part of this
384 * operation) we might as well try the cheap part.
385 * Though we would also have to confirm that dropping
386 * vmobject page lock did not cause any grief to the
387 * callers.
389 if (obj != NULL)
390 vmobject_lock(obj);
391 } else {
393 * We have the page lock.
394 * If we needed to reclaim the page, and the page
395 * needed reclaiming (ie, it was free), then we
396 * have the page exclusively locked. We may need
397 * to downgrade the page.
399 ASSERT((upgraded) ?
400 ((PP_ISFREE(pp)) && PAGE_EXCL(pp)) : 1);
401 mutex_exit(pse);
404 * We now hold this page's lock, either shared or
405 * exclusive. This will prevent its identity from changing.
406 * The page, however, may or may not be free. If the caller
407 * requested, and it is free, go reclaim it from the
408 * free list. If the page can't be reclaimed, return failure
409 * so that the caller can start all over again.
411 * NOTE:page_reclaim() releases the page lock (p_selock)
412 * if it can't be reclaimed.
414 if (reclaim_it) {
415 if (!page_reclaim(pp, obj)) {
416 VM_STAT_ADD(page_lock_bad_reclaim);
417 retval = 0;
418 } else {
419 VM_STAT_ADD(page_lock_reclaim);
420 if (upgraded) {
421 page_downgrade(pp);
426 return (retval);
430 * Clear the SE_EWANTED bit from p_selock. This function allows
431 * callers of page_lock_es and page_try_reclaim_lock to clear
432 * their setting of this bit if they decide they no longer wish
433 * to gain exclusive access to the page. Currently only
434 * delete_memory_thread uses this when the delete memory
435 * operation is cancelled.
437 void
438 page_lock_clr_exclwanted(page_t *pp)
440 kmutex_t *pse = PAGE_SE_MUTEX(pp);
442 mutex_enter(pse);
443 pp->p_selock &= ~SE_EWANTED;
444 if (CV_HAS_WAITERS(&pp->p_cv))
445 cv_broadcast(&pp->p_cv);
446 mutex_exit(pse);
450 * Read the comments inside of page_lock_es() carefully.
452 * SE_EXCL callers specifying es == SE_EXCL_WANTED will cause the
453 * SE_EWANTED bit of p_selock to be set when the lock cannot be obtained.
454 * This is used by threads subject to reader-starvation (eg. memory delete).
456 * When a thread using SE_EXCL_WANTED does not obtain the SE_EXCL lock,
457 * it is expected that it will retry at a later time. Threads that will
458 * not retry the lock *must* call page_lock_clr_exclwanted to clear the
459 * SE_EWANTED bit. (When a thread using SE_EXCL_WANTED obtains the lock,
460 * the bit is cleared.)
463 page_try_reclaim_lock(page_t *pp, se_t se, int es)
465 kmutex_t *pse = PAGE_SE_MUTEX(pp);
466 selock_t old;
468 mutex_enter(pse);
470 old = pp->p_selock;
472 ASSERT(((es & SE_EXCL_WANTED) == 0) ||
473 ((es & SE_EXCL_WANTED) && (se == SE_EXCL)));
475 if (PP_RETIRED(pp) && !(es & SE_RETIRED)) {
476 mutex_exit(pse);
477 VM_STAT_ADD(page_trylock_failed);
478 return (0);
481 if (se == SE_SHARED && es == 1 && old == 0) {
482 se = SE_EXCL;
485 if (se == SE_SHARED) {
486 if (!PP_ISFREE(pp)) {
487 if (old >= 0) {
489 * Readers are not allowed when excl wanted
491 if ((old & SE_EWANTED) == 0) {
492 pp->p_selock = old + SE_READER;
493 mutex_exit(pse);
494 return (1);
497 mutex_exit(pse);
498 return (0);
501 * The page is free, so we really want SE_EXCL (below)
503 VM_STAT_ADD(page_try_reclaim_upgrade);
507 * The caller wants a writer lock. We try for it only if
508 * SE_EWANTED is not set, or if the caller specified
509 * SE_EXCL_WANTED.
511 if (!(old & SE_EWANTED) || (es & SE_EXCL_WANTED)) {
512 if ((old & ~SE_EWANTED) == 0) {
513 /* no reader/writer lock held */
514 THREAD_KPRI_REQUEST();
515 /* this clears out our setting of the SE_EWANTED bit */
516 pp->p_selock = SE_WRITER;
517 mutex_exit(pse);
518 return (1);
521 if (es & SE_EXCL_WANTED) {
522 /* page is locked, set the SE_EWANTED bit */
523 pp->p_selock |= SE_EWANTED;
525 mutex_exit(pse);
526 return (0);
530 * Acquire a page's "shared/exclusive" lock, but never block.
531 * Returns 1 on success, 0 on failure.
534 page_trylock(page_t *pp, se_t se)
536 kmutex_t *pse = PAGE_SE_MUTEX(pp);
538 mutex_enter(pse);
539 if (pp->p_selock & SE_EWANTED || PP_RETIRED(pp) ||
540 (se == SE_SHARED && PP_PR_NOSHARE(pp))) {
542 * Fail if a thread wants exclusive access and page is
543 * retired, if the page is slated for retirement, or a
544 * share lock is requested.
546 mutex_exit(pse);
547 VM_STAT_ADD(page_trylock_failed);
548 return (0);
551 if (se == SE_EXCL) {
552 if (pp->p_selock == 0) {
553 THREAD_KPRI_REQUEST();
554 pp->p_selock = SE_WRITER;
555 mutex_exit(pse);
556 return (1);
558 } else {
559 if (pp->p_selock >= 0) {
560 pp->p_selock += SE_READER;
561 mutex_exit(pse);
562 return (1);
565 mutex_exit(pse);
566 return (0);
570 * Variant of page_unlock() specifically for the page freelist
571 * code. The mere existence of this code is a vile hack that
572 * has resulted due to the backwards locking order of the page
573 * freelist manager; please don't call it.
575 void
576 page_unlock_nocapture(page_t *pp)
578 kmutex_t *pse = PAGE_SE_MUTEX(pp);
579 selock_t old;
581 mutex_enter(pse);
583 old = pp->p_selock;
584 if ((old & ~SE_EWANTED) == SE_READER) {
585 pp->p_selock = old & ~SE_READER;
586 if (CV_HAS_WAITERS(&pp->p_cv))
587 cv_broadcast(&pp->p_cv);
588 } else if ((old & ~SE_EWANTED) == SE_DELETED) {
589 panic("page_unlock_nocapture: page %p is deleted", (void *)pp);
590 } else if (old < 0) {
591 THREAD_KPRI_RELEASE();
592 pp->p_selock &= SE_EWANTED;
593 if (CV_HAS_WAITERS(&pp->p_cv))
594 cv_broadcast(&pp->p_cv);
595 } else if ((old & ~SE_EWANTED) > SE_READER) {
596 pp->p_selock = old - SE_READER;
597 } else {
598 panic("page_unlock_nocapture: page %p is not locked",
599 (void *)pp);
602 mutex_exit(pse);
606 * Release the page's "shared/exclusive" lock and wake up anyone
607 * who might be waiting for it.
609 void
610 page_unlock(page_t *pp)
612 kmutex_t *pse = PAGE_SE_MUTEX(pp);
613 selock_t old;
615 mutex_enter(pse);
617 old = pp->p_selock;
618 if ((old & ~SE_EWANTED) == SE_READER) {
619 pp->p_selock = old & ~SE_READER;
620 if (CV_HAS_WAITERS(&pp->p_cv))
621 cv_broadcast(&pp->p_cv);
622 } else if ((old & ~SE_EWANTED) == SE_DELETED) {
623 panic("page_unlock: page %p is deleted", (void *)pp);
624 } else if (old < 0) {
625 THREAD_KPRI_RELEASE();
626 pp->p_selock &= SE_EWANTED;
627 if (CV_HAS_WAITERS(&pp->p_cv))
628 cv_broadcast(&pp->p_cv);
629 } else if ((old & ~SE_EWANTED) > SE_READER) {
630 pp->p_selock = old - SE_READER;
631 } else {
632 panic("page_unlock: page %p is not locked", (void *)pp);
635 if (pp->p_selock == 0) {
637 * If the T_CAPTURING bit is set, that means that we should
638 * not try and capture the page again as we could recurse
639 * which could lead to a stack overflow panic or spending a
640 * relatively long time in the kernel making no progress.
642 if ((pp->p_toxic & PR_CAPTURE) &&
643 !(curthread->t_flag & T_CAPTURING) &&
644 !PP_RETIRED(pp)) {
645 THREAD_KPRI_REQUEST();
646 pp->p_selock = SE_WRITER;
647 mutex_exit(pse);
648 page_unlock_capture(pp);
649 } else {
650 mutex_exit(pse);
652 } else {
653 mutex_exit(pse);
658 * Try to upgrade the lock on the page from a "shared" to an
659 * "exclusive" lock. Since this upgrade operation is done while
660 * holding the mutex protecting this page, no one else can acquire this page's
661 * lock and change the page. Thus, it is safe to drop the "shared"
662 * lock and attempt to acquire the "exclusive" lock.
664 * Returns 1 on success, 0 on failure.
667 page_tryupgrade(page_t *pp)
669 kmutex_t *pse = PAGE_SE_MUTEX(pp);
671 mutex_enter(pse);
672 if (!(pp->p_selock & SE_EWANTED)) {
673 /* no threads want exclusive access, try upgrade */
674 if (pp->p_selock == SE_READER) {
675 THREAD_KPRI_REQUEST();
676 /* convert to exclusive lock */
677 pp->p_selock = SE_WRITER;
678 mutex_exit(pse);
679 return (1);
682 mutex_exit(pse);
683 return (0);
687 * Downgrade the "exclusive" lock on the page to a "shared" lock
688 * while holding the mutex protecting this page's p_selock field.
690 void
691 page_downgrade(page_t *pp)
693 kmutex_t *pse = PAGE_SE_MUTEX(pp);
694 int excl_waiting;
696 ASSERT((pp->p_selock & ~SE_EWANTED) != SE_DELETED);
697 ASSERT(PAGE_EXCL(pp));
699 mutex_enter(pse);
700 excl_waiting = pp->p_selock & SE_EWANTED;
701 THREAD_KPRI_RELEASE();
702 pp->p_selock = SE_READER | excl_waiting;
703 if (CV_HAS_WAITERS(&pp->p_cv))
704 cv_broadcast(&pp->p_cv);
705 mutex_exit(pse);
708 void
709 page_lock_delete(page_t *pp)
711 kmutex_t *pse = PAGE_SE_MUTEX(pp);
713 ASSERT(PAGE_EXCL(pp));
714 VERIFY(pp->p_object == NULL);
715 ASSERT(pp->p_vnode == NULL);
716 ASSERT(pp->p_offset == (uoff_t)-1);
717 ASSERT(!PP_ISFREE(pp));
719 mutex_enter(pse);
720 THREAD_KPRI_RELEASE();
721 pp->p_selock = SE_DELETED;
722 if (CV_HAS_WAITERS(&pp->p_cv))
723 cv_broadcast(&pp->p_cv);
724 mutex_exit(pse);
728 page_deleted(page_t *pp)
730 return (pp->p_selock == SE_DELETED);
734 * Implement the io lock for pages
736 void
737 page_iolock_init(page_t *pp)
739 pp->p_iolock_state = 0;
740 cv_init(&pp->p_io_cv, NULL, CV_DEFAULT, NULL);
744 * Acquire the i/o lock on a page.
746 void
747 page_io_lock(page_t *pp)
749 kmutex_t *pio;
751 pio = PAGE_IO_MUTEX(pp);
752 mutex_enter(pio);
753 while (pp->p_iolock_state & PAGE_IO_INUSE) {
754 cv_wait(&(pp->p_io_cv), pio);
756 pp->p_iolock_state |= PAGE_IO_INUSE;
757 mutex_exit(pio);
761 * Release the i/o lock on a page.
763 void
764 page_io_unlock(page_t *pp)
766 kmutex_t *pio;
768 pio = PAGE_IO_MUTEX(pp);
769 mutex_enter(pio);
770 cv_broadcast(&pp->p_io_cv);
771 pp->p_iolock_state &= ~PAGE_IO_INUSE;
772 mutex_exit(pio);
776 * Try to acquire the i/o lock on a page without blocking.
777 * Returns 1 on success, 0 on failure.
780 page_io_trylock(page_t *pp)
782 kmutex_t *pio;
784 if (pp->p_iolock_state & PAGE_IO_INUSE)
785 return (0);
787 pio = PAGE_IO_MUTEX(pp);
788 mutex_enter(pio);
790 if (pp->p_iolock_state & PAGE_IO_INUSE) {
791 mutex_exit(pio);
792 return (0);
794 pp->p_iolock_state |= PAGE_IO_INUSE;
795 mutex_exit(pio);
797 return (1);
801 * Wait until the i/o lock is not held.
803 void
804 page_io_wait(page_t *pp)
806 kmutex_t *pio;
808 pio = PAGE_IO_MUTEX(pp);
809 mutex_enter(pio);
810 while (pp->p_iolock_state & PAGE_IO_INUSE) {
811 cv_wait(&(pp->p_io_cv), pio);
813 mutex_exit(pio);
817 * Returns 1 on success, 0 on failure.
820 page_io_locked(page_t *pp)
822 return (pp->p_iolock_state & PAGE_IO_INUSE);
826 * Assert that the i/o lock on a page is held.
827 * Returns 1 on success, 0 on failure.
830 page_iolock_assert(page_t *pp)
832 return (page_io_locked(pp));
835 kmutex_t *
836 page_se_mutex(page_t *pp)
838 return (PAGE_SE_MUTEX(pp));
841 #ifdef VM_STATS
842 uint_t pszclck_stat[4];
843 #endif
845 * Find, take and return a mutex held by hat_page_demote().
846 * Called by page_demote_vp_pages() before hat_page_demote() call and by
847 * routines that want to block hat_page_demote() but can't do it
848 * via locking all constituent pages.
850 * Return NULL if p_szc is 0.
852 * It should only be used for pages that can be demoted by hat_page_demote()
853 * i.e. non swapfs file system pages. The logic here is lifted from
854 * sfmmu_mlspl_enter() except there's no need to worry about p_szc increase
855 * since the page is locked and not free.
857 * Hash of the root page is used to find the lock.
858 * To find the root in the presense of hat_page_demote() chageing the location
859 * of the root this routine relies on the fact that hat_page_demote() changes
860 * root last.
862 * If NULL is returned pp's p_szc is guaranteed to be 0. If non NULL is
863 * returned pp's p_szc may be any value.
865 kmutex_t *
866 page_szc_lock(page_t *pp)
868 kmutex_t *mtx;
869 page_t *rootpp;
870 uint_t szc;
871 uint_t rszc;
872 uint_t pszc = pp->p_szc;
874 ASSERT(pp != NULL);
875 ASSERT(PAGE_LOCKED(pp));
876 ASSERT(!PP_ISFREE(pp));
877 VERIFY(pp->p_object != NULL);
878 ASSERT(pp->p_vnode != NULL);
879 ASSERT(!IS_SWAPFSVP(pp->p_vnode));
880 ASSERT(!PP_ISKAS(pp));
882 again:
883 if (pszc == 0) {
884 VM_STAT_ADD(pszclck_stat[0]);
885 return (NULL);
888 /* The lock lives in the root page */
890 rootpp = PP_GROUPLEADER(pp, pszc);
891 mtx = PAGE_SZC_MUTEX(rootpp);
892 mutex_enter(mtx);
895 * since p_szc can only decrease if pp == rootpp
896 * rootpp will be always the same i.e we have the right root
897 * regardless of rootpp->p_szc.
898 * If location of pp's root didn't change after we took
899 * the lock we have the right root. return mutex hashed off it.
901 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc) {
902 VM_STAT_ADD(pszclck_stat[1]);
903 return (mtx);
907 * root location changed because page got demoted.
908 * locate the new root.
910 if (rszc < pszc) {
911 szc = pp->p_szc;
912 ASSERT(szc < pszc);
913 mutex_exit(mtx);
914 pszc = szc;
915 VM_STAT_ADD(pszclck_stat[2]);
916 goto again;
919 VM_STAT_ADD(pszclck_stat[3]);
921 * current hat_page_demote not done yet.
922 * wait for it to finish.
924 mutex_exit(mtx);
925 rootpp = PP_GROUPLEADER(rootpp, rszc);
926 mtx = PAGE_SZC_MUTEX(rootpp);
927 mutex_enter(mtx);
928 mutex_exit(mtx);
929 ASSERT(rootpp->p_szc < rszc);
930 goto again;
934 page_szc_lock_assert(page_t *pp)
936 page_t *rootpp = PP_PAGEROOT(pp);
937 kmutex_t *mtx = PAGE_SZC_MUTEX(rootpp);
939 return (MUTEX_HELD(mtx));
943 * memseg locking
945 static krwlock_t memsegslock;
948 * memlist (phys_install, phys_avail) locking.
950 static krwlock_t memlists_lock;
953 memsegs_trylock(int writer)
955 return (rw_tryenter(&memsegslock, writer ? RW_WRITER : RW_READER));
958 void
959 memsegs_lock(int writer)
961 rw_enter(&memsegslock, writer ? RW_WRITER : RW_READER);
964 /*ARGSUSED*/
965 void
966 memsegs_unlock(int writer)
968 rw_exit(&memsegslock);
972 memsegs_lock_held(void)
974 return (RW_LOCK_HELD(&memsegslock));
977 void
978 memlist_read_lock(void)
980 rw_enter(&memlists_lock, RW_READER);
983 void
984 memlist_read_unlock(void)
986 rw_exit(&memlists_lock);
989 void
990 memlist_write_lock(void)
992 rw_enter(&memlists_lock, RW_WRITER);
995 void
996 memlist_write_unlock(void)
998 rw_exit(&memlists_lock);