dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / kernel / vm / seg_vn.c
blobf60135e5b0f713f0057c8146bef367fd850ff419
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2015, Joyent, Inc. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
41 * VM - shared or copy-on-write from a vnode/anonymous memory.
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/t_lock.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/debug.h>
51 #include <sys/cred.h>
52 #include <sys/vmsystm.h>
53 #include <sys/tuneable.h>
54 #include <sys/bitmap.h>
55 #include <sys/swap.h>
56 #include <sys/kmem.h>
57 #include <sys/sysmacros.h>
58 #include <sys/vtrace.h>
59 #include <sys/cmn_err.h>
60 #include <sys/callb.h>
61 #include <sys/vm.h>
62 #include <sys/dumphdr.h>
63 #include <sys/lgrp.h>
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_vn.h>
69 #include <vm/pvn.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/vpage.h>
73 #include <sys/proc.h>
74 #include <sys/task.h>
75 #include <sys/project.h>
76 #include <sys/zone.h>
77 #include <sys/shm_impl.h>
80 * segvn_fault needs a temporary page list array. To avoid calling kmem all
81 * the time, it creates a small (FAULT_TMP_PAGES_NUM entry) array and uses
82 * it if it can. In the rare case when this page list is not large enough,
83 * it goes and gets a large enough array from kmem.
85 #define FAULT_TMP_PAGES_NUM 0x8
86 #define FAULT_TMP_PAGES_SZ ptob(FAULT_TMP_PAGES_NUM)
89 * Private seg op routines.
91 static int segvn_dup(struct seg *seg, struct seg *newseg);
92 static int segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
93 static void segvn_free(struct seg *seg);
94 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
95 caddr_t addr, size_t len, enum fault_type type,
96 enum seg_rw rw);
97 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
98 static int segvn_setprot(struct seg *seg, caddr_t addr,
99 size_t len, uint_t prot);
100 static int segvn_checkprot(struct seg *seg, caddr_t addr,
101 size_t len, uint_t prot);
102 static int segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
103 static int segvn_sync(struct seg *seg, caddr_t addr, size_t len,
104 int attr, uint_t flags);
105 static size_t segvn_incore(struct seg *seg, caddr_t addr, size_t len,
106 char *vec);
107 static int segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
108 int attr, int op, ulong_t *lockmap, size_t pos);
109 static int segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
110 uint_t *protv);
111 static uoff_t segvn_getoffset(struct seg *seg, caddr_t addr);
112 static int segvn_gettype(struct seg *seg, caddr_t addr);
113 static int segvn_getvp(struct seg *seg, caddr_t addr,
114 struct vnode **vpp);
115 static int segvn_advise(struct seg *seg, caddr_t addr, size_t len,
116 uint_t behav);
117 static void segvn_dump(struct seg *seg);
118 static int segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
119 struct page ***ppp, enum lock_type type, enum seg_rw rw);
120 static int segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
121 uint_t szc);
122 static int segvn_getmemid(struct seg *seg, caddr_t addr,
123 memid_t *memidp);
124 static lgrp_mem_policy_info_t *segvn_getpolicy(struct seg *, caddr_t);
125 static int segvn_inherit(struct seg *, caddr_t, size_t, uint_t);
127 const struct seg_ops segvn_ops = {
128 .dup = segvn_dup,
129 .unmap = segvn_unmap,
130 .free = segvn_free,
131 .fault = segvn_fault,
132 .faulta = segvn_faulta,
133 .setprot = segvn_setprot,
134 .checkprot = segvn_checkprot,
135 .kluster = segvn_kluster,
136 .sync = segvn_sync,
137 .incore = segvn_incore,
138 .lockop = segvn_lockop,
139 .getprot = segvn_getprot,
140 .getoffset = segvn_getoffset,
141 .gettype = segvn_gettype,
142 .getvp = segvn_getvp,
143 .advise = segvn_advise,
144 .dump = segvn_dump,
145 .pagelock = segvn_pagelock,
146 .setpagesize = segvn_setpagesize,
147 .getmemid = segvn_getmemid,
148 .getpolicy = segvn_getpolicy,
149 .inherit = segvn_inherit,
153 * Common zfod structures, provided as a shorthand for others to use.
155 static segvn_crargs_t zfod_segvn_crargs =
156 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
157 static segvn_crargs_t kzfod_segvn_crargs =
158 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
159 PROT_ALL & ~PROT_USER);
160 static segvn_crargs_t stack_noexec_crargs =
161 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
163 caddr_t zfod_argsp = (caddr_t)&zfod_segvn_crargs; /* user zfod argsp */
164 caddr_t kzfod_argsp = (caddr_t)&kzfod_segvn_crargs; /* kernel zfod argsp */
165 caddr_t stack_exec_argsp = (caddr_t)&zfod_segvn_crargs; /* executable stack */
166 caddr_t stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
168 #define vpgtob(n) ((n) * sizeof (struct vpage)) /* For brevity */
170 size_t segvn_comb_thrshld = UINT_MAX; /* patchable -- see 1196681 */
172 size_t segvn_pglock_comb_thrshld = (1UL << 16); /* 64K */
173 size_t segvn_pglock_comb_balign = (1UL << 16); /* 64K */
174 uint_t segvn_pglock_comb_bshift;
175 size_t segvn_pglock_comb_palign;
177 static int segvn_concat(struct seg *, struct seg *, int);
178 static int segvn_extend_prev(struct seg *, struct seg *,
179 struct segvn_crargs *, size_t);
180 static int segvn_extend_next(struct seg *, struct seg *,
181 struct segvn_crargs *, size_t);
182 static void segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
183 static void segvn_pagelist_rele(page_t **);
184 static void segvn_setvnode_mpss(vnode_t *);
185 static void segvn_relocate_pages(page_t **, page_t *);
186 static int segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
187 static int segvn_fill_vp_pages(struct segvn_data *, vnode_t *, uoff_t,
188 uint_t, page_t **, page_t **, uint_t *, int *);
189 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
190 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
191 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
192 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
193 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
194 uoff_t, struct vpage *, page_t **, uint_t,
195 enum fault_type, enum seg_rw, int);
196 static void segvn_vpage(struct seg *);
197 static size_t segvn_count_swap_by_vpages(struct seg *);
199 static void segvn_purge(struct seg *seg);
200 static int segvn_reclaim(void *, caddr_t, size_t, struct page **,
201 enum seg_rw, int);
202 static int shamp_reclaim(void *, caddr_t, size_t, struct page **,
203 enum seg_rw, int);
205 static int sameprot(struct seg *, caddr_t, size_t);
207 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
208 static int segvn_clrszc(struct seg *);
209 static struct seg *segvn_split_seg(struct seg *, caddr_t);
210 static int segvn_claim_pages(struct seg *, struct vpage *, uoff_t,
211 ulong_t, uint_t);
213 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
214 size_t, void *, uoff_t);
216 static struct kmem_cache *segvn_cache;
217 static struct kmem_cache **segvn_szc_cache;
219 #ifdef VM_STATS
220 static struct segvnvmstats_str {
221 ulong_t fill_vp_pages[31];
222 ulong_t fltvnpages[49];
223 ulong_t fullszcpages[10];
224 ulong_t relocatepages[3];
225 ulong_t fltanpages[17];
226 ulong_t pagelock[2];
227 ulong_t demoterange[3];
228 } segvnvmstats;
229 #endif /* VM_STATS */
231 #define SDR_RANGE 1 /* demote entire range */
232 #define SDR_END 2 /* demote non aligned ends only */
234 #define CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) { \
235 if ((len) != 0) { \
236 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); \
237 ASSERT(lpgaddr >= (seg)->s_base); \
238 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) + \
239 (len)), pgsz); \
240 ASSERT(lpgeaddr > lpgaddr); \
241 ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size); \
242 } else { \
243 lpgeaddr = lpgaddr = (addr); \
247 /*ARGSUSED*/
248 static int
249 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
251 struct segvn_data *svd = buf;
253 rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
254 mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL);
255 svd->svn_trnext = svd->svn_trprev = NULL;
256 return (0);
259 /*ARGSUSED1*/
260 static void
261 segvn_cache_destructor(void *buf, void *cdrarg)
263 struct segvn_data *svd = buf;
265 rw_destroy(&svd->lock);
266 mutex_destroy(&svd->segfree_syncmtx);
269 /*ARGSUSED*/
270 static int
271 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
273 bzero(buf, sizeof (svntr_t));
274 return (0);
278 * Patching this variable to non-zero allows the system to run with
279 * stacks marked as "not executable". It's a bit of a kludge, but is
280 * provided as a tweakable for platforms that export those ABIs
281 * (e.g. sparc V8) that have executable stacks enabled by default.
282 * There are also some restrictions for platforms that don't actually
283 * implement 'noexec' protections.
285 * Once enabled, the system is (therefore) unable to provide a fully
286 * ABI-compliant execution environment, though practically speaking,
287 * most everything works. The exceptions are generally some interpreters
288 * and debuggers that create executable code on the stack and jump
289 * into it (without explicitly mprotecting the address range to include
290 * PROT_EXEC).
292 * One important class of applications that are disabled are those
293 * that have been transformed into malicious agents using one of the
294 * numerous "buffer overflow" attacks. See 4007890.
296 int noexec_user_stack = 0;
297 int noexec_user_stack_log = 1;
299 int segvn_lpg_disable = 0;
300 uint_t segvn_maxpgszc = 0;
302 ulong_t segvn_vmpss_clrszc_cnt;
303 ulong_t segvn_vmpss_clrszc_err;
304 ulong_t segvn_fltvnpages_clrszc_cnt;
305 ulong_t segvn_fltvnpages_clrszc_err;
306 ulong_t segvn_setpgsz_align_err;
307 ulong_t segvn_setpgsz_anon_align_err;
308 ulong_t segvn_setpgsz_getattr_err;
309 ulong_t segvn_setpgsz_eof_err;
310 ulong_t segvn_faultvnmpss_align_err1;
311 ulong_t segvn_faultvnmpss_align_err2;
312 ulong_t segvn_faultvnmpss_align_err3;
313 ulong_t segvn_faultvnmpss_align_err4;
314 ulong_t segvn_faultvnmpss_align_err5;
315 ulong_t segvn_vmpss_pageio_deadlk_err;
317 int segvn_use_regions = 1;
320 * Segvn supports text replication optimization for NUMA platforms. Text
321 * replica's are represented by anon maps (amp). There's one amp per text file
322 * region per lgroup. A process chooses the amp for each of its text mappings
323 * based on the lgroup assignment of its main thread (t_tid = 1). All
324 * processes that want a replica on a particular lgroup for the same text file
325 * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
326 * with vp,off,size,szc used as a key. Text replication segments are read only
327 * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
328 * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
329 * pages. Replication amp is assigned to a segment when it gets its first
330 * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
331 * rechecks periodically if the process still maps an amp local to the main
332 * thread. If not async thread forces process to remap to an amp in the new
333 * home lgroup of the main thread. Current text replication implementation
334 * only provides the benefit to workloads that do most of their work in the
335 * main thread of a process or all the threads of a process run in the same
336 * lgroup. To extend text replication benefit to different types of
337 * multithreaded workloads further work would be needed in the hat layer to
338 * allow the same virtual address in the same hat to simultaneously map
339 * different physical addresses (i.e. page table replication would be needed
340 * for x86).
342 * amp pages are used instead of vnode pages as long as segment has a very
343 * simple life cycle. It's created via segvn_create(), handles S_EXEC
344 * (S_READ) pagefaults and is fully unmapped. If anything more complicated
345 * happens such as protection is changed, real COW fault happens, pagesize is
346 * changed, MC_LOCK is requested or segment is partially unmapped we turn off
347 * text replication by converting the segment back to vnode only segment
348 * (unmap segment's address range and set svd->amp to NULL).
350 * The original file can be changed after amp is inserted into
351 * svntr_hashtab. Processes that are launched after the file is already
352 * changed can't use the replica's created prior to the file change. To
353 * implement this functionality hash entries are timestamped. Replica's can
354 * only be used if current file modification time is the same as the timestamp
355 * saved when hash entry was created. However just timestamps alone are not
356 * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
357 * deal with file changes via MAP_SHARED mappings differently. When writable
358 * MAP_SHARED mappings are created to vnodes marked as executable we mark all
359 * existing replica's for this vnode as not usable for future text
360 * mappings. And we don't create new replica's for files that currently have
361 * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
362 * true).
365 #define SEGVN_TEXTREPL_MAXBYTES_FACTOR (20)
366 size_t segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
368 static ulong_t svntr_hashtab_sz = 512;
369 static svntr_bucket_t *svntr_hashtab = NULL;
370 static struct kmem_cache *svntr_cache;
371 static svntr_stats_t *segvn_textrepl_stats;
372 static ksema_t segvn_trasync_sem;
374 int segvn_disable_textrepl = 1;
375 size_t textrepl_size_thresh = (size_t)-1;
376 size_t segvn_textrepl_bytes = 0;
377 size_t segvn_textrepl_max_bytes = 0;
378 clock_t segvn_update_textrepl_interval = 0;
379 int segvn_update_tr_time = 10;
380 int segvn_disable_textrepl_update = 0;
382 static void segvn_textrepl(struct seg *);
383 static void segvn_textunrepl(struct seg *, int);
384 static void segvn_inval_trcache(vnode_t *);
385 static void segvn_trasync_thread(void);
386 static void segvn_trupdate_wakeup(void *);
387 static void segvn_trupdate(void);
388 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
389 ulong_t);
392 * Initialize segvn data structures
394 void
395 segvn_init(void)
397 uint_t maxszc;
398 uint_t szc;
399 size_t pgsz;
401 segvn_cache = kmem_cache_create("segvn_cache",
402 sizeof (struct segvn_data), 0,
403 segvn_cache_constructor, segvn_cache_destructor, NULL,
404 NULL, NULL, 0);
406 if (segvn_lpg_disable == 0) {
407 szc = maxszc = page_num_pagesizes() - 1;
408 if (szc == 0) {
409 segvn_lpg_disable = 1;
411 if (page_get_pagesize(0) != PAGESIZE) {
412 panic("segvn_init: bad szc 0");
413 /*NOTREACHED*/
415 while (szc != 0) {
416 pgsz = page_get_pagesize(szc);
417 if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
418 panic("segvn_init: bad szc %d", szc);
419 /*NOTREACHED*/
421 szc--;
423 if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
424 segvn_maxpgszc = maxszc;
427 if (segvn_maxpgszc) {
428 segvn_szc_cache = (struct kmem_cache **)kmem_alloc(
429 (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *),
430 KM_SLEEP);
433 for (szc = 1; szc <= segvn_maxpgszc; szc++) {
434 char str[32];
436 (void) sprintf(str, "segvn_szc_cache%d", szc);
437 segvn_szc_cache[szc] = kmem_cache_create(str,
438 page_get_pagecnt(szc) * sizeof (page_t *), 0,
439 NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
443 if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
444 segvn_use_regions = 0;
447 * For now shared regions and text replication segvn support
448 * are mutually exclusive. This is acceptable because
449 * currently significant benefit from text replication was
450 * only observed on AMD64 NUMA platforms (due to relatively
451 * small L2$ size) and currently we don't support shared
452 * regions on x86.
454 if (segvn_use_regions && !segvn_disable_textrepl) {
455 segvn_disable_textrepl = 1;
458 #if defined(_LP64)
459 if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
460 !segvn_disable_textrepl) {
461 ulong_t i;
462 size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
464 svntr_cache = kmem_cache_create("svntr_cache",
465 sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
466 NULL, NULL, NULL, 0);
467 svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
468 for (i = 0; i < svntr_hashtab_sz; i++) {
469 mutex_init(&svntr_hashtab[i].tr_lock, NULL,
470 MUTEX_DEFAULT, NULL);
472 segvn_textrepl_max_bytes = ptob(physmem) /
473 segvn_textrepl_max_bytes_factor;
474 segvn_textrepl_stats = kmem_zalloc(NCPU *
475 sizeof (svntr_stats_t), KM_SLEEP);
476 sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
477 (void) thread_create(NULL, 0, segvn_trasync_thread,
478 NULL, 0, &p0, TS_RUN, minclsyspri);
480 #endif
482 if (!ISP2(segvn_pglock_comb_balign) ||
483 segvn_pglock_comb_balign < PAGESIZE) {
484 segvn_pglock_comb_balign = 1UL << 16; /* 64K */
486 segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1;
487 segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign);
490 #define SEGVN_PAGEIO ((void *)0x1)
491 #define SEGVN_NOPAGEIO ((void *)0x2)
493 static void
494 segvn_setvnode_mpss(vnode_t *vp)
496 int err;
498 ASSERT(vp->v_mpssdata == NULL ||
499 vp->v_mpssdata == SEGVN_PAGEIO ||
500 vp->v_mpssdata == SEGVN_NOPAGEIO);
502 if (vp->v_mpssdata == NULL) {
503 if (vn_vmpss_usepageio(vp)) {
504 err = fop_pageio(vp, NULL,
505 0, 0, 0, CRED(), NULL);
506 } else {
507 err = ENOSYS;
510 * set v_mpssdata just once per vnode life
511 * so that it never changes.
513 mutex_enter(&vp->v_lock);
514 if (vp->v_mpssdata == NULL) {
515 if (err == EINVAL) {
516 vp->v_mpssdata = SEGVN_PAGEIO;
517 } else {
518 vp->v_mpssdata = SEGVN_NOPAGEIO;
521 mutex_exit(&vp->v_lock);
526 segvn_create(struct seg *seg, void *argsp)
528 extern lgrp_mem_policy_t lgrp_mem_default_policy;
529 struct segvn_crargs *a = (struct segvn_crargs *)argsp;
530 struct segvn_data *svd;
531 size_t swresv = 0;
532 struct cred *cred;
533 struct anon_map *amp;
534 int error = 0;
535 size_t pgsz;
536 lgrp_mem_policy_t mpolicy = lgrp_mem_default_policy;
537 int use_rgn = 0;
538 int trok = 0;
540 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
542 if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
543 panic("segvn_create type");
544 /*NOTREACHED*/
548 * Check arguments. If a shared anon structure is given then
549 * it is illegal to also specify a vp.
551 if (a->amp != NULL && a->vp != NULL) {
552 panic("segvn_create anon_map");
553 /*NOTREACHED*/
556 if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
557 a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
558 segvn_use_regions) {
559 use_rgn = 1;
562 /* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
563 if (a->type == MAP_SHARED)
564 a->flags &= ~MAP_NORESERVE;
566 if (a->szc != 0) {
567 if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
568 (a->amp != NULL && a->type == MAP_PRIVATE) ||
569 (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
570 a->szc = 0;
571 } else {
572 if (a->szc > segvn_maxpgszc)
573 a->szc = segvn_maxpgszc;
574 pgsz = page_get_pagesize(a->szc);
575 if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
576 !IS_P2ALIGNED(seg->s_size, pgsz)) {
577 a->szc = 0;
578 } else if (a->vp != NULL) {
579 if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
581 * paranoid check.
582 * hat_page_demote() is not supported
583 * on swapfs pages.
585 a->szc = 0;
586 } else if (map_addr_vacalign_check(seg->s_base,
587 a->offset & PAGEMASK)) {
588 a->szc = 0;
590 } else if (a->amp != NULL) {
591 pgcnt_t anum = btopr(a->offset);
592 pgcnt_t pgcnt = page_get_pagecnt(a->szc);
593 if (!IS_P2ALIGNED(anum, pgcnt)) {
594 a->szc = 0;
601 * If segment may need private pages, reserve them now.
603 if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
604 (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
605 if (anon_resv_zone(seg->s_size,
606 seg->s_as->a_proc->p_zone) == 0)
607 return (EAGAIN);
608 swresv = seg->s_size;
612 * Reserve any mapping structures that may be required.
614 * Don't do it for segments that may use regions. It's currently a
615 * noop in the hat implementations anyway.
617 if (!use_rgn) {
618 hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
621 if (a->cred) {
622 cred = a->cred;
623 crhold(cred);
624 } else {
625 crhold(cred = CRED());
628 /* Inform the vnode of the new mapping */
629 if (a->vp != NULL) {
630 error = fop_addmap(a->vp, a->offset & PAGEMASK,
631 seg->s_as, seg->s_base, seg->s_size, a->prot,
632 a->maxprot, a->type, cred, NULL);
633 if (error) {
634 if (swresv != 0) {
635 anon_unresv_zone(swresv,
636 seg->s_as->a_proc->p_zone);
638 crfree(cred);
639 if (!use_rgn) {
640 hat_unload(seg->s_as->a_hat, seg->s_base,
641 seg->s_size, HAT_UNLOAD_UNMAP);
643 return (error);
646 * svntr_hashtab will be NULL if we support shared regions.
648 trok = ((a->flags & MAP_TEXT) &&
649 (seg->s_size > textrepl_size_thresh ||
650 (a->flags & _MAP_TEXTREPL)) &&
651 lgrp_optimizations() && svntr_hashtab != NULL &&
652 a->type == MAP_PRIVATE && swresv == 0 &&
653 !(a->flags & MAP_NORESERVE) &&
654 seg->s_as != &kas && a->vp->v_type == VREG);
656 ASSERT(!trok || !use_rgn);
660 * MAP_NORESERVE mappings don't count towards the VSZ of a process
661 * until we fault the pages in.
663 if ((a->vp == NULL || a->vp->v_type != VREG) &&
664 a->flags & MAP_NORESERVE) {
665 seg->s_as->a_resvsize -= seg->s_size;
669 * If more than one segment in the address space, and they're adjacent
670 * virtually, try to concatenate them. Don't concatenate if an
671 * explicit anon_map structure was supplied (e.g., SystemV shared
672 * memory) or if we'll use text replication for this segment.
674 if (a->amp == NULL && !use_rgn && !trok) {
675 struct seg *pseg, *nseg;
676 struct segvn_data *psvd, *nsvd;
677 lgrp_mem_policy_t ppolicy, npolicy;
678 uint_t lgrp_mem_policy_flags = 0;
681 * Memory policy flags (lgrp_mem_policy_flags) is valid when
682 * extending stack/heap segments.
684 if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
685 !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
686 lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
687 } else {
689 * Get policy when not extending it from another segment
691 mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
695 * First, try to concatenate the previous and new segments
697 pseg = AS_SEGPREV(seg->s_as, seg);
698 if (pseg != NULL &&
699 pseg->s_base + pseg->s_size == seg->s_base &&
700 pseg->s_ops == &segvn_ops) {
702 * Get memory allocation policy from previous segment.
703 * When extension is specified (e.g. for heap) apply
704 * this policy to the new segment regardless of the
705 * outcome of segment concatenation. Extension occurs
706 * for non-default policy otherwise default policy is
707 * used and is based on extended segment size.
709 psvd = (struct segvn_data *)pseg->s_data;
710 ppolicy = psvd->policy_info.mem_policy;
711 if (lgrp_mem_policy_flags ==
712 LGRP_MP_FLAG_EXTEND_UP) {
713 if (ppolicy != lgrp_mem_default_policy) {
714 mpolicy = ppolicy;
715 } else {
716 mpolicy = lgrp_mem_policy_default(
717 pseg->s_size + seg->s_size,
718 a->type);
722 if (mpolicy == ppolicy &&
723 (pseg->s_size + seg->s_size <=
724 segvn_comb_thrshld || psvd->amp == NULL) &&
725 segvn_extend_prev(pseg, seg, a, swresv) == 0) {
727 * success! now try to concatenate
728 * with following seg
730 crfree(cred);
731 nseg = AS_SEGNEXT(pseg->s_as, pseg);
732 if (nseg != NULL &&
733 nseg != pseg &&
734 nseg->s_ops == &segvn_ops &&
735 pseg->s_base + pseg->s_size ==
736 nseg->s_base)
737 (void) segvn_concat(pseg, nseg, 0);
738 ASSERT(pseg->s_szc == 0 ||
739 (a->szc == pseg->s_szc &&
740 IS_P2ALIGNED(pseg->s_base, pgsz) &&
741 IS_P2ALIGNED(pseg->s_size, pgsz)));
742 return (0);
747 * Failed, so try to concatenate with following seg
749 nseg = AS_SEGNEXT(seg->s_as, seg);
750 if (nseg != NULL &&
751 seg->s_base + seg->s_size == nseg->s_base &&
752 nseg->s_ops == &segvn_ops) {
754 * Get memory allocation policy from next segment.
755 * When extension is specified (e.g. for stack) apply
756 * this policy to the new segment regardless of the
757 * outcome of segment concatenation. Extension occurs
758 * for non-default policy otherwise default policy is
759 * used and is based on extended segment size.
761 nsvd = (struct segvn_data *)nseg->s_data;
762 npolicy = nsvd->policy_info.mem_policy;
763 if (lgrp_mem_policy_flags ==
764 LGRP_MP_FLAG_EXTEND_DOWN) {
765 if (npolicy != lgrp_mem_default_policy) {
766 mpolicy = npolicy;
767 } else {
768 mpolicy = lgrp_mem_policy_default(
769 nseg->s_size + seg->s_size,
770 a->type);
774 if (mpolicy == npolicy &&
775 segvn_extend_next(seg, nseg, a, swresv) == 0) {
776 crfree(cred);
777 ASSERT(nseg->s_szc == 0 ||
778 (a->szc == nseg->s_szc &&
779 IS_P2ALIGNED(nseg->s_base, pgsz) &&
780 IS_P2ALIGNED(nseg->s_size, pgsz)));
781 return (0);
786 if (a->vp != NULL) {
787 VN_HOLD(a->vp);
788 if (a->type == MAP_SHARED)
789 lgrp_shm_policy_init(NULL, a->vp);
791 svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
793 seg->s_ops = &segvn_ops;
794 seg->s_data = (void *)svd;
795 seg->s_szc = a->szc;
797 svd->seg = seg;
798 svd->vp = a->vp;
800 * Anonymous mappings have no backing file so the offset is meaningless.
802 svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
803 svd->prot = a->prot;
804 svd->maxprot = a->maxprot;
805 svd->pageprot = 0;
806 svd->type = a->type;
807 svd->vpage = NULL;
808 svd->cred = cred;
809 svd->advice = MADV_NORMAL;
810 svd->pageadvice = 0;
811 svd->flags = (ushort_t)a->flags;
812 svd->softlockcnt = 0;
813 svd->softlockcnt_sbase = 0;
814 svd->softlockcnt_send = 0;
815 svd->svn_inz = 0;
816 svd->rcookie = HAT_INVALID_REGION_COOKIE;
817 svd->pageswap = 0;
819 if (a->szc != 0 && a->vp != NULL) {
820 segvn_setvnode_mpss(a->vp);
822 if (svd->type == MAP_SHARED && svd->vp != NULL &&
823 (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
824 ASSERT(vn_is_mapped(svd->vp, V_WRITE));
825 segvn_inval_trcache(svd->vp);
828 amp = a->amp;
829 if ((svd->amp = amp) == NULL) {
830 svd->anon_index = 0;
831 if (svd->type == MAP_SHARED) {
832 svd->swresv = 0;
834 * Shared mappings to a vp need no other setup.
835 * If we have a shared mapping to an anon_map object
836 * which hasn't been allocated yet, allocate the
837 * struct now so that it will be properly shared
838 * by remembering the swap reservation there.
840 if (a->vp == NULL) {
841 svd->amp = anonmap_alloc(seg->s_size, swresv,
842 ANON_SLEEP);
843 svd->amp->a_szc = seg->s_szc;
845 } else {
847 * Private mapping (with or without a vp).
848 * Allocate anon_map when needed.
850 svd->swresv = swresv;
852 } else {
853 pgcnt_t anon_num;
856 * Mapping to an existing anon_map structure without a vp.
857 * For now we will insure that the segment size isn't larger
858 * than the size - offset gives us. Later on we may wish to
859 * have the anon array dynamically allocated itself so that
860 * we don't always have to allocate all the anon pointer slots.
861 * This of course involves adding extra code to check that we
862 * aren't trying to use an anon pointer slot beyond the end
863 * of the currently allocated anon array.
865 if ((amp->size - a->offset) < seg->s_size) {
866 panic("segvn_create anon_map size");
867 /*NOTREACHED*/
870 anon_num = btopr(a->offset);
872 if (a->type == MAP_SHARED) {
874 * SHARED mapping to a given anon_map.
876 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
877 amp->refcnt++;
878 if (a->szc > amp->a_szc) {
879 amp->a_szc = a->szc;
881 ANON_LOCK_EXIT(&amp->a_rwlock);
882 svd->anon_index = anon_num;
883 svd->swresv = 0;
884 } else {
886 * PRIVATE mapping to a given anon_map.
887 * Make sure that all the needed anon
888 * structures are created (so that we will
889 * share the underlying pages if nothing
890 * is written by this mapping) and then
891 * duplicate the anon array as is done
892 * when a privately mapped segment is dup'ed.
894 struct anon *ap;
895 caddr_t addr;
896 caddr_t eaddr;
897 ulong_t anon_idx;
898 int hat_flag = HAT_LOAD;
900 if (svd->flags & MAP_TEXT) {
901 hat_flag |= HAT_LOAD_TEXT;
904 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
905 svd->amp->a_szc = seg->s_szc;
906 svd->anon_index = 0;
907 svd->swresv = swresv;
910 * Prevent 2 threads from allocating anon
911 * slots simultaneously.
913 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
914 eaddr = seg->s_base + seg->s_size;
916 for (anon_idx = anon_num, addr = seg->s_base;
917 addr < eaddr; addr += PAGESIZE, anon_idx++) {
918 page_t *pp;
920 if ((ap = anon_get_ptr(amp->ahp,
921 anon_idx)) != NULL)
922 continue;
925 * Allocate the anon struct now.
926 * Might as well load up translation
927 * to the page while we're at it...
929 pp = anon_zero(seg, addr, &ap, cred);
930 if (ap == NULL || pp == NULL) {
931 panic("segvn_create anon_zero");
932 /*NOTREACHED*/
936 * Re-acquire the anon_map lock and
937 * initialize the anon array entry.
939 ASSERT(anon_get_ptr(amp->ahp,
940 anon_idx) == NULL);
941 (void) anon_set_ptr(amp->ahp, anon_idx, ap,
942 ANON_SLEEP);
944 ASSERT(seg->s_szc == 0);
945 ASSERT(!IS_VMODSORT(pp->p_vnode));
947 ASSERT(use_rgn == 0);
948 hat_memload(seg->s_as->a_hat, addr, pp,
949 svd->prot & ~PROT_WRITE, hat_flag);
951 page_unlock(pp);
953 ASSERT(seg->s_szc == 0);
954 anon_dup(amp->ahp, anon_num, svd->amp->ahp,
955 0, seg->s_size);
956 ANON_LOCK_EXIT(&amp->a_rwlock);
961 * Set default memory allocation policy for segment
963 * Always set policy for private memory at least for initialization
964 * even if this is a shared memory segment
966 (void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
968 if (svd->type == MAP_SHARED)
969 (void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
970 svd->vp, svd->offset, seg->s_size);
972 if (use_rgn) {
973 ASSERT(!trok);
974 ASSERT(svd->amp == NULL);
975 svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
976 seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
977 (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
978 HAT_REGION_TEXT);
981 ASSERT(!trok || !(svd->prot & PROT_WRITE));
982 svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
984 return (0);
988 * Concatenate two existing segments, if possible.
989 * Return 0 on success, -1 if two segments are not compatible
990 * or -2 on memory allocation failure.
991 * If amp_cat == 1 then try and concat segments with anon maps
993 static int
994 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
996 struct segvn_data *svd1 = seg1->s_data;
997 struct segvn_data *svd2 = seg2->s_data;
998 struct anon_map *amp1 = svd1->amp;
999 struct anon_map *amp2 = svd2->amp;
1000 struct vpage *vpage1 = svd1->vpage;
1001 struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
1002 size_t size, nvpsize;
1003 pgcnt_t npages1, npages2;
1005 ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
1006 ASSERT(AS_WRITE_HELD(seg1->s_as));
1007 ASSERT(seg1->s_ops == seg2->s_ops);
1009 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
1010 HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1011 return (-1);
1014 /* both segments exist, try to merge them */
1015 #define incompat(x) (svd1->x != svd2->x)
1016 if (incompat(vp) || incompat(maxprot) ||
1017 (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
1018 (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
1019 incompat(type) || incompat(cred) || incompat(flags) ||
1020 seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
1021 (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0)
1022 return (-1);
1023 #undef incompat
1026 * vp == NULL implies zfod, offset doesn't matter
1028 if (svd1->vp != NULL &&
1029 svd1->offset + seg1->s_size != svd2->offset) {
1030 return (-1);
1034 * Don't concatenate if either segment uses text replication.
1036 if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
1037 return (-1);
1041 * Fail early if we're not supposed to concatenate
1042 * segments with non NULL amp.
1044 if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1045 return (-1);
1048 if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1049 if (amp1 != amp2) {
1050 return (-1);
1052 if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1053 svd2->anon_index) {
1054 return (-1);
1056 ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1060 * If either seg has vpages, create a new merged vpage array.
1062 if (vpage1 != NULL || vpage2 != NULL) {
1063 struct vpage *vp, *evp;
1065 npages1 = seg_pages(seg1);
1066 npages2 = seg_pages(seg2);
1067 nvpsize = vpgtob(npages1 + npages2);
1069 if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1070 return (-2);
1073 if (vpage1 != NULL) {
1074 bcopy(vpage1, nvpage, vpgtob(npages1));
1075 } else {
1076 evp = nvpage + npages1;
1077 for (vp = nvpage; vp < evp; vp++) {
1078 VPP_SETPROT(vp, svd1->prot);
1079 VPP_SETADVICE(vp, svd1->advice);
1083 if (vpage2 != NULL) {
1084 bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1085 } else {
1086 evp = nvpage + npages1 + npages2;
1087 for (vp = nvpage + npages1; vp < evp; vp++) {
1088 VPP_SETPROT(vp, svd2->prot);
1089 VPP_SETADVICE(vp, svd2->advice);
1093 if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) {
1094 ASSERT(svd1->swresv == seg1->s_size);
1095 ASSERT(!(svd1->flags & MAP_NORESERVE));
1096 ASSERT(!(svd2->flags & MAP_NORESERVE));
1097 evp = nvpage + npages1;
1098 for (vp = nvpage; vp < evp; vp++) {
1099 VPP_SETSWAPRES(vp);
1103 if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) {
1104 ASSERT(svd2->swresv == seg2->s_size);
1105 ASSERT(!(svd1->flags & MAP_NORESERVE));
1106 ASSERT(!(svd2->flags & MAP_NORESERVE));
1107 vp = nvpage + npages1;
1108 evp = vp + npages2;
1109 for (; vp < evp; vp++) {
1110 VPP_SETSWAPRES(vp);
1114 ASSERT((vpage1 != NULL || vpage2 != NULL) ||
1115 (svd1->pageswap == 0 && svd2->pageswap == 0));
1118 * If either segment has private pages, create a new merged anon
1119 * array. If mergeing shared anon segments just decrement anon map's
1120 * refcnt.
1122 if (amp1 != NULL && svd1->type == MAP_SHARED) {
1123 ASSERT(amp1 == amp2 && svd1->vp == NULL);
1124 ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1125 ASSERT(amp1->refcnt >= 2);
1126 amp1->refcnt--;
1127 ANON_LOCK_EXIT(&amp1->a_rwlock);
1128 svd2->amp = NULL;
1129 } else if (amp1 != NULL || amp2 != NULL) {
1130 struct anon_hdr *nahp;
1131 struct anon_map *namp = NULL;
1132 size_t asize;
1134 ASSERT(svd1->type == MAP_PRIVATE);
1136 asize = seg1->s_size + seg2->s_size;
1137 if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1138 if (nvpage != NULL) {
1139 kmem_free(nvpage, nvpsize);
1141 return (-2);
1143 if (amp1 != NULL) {
1145 * XXX anon rwlock is not really needed because
1146 * this is a private segment and we are writers.
1148 ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1149 ASSERT(amp1->refcnt == 1);
1150 if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1151 nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1152 anon_release(nahp, btop(asize));
1153 ANON_LOCK_EXIT(&amp1->a_rwlock);
1154 if (nvpage != NULL) {
1155 kmem_free(nvpage, nvpsize);
1157 return (-2);
1160 if (amp2 != NULL) {
1161 ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1162 ASSERT(amp2->refcnt == 1);
1163 if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1164 nahp, btop(seg1->s_size), btop(seg2->s_size),
1165 ANON_NOSLEEP)) {
1166 anon_release(nahp, btop(asize));
1167 ANON_LOCK_EXIT(&amp2->a_rwlock);
1168 if (amp1 != NULL) {
1169 ANON_LOCK_EXIT(&amp1->a_rwlock);
1171 if (nvpage != NULL) {
1172 kmem_free(nvpage, nvpsize);
1174 return (-2);
1177 if (amp1 != NULL) {
1178 namp = amp1;
1179 anon_release(amp1->ahp, btop(amp1->size));
1181 if (amp2 != NULL) {
1182 if (namp == NULL) {
1183 ASSERT(amp1 == NULL);
1184 namp = amp2;
1185 anon_release(amp2->ahp, btop(amp2->size));
1186 } else {
1187 amp2->refcnt--;
1188 ANON_LOCK_EXIT(&amp2->a_rwlock);
1189 anonmap_free(amp2);
1191 svd2->amp = NULL; /* needed for seg_free */
1193 namp->ahp = nahp;
1194 namp->size = asize;
1195 svd1->amp = namp;
1196 svd1->anon_index = 0;
1197 ANON_LOCK_EXIT(&namp->a_rwlock);
1200 * Now free the old vpage structures.
1202 if (nvpage != NULL) {
1203 if (vpage1 != NULL) {
1204 kmem_free(vpage1, vpgtob(npages1));
1206 if (vpage2 != NULL) {
1207 svd2->vpage = NULL;
1208 kmem_free(vpage2, vpgtob(npages2));
1210 if (svd2->pageprot) {
1211 svd1->pageprot = 1;
1213 if (svd2->pageadvice) {
1214 svd1->pageadvice = 1;
1216 if (svd2->pageswap) {
1217 svd1->pageswap = 1;
1219 svd1->vpage = nvpage;
1222 /* all looks ok, merge segments */
1223 svd1->swresv += svd2->swresv;
1224 svd2->swresv = 0; /* so seg_free doesn't release swap space */
1225 size = seg2->s_size;
1226 seg_free(seg2);
1227 seg1->s_size += size;
1228 return (0);
1232 * Extend the previous segment (seg1) to include the
1233 * new segment (seg2 + a), if possible.
1234 * Return 0 on success.
1236 static int
1237 segvn_extend_prev(seg1, seg2, a, swresv)
1238 struct seg *seg1, *seg2;
1239 struct segvn_crargs *a;
1240 size_t swresv;
1242 struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1243 size_t size;
1244 struct anon_map *amp1;
1245 struct vpage *new_vpage;
1248 * We don't need any segment level locks for "segvn" data
1249 * since the address space is "write" locked.
1251 ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as));
1253 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1254 return (-1);
1257 /* second segment is new, try to extend first */
1258 /* XXX - should also check cred */
1259 if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1260 (!svd1->pageprot && (svd1->prot != a->prot)) ||
1261 svd1->type != a->type || svd1->flags != a->flags ||
1262 seg1->s_szc != a->szc || svd1->softlockcnt_send > 0)
1263 return (-1);
1265 /* vp == NULL implies zfod, offset doesn't matter */
1266 if (svd1->vp != NULL &&
1267 svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1268 return (-1);
1270 if (svd1->tr_state != SEGVN_TR_OFF) {
1271 return (-1);
1274 amp1 = svd1->amp;
1275 if (amp1) {
1276 pgcnt_t newpgs;
1279 * Segment has private pages, can data structures
1280 * be expanded?
1282 * Acquire the anon_map lock to prevent it from changing,
1283 * if it is shared. This ensures that the anon_map
1284 * will not change while a thread which has a read/write
1285 * lock on an address space references it.
1286 * XXX - Don't need the anon_map lock at all if "refcnt"
1287 * is 1.
1289 * Can't grow a MAP_SHARED segment with an anonmap because
1290 * there may be existing anon slots where we want to extend
1291 * the segment and we wouldn't know what to do with them
1292 * (e.g., for tmpfs right thing is to just leave them there,
1293 * for /dev/zero they should be cleared out).
1295 if (svd1->type == MAP_SHARED)
1296 return (-1);
1298 ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1299 if (amp1->refcnt > 1) {
1300 ANON_LOCK_EXIT(&amp1->a_rwlock);
1301 return (-1);
1303 newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1304 btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1306 if (newpgs == 0) {
1307 ANON_LOCK_EXIT(&amp1->a_rwlock);
1308 return (-1);
1310 amp1->size = ptob(newpgs);
1311 ANON_LOCK_EXIT(&amp1->a_rwlock);
1313 if (svd1->vpage != NULL) {
1314 struct vpage *vp, *evp;
1315 new_vpage =
1316 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1317 KM_NOSLEEP);
1318 if (new_vpage == NULL)
1319 return (-1);
1320 bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1321 kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1322 svd1->vpage = new_vpage;
1324 vp = new_vpage + seg_pages(seg1);
1325 evp = vp + seg_pages(seg2);
1326 for (; vp < evp; vp++)
1327 VPP_SETPROT(vp, a->prot);
1328 if (svd1->pageswap && swresv) {
1329 ASSERT(!(svd1->flags & MAP_NORESERVE));
1330 ASSERT(swresv == seg2->s_size);
1331 vp = new_vpage + seg_pages(seg1);
1332 for (; vp < evp; vp++) {
1333 VPP_SETSWAPRES(vp);
1337 ASSERT(svd1->vpage != NULL || svd1->pageswap == 0);
1338 size = seg2->s_size;
1339 seg_free(seg2);
1340 seg1->s_size += size;
1341 svd1->swresv += swresv;
1342 if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1343 svd1->type == MAP_SHARED && svd1->vp != NULL &&
1344 (svd1->vp->v_flag & VVMEXEC)) {
1345 ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1346 segvn_inval_trcache(svd1->vp);
1348 return (0);
1352 * Extend the next segment (seg2) to include the
1353 * new segment (seg1 + a), if possible.
1354 * Return 0 on success.
1356 static int
1357 segvn_extend_next(
1358 struct seg *seg1,
1359 struct seg *seg2,
1360 struct segvn_crargs *a,
1361 size_t swresv)
1363 struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1364 size_t size;
1365 struct anon_map *amp2;
1366 struct vpage *new_vpage;
1369 * We don't need any segment level locks for "segvn" data
1370 * since the address space is "write" locked.
1372 ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as));
1374 if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1375 return (-1);
1378 /* first segment is new, try to extend second */
1379 /* XXX - should also check cred */
1380 if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1381 (!svd2->pageprot && (svd2->prot != a->prot)) ||
1382 svd2->type != a->type || svd2->flags != a->flags ||
1383 seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0)
1384 return (-1);
1385 /* vp == NULL implies zfod, offset doesn't matter */
1386 if (svd2->vp != NULL &&
1387 (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1388 return (-1);
1390 if (svd2->tr_state != SEGVN_TR_OFF) {
1391 return (-1);
1394 amp2 = svd2->amp;
1395 if (amp2) {
1396 pgcnt_t newpgs;
1399 * Segment has private pages, can data structures
1400 * be expanded?
1402 * Acquire the anon_map lock to prevent it from changing,
1403 * if it is shared. This ensures that the anon_map
1404 * will not change while a thread which has a read/write
1405 * lock on an address space references it.
1407 * XXX - Don't need the anon_map lock at all if "refcnt"
1408 * is 1.
1410 if (svd2->type == MAP_SHARED)
1411 return (-1);
1413 ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1414 if (amp2->refcnt > 1) {
1415 ANON_LOCK_EXIT(&amp2->a_rwlock);
1416 return (-1);
1418 newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1419 btop(seg2->s_size), btop(seg1->s_size),
1420 ANON_NOSLEEP | ANON_GROWDOWN);
1422 if (newpgs == 0) {
1423 ANON_LOCK_EXIT(&amp2->a_rwlock);
1424 return (-1);
1426 amp2->size = ptob(newpgs);
1427 ANON_LOCK_EXIT(&amp2->a_rwlock);
1429 if (svd2->vpage != NULL) {
1430 struct vpage *vp, *evp;
1431 new_vpage =
1432 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1433 KM_NOSLEEP);
1434 if (new_vpage == NULL) {
1435 /* Not merging segments so adjust anon_index back */
1436 if (amp2)
1437 svd2->anon_index += seg_pages(seg1);
1438 return (-1);
1440 bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1441 vpgtob(seg_pages(seg2)));
1442 kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1443 svd2->vpage = new_vpage;
1445 vp = new_vpage;
1446 evp = vp + seg_pages(seg1);
1447 for (; vp < evp; vp++)
1448 VPP_SETPROT(vp, a->prot);
1449 if (svd2->pageswap && swresv) {
1450 ASSERT(!(svd2->flags & MAP_NORESERVE));
1451 ASSERT(swresv == seg1->s_size);
1452 vp = new_vpage;
1453 for (; vp < evp; vp++) {
1454 VPP_SETSWAPRES(vp);
1458 ASSERT(svd2->vpage != NULL || svd2->pageswap == 0);
1459 size = seg1->s_size;
1460 seg_free(seg1);
1461 seg2->s_size += size;
1462 seg2->s_base -= size;
1463 svd2->offset -= size;
1464 svd2->swresv += swresv;
1465 if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1466 svd2->type == MAP_SHARED && svd2->vp != NULL &&
1467 (svd2->vp->v_flag & VVMEXEC)) {
1468 ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1469 segvn_inval_trcache(svd2->vp);
1471 return (0);
1475 * Duplicate all the pages in the segment. This may break COW sharing for a
1476 * given page. If the page is marked with inherit zero set, then instead of
1477 * duplicating the page, we zero the page.
1479 static int
1480 segvn_dup_pages(struct seg *seg, struct seg *newseg)
1482 int error;
1483 uint_t prot;
1484 page_t *pp;
1485 struct anon *ap, *newap;
1486 size_t i;
1487 caddr_t addr;
1489 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1490 struct segvn_data *newsvd = (struct segvn_data *)newseg->s_data;
1491 ulong_t old_idx = svd->anon_index;
1492 ulong_t new_idx = 0;
1494 i = btopr(seg->s_size);
1495 addr = seg->s_base;
1498 * XXX break cow sharing using PAGESIZE
1499 * pages. They will be relocated into larger
1500 * pages at fault time.
1502 while (i-- > 0) {
1503 if ((ap = anon_get_ptr(svd->amp->ahp, old_idx)) != NULL) {
1504 struct vpage *vpp;
1506 vpp = &svd->vpage[seg_page(seg, addr)];
1509 * prot need not be computed below 'cause anon_private
1510 * is going to ignore it anyway as child doesn't inherit
1511 * pagelock from parent.
1513 prot = svd->pageprot ? VPP_PROT(vpp) : svd->prot;
1516 * Check whether we should zero this or dup it.
1518 if (svd->svn_inz == SEGVN_INZ_ALL ||
1519 (svd->svn_inz == SEGVN_INZ_VPP &&
1520 VPP_ISINHZERO(vpp))) {
1521 pp = anon_zero(newseg, addr, &newap,
1522 newsvd->cred);
1523 } else {
1524 page_t *anon_pl[1+1];
1525 uint_t vpprot;
1526 error = anon_getpage(&ap, &vpprot, anon_pl,
1527 PAGESIZE, seg, addr, S_READ, svd->cred);
1528 if (error != 0)
1529 return (error);
1531 pp = anon_private(&newap, newseg, addr, prot,
1532 anon_pl[0], 0, newsvd->cred);
1534 if (pp == NULL) {
1535 return (ENOMEM);
1537 (void) anon_set_ptr(newsvd->amp->ahp, new_idx, newap,
1538 ANON_SLEEP);
1539 page_unlock(pp);
1541 addr += PAGESIZE;
1542 old_idx++;
1543 new_idx++;
1546 return (0);
1549 static int
1550 segvn_dup(struct seg *seg, struct seg *newseg)
1552 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1553 struct segvn_data *newsvd;
1554 pgcnt_t npages = seg_pages(seg);
1555 int error = 0;
1556 size_t len;
1557 struct anon_map *amp;
1559 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1560 ASSERT(newseg->s_as->a_proc->p_parent == curproc);
1563 * If segment has anon reserved, reserve more for the new seg.
1564 * For a MAP_NORESERVE segment swresv will be a count of all the
1565 * allocated anon slots; thus we reserve for the child as many slots
1566 * as the parent has allocated. This semantic prevents the child or
1567 * parent from dieing during a copy-on-write fault caused by trying
1568 * to write a shared pre-existing anon page.
1570 if ((len = svd->swresv) != 0) {
1571 if (anon_resv(svd->swresv) == 0)
1572 return (ENOMEM);
1575 newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1577 newseg->s_ops = &segvn_ops;
1578 newseg->s_data = (void *)newsvd;
1579 newseg->s_szc = seg->s_szc;
1581 newsvd->seg = newseg;
1582 if ((newsvd->vp = svd->vp) != NULL) {
1583 VN_HOLD(svd->vp);
1584 if (svd->type == MAP_SHARED)
1585 lgrp_shm_policy_init(NULL, svd->vp);
1587 newsvd->offset = svd->offset;
1588 newsvd->prot = svd->prot;
1589 newsvd->maxprot = svd->maxprot;
1590 newsvd->pageprot = svd->pageprot;
1591 newsvd->type = svd->type;
1592 newsvd->cred = svd->cred;
1593 crhold(newsvd->cred);
1594 newsvd->advice = svd->advice;
1595 newsvd->pageadvice = svd->pageadvice;
1596 newsvd->svn_inz = svd->svn_inz;
1597 newsvd->swresv = svd->swresv;
1598 newsvd->pageswap = svd->pageswap;
1599 newsvd->flags = svd->flags;
1600 newsvd->softlockcnt = 0;
1601 newsvd->softlockcnt_sbase = 0;
1602 newsvd->softlockcnt_send = 0;
1603 newsvd->policy_info = svd->policy_info;
1604 newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1606 if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1608 * Not attaching to a shared anon object.
1610 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1611 svd->tr_state == SEGVN_TR_OFF);
1612 if (svd->tr_state == SEGVN_TR_ON) {
1613 ASSERT(newsvd->vp != NULL && amp != NULL);
1614 newsvd->tr_state = SEGVN_TR_INIT;
1615 } else {
1616 newsvd->tr_state = svd->tr_state;
1618 newsvd->amp = NULL;
1619 newsvd->anon_index = 0;
1620 } else {
1621 /* regions for now are only used on pure vnode segments */
1622 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1623 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1624 newsvd->tr_state = SEGVN_TR_OFF;
1625 if (svd->type == MAP_SHARED) {
1626 ASSERT(svd->svn_inz == SEGVN_INZ_NONE);
1627 newsvd->amp = amp;
1628 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1629 amp->refcnt++;
1630 ANON_LOCK_EXIT(&amp->a_rwlock);
1631 newsvd->anon_index = svd->anon_index;
1632 } else {
1633 int reclaim = 1;
1636 * Allocate and initialize new anon_map structure.
1638 newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1639 ANON_SLEEP);
1640 newsvd->amp->a_szc = newseg->s_szc;
1641 newsvd->anon_index = 0;
1642 ASSERT(svd->svn_inz == SEGVN_INZ_NONE ||
1643 svd->svn_inz == SEGVN_INZ_ALL ||
1644 svd->svn_inz == SEGVN_INZ_VPP);
1647 * We don't have to acquire the anon_map lock
1648 * for the new segment (since it belongs to an
1649 * address space that is still not associated
1650 * with any process), or the segment in the old
1651 * address space (since all threads in it
1652 * are stopped while duplicating the address space).
1656 * The goal of the following code is to make sure that
1657 * softlocked pages do not end up as copy on write
1658 * pages. This would cause problems where one
1659 * thread writes to a page that is COW and a different
1660 * thread in the same process has softlocked it. The
1661 * softlock lock would move away from this process
1662 * because the write would cause this process to get
1663 * a copy (without the softlock).
1665 * The strategy here is to just break the
1666 * sharing on pages that could possibly be
1667 * softlocked.
1669 * In addition, if any pages have been marked that they
1670 * should be inherited as zero, then we immediately go
1671 * ahead and break COW and zero them. In the case of a
1672 * softlocked page that should be inherited zero, we
1673 * break COW and just get a zero page.
1675 retry:
1676 if (svd->softlockcnt ||
1677 svd->svn_inz != SEGVN_INZ_NONE) {
1679 * The softlock count might be non zero
1680 * because some pages are still stuck in the
1681 * cache for lazy reclaim. Flush the cache
1682 * now. This should drop the count to zero.
1683 * [or there is really I/O going on to these
1684 * pages]. Note, we have the writers lock so
1685 * nothing gets inserted during the flush.
1687 if (svd->softlockcnt && reclaim == 1) {
1688 segvn_purge(seg);
1689 reclaim = 0;
1690 goto retry;
1693 error = segvn_dup_pages(seg, newseg);
1694 if (error != 0) {
1695 newsvd->vpage = NULL;
1696 goto out;
1698 } else { /* common case */
1699 if (seg->s_szc != 0) {
1701 * If at least one of anon slots of a
1702 * large page exists then make sure
1703 * all anon slots of a large page
1704 * exist to avoid partial cow sharing
1705 * of a large page in the future.
1707 anon_dup_fill_holes(amp->ahp,
1708 svd->anon_index, newsvd->amp->ahp,
1709 0, seg->s_size, seg->s_szc,
1710 svd->vp != NULL);
1711 } else {
1712 anon_dup(amp->ahp, svd->anon_index,
1713 newsvd->amp->ahp, 0, seg->s_size);
1716 hat_clrattr(seg->s_as->a_hat, seg->s_base,
1717 seg->s_size, PROT_WRITE);
1722 * If necessary, create a vpage structure for the new segment.
1723 * Do not copy any page lock indications.
1725 if (svd->vpage != NULL) {
1726 uint_t i;
1727 struct vpage *ovp = svd->vpage;
1728 struct vpage *nvp;
1730 nvp = newsvd->vpage =
1731 kmem_alloc(vpgtob(npages), KM_SLEEP);
1732 for (i = 0; i < npages; i++) {
1733 *nvp = *ovp++;
1734 VPP_CLRPPLOCK(nvp++);
1736 } else
1737 newsvd->vpage = NULL;
1739 /* Inform the vnode of the new mapping */
1740 if (newsvd->vp != NULL) {
1741 error = fop_addmap(newsvd->vp, (offset_t)newsvd->offset,
1742 newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1743 newsvd->maxprot, newsvd->type, newsvd->cred, NULL);
1745 out:
1746 if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1747 ASSERT(newsvd->amp == NULL);
1748 ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1749 newsvd->rcookie = svd->rcookie;
1750 hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1752 return (error);
1757 * callback function to invoke free_vp_pages() for only those pages actually
1758 * processed by the HAT when a shared region is destroyed.
1760 extern int free_pages;
1762 static void
1763 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1764 size_t r_size, void *r_obj, uoff_t r_objoff)
1766 uoff_t off;
1767 size_t len;
1768 vnode_t *vp = (vnode_t *)r_obj;
1770 ASSERT(eaddr > saddr);
1771 ASSERT(saddr >= r_saddr);
1772 ASSERT(saddr < r_saddr + r_size);
1773 ASSERT(eaddr > r_saddr);
1774 ASSERT(eaddr <= r_saddr + r_size);
1775 ASSERT(vp != NULL);
1777 if (!free_pages) {
1778 return;
1781 len = eaddr - saddr;
1782 off = (saddr - r_saddr) + r_objoff;
1783 free_vp_pages(&vp->v_object, off, len);
1787 * callback function used by segvn_unmap to invoke free_vp_pages() for only
1788 * those pages actually processed by the HAT
1790 static void
1791 segvn_hat_unload_callback(hat_callback_t *cb)
1793 struct seg *seg = cb->hcb_data;
1794 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1795 size_t len;
1796 uoff_t off;
1798 ASSERT(svd->vp != NULL);
1799 ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1800 ASSERT(cb->hcb_start_addr >= seg->s_base);
1802 len = cb->hcb_end_addr - cb->hcb_start_addr;
1803 off = cb->hcb_start_addr - seg->s_base;
1804 free_vp_pages(&svd->vp->v_object, svd->offset + off, len);
1808 * This function determines the number of bytes of swap reserved by
1809 * a segment for which per-page accounting is present. It is used to
1810 * calculate the correct value of a segvn_data's swresv.
1812 static size_t
1813 segvn_count_swap_by_vpages(struct seg *seg)
1815 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1816 struct vpage *vp, *evp;
1817 size_t nswappages = 0;
1819 ASSERT(svd->pageswap);
1820 ASSERT(svd->vpage != NULL);
1822 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
1824 for (vp = svd->vpage; vp < evp; vp++) {
1825 if (VPP_ISSWAPRES(vp))
1826 nswappages++;
1829 return (nswappages << PAGESHIFT);
1832 static int
1833 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1835 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1836 struct segvn_data *nsvd;
1837 struct seg *nseg;
1838 struct anon_map *amp;
1839 pgcnt_t opages; /* old segment size in pages */
1840 pgcnt_t npages; /* new segment size in pages */
1841 pgcnt_t dpages; /* pages being deleted (unmapped) */
1842 hat_callback_t callback; /* used for free_vp_pages() */
1843 hat_callback_t *cbp = NULL;
1844 caddr_t nbase;
1845 size_t nsize;
1846 size_t oswresv;
1847 int reclaim = 1;
1850 * We don't need any segment level locks for "segvn" data
1851 * since the address space is "write" locked.
1853 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1856 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1857 * softlockcnt is protected from change by the as write lock.
1859 retry:
1860 if (svd->softlockcnt > 0) {
1861 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1864 * If this is shared segment non 0 softlockcnt
1865 * means locked pages are still in use.
1867 if (svd->type == MAP_SHARED) {
1868 return (EAGAIN);
1872 * since we do have the writers lock nobody can fill
1873 * the cache during the purge. The flush either succeeds
1874 * or we still have pending I/Os.
1876 if (reclaim == 1) {
1877 segvn_purge(seg);
1878 reclaim = 0;
1879 goto retry;
1881 return (EAGAIN);
1885 * Check for bad sizes
1887 if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1888 (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1889 panic("segvn_unmap");
1890 /*NOTREACHED*/
1893 if (seg->s_szc != 0) {
1894 size_t pgsz = page_get_pagesize(seg->s_szc);
1895 int err;
1896 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1897 ASSERT(seg->s_base != addr || seg->s_size != len);
1898 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1899 ASSERT(svd->amp == NULL);
1900 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1901 hat_leave_region(seg->s_as->a_hat,
1902 svd->rcookie, HAT_REGION_TEXT);
1903 svd->rcookie = HAT_INVALID_REGION_COOKIE;
1905 * could pass a flag to segvn_demote_range()
1906 * below to tell it not to do any unloads but
1907 * this case is rare enough to not bother for
1908 * now.
1910 } else if (svd->tr_state == SEGVN_TR_INIT) {
1911 svd->tr_state = SEGVN_TR_OFF;
1912 } else if (svd->tr_state == SEGVN_TR_ON) {
1913 ASSERT(svd->amp != NULL);
1914 segvn_textunrepl(seg, 1);
1915 ASSERT(svd->amp == NULL);
1916 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1918 VM_STAT_ADD(segvnvmstats.demoterange[0]);
1919 err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1920 if (err == 0) {
1921 return (IE_RETRY);
1923 return (err);
1927 /* Inform the vnode of the unmapping. */
1928 if (svd->vp) {
1929 int error;
1931 error = fop_delmap(svd->vp,
1932 (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1933 seg->s_as, addr, len, svd->prot, svd->maxprot,
1934 svd->type, svd->cred, NULL);
1936 if (error == EAGAIN)
1937 return (error);
1941 * Remove any page locks set through this mapping.
1942 * If text replication is not off no page locks could have been
1943 * established via this mapping.
1945 if (svd->tr_state == SEGVN_TR_OFF) {
1946 (void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1949 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1950 ASSERT(svd->amp == NULL);
1951 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1952 ASSERT(svd->type == MAP_PRIVATE);
1953 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1954 HAT_REGION_TEXT);
1955 svd->rcookie = HAT_INVALID_REGION_COOKIE;
1956 } else if (svd->tr_state == SEGVN_TR_ON) {
1957 ASSERT(svd->amp != NULL);
1958 ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1959 segvn_textunrepl(seg, 1);
1960 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1961 } else {
1962 if (svd->tr_state != SEGVN_TR_OFF) {
1963 ASSERT(svd->tr_state == SEGVN_TR_INIT);
1964 svd->tr_state = SEGVN_TR_OFF;
1967 * Unload any hardware translations in the range to be taken
1968 * out. Use a callback to invoke free_vp_pages() effectively.
1970 if (svd->vp != NULL && free_pages != 0) {
1971 callback.hcb_data = seg;
1972 callback.hcb_function = segvn_hat_unload_callback;
1973 cbp = &callback;
1975 hat_unload_callback(seg->s_as->a_hat, addr, len,
1976 HAT_UNLOAD_UNMAP, cbp);
1978 if (svd->type == MAP_SHARED && svd->vp != NULL &&
1979 (svd->vp->v_flag & VVMEXEC) &&
1980 ((svd->prot & PROT_WRITE) || svd->pageprot)) {
1981 segvn_inval_trcache(svd->vp);
1986 * Check for entire segment
1988 if (addr == seg->s_base && len == seg->s_size) {
1989 seg_free(seg);
1990 return (0);
1993 opages = seg_pages(seg);
1994 dpages = btop(len);
1995 npages = opages - dpages;
1996 amp = svd->amp;
1997 ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
2000 * Check for beginning of segment
2002 if (addr == seg->s_base) {
2003 if (svd->vpage != NULL) {
2004 size_t nbytes;
2005 struct vpage *ovpage;
2007 ovpage = svd->vpage; /* keep pointer to vpage */
2009 nbytes = vpgtob(npages);
2010 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2011 bcopy(&ovpage[dpages], svd->vpage, nbytes);
2013 /* free up old vpage */
2014 kmem_free(ovpage, vpgtob(opages));
2016 if (amp != NULL) {
2017 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2018 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2020 * Shared anon map is no longer in use. Before
2021 * freeing its pages purge all entries from
2022 * pcache that belong to this amp.
2024 if (svd->type == MAP_SHARED) {
2025 ASSERT(amp->refcnt == 1);
2026 ASSERT(svd->softlockcnt == 0);
2027 anonmap_purge(amp);
2030 * Free up now unused parts of anon_map array.
2032 if (amp->a_szc == seg->s_szc) {
2033 if (seg->s_szc != 0) {
2034 anon_free_pages(amp->ahp,
2035 svd->anon_index, len,
2036 seg->s_szc);
2037 } else {
2038 anon_free(amp->ahp,
2039 svd->anon_index,
2040 len);
2042 } else {
2043 ASSERT(svd->type == MAP_SHARED);
2044 ASSERT(amp->a_szc > seg->s_szc);
2045 anon_shmap_free_pages(amp,
2046 svd->anon_index, len);
2050 * Unreserve swap space for the
2051 * unmapped chunk of this segment in
2052 * case it's MAP_SHARED
2054 if (svd->type == MAP_SHARED) {
2055 anon_unresv_zone(len,
2056 seg->s_as->a_proc->p_zone);
2057 amp->swresv -= len;
2060 ANON_LOCK_EXIT(&amp->a_rwlock);
2061 svd->anon_index += dpages;
2063 if (svd->vp != NULL)
2064 svd->offset += len;
2066 seg->s_base += len;
2067 seg->s_size -= len;
2069 if (svd->swresv) {
2070 if (svd->flags & MAP_NORESERVE) {
2071 ASSERT(amp);
2072 oswresv = svd->swresv;
2074 svd->swresv = ptob(anon_pages(amp->ahp,
2075 svd->anon_index, npages));
2076 anon_unresv_zone(oswresv - svd->swresv,
2077 seg->s_as->a_proc->p_zone);
2078 if (SEG_IS_PARTIAL_RESV(seg))
2079 seg->s_as->a_resvsize -= oswresv -
2080 svd->swresv;
2081 } else {
2082 size_t unlen;
2084 if (svd->pageswap) {
2085 oswresv = svd->swresv;
2086 svd->swresv =
2087 segvn_count_swap_by_vpages(seg);
2088 ASSERT(oswresv >= svd->swresv);
2089 unlen = oswresv - svd->swresv;
2090 } else {
2091 svd->swresv -= len;
2092 ASSERT(svd->swresv == seg->s_size);
2093 unlen = len;
2095 anon_unresv_zone(unlen,
2096 seg->s_as->a_proc->p_zone);
2100 return (0);
2104 * Check for end of segment
2106 if (addr + len == seg->s_base + seg->s_size) {
2107 if (svd->vpage != NULL) {
2108 size_t nbytes;
2109 struct vpage *ovpage;
2111 ovpage = svd->vpage; /* keep pointer to vpage */
2113 nbytes = vpgtob(npages);
2114 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2115 bcopy(ovpage, svd->vpage, nbytes);
2117 /* free up old vpage */
2118 kmem_free(ovpage, vpgtob(opages));
2121 if (amp != NULL) {
2122 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2123 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2125 * Free up now unused parts of anon_map array.
2127 ulong_t an_idx = svd->anon_index + npages;
2130 * Shared anon map is no longer in use. Before
2131 * freeing its pages purge all entries from
2132 * pcache that belong to this amp.
2134 if (svd->type == MAP_SHARED) {
2135 ASSERT(amp->refcnt == 1);
2136 ASSERT(svd->softlockcnt == 0);
2137 anonmap_purge(amp);
2140 if (amp->a_szc == seg->s_szc) {
2141 if (seg->s_szc != 0) {
2142 anon_free_pages(amp->ahp,
2143 an_idx, len,
2144 seg->s_szc);
2145 } else {
2146 anon_free(amp->ahp, an_idx,
2147 len);
2149 } else {
2150 ASSERT(svd->type == MAP_SHARED);
2151 ASSERT(amp->a_szc > seg->s_szc);
2152 anon_shmap_free_pages(amp,
2153 an_idx, len);
2157 * Unreserve swap space for the
2158 * unmapped chunk of this segment in
2159 * case it's MAP_SHARED
2161 if (svd->type == MAP_SHARED) {
2162 anon_unresv_zone(len,
2163 seg->s_as->a_proc->p_zone);
2164 amp->swresv -= len;
2167 ANON_LOCK_EXIT(&amp->a_rwlock);
2170 seg->s_size -= len;
2172 if (svd->swresv) {
2173 if (svd->flags & MAP_NORESERVE) {
2174 ASSERT(amp);
2175 oswresv = svd->swresv;
2176 svd->swresv = ptob(anon_pages(amp->ahp,
2177 svd->anon_index, npages));
2178 anon_unresv_zone(oswresv - svd->swresv,
2179 seg->s_as->a_proc->p_zone);
2180 if (SEG_IS_PARTIAL_RESV(seg))
2181 seg->s_as->a_resvsize -= oswresv -
2182 svd->swresv;
2183 } else {
2184 size_t unlen;
2186 if (svd->pageswap) {
2187 oswresv = svd->swresv;
2188 svd->swresv =
2189 segvn_count_swap_by_vpages(seg);
2190 ASSERT(oswresv >= svd->swresv);
2191 unlen = oswresv - svd->swresv;
2192 } else {
2193 svd->swresv -= len;
2194 ASSERT(svd->swresv == seg->s_size);
2195 unlen = len;
2197 anon_unresv_zone(unlen,
2198 seg->s_as->a_proc->p_zone);
2202 return (0);
2206 * The section to go is in the middle of the segment,
2207 * have to make it into two segments. nseg is made for
2208 * the high end while seg is cut down at the low end.
2210 nbase = addr + len; /* new seg base */
2211 nsize = (seg->s_base + seg->s_size) - nbase; /* new seg size */
2212 seg->s_size = addr - seg->s_base; /* shrink old seg */
2213 nseg = seg_alloc(seg->s_as, nbase, nsize);
2214 if (nseg == NULL) {
2215 panic("segvn_unmap seg_alloc");
2216 /*NOTREACHED*/
2218 nseg->s_ops = seg->s_ops;
2219 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2220 nseg->s_data = (void *)nsvd;
2221 nseg->s_szc = seg->s_szc;
2222 *nsvd = *svd;
2223 nsvd->seg = nseg;
2224 nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2225 nsvd->swresv = 0;
2226 nsvd->softlockcnt = 0;
2227 nsvd->softlockcnt_sbase = 0;
2228 nsvd->softlockcnt_send = 0;
2229 nsvd->svn_inz = svd->svn_inz;
2230 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2232 if (svd->vp != NULL) {
2233 VN_HOLD(nsvd->vp);
2234 if (nsvd->type == MAP_SHARED)
2235 lgrp_shm_policy_init(NULL, nsvd->vp);
2237 crhold(svd->cred);
2239 if (svd->vpage == NULL) {
2240 nsvd->vpage = NULL;
2241 } else {
2242 /* need to split vpage into two arrays */
2243 size_t nbytes;
2244 struct vpage *ovpage;
2246 ovpage = svd->vpage; /* keep pointer to vpage */
2248 npages = seg_pages(seg); /* seg has shrunk */
2249 nbytes = vpgtob(npages);
2250 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2252 bcopy(ovpage, svd->vpage, nbytes);
2254 npages = seg_pages(nseg);
2255 nbytes = vpgtob(npages);
2256 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2258 bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2260 /* free up old vpage */
2261 kmem_free(ovpage, vpgtob(opages));
2264 if (amp == NULL) {
2265 nsvd->amp = NULL;
2266 nsvd->anon_index = 0;
2267 } else {
2269 * Need to create a new anon map for the new segment.
2270 * We'll also allocate a new smaller array for the old
2271 * smaller segment to save space.
2273 opages = btop((uintptr_t)(addr - seg->s_base));
2274 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2275 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2277 * Free up now unused parts of anon_map array.
2279 ulong_t an_idx = svd->anon_index + opages;
2282 * Shared anon map is no longer in use. Before
2283 * freeing its pages purge all entries from
2284 * pcache that belong to this amp.
2286 if (svd->type == MAP_SHARED) {
2287 ASSERT(amp->refcnt == 1);
2288 ASSERT(svd->softlockcnt == 0);
2289 anonmap_purge(amp);
2292 if (amp->a_szc == seg->s_szc) {
2293 if (seg->s_szc != 0) {
2294 anon_free_pages(amp->ahp, an_idx, len,
2295 seg->s_szc);
2296 } else {
2297 anon_free(amp->ahp, an_idx,
2298 len);
2300 } else {
2301 ASSERT(svd->type == MAP_SHARED);
2302 ASSERT(amp->a_szc > seg->s_szc);
2303 anon_shmap_free_pages(amp, an_idx, len);
2307 * Unreserve swap space for the
2308 * unmapped chunk of this segment in
2309 * case it's MAP_SHARED
2311 if (svd->type == MAP_SHARED) {
2312 anon_unresv_zone(len,
2313 seg->s_as->a_proc->p_zone);
2314 amp->swresv -= len;
2317 nsvd->anon_index = svd->anon_index +
2318 btop((uintptr_t)(nseg->s_base - seg->s_base));
2319 if (svd->type == MAP_SHARED) {
2320 amp->refcnt++;
2321 nsvd->amp = amp;
2322 } else {
2323 struct anon_map *namp;
2324 struct anon_hdr *nahp;
2326 ASSERT(svd->type == MAP_PRIVATE);
2327 nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2328 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2329 namp->a_szc = seg->s_szc;
2330 (void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2331 0, btop(seg->s_size), ANON_SLEEP);
2332 (void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2333 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2334 anon_release(amp->ahp, btop(amp->size));
2335 svd->anon_index = 0;
2336 nsvd->anon_index = 0;
2337 amp->ahp = nahp;
2338 amp->size = seg->s_size;
2339 nsvd->amp = namp;
2341 ANON_LOCK_EXIT(&amp->a_rwlock);
2343 if (svd->swresv) {
2344 if (svd->flags & MAP_NORESERVE) {
2345 ASSERT(amp);
2346 oswresv = svd->swresv;
2347 svd->swresv = ptob(anon_pages(amp->ahp,
2348 svd->anon_index, btop(seg->s_size)));
2349 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2350 nsvd->anon_index, btop(nseg->s_size)));
2351 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2352 anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv),
2353 seg->s_as->a_proc->p_zone);
2354 if (SEG_IS_PARTIAL_RESV(seg))
2355 seg->s_as->a_resvsize -= oswresv -
2356 (svd->swresv + nsvd->swresv);
2357 } else {
2358 size_t unlen;
2360 if (svd->pageswap) {
2361 oswresv = svd->swresv;
2362 svd->swresv = segvn_count_swap_by_vpages(seg);
2363 nsvd->swresv = segvn_count_swap_by_vpages(nseg);
2364 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2365 unlen = oswresv - (svd->swresv + nsvd->swresv);
2366 } else {
2367 if (seg->s_size + nseg->s_size + len !=
2368 svd->swresv) {
2369 panic("segvn_unmap: cannot split "
2370 "swap reservation");
2371 /*NOTREACHED*/
2373 svd->swresv = seg->s_size;
2374 nsvd->swresv = nseg->s_size;
2375 unlen = len;
2377 anon_unresv_zone(unlen,
2378 seg->s_as->a_proc->p_zone);
2382 return (0); /* I'm glad that's all over with! */
2385 static void
2386 segvn_free(struct seg *seg)
2388 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2389 pgcnt_t npages = seg_pages(seg);
2390 struct anon_map *amp;
2391 size_t len;
2394 * We don't need any segment level locks for "segvn" data
2395 * since the address space is "write" locked.
2397 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
2398 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2400 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2403 * Be sure to unlock pages. XXX Why do things get free'ed instead
2404 * of unmapped? XXX
2406 (void) segvn_lockop(seg, seg->s_base, seg->s_size,
2407 0, MC_UNLOCK, NULL, 0);
2410 * Deallocate the vpage and anon pointers if necessary and possible.
2412 if (svd->vpage != NULL) {
2413 kmem_free(svd->vpage, vpgtob(npages));
2414 svd->vpage = NULL;
2416 if ((amp = svd->amp) != NULL) {
2418 * If there are no more references to this anon_map
2419 * structure, then deallocate the structure after freeing
2420 * up all the anon slot pointers that we can.
2422 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2423 ASSERT(amp->a_szc >= seg->s_szc);
2424 if (--amp->refcnt == 0) {
2425 if (svd->type == MAP_PRIVATE) {
2427 * Private - we only need to anon_free
2428 * the part that this segment refers to.
2430 if (seg->s_szc != 0) {
2431 anon_free_pages(amp->ahp,
2432 svd->anon_index, seg->s_size,
2433 seg->s_szc);
2434 } else {
2435 anon_free(amp->ahp, svd->anon_index,
2436 seg->s_size);
2438 } else {
2441 * Shared anon map is no longer in use. Before
2442 * freeing its pages purge all entries from
2443 * pcache that belong to this amp.
2445 ASSERT(svd->softlockcnt == 0);
2446 anonmap_purge(amp);
2449 * Shared - anon_free the entire
2450 * anon_map's worth of stuff and
2451 * release any swap reservation.
2453 if (amp->a_szc != 0) {
2454 anon_shmap_free_pages(amp, 0,
2455 amp->size);
2456 } else {
2457 anon_free(amp->ahp, 0, amp->size);
2459 if ((len = amp->swresv) != 0) {
2460 anon_unresv_zone(len,
2461 seg->s_as->a_proc->p_zone);
2464 svd->amp = NULL;
2465 ANON_LOCK_EXIT(&amp->a_rwlock);
2466 anonmap_free(amp);
2467 } else if (svd->type == MAP_PRIVATE) {
2469 * We had a private mapping which still has
2470 * a held anon_map so just free up all the
2471 * anon slot pointers that we were using.
2473 if (seg->s_szc != 0) {
2474 anon_free_pages(amp->ahp, svd->anon_index,
2475 seg->s_size, seg->s_szc);
2476 } else {
2477 anon_free(amp->ahp, svd->anon_index,
2478 seg->s_size);
2480 ANON_LOCK_EXIT(&amp->a_rwlock);
2481 } else {
2482 ANON_LOCK_EXIT(&amp->a_rwlock);
2487 * Release swap reservation.
2489 if ((len = svd->swresv) != 0) {
2490 anon_unresv_zone(svd->swresv,
2491 seg->s_as->a_proc->p_zone);
2492 if (SEG_IS_PARTIAL_RESV(seg))
2493 seg->s_as->a_resvsize -= svd->swresv;
2494 svd->swresv = 0;
2497 * Release claim on vnode, credentials, and finally free the
2498 * private data.
2500 if (svd->vp != NULL) {
2501 if (svd->type == MAP_SHARED)
2502 lgrp_shm_policy_fini(NULL, svd->vp);
2503 VN_RELE(svd->vp);
2504 svd->vp = NULL;
2506 crfree(svd->cred);
2507 svd->pageprot = 0;
2508 svd->pageadvice = 0;
2509 svd->pageswap = 0;
2510 svd->cred = NULL;
2513 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's
2514 * still working with this segment without holding as lock (in case
2515 * it's called by pcache async thread).
2517 ASSERT(svd->softlockcnt == 0);
2518 mutex_enter(&svd->segfree_syncmtx);
2519 mutex_exit(&svd->segfree_syncmtx);
2521 seg->s_data = NULL;
2522 kmem_cache_free(segvn_cache, svd);
2526 * Do a F_SOFTUNLOCK call over the range requested. The range must have
2527 * already been F_SOFTLOCK'ed.
2528 * Caller must always match addr and len of a softunlock with a previous
2529 * softlock with exactly the same addr and len.
2531 static void
2532 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2534 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2535 page_t *pp;
2536 caddr_t adr;
2537 struct vnode *vp;
2538 uoff_t offset;
2539 ulong_t anon_index;
2540 struct anon_map *amp;
2541 struct anon *ap = NULL;
2543 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
2544 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2546 if ((amp = svd->amp) != NULL)
2547 anon_index = svd->anon_index + seg_page(seg, addr);
2549 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2550 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2551 hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2552 } else {
2553 hat_unlock(seg->s_as->a_hat, addr, len);
2555 for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2556 if (amp != NULL) {
2557 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2558 if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2559 != NULL) {
2560 swap_xlate(ap, &vp, &offset);
2561 } else {
2562 vp = svd->vp;
2563 offset = svd->offset +
2564 (uintptr_t)(adr - seg->s_base);
2566 ANON_LOCK_EXIT(&amp->a_rwlock);
2567 } else {
2568 vp = svd->vp;
2569 offset = svd->offset +
2570 (uintptr_t)(adr - seg->s_base);
2574 * Use page_find() instead of page_lookup() to
2575 * find the page since we know that it is locked.
2577 pp = page_find(&vp->v_object, offset);
2578 if (pp == NULL) {
2579 panic(
2580 "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2581 (void *)adr, (void *)ap, (void *)vp, offset);
2582 /*NOTREACHED*/
2585 if (rw == S_WRITE) {
2586 hat_setrefmod(pp);
2587 if (seg->s_as->a_vbits)
2588 hat_setstat(seg->s_as, adr, PAGESIZE,
2589 P_REF | P_MOD);
2590 } else if (rw != S_OTHER) {
2591 hat_setref(pp);
2592 if (seg->s_as->a_vbits)
2593 hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2595 page_unlock(pp);
2597 ASSERT(svd->softlockcnt >= btop(len));
2598 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) {
2600 * All SOFTLOCKS are gone. Wakeup any waiting
2601 * unmappers so they can try again to unmap.
2602 * Check for waiters first without the mutex
2603 * held so we don't always grab the mutex on
2604 * softunlocks.
2606 if (AS_ISUNMAPWAIT(seg->s_as)) {
2607 mutex_enter(&seg->s_as->a_contents);
2608 if (AS_ISUNMAPWAIT(seg->s_as)) {
2609 AS_CLRUNMAPWAIT(seg->s_as);
2610 cv_broadcast(&seg->s_as->a_cv);
2612 mutex_exit(&seg->s_as->a_contents);
2617 #define PAGE_HANDLED ((page_t *)-1)
2620 * Release all the pages in the NULL terminated ppp list
2621 * which haven't already been converted to PAGE_HANDLED.
2623 static void
2624 segvn_pagelist_rele(page_t **ppp)
2626 for (; *ppp != NULL; ppp++) {
2627 if (*ppp != PAGE_HANDLED)
2628 page_unlock(*ppp);
2632 static int stealcow = 1;
2635 * Workaround for viking chip bug. See bug id 1220902.
2636 * To fix this down in pagefault() would require importing so
2637 * much as and segvn code as to be unmaintainable.
2639 int enable_mbit_wa = 0;
2642 * Handles all the dirty work of getting the right
2643 * anonymous pages and loading up the translations.
2644 * This routine is called only from segvn_fault()
2645 * when looping over the range of addresses requested.
2647 * The basic algorithm here is:
2648 * If this is an anon_zero case
2649 * Call anon_zero to allocate page
2650 * Load up translation
2651 * Return
2652 * endif
2653 * If this is an anon page
2654 * Use anon_getpage to get the page
2655 * else
2656 * Find page in pl[] list passed in
2657 * endif
2658 * If not a cow
2659 * Load up the translation to the page
2660 * return
2661 * endif
2662 * Call anon_private to handle cow
2663 * Load up (writable) translation to new page
2665 static faultcode_t
2666 segvn_faultpage(
2667 struct hat *hat, /* the hat to use for mapping */
2668 struct seg *seg, /* seg_vn of interest */
2669 caddr_t addr, /* address in as */
2670 uoff_t off, /* offset in vp */
2671 struct vpage *vpage, /* pointer to vpage for vp, off */
2672 page_t *pl[], /* object source page pointer */
2673 uint_t vpprot, /* access allowed to object pages */
2674 enum fault_type type, /* type of fault */
2675 enum seg_rw rw, /* type of access at fault */
2676 int brkcow) /* we may need to break cow */
2678 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2679 page_t *pp, **ppp;
2680 uint_t pageflags = 0;
2681 page_t *anon_pl[1 + 1];
2682 page_t *opp = NULL; /* original page */
2683 uint_t prot;
2684 int err;
2685 int cow;
2686 int claim;
2687 int steal = 0;
2688 ulong_t anon_index;
2689 struct anon *ap, *oldap;
2690 struct anon_map *amp;
2691 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2692 int anon_lock = 0;
2693 anon_sync_obj_t cookie;
2695 if (svd->flags & MAP_TEXT) {
2696 hat_flag |= HAT_LOAD_TEXT;
2699 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2700 ASSERT(seg->s_szc == 0);
2701 ASSERT(svd->tr_state != SEGVN_TR_INIT);
2704 * Initialize protection value for this page.
2705 * If we have per page protection values check it now.
2707 if (svd->pageprot) {
2708 uint_t protchk;
2710 switch (rw) {
2711 case S_READ:
2712 protchk = PROT_READ;
2713 break;
2714 case S_WRITE:
2715 protchk = PROT_WRITE;
2716 break;
2717 case S_EXEC:
2718 protchk = PROT_EXEC;
2719 break;
2720 case S_OTHER:
2721 default:
2722 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2723 break;
2726 prot = VPP_PROT(vpage);
2727 if ((prot & protchk) == 0)
2728 return (FC_PROT); /* illegal access type */
2729 } else {
2730 prot = svd->prot;
2733 if (type == F_SOFTLOCK) {
2734 atomic_inc_ulong((ulong_t *)&svd->softlockcnt);
2738 * Always acquire the anon array lock to prevent 2 threads from
2739 * allocating separate anon slots for the same "addr".
2742 if ((amp = svd->amp) != NULL) {
2743 ASSERT(RW_READ_HELD(&amp->a_rwlock));
2744 anon_index = svd->anon_index + seg_page(seg, addr);
2745 anon_array_enter(amp, anon_index, &cookie);
2746 anon_lock = 1;
2749 if (svd->vp == NULL && amp != NULL) {
2750 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2752 * Allocate a (normally) writable anonymous page of
2753 * zeroes. If no advance reservations, reserve now.
2755 if (svd->flags & MAP_NORESERVE) {
2756 if (anon_resv_zone(ptob(1),
2757 seg->s_as->a_proc->p_zone)) {
2758 atomic_add_long(&svd->swresv, ptob(1));
2759 atomic_add_long(&seg->s_as->a_resvsize,
2760 ptob(1));
2761 } else {
2762 err = ENOMEM;
2763 goto out;
2766 if ((pp = anon_zero(seg, addr, &ap,
2767 svd->cred)) == NULL) {
2768 err = ENOMEM;
2769 goto out; /* out of swap space */
2772 * Re-acquire the anon_map lock and
2773 * initialize the anon array entry.
2775 (void) anon_set_ptr(amp->ahp, anon_index, ap,
2776 ANON_SLEEP);
2778 ASSERT(pp->p_szc == 0);
2781 * Handle pages that have been marked for migration
2783 if (lgrp_optimizations())
2784 page_migrate(seg, addr, &pp, 1);
2786 if (enable_mbit_wa) {
2787 if (rw == S_WRITE)
2788 hat_setmod(pp);
2789 else if (!hat_ismod(pp))
2790 prot &= ~PROT_WRITE;
2793 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2794 * with MC_LOCKAS, MCL_FUTURE) and this is a
2795 * MAP_NORESERVE segment, we may need to
2796 * permanently lock the page as it is being faulted
2797 * for the first time. The following text applies
2798 * only to MAP_NORESERVE segments:
2800 * As per memcntl(2), if this segment was created
2801 * after MCL_FUTURE was applied (a "future"
2802 * segment), its pages must be locked. If this
2803 * segment existed at MCL_FUTURE application (a
2804 * "past" segment), the interface is unclear.
2806 * We decide to lock only if vpage is present:
2808 * - "future" segments will have a vpage array (see
2809 * as_map), and so will be locked as required
2811 * - "past" segments may not have a vpage array,
2812 * depending on whether events (such as
2813 * mprotect) have occurred. Locking if vpage
2814 * exists will preserve legacy behavior. Not
2815 * locking if vpage is absent, will not break
2816 * the interface or legacy behavior. Note that
2817 * allocating vpage here if it's absent requires
2818 * upgrading the segvn reader lock, the cost of
2819 * which does not seem worthwhile.
2821 * Usually testing and setting VPP_ISPPLOCK and
2822 * VPP_SETPPLOCK requires holding the segvn lock as
2823 * writer, but in this case all readers are
2824 * serializing on the anon array lock.
2826 if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2827 (svd->flags & MAP_NORESERVE) &&
2828 !VPP_ISPPLOCK(vpage)) {
2829 proc_t *p = seg->s_as->a_proc;
2830 ASSERT(svd->type == MAP_PRIVATE);
2831 mutex_enter(&p->p_lock);
2832 if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2833 1) == 0) {
2834 claim = VPP_PROT(vpage) & PROT_WRITE;
2835 if (page_pp_lock(pp, claim, 0)) {
2836 VPP_SETPPLOCK(vpage);
2837 } else {
2838 rctl_decr_locked_mem(p, NULL,
2839 PAGESIZE, 1);
2842 mutex_exit(&p->p_lock);
2845 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2846 hat_memload(hat, addr, pp, prot, hat_flag);
2848 if (!(hat_flag & HAT_LOAD_LOCK))
2849 page_unlock(pp);
2851 anon_array_exit(&cookie);
2852 return (0);
2857 * Obtain the page structure via anon_getpage() if it is
2858 * a private copy of an object (the result of a previous
2859 * copy-on-write).
2861 if (amp != NULL) {
2862 if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2863 err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2864 seg, addr, rw, svd->cred);
2865 if (err)
2866 goto out;
2868 if (svd->type == MAP_SHARED) {
2870 * If this is a shared mapping to an
2871 * anon_map, then ignore the write
2872 * permissions returned by anon_getpage().
2873 * They apply to the private mappings
2874 * of this anon_map.
2876 vpprot |= PROT_WRITE;
2878 opp = anon_pl[0];
2883 * Search the pl[] list passed in if it is from the
2884 * original object (i.e., not a private copy).
2886 if (opp == NULL) {
2888 * Find original page. We must be bringing it in
2889 * from the list in pl[].
2891 for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2892 if (opp == PAGE_HANDLED)
2893 continue;
2894 VERIFY(opp->p_object == &svd->vp->v_object); /* XXX */
2895 ASSERT(opp->p_vnode == svd->vp); /* XXX */
2896 if (opp->p_offset == off)
2897 break;
2899 if (opp == NULL) {
2900 panic("segvn_faultpage not found");
2901 /*NOTREACHED*/
2903 *ppp = PAGE_HANDLED;
2907 ASSERT(PAGE_LOCKED(opp));
2910 * The fault is treated as a copy-on-write fault if a
2911 * write occurs on a private segment and the object
2912 * page (i.e., mapping) is write protected. We assume
2913 * that fatal protection checks have already been made.
2916 if (brkcow) {
2917 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2918 cow = !(vpprot & PROT_WRITE);
2919 } else if (svd->tr_state == SEGVN_TR_ON) {
2921 * If we are doing text replication COW on first touch.
2923 ASSERT(amp != NULL);
2924 ASSERT(svd->vp != NULL);
2925 ASSERT(rw != S_WRITE);
2926 cow = (ap == NULL);
2927 } else {
2928 cow = 0;
2932 * If not a copy-on-write case load the translation
2933 * and return.
2935 if (cow == 0) {
2938 * Handle pages that have been marked for migration
2940 if (lgrp_optimizations())
2941 page_migrate(seg, addr, &opp, 1);
2943 if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2944 if (rw == S_WRITE)
2945 hat_setmod(opp);
2946 else if (rw != S_OTHER && !hat_ismod(opp))
2947 prot &= ~PROT_WRITE;
2950 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
2951 (!svd->pageprot && svd->prot == (prot & vpprot)));
2952 ASSERT(amp == NULL ||
2953 svd->rcookie == HAT_INVALID_REGION_COOKIE);
2954 hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
2955 svd->rcookie);
2957 if (!(hat_flag & HAT_LOAD_LOCK))
2958 page_unlock(opp);
2960 if (anon_lock) {
2961 anon_array_exit(&cookie);
2963 return (0);
2966 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2968 hat_setref(opp);
2970 ASSERT(amp != NULL && anon_lock);
2973 * Steal the page only if it isn't a private page
2974 * since stealing a private page is not worth the effort.
2976 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2977 steal = 1;
2980 * Steal the original page if the following conditions are true:
2982 * We are low on memory, the page is not private, page is not large,
2983 * not shared, not modified, not `locked' or if we have it `locked'
2984 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2985 * that the page is not shared) and if it doesn't have any
2986 * translations. page_struct_lock isn't needed to look at p_cowcnt
2987 * and p_lckcnt because we first get exclusive lock on page.
2989 (void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2991 if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2992 page_tryupgrade(opp) && !hat_ismod(opp) &&
2993 ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2994 (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2995 vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2997 * Check if this page has other translations
2998 * after unloading our translation.
3000 if (hat_page_is_mapped(opp)) {
3001 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3002 hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
3003 HAT_UNLOAD);
3007 * hat_unload() might sync back someone else's recent
3008 * modification, so check again.
3010 if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
3011 pageflags |= STEAL_PAGE;
3015 * If we have a vpage pointer, see if it indicates that we have
3016 * ``locked'' the page we map -- if so, tell anon_private to
3017 * transfer the locking resource to the new page.
3019 * See Statement at the beginning of segvn_lockop regarding
3020 * the way lockcnts/cowcnts are handled during COW.
3023 if (vpage != NULL && VPP_ISPPLOCK(vpage))
3024 pageflags |= LOCK_PAGE;
3027 * Allocate a private page and perform the copy.
3028 * For MAP_NORESERVE reserve swap space now, unless this
3029 * is a cow fault on an existing anon page in which case
3030 * MAP_NORESERVE will have made advance reservations.
3032 if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
3033 if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
3034 atomic_add_long(&svd->swresv, ptob(1));
3035 atomic_add_long(&seg->s_as->a_resvsize, ptob(1));
3036 } else {
3037 page_unlock(opp);
3038 err = ENOMEM;
3039 goto out;
3042 oldap = ap;
3043 pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
3044 if (pp == NULL) {
3045 err = ENOMEM; /* out of swap space */
3046 goto out;
3050 * If we copied away from an anonymous page, then
3051 * we are one step closer to freeing up an anon slot.
3053 * NOTE: The original anon slot must be released while
3054 * holding the "anon_map" lock. This is necessary to prevent
3055 * other threads from obtaining a pointer to the anon slot
3056 * which may be freed if its "refcnt" is 1.
3058 if (oldap != NULL)
3059 anon_decref(oldap);
3061 (void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3064 * Handle pages that have been marked for migration
3066 if (lgrp_optimizations())
3067 page_migrate(seg, addr, &pp, 1);
3069 ASSERT(pp->p_szc == 0);
3071 ASSERT(!IS_VMODSORT(pp->p_vnode));
3072 if (enable_mbit_wa) {
3073 if (rw == S_WRITE)
3074 hat_setmod(pp);
3075 else if (!hat_ismod(pp))
3076 prot &= ~PROT_WRITE;
3079 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3080 hat_memload(hat, addr, pp, prot, hat_flag);
3082 if (!(hat_flag & HAT_LOAD_LOCK))
3083 page_unlock(pp);
3085 ASSERT(anon_lock);
3086 anon_array_exit(&cookie);
3087 return (0);
3088 out:
3089 if (anon_lock)
3090 anon_array_exit(&cookie);
3092 if (type == F_SOFTLOCK) {
3093 atomic_dec_ulong((ulong_t *)&svd->softlockcnt);
3095 return (FC_MAKE_ERR(err));
3099 * relocate a bunch of smaller targ pages into one large repl page. all targ
3100 * pages must be complete pages smaller than replacement pages.
3101 * it's assumed that no page's szc can change since they are all PAGESIZE or
3102 * complete large pages locked SHARED.
3104 static void
3105 segvn_relocate_pages(page_t **targ, page_t *replacement)
3107 page_t *pp;
3108 pgcnt_t repl_npgs, curnpgs;
3109 pgcnt_t i;
3110 uint_t repl_szc = replacement->p_szc;
3111 page_t *first_repl = replacement;
3112 page_t *repl;
3113 spgcnt_t npgs;
3115 VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3117 ASSERT(repl_szc != 0);
3118 npgs = repl_npgs = page_get_pagecnt(repl_szc);
3120 i = 0;
3121 while (repl_npgs) {
3122 spgcnt_t nreloc;
3123 int err;
3124 ASSERT(replacement != NULL);
3125 pp = targ[i];
3126 ASSERT(pp->p_szc < repl_szc);
3127 ASSERT(PAGE_EXCL(pp));
3128 ASSERT(!PP_ISFREE(pp));
3129 curnpgs = page_get_pagecnt(pp->p_szc);
3130 if (curnpgs == 1) {
3131 VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3132 repl = replacement;
3133 page_sub(&replacement, repl);
3134 ASSERT(PAGE_EXCL(repl));
3135 ASSERT(!PP_ISFREE(repl));
3136 ASSERT(repl->p_szc == repl_szc);
3137 } else {
3138 page_t *repl_savepp;
3139 int j;
3140 VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3141 repl_savepp = replacement;
3142 for (j = 0; j < curnpgs; j++) {
3143 repl = replacement;
3144 page_sub(&replacement, repl);
3145 ASSERT(PAGE_EXCL(repl));
3146 ASSERT(!PP_ISFREE(repl));
3147 ASSERT(repl->p_szc == repl_szc);
3148 ASSERT(page_pptonum(targ[i + j]) ==
3149 page_pptonum(targ[i]) + j);
3151 repl = repl_savepp;
3152 ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3154 err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3155 if (err || nreloc != curnpgs) {
3156 panic("segvn_relocate_pages: "
3157 "page_relocate failed err=%d curnpgs=%ld "
3158 "nreloc=%ld", err, curnpgs, nreloc);
3160 ASSERT(curnpgs <= repl_npgs);
3161 repl_npgs -= curnpgs;
3162 i += curnpgs;
3164 ASSERT(replacement == NULL);
3166 repl = first_repl;
3167 repl_npgs = npgs;
3168 for (i = 0; i < repl_npgs; i++) {
3169 ASSERT(PAGE_EXCL(repl));
3170 ASSERT(!PP_ISFREE(repl));
3171 targ[i] = repl;
3172 page_downgrade(targ[i]);
3173 repl++;
3178 * Check if all pages in ppa array are complete smaller than szc pages and
3179 * their roots will still be aligned relative to their current size if the
3180 * entire ppa array is relocated into one szc page. If these conditions are
3181 * not met return 0.
3183 * If all pages are properly aligned attempt to upgrade their locks
3184 * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3185 * upgrdfail was set to 0 by caller.
3187 * Return 1 if all pages are aligned and locked exclusively.
3189 * If all pages in ppa array happen to be physically contiguous to make one
3190 * szc page and all exclusive locks are successfully obtained promote the page
3191 * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3193 static int
3194 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3196 page_t *pp;
3197 pfn_t pfn;
3198 pgcnt_t totnpgs = page_get_pagecnt(szc);
3199 pfn_t first_pfn;
3200 int contig = 1;
3201 pgcnt_t i;
3202 pgcnt_t j;
3203 uint_t curszc;
3204 pgcnt_t curnpgs;
3205 int root = 0;
3207 ASSERT(szc > 0);
3209 VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3211 for (i = 0; i < totnpgs; i++) {
3212 pp = ppa[i];
3213 ASSERT(PAGE_SHARED(pp));
3214 ASSERT(!PP_ISFREE(pp));
3215 pfn = page_pptonum(pp);
3216 if (i == 0) {
3217 if (!IS_P2ALIGNED(pfn, totnpgs)) {
3218 contig = 0;
3219 } else {
3220 first_pfn = pfn;
3222 } else if (contig && pfn != first_pfn + i) {
3223 contig = 0;
3225 if (pp->p_szc == 0) {
3226 if (root) {
3227 VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3228 return (0);
3230 } else if (!root) {
3231 if ((curszc = pp->p_szc) >= szc) {
3232 VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3233 return (0);
3235 if (curszc == 0) {
3237 * p_szc changed means we don't have all pages
3238 * locked. return failure.
3240 VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3241 return (0);
3243 curnpgs = page_get_pagecnt(curszc);
3244 if (!IS_P2ALIGNED(pfn, curnpgs) ||
3245 !IS_P2ALIGNED(i, curnpgs)) {
3246 VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3247 return (0);
3249 root = 1;
3250 } else {
3251 ASSERT(i > 0);
3252 VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3253 if (pp->p_szc != curszc) {
3254 VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3255 return (0);
3257 if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3258 panic("segvn_full_szcpages: "
3259 "large page not physically contiguous");
3261 if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3262 root = 0;
3267 for (i = 0; i < totnpgs; i++) {
3268 ASSERT(ppa[i]->p_szc < szc);
3269 if (!page_tryupgrade(ppa[i])) {
3270 for (j = 0; j < i; j++) {
3271 page_downgrade(ppa[j]);
3273 *pszc = ppa[i]->p_szc;
3274 *upgrdfail = 1;
3275 VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3276 return (0);
3281 * When a page is put a free cachelist its szc is set to 0. if file
3282 * system reclaimed pages from cachelist targ pages will be physically
3283 * contiguous with 0 p_szc. in this case just upgrade szc of targ
3284 * pages without any relocations.
3285 * To avoid any hat issues with previous small mappings
3286 * hat_pageunload() the target pages first.
3288 if (contig) {
3289 VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3290 for (i = 0; i < totnpgs; i++) {
3291 (void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3293 for (i = 0; i < totnpgs; i++) {
3294 ppa[i]->p_szc = szc;
3296 for (i = 0; i < totnpgs; i++) {
3297 ASSERT(PAGE_EXCL(ppa[i]));
3298 page_downgrade(ppa[i]);
3300 if (pszc != NULL) {
3301 *pszc = szc;
3304 VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3305 return (1);
3309 * Create physically contiguous pages for [vp, off] - [vp, off +
3310 * page_size(szc)) range and for private segment return them in ppa array.
3311 * Pages are created either via IO or relocations.
3313 * Return 1 on success and 0 on failure.
3315 * If physically contiguous pages already exist for this range return 1 without
3316 * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3317 * array wasn't filled. In this case caller fills ppa array via fop_getpage().
3320 static int
3321 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, uoff_t off,
3322 uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3323 int *downsize)
3326 page_t *pplist = *ppplist;
3327 size_t pgsz = page_get_pagesize(szc);
3328 pgcnt_t pages = btop(pgsz);
3329 ulong_t start_off = off;
3330 uoff_t eoff = off + pgsz;
3331 spgcnt_t nreloc;
3332 uoff_t io_off = off;
3333 size_t io_len;
3334 page_t *io_pplist = NULL;
3335 page_t *done_pplist = NULL;
3336 pgcnt_t pgidx = 0;
3337 page_t *pp;
3338 page_t *newpp;
3339 page_t *targpp;
3340 int io_err = 0;
3341 int i;
3342 pfn_t pfn;
3343 ulong_t ppages;
3344 page_t *targ_pplist = NULL;
3345 page_t *repl_pplist = NULL;
3346 page_t *tmp_pplist;
3347 int nios = 0;
3348 uint_t pszc;
3349 struct vattr va;
3351 VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3353 ASSERT(szc != 0);
3354 ASSERT(pplist->p_szc == szc);
3357 * downsize will be set to 1 only if we fail to lock pages. this will
3358 * allow subsequent faults to try to relocate the page again. If we
3359 * fail due to misalignment don't downsize and let the caller map the
3360 * whole region with small mappings to avoid more faults into the area
3361 * where we can't get large pages anyway.
3363 *downsize = 0;
3365 while (off < eoff) {
3366 newpp = pplist;
3367 ASSERT(newpp != NULL);
3368 ASSERT(PAGE_EXCL(newpp));
3369 ASSERT(!PP_ISFREE(newpp));
3371 * we pass NULL for nrelocp to page_lookup_create()
3372 * so that it doesn't relocate. We relocate here
3373 * later only after we make sure we can lock all
3374 * pages in the range we handle and they are all
3375 * aligned.
3377 pp = page_lookup_create(&vp->v_object, off, SE_SHARED, newpp,
3378 NULL, 0);
3379 ASSERT(pp != NULL);
3380 ASSERT(!PP_ISFREE(pp));
3381 VERIFY(pp->p_object == &vp->v_object);
3382 ASSERT(pp->p_vnode == vp);
3383 ASSERT(pp->p_offset == off);
3384 if (pp == newpp) {
3385 VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3386 page_sub(&pplist, pp);
3387 ASSERT(PAGE_EXCL(pp));
3388 ASSERT(page_iolock_assert(pp));
3389 page_list_concat(&io_pplist, &pp);
3390 off += PAGESIZE;
3391 continue;
3393 VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3394 pfn = page_pptonum(pp);
3395 pszc = pp->p_szc;
3396 if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3397 IS_P2ALIGNED(pfn, pages)) {
3398 ASSERT(repl_pplist == NULL);
3399 ASSERT(done_pplist == NULL);
3400 ASSERT(pplist == *ppplist);
3401 page_unlock(pp);
3402 page_free_replacement_page(pplist);
3403 page_create_putback(pages);
3404 *ppplist = NULL;
3405 VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3406 return (1);
3408 if (pszc >= szc) {
3409 page_unlock(pp);
3410 segvn_faultvnmpss_align_err1++;
3411 goto out;
3413 ppages = page_get_pagecnt(pszc);
3414 if (!IS_P2ALIGNED(pfn, ppages)) {
3415 ASSERT(pszc > 0);
3417 * sizing down to pszc won't help.
3419 page_unlock(pp);
3420 segvn_faultvnmpss_align_err2++;
3421 goto out;
3423 pfn = page_pptonum(newpp);
3424 if (!IS_P2ALIGNED(pfn, ppages)) {
3425 ASSERT(pszc > 0);
3427 * sizing down to pszc won't help.
3429 page_unlock(pp);
3430 segvn_faultvnmpss_align_err3++;
3431 goto out;
3433 if (!PAGE_EXCL(pp)) {
3434 VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3435 page_unlock(pp);
3436 *downsize = 1;
3437 *ret_pszc = pp->p_szc;
3438 goto out;
3440 targpp = pp;
3441 if (io_pplist != NULL) {
3442 VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3443 io_len = off - io_off;
3445 * Some file systems like NFS don't check EOF
3446 * conditions in fop_pageio(). Check it here
3447 * now that pages are locked SE_EXCL. Any file
3448 * truncation will wait until the pages are
3449 * unlocked so no need to worry that file will
3450 * be truncated after we check its size here.
3451 * XXX fix NFS to remove this check.
3453 va.va_mask = AT_SIZE;
3454 if (fop_getattr(vp, &va, ATTR_HINT, svd->cred, NULL)) {
3455 VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3456 page_unlock(targpp);
3457 goto out;
3459 if (btopr(va.va_size) < btopr(io_off + io_len)) {
3460 VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3461 *downsize = 1;
3462 *ret_pszc = 0;
3463 page_unlock(targpp);
3464 goto out;
3466 io_err = fop_pageio(vp, io_pplist, io_off, io_len,
3467 B_READ, svd->cred, NULL);
3468 if (io_err) {
3469 VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3470 page_unlock(targpp);
3471 if (io_err == EDEADLK) {
3472 segvn_vmpss_pageio_deadlk_err++;
3474 goto out;
3476 nios++;
3477 VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3478 while (io_pplist != NULL) {
3479 pp = io_pplist;
3480 page_sub(&io_pplist, pp);
3481 ASSERT(page_iolock_assert(pp));
3482 page_io_unlock(pp);
3483 pgidx = (pp->p_offset - start_off) >>
3484 PAGESHIFT;
3485 ASSERT(pgidx < pages);
3486 ppa[pgidx] = pp;
3487 page_list_concat(&done_pplist, &pp);
3490 pp = targpp;
3491 ASSERT(PAGE_EXCL(pp));
3492 ASSERT(pp->p_szc <= pszc);
3493 if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3494 VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3495 page_unlock(pp);
3496 *downsize = 1;
3497 *ret_pszc = pp->p_szc;
3498 goto out;
3500 VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3502 * page szc chould have changed before the entire group was
3503 * locked. reread page szc.
3505 pszc = pp->p_szc;
3506 ppages = page_get_pagecnt(pszc);
3508 /* link just the roots */
3509 page_list_concat(&targ_pplist, &pp);
3510 page_sub(&pplist, newpp);
3511 page_list_concat(&repl_pplist, &newpp);
3512 off += PAGESIZE;
3513 while (--ppages != 0) {
3514 newpp = pplist;
3515 page_sub(&pplist, newpp);
3516 off += PAGESIZE;
3518 io_off = off;
3520 if (io_pplist != NULL) {
3521 VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3522 io_len = eoff - io_off;
3523 va.va_mask = AT_SIZE;
3524 if (fop_getattr(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) {
3525 VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3526 goto out;
3528 if (btopr(va.va_size) < btopr(io_off + io_len)) {
3529 VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3530 *downsize = 1;
3531 *ret_pszc = 0;
3532 goto out;
3534 io_err = fop_pageio(vp, io_pplist, io_off, io_len,
3535 B_READ, svd->cred, NULL);
3536 if (io_err) {
3537 VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3538 if (io_err == EDEADLK) {
3539 segvn_vmpss_pageio_deadlk_err++;
3541 goto out;
3543 nios++;
3544 while (io_pplist != NULL) {
3545 pp = io_pplist;
3546 page_sub(&io_pplist, pp);
3547 ASSERT(page_iolock_assert(pp));
3548 page_io_unlock(pp);
3549 pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3550 ASSERT(pgidx < pages);
3551 ppa[pgidx] = pp;
3555 * we're now bound to succeed or panic.
3556 * remove pages from done_pplist. it's not needed anymore.
3558 while (done_pplist != NULL) {
3559 pp = done_pplist;
3560 page_sub(&done_pplist, pp);
3562 VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3563 ASSERT(pplist == NULL);
3564 *ppplist = NULL;
3565 while (targ_pplist != NULL) {
3566 int ret;
3567 VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3568 ASSERT(repl_pplist);
3569 pp = targ_pplist;
3570 page_sub(&targ_pplist, pp);
3571 pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3572 newpp = repl_pplist;
3573 page_sub(&repl_pplist, newpp);
3574 #ifdef DEBUG
3575 pfn = page_pptonum(pp);
3576 pszc = pp->p_szc;
3577 ppages = page_get_pagecnt(pszc);
3578 ASSERT(IS_P2ALIGNED(pfn, ppages));
3579 pfn = page_pptonum(newpp);
3580 ASSERT(IS_P2ALIGNED(pfn, ppages));
3581 ASSERT(P2PHASE(pfn, pages) == pgidx);
3582 #endif
3583 nreloc = 0;
3584 ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3585 if (ret != 0 || nreloc == 0) {
3586 panic("segvn_fill_vp_pages: "
3587 "page_relocate failed");
3589 pp = newpp;
3590 while (nreloc-- != 0) {
3591 ASSERT(PAGE_EXCL(pp));
3592 VERIFY(pp->p_object == &vp->v_object);
3593 ASSERT(pp->p_vnode == vp);
3594 ASSERT(pgidx ==
3595 ((pp->p_offset - start_off) >> PAGESHIFT));
3596 ppa[pgidx++] = pp;
3597 pp++;
3601 if (svd->type == MAP_PRIVATE) {
3602 VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3603 for (i = 0; i < pages; i++) {
3604 ASSERT(ppa[i] != NULL);
3605 ASSERT(PAGE_EXCL(ppa[i]));
3606 VERIFY(ppa[i]->p_object == &vp->v_object);
3607 ASSERT(ppa[i]->p_vnode == vp);
3608 ASSERT(ppa[i]->p_offset ==
3609 start_off + (i << PAGESHIFT));
3610 page_downgrade(ppa[i]);
3612 ppa[pages] = NULL;
3613 } else {
3614 VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3616 * the caller will still call fop_getpage() for shared segments
3617 * to check FS write permissions. For private segments we map
3618 * file read only anyway. so no fop_getpage is needed.
3620 for (i = 0; i < pages; i++) {
3621 ASSERT(ppa[i] != NULL);
3622 ASSERT(PAGE_EXCL(ppa[i]));
3623 VERIFY(ppa[i]->p_object == &vp->v_object);
3624 ASSERT(ppa[i]->p_vnode == vp);
3625 ASSERT(ppa[i]->p_offset ==
3626 start_off + (i << PAGESHIFT));
3627 page_unlock(ppa[i]);
3629 ppa[0] = NULL;
3632 return (1);
3633 out:
3635 * Do the cleanup. Unlock target pages we didn't relocate. They are
3636 * linked on targ_pplist by root pages. reassemble unused replacement
3637 * and io pages back to pplist.
3639 if (io_pplist != NULL) {
3640 VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3641 pp = io_pplist;
3642 do {
3643 VERIFY(pp->p_object == &vp->v_object);
3644 ASSERT(pp->p_vnode == vp);
3645 ASSERT(pp->p_offset == io_off);
3646 ASSERT(page_iolock_assert(pp));
3647 page_io_unlock(pp);
3648 page_hashout(pp, false);
3649 io_off += PAGESIZE;
3650 } while ((pp = pp->p_next) != io_pplist);
3651 page_list_concat(&io_pplist, &pplist);
3652 pplist = io_pplist;
3654 tmp_pplist = NULL;
3655 while (targ_pplist != NULL) {
3656 VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3657 pp = targ_pplist;
3658 ASSERT(PAGE_EXCL(pp));
3659 page_sub(&targ_pplist, pp);
3661 pszc = pp->p_szc;
3662 ppages = page_get_pagecnt(pszc);
3663 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3665 if (pszc != 0) {
3666 group_page_unlock(pp);
3668 page_unlock(pp);
3670 pp = repl_pplist;
3671 ASSERT(pp != NULL);
3672 ASSERT(PAGE_EXCL(pp));
3673 ASSERT(pp->p_szc == szc);
3674 page_sub(&repl_pplist, pp);
3676 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3678 /* relink replacement page */
3679 page_list_concat(&tmp_pplist, &pp);
3680 while (--ppages != 0) {
3681 VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3682 pp++;
3683 ASSERT(PAGE_EXCL(pp));
3684 ASSERT(pp->p_szc == szc);
3685 page_list_concat(&tmp_pplist, &pp);
3688 if (tmp_pplist != NULL) {
3689 VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3690 page_list_concat(&tmp_pplist, &pplist);
3691 pplist = tmp_pplist;
3694 * at this point all pages are either on done_pplist or
3695 * pplist. They can't be all on done_pplist otherwise
3696 * we'd've been done.
3698 ASSERT(pplist != NULL);
3699 if (nios != 0) {
3700 VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3701 pp = pplist;
3702 do {
3703 VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3704 ASSERT(pp->p_szc == szc);
3705 ASSERT(PAGE_EXCL(pp));
3706 VERIFY(pp->p_object != &vp->v_object);
3707 ASSERT(pp->p_vnode != vp);
3708 pp->p_szc = 0;
3709 } while ((pp = pp->p_next) != pplist);
3711 pp = done_pplist;
3712 do {
3713 VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3714 ASSERT(pp->p_szc == szc);
3715 ASSERT(PAGE_EXCL(pp));
3716 VERIFY(pp->p_object == &vp->v_object);
3717 ASSERT(pp->p_vnode == vp);
3718 pp->p_szc = 0;
3719 } while ((pp = pp->p_next) != done_pplist);
3721 while (pplist != NULL) {
3722 VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3723 pp = pplist;
3724 page_sub(&pplist, pp);
3725 page_free(pp, 0);
3728 while (done_pplist != NULL) {
3729 VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3730 pp = done_pplist;
3731 page_sub(&done_pplist, pp);
3732 page_unlock(pp);
3734 *ppplist = NULL;
3735 return (0);
3737 ASSERT(pplist == *ppplist);
3738 if (io_err) {
3739 VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3741 * don't downsize on io error.
3742 * see if vop_getpage succeeds.
3743 * pplist may still be used in this case
3744 * for relocations.
3746 return (0);
3748 VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3749 page_free_replacement_page(pplist);
3750 page_create_putback(pages);
3751 *ppplist = NULL;
3752 return (0);
3755 int segvn_anypgsz = 0;
3757 #define SEGVN_RESTORE_SOFTLOCK_VP(type, pages) \
3758 if ((type) == F_SOFTLOCK) { \
3759 atomic_add_long((ulong_t *)&(svd)->softlockcnt, \
3760 -(pages)); \
3763 #define SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot) \
3764 if (IS_VMODSORT((ppa)[0]->p_vnode)) { \
3765 if ((rw) == S_WRITE) { \
3766 for (i = 0; i < (pages); i++) { \
3767 VERIFY((ppa)[i]->p_object == \
3768 (ppa)[i]->p_object); \
3769 ASSERT((ppa)[i]->p_vnode == \
3770 (ppa)[0]->p_vnode); \
3771 hat_setmod((ppa)[i]); \
3773 } else if ((rw) != S_OTHER && \
3774 ((prot) & (vpprot) & PROT_WRITE)) { \
3775 for (i = 0; i < (pages); i++) { \
3776 VERIFY((ppa)[i]->p_object == \
3777 (ppa)[i]->p_object); \
3778 ASSERT((ppa)[i]->p_vnode == \
3779 (ppa)[0]->p_vnode); \
3780 if (!hat_ismod((ppa)[i])) { \
3781 prot &= ~PROT_WRITE; \
3782 break; \
3788 #define SEGVN_VMSTAT_FLTVNPAGES(idx) \
3789 VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3791 static faultcode_t
3792 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3793 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3794 caddr_t eaddr, int brkcow)
3796 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3797 struct anon_map *amp = svd->amp;
3798 uchar_t segtype = svd->type;
3799 uint_t szc = seg->s_szc;
3800 size_t pgsz = page_get_pagesize(szc);
3801 size_t maxpgsz = pgsz;
3802 pgcnt_t pages = btop(pgsz);
3803 pgcnt_t maxpages = pages;
3804 size_t ppasize = (pages + 1) * sizeof (page_t *);
3805 caddr_t a = lpgaddr;
3806 caddr_t maxlpgeaddr = lpgeaddr;
3807 uoff_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3808 ulong_t aindx = svd->anon_index + seg_page(seg, a);
3809 struct vpage *vpage = (svd->vpage != NULL) ?
3810 &svd->vpage[seg_page(seg, a)] : NULL;
3811 vnode_t *vp = svd->vp;
3812 page_t **ppa;
3813 uint_t pszc;
3814 size_t ppgsz;
3815 pgcnt_t ppages;
3816 faultcode_t err = 0;
3817 int ierr;
3818 int vop_size_err = 0;
3819 uint_t protchk, prot, vpprot;
3820 ulong_t i;
3821 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3822 anon_sync_obj_t an_cookie;
3823 enum seg_rw arw;
3824 int alloc_failed = 0;
3825 int adjszc_chk;
3826 struct vattr va;
3827 page_t *pplist;
3828 pfn_t pfn;
3829 int physcontig;
3830 int upgrdfail;
3831 int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3832 int tron = (svd->tr_state == SEGVN_TR_ON);
3834 ASSERT(szc != 0);
3835 ASSERT(vp != NULL);
3836 ASSERT(brkcow == 0 || amp != NULL);
3837 ASSERT(tron == 0 || amp != NULL);
3838 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3839 ASSERT(!(svd->flags & MAP_NORESERVE));
3840 ASSERT(type != F_SOFTUNLOCK);
3841 ASSERT(IS_P2ALIGNED(a, maxpgsz));
3842 ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3843 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3844 ASSERT(seg->s_szc < NBBY * sizeof (int));
3845 ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3846 ASSERT(svd->tr_state != SEGVN_TR_INIT);
3848 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3849 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3851 if (svd->flags & MAP_TEXT) {
3852 hat_flag |= HAT_LOAD_TEXT;
3855 if (svd->pageprot) {
3856 switch (rw) {
3857 case S_READ:
3858 protchk = PROT_READ;
3859 break;
3860 case S_WRITE:
3861 protchk = PROT_WRITE;
3862 break;
3863 case S_EXEC:
3864 protchk = PROT_EXEC;
3865 break;
3866 case S_OTHER:
3867 default:
3868 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3869 break;
3871 } else {
3872 prot = svd->prot;
3873 /* caller has already done segment level protection check. */
3876 if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3877 SEGVN_VMSTAT_FLTVNPAGES(2);
3878 arw = S_READ;
3879 } else {
3880 arw = rw;
3883 ppa = kmem_alloc(ppasize, KM_SLEEP);
3885 VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3887 for (;;) {
3888 adjszc_chk = 0;
3889 for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3890 if (adjszc_chk) {
3891 while (szc < seg->s_szc) {
3892 uintptr_t e;
3893 uint_t tszc;
3894 tszc = segvn_anypgsz_vnode ? szc + 1 :
3895 seg->s_szc;
3896 ppgsz = page_get_pagesize(tszc);
3897 if (!IS_P2ALIGNED(a, ppgsz) ||
3898 ((alloc_failed >> tszc) & 0x1)) {
3899 break;
3901 SEGVN_VMSTAT_FLTVNPAGES(4);
3902 szc = tszc;
3903 pgsz = ppgsz;
3904 pages = btop(pgsz);
3905 e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3906 lpgeaddr = (caddr_t)e;
3910 again:
3911 if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3912 ASSERT(IS_P2ALIGNED(aindx, maxpages));
3913 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3914 anon_array_enter(amp, aindx, &an_cookie);
3915 if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3916 SEGVN_VMSTAT_FLTVNPAGES(5);
3917 ASSERT(anon_pages(amp->ahp, aindx,
3918 maxpages) == maxpages);
3919 anon_array_exit(&an_cookie);
3920 ANON_LOCK_EXIT(&amp->a_rwlock);
3921 err = segvn_fault_anonpages(hat, seg,
3922 a, a + maxpgsz, type, rw,
3923 MAX(a, addr),
3924 MIN(a + maxpgsz, eaddr), brkcow);
3925 if (err != 0) {
3926 SEGVN_VMSTAT_FLTVNPAGES(6);
3927 goto out;
3929 if (szc < seg->s_szc) {
3930 szc = seg->s_szc;
3931 pgsz = maxpgsz;
3932 pages = maxpages;
3933 lpgeaddr = maxlpgeaddr;
3935 goto next;
3936 } else {
3937 ASSERT(anon_pages(amp->ahp, aindx,
3938 maxpages) == 0);
3939 SEGVN_VMSTAT_FLTVNPAGES(7);
3940 anon_array_exit(&an_cookie);
3941 ANON_LOCK_EXIT(&amp->a_rwlock);
3944 ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3945 ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3947 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3948 ASSERT(vpage != NULL);
3949 prot = VPP_PROT(vpage);
3950 ASSERT(sameprot(seg, a, maxpgsz));
3951 if ((prot & protchk) == 0) {
3952 SEGVN_VMSTAT_FLTVNPAGES(8);
3953 err = FC_PROT;
3954 goto out;
3957 if (type == F_SOFTLOCK) {
3958 atomic_add_long((ulong_t *)&svd->softlockcnt,
3959 pages);
3962 pplist = NULL;
3963 physcontig = 0;
3964 ppa[0] = NULL;
3965 if (!brkcow && !tron && szc &&
3966 !page_exists_physcontig(&vp->v_object, off, szc,
3967 segtype == MAP_PRIVATE ? ppa : NULL)) {
3968 SEGVN_VMSTAT_FLTVNPAGES(9);
3969 if (page_alloc_pages(&vp->v_object, seg, a,
3970 &pplist, NULL, szc, 0, 0) &&
3971 type != F_SOFTLOCK) {
3972 SEGVN_VMSTAT_FLTVNPAGES(10);
3973 pszc = 0;
3974 ierr = -1;
3975 alloc_failed |= (1 << szc);
3976 break;
3978 if (pplist != NULL &&
3979 vp->v_mpssdata == SEGVN_PAGEIO) {
3980 int downsize;
3981 SEGVN_VMSTAT_FLTVNPAGES(11);
3982 physcontig = segvn_fill_vp_pages(svd,
3983 vp, off, szc, ppa, &pplist,
3984 &pszc, &downsize);
3985 ASSERT(!physcontig || pplist == NULL);
3986 if (!physcontig && downsize &&
3987 type != F_SOFTLOCK) {
3988 ASSERT(pplist == NULL);
3989 SEGVN_VMSTAT_FLTVNPAGES(12);
3990 ierr = -1;
3991 break;
3993 ASSERT(!physcontig ||
3994 segtype == MAP_PRIVATE ||
3995 ppa[0] == NULL);
3996 if (physcontig && ppa[0] == NULL) {
3997 physcontig = 0;
4000 } else if (!brkcow && !tron && szc && ppa[0] != NULL) {
4001 SEGVN_VMSTAT_FLTVNPAGES(13);
4002 ASSERT(segtype == MAP_PRIVATE);
4003 physcontig = 1;
4006 if (!physcontig) {
4007 SEGVN_VMSTAT_FLTVNPAGES(14);
4008 ppa[0] = NULL;
4009 ierr = fop_getpage(vp, (offset_t)off, pgsz,
4010 &vpprot, ppa, pgsz, seg, a, arw,
4011 svd->cred, NULL);
4012 #ifdef DEBUG
4013 if (ierr == 0) {
4014 for (i = 0; i < pages; i++) {
4015 ASSERT(PAGE_LOCKED(ppa[i]));
4016 ASSERT(!PP_ISFREE(ppa[i]));
4017 VERIFY(ppa[i]->p_object ==
4018 &vp->v_object);
4019 ASSERT(ppa[i]->p_vnode == vp);
4020 ASSERT(ppa[i]->p_offset ==
4021 off + (i << PAGESHIFT));
4024 #endif /* DEBUG */
4025 if (segtype == MAP_PRIVATE) {
4026 SEGVN_VMSTAT_FLTVNPAGES(15);
4027 vpprot &= ~PROT_WRITE;
4029 } else {
4030 ASSERT(segtype == MAP_PRIVATE);
4031 SEGVN_VMSTAT_FLTVNPAGES(16);
4032 vpprot = PROT_ALL & ~PROT_WRITE;
4033 ierr = 0;
4036 if (ierr != 0) {
4037 SEGVN_VMSTAT_FLTVNPAGES(17);
4038 if (pplist != NULL) {
4039 SEGVN_VMSTAT_FLTVNPAGES(18);
4040 page_free_replacement_page(pplist);
4041 page_create_putback(pages);
4043 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4044 if (a + pgsz <= eaddr) {
4045 SEGVN_VMSTAT_FLTVNPAGES(19);
4046 err = FC_MAKE_ERR(ierr);
4047 goto out;
4049 va.va_mask = AT_SIZE;
4050 if (fop_getattr(vp, &va, 0, svd->cred, NULL)) {
4051 SEGVN_VMSTAT_FLTVNPAGES(20);
4052 err = FC_MAKE_ERR(EIO);
4053 goto out;
4055 if (btopr(va.va_size) >= btopr(off + pgsz)) {
4056 SEGVN_VMSTAT_FLTVNPAGES(21);
4057 err = FC_MAKE_ERR(ierr);
4058 goto out;
4060 if (btopr(va.va_size) <
4061 btopr(off + (eaddr - a))) {
4062 SEGVN_VMSTAT_FLTVNPAGES(22);
4063 err = FC_MAKE_ERR(ierr);
4064 goto out;
4066 if (brkcow || tron || type == F_SOFTLOCK) {
4067 /* can't reduce map area */
4068 SEGVN_VMSTAT_FLTVNPAGES(23);
4069 vop_size_err = 1;
4070 goto out;
4072 SEGVN_VMSTAT_FLTVNPAGES(24);
4073 ASSERT(szc != 0);
4074 pszc = 0;
4075 ierr = -1;
4076 break;
4079 if (amp != NULL) {
4080 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4081 anon_array_enter(amp, aindx, &an_cookie);
4083 if (amp != NULL &&
4084 anon_get_ptr(amp->ahp, aindx) != NULL) {
4085 ulong_t taindx = P2ALIGN(aindx, maxpages);
4087 SEGVN_VMSTAT_FLTVNPAGES(25);
4088 ASSERT(anon_pages(amp->ahp, taindx,
4089 maxpages) == maxpages);
4090 for (i = 0; i < pages; i++) {
4091 page_unlock(ppa[i]);
4093 anon_array_exit(&an_cookie);
4094 ANON_LOCK_EXIT(&amp->a_rwlock);
4095 if (pplist != NULL) {
4096 page_free_replacement_page(pplist);
4097 page_create_putback(pages);
4099 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4100 if (szc < seg->s_szc) {
4101 SEGVN_VMSTAT_FLTVNPAGES(26);
4103 * For private segments SOFTLOCK
4104 * either always breaks cow (any rw
4105 * type except S_READ_NOCOW) or
4106 * address space is locked as writer
4107 * (S_READ_NOCOW case) and anon slots
4108 * can't show up on second check.
4109 * Therefore if we are here for
4110 * SOFTLOCK case it must be a cow
4111 * break but cow break never reduces
4112 * szc. text replication (tron) in
4113 * this case works as cow break.
4114 * Thus the assert below.
4116 ASSERT(!brkcow && !tron &&
4117 type != F_SOFTLOCK);
4118 pszc = seg->s_szc;
4119 ierr = -2;
4120 break;
4122 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4123 goto again;
4125 #ifdef DEBUG
4126 if (amp != NULL) {
4127 ulong_t taindx = P2ALIGN(aindx, maxpages);
4128 ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4130 #endif /* DEBUG */
4132 if (brkcow || tron) {
4133 ASSERT(amp != NULL);
4134 ASSERT(pplist == NULL);
4135 ASSERT(szc == seg->s_szc);
4136 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4137 ASSERT(IS_P2ALIGNED(aindx, maxpages));
4138 SEGVN_VMSTAT_FLTVNPAGES(27);
4139 ierr = anon_map_privatepages(amp, aindx, szc,
4140 seg, a, prot, ppa, vpage, segvn_anypgsz,
4141 tron ? PG_LOCAL : 0, svd->cred);
4142 if (ierr != 0) {
4143 SEGVN_VMSTAT_FLTVNPAGES(28);
4144 anon_array_exit(&an_cookie);
4145 ANON_LOCK_EXIT(&amp->a_rwlock);
4146 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4147 err = FC_MAKE_ERR(ierr);
4148 goto out;
4151 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4153 * p_szc can't be changed for locked
4154 * swapfs pages.
4156 ASSERT(svd->rcookie ==
4157 HAT_INVALID_REGION_COOKIE);
4158 hat_memload_array(hat, a, pgsz, ppa, prot,
4159 hat_flag);
4161 if (!(hat_flag & HAT_LOAD_LOCK)) {
4162 SEGVN_VMSTAT_FLTVNPAGES(29);
4163 for (i = 0; i < pages; i++) {
4164 page_unlock(ppa[i]);
4167 anon_array_exit(&an_cookie);
4168 ANON_LOCK_EXIT(&amp->a_rwlock);
4169 goto next;
4172 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4173 (!svd->pageprot && svd->prot == (prot & vpprot)));
4175 pfn = page_pptonum(ppa[0]);
4177 * hat_page_demote() needs an SE_EXCL lock on one of
4178 * constituent page_t's and it decreases root's p_szc
4179 * last. This means if root's p_szc is equal szc and
4180 * all its constituent pages are locked
4181 * hat_page_demote() that could have changed p_szc to
4182 * szc is already done and no new have page_demote()
4183 * can start for this large page.
4187 * we need to make sure same mapping size is used for
4188 * the same address range if there's a possibility the
4189 * adddress is already mapped because hat layer panics
4190 * when translation is loaded for the range already
4191 * mapped with a different page size. We achieve it
4192 * by always using largest page size possible subject
4193 * to the constraints of page size, segment page size
4194 * and page alignment. Since mappings are invalidated
4195 * when those constraints change and make it
4196 * impossible to use previously used mapping size no
4197 * mapping size conflicts should happen.
4200 chkszc:
4201 if ((pszc = ppa[0]->p_szc) == szc &&
4202 IS_P2ALIGNED(pfn, pages)) {
4204 SEGVN_VMSTAT_FLTVNPAGES(30);
4205 #ifdef DEBUG
4206 for (i = 0; i < pages; i++) {
4207 ASSERT(PAGE_LOCKED(ppa[i]));
4208 ASSERT(!PP_ISFREE(ppa[i]));
4209 ASSERT(page_pptonum(ppa[i]) ==
4210 pfn + i);
4211 ASSERT(ppa[i]->p_szc == szc);
4212 VERIFY(ppa[i]->p_object == &vp->v_object);
4213 ASSERT(ppa[i]->p_vnode == vp);
4214 ASSERT(ppa[i]->p_offset ==
4215 off + (i << PAGESHIFT));
4217 #endif /* DEBUG */
4219 * All pages are of szc we need and they are
4220 * all locked so they can't change szc. load
4221 * translations.
4223 * if page got promoted since last check
4224 * we don't need pplist.
4226 if (pplist != NULL) {
4227 page_free_replacement_page(pplist);
4228 page_create_putback(pages);
4230 if (PP_ISMIGRATE(ppa[0])) {
4231 page_migrate(seg, a, ppa, pages);
4233 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4234 prot, vpprot);
4235 hat_memload_array_region(hat, a, pgsz,
4236 ppa, prot & vpprot, hat_flag,
4237 svd->rcookie);
4239 if (!(hat_flag & HAT_LOAD_LOCK)) {
4240 for (i = 0; i < pages; i++) {
4241 page_unlock(ppa[i]);
4244 if (amp != NULL) {
4245 anon_array_exit(&an_cookie);
4246 ANON_LOCK_EXIT(&amp->a_rwlock);
4248 goto next;
4252 * See if upsize is possible.
4254 if (pszc > szc && szc < seg->s_szc &&
4255 (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4256 pgcnt_t aphase;
4257 uint_t pszc1 = MIN(pszc, seg->s_szc);
4258 ppgsz = page_get_pagesize(pszc1);
4259 ppages = btop(ppgsz);
4260 aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4262 ASSERT(type != F_SOFTLOCK);
4264 SEGVN_VMSTAT_FLTVNPAGES(31);
4265 if (aphase != P2PHASE(pfn, ppages)) {
4266 segvn_faultvnmpss_align_err4++;
4267 } else {
4268 SEGVN_VMSTAT_FLTVNPAGES(32);
4269 if (pplist != NULL) {
4270 page_t *pl = pplist;
4271 page_free_replacement_page(pl);
4272 page_create_putback(pages);
4274 for (i = 0; i < pages; i++) {
4275 page_unlock(ppa[i]);
4277 if (amp != NULL) {
4278 anon_array_exit(&an_cookie);
4279 ANON_LOCK_EXIT(&amp->a_rwlock);
4281 pszc = pszc1;
4282 ierr = -2;
4283 break;
4288 * check if we should use smallest mapping size.
4290 upgrdfail = 0;
4291 if (szc == 0 ||
4292 (pszc >= szc &&
4293 !IS_P2ALIGNED(pfn, pages)) ||
4294 (pszc < szc &&
4295 !segvn_full_szcpages(ppa, szc, &upgrdfail,
4296 &pszc))) {
4298 if (upgrdfail && type != F_SOFTLOCK) {
4300 * segvn_full_szcpages failed to lock
4301 * all pages EXCL. Size down.
4303 ASSERT(pszc < szc);
4305 SEGVN_VMSTAT_FLTVNPAGES(33);
4307 if (pplist != NULL) {
4308 page_t *pl = pplist;
4309 page_free_replacement_page(pl);
4310 page_create_putback(pages);
4313 for (i = 0; i < pages; i++) {
4314 page_unlock(ppa[i]);
4316 if (amp != NULL) {
4317 anon_array_exit(&an_cookie);
4318 ANON_LOCK_EXIT(&amp->a_rwlock);
4320 ierr = -1;
4321 break;
4323 if (szc != 0 && !upgrdfail) {
4324 segvn_faultvnmpss_align_err5++;
4326 SEGVN_VMSTAT_FLTVNPAGES(34);
4327 if (pplist != NULL) {
4328 page_free_replacement_page(pplist);
4329 page_create_putback(pages);
4331 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4332 prot, vpprot);
4333 if (upgrdfail && segvn_anypgsz_vnode) {
4334 /* SOFTLOCK case */
4335 hat_memload_array_region(hat, a, pgsz,
4336 ppa, prot & vpprot, hat_flag,
4337 svd->rcookie);
4338 } else {
4339 for (i = 0; i < pages; i++) {
4340 hat_memload_region(hat,
4341 a + (i << PAGESHIFT),
4342 ppa[i], prot & vpprot,
4343 hat_flag, svd->rcookie);
4346 if (!(hat_flag & HAT_LOAD_LOCK)) {
4347 for (i = 0; i < pages; i++) {
4348 page_unlock(ppa[i]);
4351 if (amp != NULL) {
4352 anon_array_exit(&an_cookie);
4353 ANON_LOCK_EXIT(&amp->a_rwlock);
4355 goto next;
4358 if (pszc == szc) {
4360 * segvn_full_szcpages() upgraded pages szc.
4362 ASSERT(pszc == ppa[0]->p_szc);
4363 ASSERT(IS_P2ALIGNED(pfn, pages));
4364 goto chkszc;
4367 if (pszc > szc) {
4368 kmutex_t *szcmtx;
4369 SEGVN_VMSTAT_FLTVNPAGES(35);
4371 * p_szc of ppa[0] can change since we haven't
4372 * locked all constituent pages. Call
4373 * page_lock_szc() to prevent szc changes.
4374 * This should be a rare case that happens when
4375 * multiple segments use a different page size
4376 * to map the same file offsets.
4378 szcmtx = page_szc_lock(ppa[0]);
4379 pszc = ppa[0]->p_szc;
4380 ASSERT(szcmtx != NULL || pszc == 0);
4381 ASSERT(ppa[0]->p_szc <= pszc);
4382 if (pszc <= szc) {
4383 SEGVN_VMSTAT_FLTVNPAGES(36);
4384 if (szcmtx != NULL) {
4385 mutex_exit(szcmtx);
4387 goto chkszc;
4389 if (pplist != NULL) {
4391 * page got promoted since last check.
4392 * we don't need preaalocated large
4393 * page.
4395 SEGVN_VMSTAT_FLTVNPAGES(37);
4396 page_free_replacement_page(pplist);
4397 page_create_putback(pages);
4399 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4400 prot, vpprot);
4401 hat_memload_array_region(hat, a, pgsz, ppa,
4402 prot & vpprot, hat_flag, svd->rcookie);
4403 mutex_exit(szcmtx);
4404 if (!(hat_flag & HAT_LOAD_LOCK)) {
4405 for (i = 0; i < pages; i++) {
4406 page_unlock(ppa[i]);
4409 if (amp != NULL) {
4410 anon_array_exit(&an_cookie);
4411 ANON_LOCK_EXIT(&amp->a_rwlock);
4413 goto next;
4417 * if page got demoted since last check
4418 * we could have not allocated larger page.
4419 * allocate now.
4421 if (pplist == NULL &&
4422 page_alloc_pages(&vp->v_object, seg, a, &pplist,
4423 NULL, szc, 0, 0) && type != F_SOFTLOCK) {
4424 SEGVN_VMSTAT_FLTVNPAGES(38);
4425 for (i = 0; i < pages; i++) {
4426 page_unlock(ppa[i]);
4428 if (amp != NULL) {
4429 anon_array_exit(&an_cookie);
4430 ANON_LOCK_EXIT(&amp->a_rwlock);
4432 ierr = -1;
4433 alloc_failed |= (1 << szc);
4434 break;
4437 SEGVN_VMSTAT_FLTVNPAGES(39);
4439 if (pplist != NULL) {
4440 segvn_relocate_pages(ppa, pplist);
4441 #ifdef DEBUG
4442 } else {
4443 ASSERT(type == F_SOFTLOCK);
4444 SEGVN_VMSTAT_FLTVNPAGES(40);
4445 #endif /* DEBUG */
4448 SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4450 if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4451 ASSERT(type == F_SOFTLOCK);
4452 for (i = 0; i < pages; i++) {
4453 ASSERT(ppa[i]->p_szc < szc);
4454 hat_memload_region(hat,
4455 a + (i << PAGESHIFT),
4456 ppa[i], prot & vpprot, hat_flag,
4457 svd->rcookie);
4459 } else {
4460 ASSERT(pplist != NULL || type == F_SOFTLOCK);
4461 hat_memload_array_region(hat, a, pgsz, ppa,
4462 prot & vpprot, hat_flag, svd->rcookie);
4464 if (!(hat_flag & HAT_LOAD_LOCK)) {
4465 for (i = 0; i < pages; i++) {
4466 ASSERT(PAGE_SHARED(ppa[i]));
4467 page_unlock(ppa[i]);
4470 if (amp != NULL) {
4471 anon_array_exit(&an_cookie);
4472 ANON_LOCK_EXIT(&amp->a_rwlock);
4475 next:
4476 if (vpage != NULL) {
4477 vpage += pages;
4479 adjszc_chk = 1;
4481 if (a == lpgeaddr)
4482 break;
4483 ASSERT(a < lpgeaddr);
4485 ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4488 * ierr == -1 means we failed to map with a large page.
4489 * (either due to allocation/relocation failures or
4490 * misalignment with other mappings to this file.
4492 * ierr == -2 means some other thread allocated a large page
4493 * after we gave up tp map with a large page. retry with
4494 * larger mapping.
4496 ASSERT(ierr == -1 || ierr == -2);
4497 ASSERT(ierr == -2 || szc != 0);
4498 ASSERT(ierr == -1 || szc < seg->s_szc);
4499 if (ierr == -2) {
4500 SEGVN_VMSTAT_FLTVNPAGES(41);
4501 ASSERT(pszc > szc && pszc <= seg->s_szc);
4502 szc = pszc;
4503 } else if (segvn_anypgsz_vnode) {
4504 SEGVN_VMSTAT_FLTVNPAGES(42);
4505 szc--;
4506 } else {
4507 SEGVN_VMSTAT_FLTVNPAGES(43);
4508 ASSERT(pszc < szc);
4510 * other process created pszc large page.
4511 * but we still have to drop to 0 szc.
4513 szc = 0;
4516 pgsz = page_get_pagesize(szc);
4517 pages = btop(pgsz);
4518 if (ierr == -2) {
4520 * Size up case. Note lpgaddr may only be needed for
4521 * softlock case so we don't adjust it here.
4523 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4524 ASSERT(a >= lpgaddr);
4525 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4526 off = svd->offset + (uintptr_t)(a - seg->s_base);
4527 aindx = svd->anon_index + seg_page(seg, a);
4528 vpage = (svd->vpage != NULL) ?
4529 &svd->vpage[seg_page(seg, a)] : NULL;
4530 } else {
4532 * Size down case. Note lpgaddr may only be needed for
4533 * softlock case so we don't adjust it here.
4535 ASSERT(IS_P2ALIGNED(a, pgsz));
4536 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4537 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4538 ASSERT(a < lpgeaddr);
4539 if (a < addr) {
4540 SEGVN_VMSTAT_FLTVNPAGES(44);
4542 * The beginning of the large page region can
4543 * be pulled to the right to make a smaller
4544 * region. We haven't yet faulted a single
4545 * page.
4547 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4548 ASSERT(a >= lpgaddr);
4549 off = svd->offset +
4550 (uintptr_t)(a - seg->s_base);
4551 aindx = svd->anon_index + seg_page(seg, a);
4552 vpage = (svd->vpage != NULL) ?
4553 &svd->vpage[seg_page(seg, a)] : NULL;
4557 out:
4558 kmem_free(ppa, ppasize);
4559 if (!err && !vop_size_err) {
4560 SEGVN_VMSTAT_FLTVNPAGES(45);
4561 return (0);
4563 if (type == F_SOFTLOCK && a > lpgaddr) {
4564 SEGVN_VMSTAT_FLTVNPAGES(46);
4565 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4567 if (!vop_size_err) {
4568 SEGVN_VMSTAT_FLTVNPAGES(47);
4569 return (err);
4571 ASSERT(brkcow || tron || type == F_SOFTLOCK);
4573 * Large page end is mapped beyond the end of file and it's a cow
4574 * fault (can be a text replication induced cow) or softlock so we can't
4575 * reduce the map area. For now just demote the segment. This should
4576 * really only happen if the end of the file changed after the mapping
4577 * was established since when large page segments are created we make
4578 * sure they don't extend beyond the end of the file.
4580 SEGVN_VMSTAT_FLTVNPAGES(48);
4582 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4583 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4584 err = 0;
4585 if (seg->s_szc != 0) {
4586 segvn_fltvnpages_clrszc_cnt++;
4587 ASSERT(svd->softlockcnt == 0);
4588 err = segvn_clrszc(seg);
4589 if (err != 0) {
4590 segvn_fltvnpages_clrszc_err++;
4593 ASSERT(err || seg->s_szc == 0);
4594 SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4595 /* segvn_fault will do its job as if szc had been zero to begin with */
4596 return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4600 * This routine will attempt to fault in one large page.
4601 * it will use smaller pages if that fails.
4602 * It should only be called for pure anonymous segments.
4604 static faultcode_t
4605 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4606 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4607 caddr_t eaddr, int brkcow)
4609 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4610 struct anon_map *amp = svd->amp;
4611 uchar_t segtype = svd->type;
4612 uint_t szc = seg->s_szc;
4613 size_t pgsz = page_get_pagesize(szc);
4614 size_t maxpgsz = pgsz;
4615 pgcnt_t pages = btop(pgsz);
4616 uint_t ppaszc = szc;
4617 caddr_t a = lpgaddr;
4618 ulong_t aindx = svd->anon_index + seg_page(seg, a);
4619 struct vpage *vpage = (svd->vpage != NULL) ?
4620 &svd->vpage[seg_page(seg, a)] : NULL;
4621 page_t **ppa;
4622 uint_t ppa_szc;
4623 faultcode_t err;
4624 int ierr;
4625 uint_t protchk, prot, vpprot;
4626 ulong_t i;
4627 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4628 anon_sync_obj_t cookie;
4629 int adjszc_chk;
4630 int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4632 ASSERT(szc != 0);
4633 ASSERT(amp != NULL);
4634 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4635 ASSERT(!(svd->flags & MAP_NORESERVE));
4636 ASSERT(type != F_SOFTUNLOCK);
4637 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4638 ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4639 ASSERT(svd->tr_state != SEGVN_TR_INIT);
4641 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4643 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4644 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4646 if (svd->flags & MAP_TEXT) {
4647 hat_flag |= HAT_LOAD_TEXT;
4650 if (svd->pageprot) {
4651 switch (rw) {
4652 case S_READ:
4653 protchk = PROT_READ;
4654 break;
4655 case S_WRITE:
4656 protchk = PROT_WRITE;
4657 break;
4658 case S_EXEC:
4659 protchk = PROT_EXEC;
4660 break;
4661 case S_OTHER:
4662 default:
4663 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4664 break;
4666 VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4667 } else {
4668 prot = svd->prot;
4669 /* caller has already done segment level protection check. */
4672 ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP);
4673 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4674 for (;;) {
4675 adjszc_chk = 0;
4676 for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4677 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4678 VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4679 ASSERT(vpage != NULL);
4680 prot = VPP_PROT(vpage);
4681 ASSERT(sameprot(seg, a, maxpgsz));
4682 if ((prot & protchk) == 0) {
4683 err = FC_PROT;
4684 goto error;
4687 if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4688 pgsz < maxpgsz) {
4689 ASSERT(a > lpgaddr);
4690 szc = seg->s_szc;
4691 pgsz = maxpgsz;
4692 pages = btop(pgsz);
4693 ASSERT(IS_P2ALIGNED(aindx, pages));
4694 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4695 pgsz);
4697 if (type == F_SOFTLOCK) {
4698 atomic_add_long((ulong_t *)&svd->softlockcnt,
4699 pages);
4701 anon_array_enter(amp, aindx, &cookie);
4702 ppa_szc = (uint_t)-1;
4703 ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4704 prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4705 segvn_anypgsz, pgflags, svd->cred);
4706 if (ierr != 0) {
4707 anon_array_exit(&cookie);
4708 VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4709 if (type == F_SOFTLOCK) {
4710 atomic_add_long(
4711 (ulong_t *)&svd->softlockcnt,
4712 -pages);
4714 if (ierr > 0) {
4715 VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4716 err = FC_MAKE_ERR(ierr);
4717 goto error;
4719 break;
4722 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4724 ASSERT(segtype == MAP_SHARED ||
4725 ppa[0]->p_szc <= szc);
4726 ASSERT(segtype == MAP_PRIVATE ||
4727 ppa[0]->p_szc >= szc);
4730 * Handle pages that have been marked for migration
4732 if (lgrp_optimizations())
4733 page_migrate(seg, a, ppa, pages);
4735 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4737 if (segtype == MAP_SHARED) {
4738 vpprot |= PROT_WRITE;
4741 hat_memload_array(hat, a, pgsz, ppa,
4742 prot & vpprot, hat_flag);
4744 if (hat_flag & HAT_LOAD_LOCK) {
4745 VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4746 } else {
4747 VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4748 for (i = 0; i < pages; i++)
4749 page_unlock(ppa[i]);
4751 if (vpage != NULL)
4752 vpage += pages;
4754 anon_array_exit(&cookie);
4755 adjszc_chk = 1;
4757 if (a == lpgeaddr)
4758 break;
4759 ASSERT(a < lpgeaddr);
4761 * ierr == -1 means we failed to allocate a large page.
4762 * so do a size down operation.
4764 * ierr == -2 means some other process that privately shares
4765 * pages with this process has allocated a larger page and we
4766 * need to retry with larger pages. So do a size up
4767 * operation. This relies on the fact that large pages are
4768 * never partially shared i.e. if we share any constituent
4769 * page of a large page with another process we must share the
4770 * entire large page. Note this cannot happen for SOFTLOCK
4771 * case, unless current address (a) is at the beginning of the
4772 * next page size boundary because the other process couldn't
4773 * have relocated locked pages.
4775 ASSERT(ierr == -1 || ierr == -2);
4777 if (segvn_anypgsz) {
4778 ASSERT(ierr == -2 || szc != 0);
4779 ASSERT(ierr == -1 || szc < seg->s_szc);
4780 szc = (ierr == -1) ? szc - 1 : szc + 1;
4781 } else {
4783 * For non COW faults and segvn_anypgsz == 0
4784 * we need to be careful not to loop forever
4785 * if existing page is found with szc other
4786 * than 0 or seg->s_szc. This could be due
4787 * to page relocations on behalf of DR or
4788 * more likely large page creation. For this
4789 * case simply re-size to existing page's szc
4790 * if returned by anon_map_getpages().
4792 if (ppa_szc == (uint_t)-1) {
4793 szc = (ierr == -1) ? 0 : seg->s_szc;
4794 } else {
4795 ASSERT(ppa_szc <= seg->s_szc);
4796 ASSERT(ierr == -2 || ppa_szc < szc);
4797 ASSERT(ierr == -1 || ppa_szc > szc);
4798 szc = ppa_szc;
4802 pgsz = page_get_pagesize(szc);
4803 pages = btop(pgsz);
4804 ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4805 (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4806 if (type == F_SOFTLOCK) {
4808 * For softlocks we cannot reduce the fault area
4809 * (calculated based on the largest page size for this
4810 * segment) for size down and a is already next
4811 * page size aligned as assertted above for size
4812 * ups. Therefore just continue in case of softlock.
4814 VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4815 continue; /* keep lint happy */
4816 } else if (ierr == -2) {
4819 * Size up case. Note lpgaddr may only be needed for
4820 * softlock case so we don't adjust it here.
4822 VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4823 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4824 ASSERT(a >= lpgaddr);
4825 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4826 aindx = svd->anon_index + seg_page(seg, a);
4827 vpage = (svd->vpage != NULL) ?
4828 &svd->vpage[seg_page(seg, a)] : NULL;
4829 } else {
4831 * Size down case. Note lpgaddr may only be needed for
4832 * softlock case so we don't adjust it here.
4834 VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4835 ASSERT(IS_P2ALIGNED(a, pgsz));
4836 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4837 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4838 ASSERT(a < lpgeaddr);
4839 if (a < addr) {
4841 * The beginning of the large page region can
4842 * be pulled to the right to make a smaller
4843 * region. We haven't yet faulted a single
4844 * page.
4846 VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4847 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4848 ASSERT(a >= lpgaddr);
4849 aindx = svd->anon_index + seg_page(seg, a);
4850 vpage = (svd->vpage != NULL) ?
4851 &svd->vpage[seg_page(seg, a)] : NULL;
4855 VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4856 ANON_LOCK_EXIT(&amp->a_rwlock);
4857 kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4858 return (0);
4859 error:
4860 VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4861 ANON_LOCK_EXIT(&amp->a_rwlock);
4862 kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4863 if (type == F_SOFTLOCK && a > lpgaddr) {
4864 VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4865 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4867 return (err);
4870 int fltadvice = 1; /* set to free behind pages for sequential access */
4873 * This routine is called via a machine specific fault handling routine.
4874 * It is also called by software routines wishing to lock or unlock
4875 * a range of addresses.
4877 * Here is the basic algorithm:
4878 * If unlocking
4879 * Call segvn_softunlock
4880 * Return
4881 * endif
4882 * Checking and set up work
4883 * If we will need some non-anonymous pages
4884 * Call fop_getpage over the range of non-anonymous pages
4885 * endif
4886 * Loop over all addresses requested
4887 * Call segvn_faultpage passing in page list
4888 * to load up translations and handle anonymous pages
4889 * endloop
4890 * Load up translation to any additional pages in page list not
4891 * already handled that fit into this segment
4893 static faultcode_t
4894 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4895 enum fault_type type, enum seg_rw rw)
4897 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4898 page_t **plp, **ppp, *pp;
4899 uoff_t off;
4900 caddr_t a;
4901 struct vpage *vpage;
4902 uint_t vpprot, prot;
4903 int err;
4904 page_t *pl[FAULT_TMP_PAGES_NUM + 1];
4905 size_t plsz, pl_alloc_sz;
4906 size_t page;
4907 ulong_t anon_index;
4908 struct anon_map *amp;
4909 int dogetpage = 0;
4910 caddr_t lpgaddr, lpgeaddr;
4911 size_t pgsz;
4912 anon_sync_obj_t cookie;
4913 int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4915 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
4916 ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
4919 * First handle the easy stuff
4921 if (type == F_SOFTUNLOCK) {
4922 if (rw == S_READ_NOCOW) {
4923 rw = S_READ;
4924 ASSERT(AS_WRITE_HELD(seg->s_as));
4926 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4927 pgsz = (seg->s_szc == 0) ? PAGESIZE :
4928 page_get_pagesize(seg->s_szc);
4929 VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4930 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4931 segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4932 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4933 return (0);
4936 ASSERT(svd->tr_state == SEGVN_TR_OFF ||
4937 !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
4938 if (brkcow == 0) {
4939 if (svd->tr_state == SEGVN_TR_INIT) {
4940 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4941 if (svd->tr_state == SEGVN_TR_INIT) {
4942 ASSERT(svd->vp != NULL && svd->amp == NULL);
4943 ASSERT(svd->flags & MAP_TEXT);
4944 ASSERT(svd->type == MAP_PRIVATE);
4945 segvn_textrepl(seg);
4946 ASSERT(svd->tr_state != SEGVN_TR_INIT);
4947 ASSERT(svd->tr_state != SEGVN_TR_ON ||
4948 svd->amp != NULL);
4950 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4952 } else if (svd->tr_state != SEGVN_TR_OFF) {
4953 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4955 if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
4956 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
4957 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4958 return (FC_PROT);
4961 if (svd->tr_state == SEGVN_TR_ON) {
4962 ASSERT(svd->vp != NULL && svd->amp != NULL);
4963 segvn_textunrepl(seg, 0);
4964 ASSERT(svd->amp == NULL &&
4965 svd->tr_state == SEGVN_TR_OFF);
4966 } else if (svd->tr_state != SEGVN_TR_OFF) {
4967 svd->tr_state = SEGVN_TR_OFF;
4969 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
4970 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4973 top:
4974 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4977 * If we have the same protections for the entire segment,
4978 * insure that the access being attempted is legitimate.
4981 if (svd->pageprot == 0) {
4982 uint_t protchk;
4984 switch (rw) {
4985 case S_READ:
4986 case S_READ_NOCOW:
4987 protchk = PROT_READ;
4988 break;
4989 case S_WRITE:
4990 protchk = PROT_WRITE;
4991 break;
4992 case S_EXEC:
4993 protchk = PROT_EXEC;
4994 break;
4995 case S_OTHER:
4996 default:
4997 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4998 break;
5001 if ((svd->prot & protchk) == 0) {
5002 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5003 return (FC_PROT); /* illegal access type */
5007 if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5008 /* this must be SOFTLOCK S_READ fault */
5009 ASSERT(svd->amp == NULL);
5010 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5011 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5012 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5013 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5015 * this must be the first ever non S_READ_NOCOW
5016 * softlock for this segment.
5018 ASSERT(svd->softlockcnt == 0);
5019 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5020 HAT_REGION_TEXT);
5021 svd->rcookie = HAT_INVALID_REGION_COOKIE;
5023 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5024 goto top;
5028 * We can't allow the long term use of softlocks for vmpss segments,
5029 * because in some file truncation cases we should be able to demote
5030 * the segment, which requires that there are no softlocks. The
5031 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5032 * segment is S_READ_NOCOW, where the caller holds the address space
5033 * locked as writer and calls softunlock before dropping the as lock.
5034 * S_READ_NOCOW is used by /proc to read memory from another user.
5036 * Another deadlock between SOFTLOCK and file truncation can happen
5037 * because segvn_fault_vnodepages() calls the FS one pagesize at
5038 * a time. A second fop_getpage() call by segvn_fault_vnodepages()
5039 * can cause a deadlock because the first set of page_t's remain
5040 * locked SE_SHARED. To avoid this, we demote segments on a first
5041 * SOFTLOCK if they have a length greater than the segment's
5042 * page size.
5044 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5045 * the access type is S_READ_NOCOW and the fault length is less than
5046 * or equal to the segment's page size. While this is quite restrictive,
5047 * it should be the most common case of SOFTLOCK against a vmpss
5048 * segment.
5050 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5051 * caller makes sure no COW will be caused by another thread for a
5052 * softlocked page.
5054 if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5055 int demote = 0;
5057 if (rw != S_READ_NOCOW) {
5058 demote = 1;
5060 if (!demote && len > PAGESIZE) {
5061 pgsz = page_get_pagesize(seg->s_szc);
5062 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5063 lpgeaddr);
5064 if (lpgeaddr - lpgaddr > pgsz) {
5065 demote = 1;
5069 ASSERT(demote || AS_WRITE_HELD(seg->s_as));
5071 if (demote) {
5072 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5073 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5074 if (seg->s_szc != 0) {
5075 segvn_vmpss_clrszc_cnt++;
5076 ASSERT(svd->softlockcnt == 0);
5077 err = segvn_clrszc(seg);
5078 if (err) {
5079 segvn_vmpss_clrszc_err++;
5080 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5081 return (FC_MAKE_ERR(err));
5084 ASSERT(seg->s_szc == 0);
5085 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5086 goto top;
5091 * Check to see if we need to allocate an anon_map structure.
5093 if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5094 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5096 * Drop the "read" lock on the segment and acquire
5097 * the "write" version since we have to allocate the
5098 * anon_map.
5100 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5101 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5103 if (svd->amp == NULL) {
5104 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5105 svd->amp->a_szc = seg->s_szc;
5107 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5110 * Start all over again since segment protections
5111 * may have changed after we dropped the "read" lock.
5113 goto top;
5117 * S_READ_NOCOW vs S_READ distinction was
5118 * only needed for the code above. After
5119 * that we treat it as S_READ.
5121 if (rw == S_READ_NOCOW) {
5122 ASSERT(type == F_SOFTLOCK);
5123 ASSERT(AS_WRITE_HELD(seg->s_as));
5124 rw = S_READ;
5127 amp = svd->amp;
5130 * MADV_SEQUENTIAL work is ignored for large page segments.
5132 if (seg->s_szc != 0) {
5133 pgsz = page_get_pagesize(seg->s_szc);
5134 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5135 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5136 if (svd->vp == NULL) {
5137 err = segvn_fault_anonpages(hat, seg, lpgaddr,
5138 lpgeaddr, type, rw, addr, addr + len, brkcow);
5139 } else {
5140 err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5141 lpgeaddr, type, rw, addr, addr + len, brkcow);
5142 if (err == IE_RETRY) {
5143 ASSERT(seg->s_szc == 0);
5144 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5145 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5146 goto top;
5149 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5150 return (err);
5153 page = seg_page(seg, addr);
5154 if (amp != NULL) {
5155 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5156 anon_index = svd->anon_index + page;
5158 if (type == F_PROT && rw == S_READ &&
5159 svd->tr_state == SEGVN_TR_OFF &&
5160 svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5161 size_t index = anon_index;
5162 struct anon *ap;
5164 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5166 * The fast path could apply to S_WRITE also, except
5167 * that the protection fault could be caused by lazy
5168 * tlb flush when ro->rw. In this case, the pte is
5169 * RW already. But RO in the other cpu's tlb causes
5170 * the fault. Since hat_chgprot won't do anything if
5171 * pte doesn't change, we may end up faulting
5172 * indefinitely until the RO tlb entry gets replaced.
5174 for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5175 anon_array_enter(amp, index, &cookie);
5176 ap = anon_get_ptr(amp->ahp, index);
5177 anon_array_exit(&cookie);
5178 if ((ap == NULL) || (ap->an_refcnt != 1)) {
5179 ANON_LOCK_EXIT(&amp->a_rwlock);
5180 goto slow;
5183 hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5184 ANON_LOCK_EXIT(&amp->a_rwlock);
5185 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5186 return (0);
5189 slow:
5191 if (svd->vpage == NULL)
5192 vpage = NULL;
5193 else
5194 vpage = &svd->vpage[page];
5196 off = svd->offset + (uintptr_t)(addr - seg->s_base);
5199 * If MADV_SEQUENTIAL has been set for the particular page we
5200 * are faulting on, free behind all pages in the segment and put
5201 * them on the free list.
5204 if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5205 struct vpage *vpp;
5206 ulong_t fanon_index;
5207 size_t fpage;
5208 uoff_t pgoff, fpgoff;
5209 struct vnode *fvp;
5210 struct anon *fap = NULL;
5212 if (svd->advice == MADV_SEQUENTIAL ||
5213 (svd->pageadvice &&
5214 VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5215 pgoff = off - PAGESIZE;
5216 fpage = page - 1;
5217 if (vpage != NULL)
5218 vpp = &svd->vpage[fpage];
5219 if (amp != NULL)
5220 fanon_index = svd->anon_index + fpage;
5222 while (pgoff > svd->offset) {
5223 if (svd->advice != MADV_SEQUENTIAL &&
5224 (!svd->pageadvice || (vpage &&
5225 VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5226 break;
5229 * If this is an anon page, we must find the
5230 * correct <vp, offset> for it
5232 fap = NULL;
5233 if (amp != NULL) {
5234 ANON_LOCK_ENTER(&amp->a_rwlock,
5235 RW_READER);
5236 anon_array_enter(amp, fanon_index,
5237 &cookie);
5238 fap = anon_get_ptr(amp->ahp,
5239 fanon_index);
5240 if (fap != NULL) {
5241 swap_xlate(fap, &fvp, &fpgoff);
5242 } else {
5243 fpgoff = pgoff;
5244 fvp = svd->vp;
5246 anon_array_exit(&cookie);
5247 ANON_LOCK_EXIT(&amp->a_rwlock);
5248 } else {
5249 fpgoff = pgoff;
5250 fvp = svd->vp;
5252 if (fvp == NULL)
5253 break; /* XXX */
5255 * Skip pages that are free or have an
5256 * "exclusive" lock.
5258 pp = page_lookup_nowait(&fvp->v_object,
5259 fpgoff, SE_SHARED);
5260 if (pp == NULL)
5261 break;
5263 * We don't need the page_struct_lock to test
5264 * as this is only advisory; even if we
5265 * acquire it someone might race in and lock
5266 * the page after we unlock and before the
5267 * PUTPAGE, then fop_putpage will do nothing.
5269 if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5271 * Hold the vnode before releasing
5272 * the page lock to prevent it from
5273 * being freed and re-used by some
5274 * other thread.
5276 VN_HOLD(fvp);
5277 page_unlock(pp);
5279 * We should build a page list
5280 * to kluster putpages XXX
5282 (void) fop_putpage(fvp,
5283 (offset_t)fpgoff, PAGESIZE,
5284 (B_DONTNEED|B_FREE|B_ASYNC),
5285 svd->cred, NULL);
5286 VN_RELE(fvp);
5287 } else {
5289 * XXX - Should the loop terminate if
5290 * the page is `locked'?
5292 page_unlock(pp);
5294 --vpp;
5295 --fanon_index;
5296 pgoff -= PAGESIZE;
5301 plp = pl;
5302 *plp = NULL;
5303 pl_alloc_sz = 0;
5306 * See if we need to call fop_getpage for
5307 * *any* of the range being faulted on.
5308 * We can skip all of this work if there
5309 * was no original vnode.
5311 if (svd->vp != NULL) {
5312 uoff_t vp_off;
5313 size_t vp_len;
5314 struct anon *ap;
5315 vnode_t *vp;
5317 vp_off = off;
5318 vp_len = len;
5320 if (amp == NULL)
5321 dogetpage = 1;
5322 else {
5324 * Only acquire reader lock to prevent amp->ahp
5325 * from being changed. It's ok to miss pages,
5326 * hence we don't do anon_array_enter
5328 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5329 ap = anon_get_ptr(amp->ahp, anon_index);
5331 if (len <= PAGESIZE)
5332 /* inline non_anon() */
5333 dogetpage = (ap == NULL);
5334 else
5335 dogetpage = non_anon(amp->ahp, anon_index,
5336 &vp_off, &vp_len);
5337 ANON_LOCK_EXIT(&amp->a_rwlock);
5340 if (dogetpage) {
5341 enum seg_rw arw;
5342 struct as *as = seg->s_as;
5344 if (len > FAULT_TMP_PAGES_SZ) {
5346 * Page list won't fit in local array,
5347 * allocate one of the needed size.
5349 pl_alloc_sz =
5350 (btop(len) + 1) * sizeof (page_t *);
5351 plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5352 plp[0] = NULL;
5353 plsz = len;
5354 } else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5355 svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5356 (((size_t)(addr + PAGESIZE) <
5357 (size_t)(seg->s_base + seg->s_size)) &&
5358 hat_probe(as->a_hat, addr + PAGESIZE))) {
5360 * Ask fop_getpage to return the exact number
5361 * of pages if
5362 * (a) this is a COW fault, or
5363 * (b) this is a software fault, or
5364 * (c) next page is already mapped.
5366 plsz = len;
5367 } else {
5369 * Ask fop_getpage to return adjacent pages
5370 * within the segment.
5372 plsz = MIN((size_t)FAULT_TMP_PAGES_SZ, (size_t)
5373 ((seg->s_base + seg->s_size) - addr));
5374 ASSERT((addr + plsz) <=
5375 (seg->s_base + seg->s_size));
5379 * Need to get some non-anonymous pages.
5380 * We need to make only one call to GETPAGE to do
5381 * this to prevent certain deadlocking conditions
5382 * when we are doing locking. In this case
5383 * non_anon() should have picked up the smallest
5384 * range which includes all the non-anonymous
5385 * pages in the requested range. We have to
5386 * be careful regarding which rw flag to pass in
5387 * because on a private mapping, the underlying
5388 * object is never allowed to be written.
5390 if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5391 arw = S_READ;
5392 } else {
5393 arw = rw;
5395 vp = svd->vp;
5396 err = fop_getpage(vp, (offset_t)vp_off, vp_len,
5397 &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5398 svd->cred, NULL);
5399 if (err) {
5400 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5401 segvn_pagelist_rele(plp);
5402 if (pl_alloc_sz)
5403 kmem_free(plp, pl_alloc_sz);
5404 return (FC_MAKE_ERR(err));
5406 if (svd->type == MAP_PRIVATE)
5407 vpprot &= ~PROT_WRITE;
5412 * N.B. at this time the plp array has all the needed non-anon
5413 * pages in addition to (possibly) having some adjacent pages.
5417 * Always acquire the anon_array_lock to prevent
5418 * 2 threads from allocating separate anon slots for
5419 * the same "addr".
5421 * If this is a copy-on-write fault and we don't already
5422 * have the anon_array_lock, acquire it to prevent the
5423 * fault routine from handling multiple copy-on-write faults
5424 * on the same "addr" in the same address space.
5426 * Only one thread should deal with the fault since after
5427 * it is handled, the other threads can acquire a translation
5428 * to the newly created private page. This prevents two or
5429 * more threads from creating different private pages for the
5430 * same fault.
5432 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5433 * to prevent deadlock between this thread and another thread
5434 * which has soft-locked this page and wants to acquire serial_lock.
5435 * ( bug 4026339 )
5437 * The fix for bug 4026339 becomes unnecessary when using the
5438 * locking scheme with per amp rwlock and a global set of hash
5439 * lock, anon_array_lock. If we steal a vnode page when low
5440 * on memory and upgrad the page lock through page_rename,
5441 * then the page is PAGE_HANDLED, nothing needs to be done
5442 * for this page after returning from segvn_faultpage.
5444 * But really, the page lock should be downgraded after
5445 * the stolen page is page_rename'd.
5448 if (amp != NULL)
5449 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5452 * Ok, now loop over the address range and handle faults
5454 for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5455 err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5456 type, rw, brkcow);
5457 if (err) {
5458 if (amp != NULL)
5459 ANON_LOCK_EXIT(&amp->a_rwlock);
5460 if (type == F_SOFTLOCK && a > addr) {
5461 segvn_softunlock(seg, addr, (a - addr),
5462 S_OTHER);
5464 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5465 segvn_pagelist_rele(plp);
5466 if (pl_alloc_sz)
5467 kmem_free(plp, pl_alloc_sz);
5468 return (err);
5470 if (vpage) {
5471 vpage++;
5472 } else if (svd->vpage) {
5473 page = seg_page(seg, addr);
5474 vpage = &svd->vpage[++page];
5478 /* Didn't get pages from the underlying fs so we're done */
5479 if (!dogetpage)
5480 goto done;
5483 * Now handle any other pages in the list returned.
5484 * If the page can be used, load up the translations now.
5485 * Note that the for loop will only be entered if "plp"
5486 * is pointing to a non-NULL page pointer which means that
5487 * fop_getpage() was called and vpprot has been initialized.
5489 if (svd->pageprot == 0)
5490 prot = svd->prot & vpprot;
5494 * Large Files: diff should be unsigned value because we started
5495 * supporting > 2GB segment sizes from 2.5.1 and when a
5496 * large file of size > 2GB gets mapped to address space
5497 * the diff value can be > 2GB.
5500 for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5501 size_t diff;
5502 struct anon *ap;
5503 int anon_index;
5504 anon_sync_obj_t cookie;
5505 int hat_flag = HAT_LOAD_ADV;
5507 if (svd->flags & MAP_TEXT) {
5508 hat_flag |= HAT_LOAD_TEXT;
5511 if (pp == PAGE_HANDLED)
5512 continue;
5514 if (svd->tr_state != SEGVN_TR_ON &&
5515 pp->p_offset >= svd->offset &&
5516 pp->p_offset < svd->offset + seg->s_size) {
5518 diff = pp->p_offset - svd->offset;
5521 * Large Files: Following is the assertion
5522 * validating the above cast.
5524 VERIFY(&svd->vp->v_object == pp->p_object);
5525 ASSERT(svd->vp == pp->p_vnode);
5527 page = btop(diff);
5528 if (svd->pageprot)
5529 prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5532 * Prevent other threads in the address space from
5533 * creating private pages (i.e., allocating anon slots)
5534 * while we are in the process of loading translations
5535 * to additional pages returned by the underlying
5536 * object.
5538 if (amp != NULL) {
5539 anon_index = svd->anon_index + page;
5540 anon_array_enter(amp, anon_index, &cookie);
5541 ap = anon_get_ptr(amp->ahp, anon_index);
5543 if ((amp == NULL) || (ap == NULL)) {
5544 if (IS_VMODSORT(pp->p_vnode) ||
5545 enable_mbit_wa) {
5546 if (rw == S_WRITE)
5547 hat_setmod(pp);
5548 else if (rw != S_OTHER &&
5549 !hat_ismod(pp))
5550 prot &= ~PROT_WRITE;
5553 * Skip mapping read ahead pages marked
5554 * for migration, so they will get migrated
5555 * properly on fault
5557 ASSERT(amp == NULL ||
5558 svd->rcookie == HAT_INVALID_REGION_COOKIE);
5559 if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5560 hat_memload_region(hat,
5561 seg->s_base + diff,
5562 pp, prot, hat_flag,
5563 svd->rcookie);
5566 if (amp != NULL)
5567 anon_array_exit(&cookie);
5569 page_unlock(pp);
5571 done:
5572 if (amp != NULL)
5573 ANON_LOCK_EXIT(&amp->a_rwlock);
5574 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5575 if (pl_alloc_sz)
5576 kmem_free(plp, pl_alloc_sz);
5577 return (0);
5581 * This routine is used to start I/O on pages asynchronously. XXX it will
5582 * only create PAGESIZE pages. At fault time they will be relocated into
5583 * larger pages.
5585 static faultcode_t
5586 segvn_faulta(struct seg *seg, caddr_t addr)
5588 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5589 int err;
5590 struct anon_map *amp;
5591 vnode_t *vp;
5593 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5595 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5596 if ((amp = svd->amp) != NULL) {
5597 struct anon *ap;
5600 * Reader lock to prevent amp->ahp from being changed.
5601 * This is advisory, it's ok to miss a page, so
5602 * we don't do anon_array_enter lock.
5604 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5605 if ((ap = anon_get_ptr(amp->ahp,
5606 svd->anon_index + seg_page(seg, addr))) != NULL) {
5608 err = anon_getpage(&ap, NULL, NULL,
5609 0, seg, addr, S_READ, svd->cred);
5611 ANON_LOCK_EXIT(&amp->a_rwlock);
5612 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5613 if (err)
5614 return (FC_MAKE_ERR(err));
5615 return (0);
5617 ANON_LOCK_EXIT(&amp->a_rwlock);
5620 if (svd->vp == NULL) {
5621 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5622 return (0); /* zfod page - do nothing now */
5625 vp = svd->vp;
5626 err = fop_getpage(vp,
5627 (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5628 PAGESIZE, NULL, NULL, 0, seg, addr,
5629 S_OTHER, svd->cred, NULL);
5631 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5632 if (err)
5633 return (FC_MAKE_ERR(err));
5634 return (0);
5637 static int
5638 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5640 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5641 struct vpage *cvp, *svp, *evp;
5642 struct vnode *vp;
5643 size_t pgsz;
5644 pgcnt_t pgcnt;
5645 anon_sync_obj_t cookie;
5646 int unload_done = 0;
5648 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5650 if ((svd->maxprot & prot) != prot)
5651 return (EACCES); /* violated maxprot */
5653 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5655 /* return if prot is the same */
5656 if (!svd->pageprot && svd->prot == prot) {
5657 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5658 return (0);
5662 * Since we change protections we first have to flush the cache.
5663 * This makes sure all the pagelock calls have to recheck
5664 * protections.
5666 if (svd->softlockcnt > 0) {
5667 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5670 * If this is shared segment non 0 softlockcnt
5671 * means locked pages are still in use.
5673 if (svd->type == MAP_SHARED) {
5674 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5675 return (EAGAIN);
5679 * Since we do have the segvn writers lock nobody can fill
5680 * the cache with entries belonging to this seg during
5681 * the purge. The flush either succeeds or we still have
5682 * pending I/Os.
5684 segvn_purge(seg);
5685 if (svd->softlockcnt > 0) {
5686 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5687 return (EAGAIN);
5691 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5692 ASSERT(svd->amp == NULL);
5693 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5694 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5695 HAT_REGION_TEXT);
5696 svd->rcookie = HAT_INVALID_REGION_COOKIE;
5697 unload_done = 1;
5698 } else if (svd->tr_state == SEGVN_TR_INIT) {
5699 svd->tr_state = SEGVN_TR_OFF;
5700 } else if (svd->tr_state == SEGVN_TR_ON) {
5701 ASSERT(svd->amp != NULL);
5702 segvn_textunrepl(seg, 0);
5703 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5704 unload_done = 1;
5707 if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5708 svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5709 ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5710 segvn_inval_trcache(svd->vp);
5712 if (seg->s_szc != 0) {
5713 int err;
5714 pgsz = page_get_pagesize(seg->s_szc);
5715 pgcnt = pgsz >> PAGESHIFT;
5716 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5717 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5718 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5719 ASSERT(seg->s_base != addr || seg->s_size != len);
5721 * If we are holding the as lock as a reader then
5722 * we need to return IE_RETRY and let the as
5723 * layer drop and re-acquire the lock as a writer.
5725 if (AS_READ_HELD(seg->s_as))
5726 return (IE_RETRY);
5727 VM_STAT_ADD(segvnvmstats.demoterange[1]);
5728 if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5729 err = segvn_demote_range(seg, addr, len,
5730 SDR_END, 0);
5731 } else {
5732 uint_t szcvec = map_pgszcvec(seg->s_base,
5733 pgsz, (uintptr_t)seg->s_base,
5734 (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5735 err = segvn_demote_range(seg, addr, len,
5736 SDR_END, szcvec);
5738 if (err == 0)
5739 return (IE_RETRY);
5740 if (err == ENOMEM)
5741 return (IE_NOMEM);
5742 return (err);
5748 * If it's a private mapping and we're making it writable then we
5749 * may have to reserve the additional swap space now. If we are
5750 * making writable only a part of the segment then we use its vpage
5751 * array to keep a record of the pages for which we have reserved
5752 * swap. In this case we set the pageswap field in the segment's
5753 * segvn structure to record this.
5755 * If it's a private mapping to a file (i.e., vp != NULL) and we're
5756 * removing write permission on the entire segment and we haven't
5757 * modified any pages, we can release the swap space.
5759 if (svd->type == MAP_PRIVATE) {
5760 if (prot & PROT_WRITE) {
5761 if (!(svd->flags & MAP_NORESERVE) &&
5762 !(svd->swresv && svd->pageswap == 0)) {
5763 size_t sz = 0;
5766 * Start by determining how much swap
5767 * space is required.
5769 if (addr == seg->s_base &&
5770 len == seg->s_size &&
5771 svd->pageswap == 0) {
5772 /* The whole segment */
5773 sz = seg->s_size;
5774 } else {
5776 * Make sure that the vpage array
5777 * exists, and make a note of the
5778 * range of elements corresponding
5779 * to len.
5781 segvn_vpage(seg);
5782 if (svd->vpage == NULL) {
5783 SEGVN_LOCK_EXIT(seg->s_as,
5784 &svd->lock);
5785 return (ENOMEM);
5787 svp = &svd->vpage[seg_page(seg, addr)];
5788 evp = &svd->vpage[seg_page(seg,
5789 addr + len)];
5791 if (svd->pageswap == 0) {
5793 * This is the first time we've
5794 * asked for a part of this
5795 * segment, so we need to
5796 * reserve everything we've
5797 * been asked for.
5799 sz = len;
5800 } else {
5802 * We have to count the number
5803 * of pages required.
5805 for (cvp = svp; cvp < evp;
5806 cvp++) {
5807 if (!VPP_ISSWAPRES(cvp))
5808 sz++;
5810 sz <<= PAGESHIFT;
5814 /* Try to reserve the necessary swap. */
5815 if (anon_resv_zone(sz,
5816 seg->s_as->a_proc->p_zone) == 0) {
5817 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5818 return (IE_NOMEM);
5822 * Make a note of how much swap space
5823 * we've reserved.
5825 if (svd->pageswap == 0 && sz == seg->s_size) {
5826 svd->swresv = sz;
5827 } else {
5828 ASSERT(svd->vpage != NULL);
5829 svd->swresv += sz;
5830 svd->pageswap = 1;
5831 for (cvp = svp; cvp < evp; cvp++) {
5832 if (!VPP_ISSWAPRES(cvp))
5833 VPP_SETSWAPRES(cvp);
5837 } else {
5839 * Swap space is released only if this segment
5840 * does not map anonymous memory, since read faults
5841 * on such segments still need an anon slot to read
5842 * in the data.
5844 if (svd->swresv != 0 && svd->vp != NULL &&
5845 svd->amp == NULL && addr == seg->s_base &&
5846 len == seg->s_size && svd->pageprot == 0) {
5847 ASSERT(svd->pageswap == 0);
5848 anon_unresv_zone(svd->swresv,
5849 seg->s_as->a_proc->p_zone);
5850 svd->swresv = 0;
5855 if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
5856 if (svd->prot == prot) {
5857 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5858 return (0); /* all done */
5860 svd->prot = (uchar_t)prot;
5861 } else if (svd->type == MAP_PRIVATE) {
5862 struct anon *ap = NULL;
5863 page_t *pp;
5864 uoff_t offset, off;
5865 struct anon_map *amp;
5866 ulong_t anon_idx = 0;
5869 * A vpage structure exists or else the change does not
5870 * involve the entire segment. Establish a vpage structure
5871 * if none is there. Then, for each page in the range,
5872 * adjust its individual permissions. Note that write-
5873 * enabling a MAP_PRIVATE page can affect the claims for
5874 * locked down memory. Overcommitting memory terminates
5875 * the operation.
5877 segvn_vpage(seg);
5878 if (svd->vpage == NULL) {
5879 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5880 return (ENOMEM);
5882 svd->pageprot = 1;
5883 if ((amp = svd->amp) != NULL) {
5884 anon_idx = svd->anon_index + seg_page(seg, addr);
5885 ASSERT(seg->s_szc == 0 ||
5886 IS_P2ALIGNED(anon_idx, pgcnt));
5887 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5890 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5891 evp = &svd->vpage[seg_page(seg, addr + len)];
5894 * See Statement at the beginning of segvn_lockop regarding
5895 * the way cowcnts and lckcnts are handled.
5897 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5899 if (seg->s_szc != 0) {
5900 if (amp != NULL) {
5901 anon_array_enter(amp, anon_idx,
5902 &cookie);
5904 if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5905 !segvn_claim_pages(seg, svp, offset,
5906 anon_idx, prot)) {
5907 if (amp != NULL) {
5908 anon_array_exit(&cookie);
5910 break;
5912 if (amp != NULL) {
5913 anon_array_exit(&cookie);
5915 anon_idx++;
5916 } else {
5917 if (amp != NULL) {
5918 anon_array_enter(amp, anon_idx,
5919 &cookie);
5920 ap = anon_get_ptr(amp->ahp, anon_idx++);
5923 if (VPP_ISPPLOCK(svp) &&
5924 VPP_PROT(svp) != prot) {
5926 if (amp == NULL || ap == NULL) {
5927 vp = svd->vp;
5928 off = offset;
5929 } else
5930 swap_xlate(ap, &vp, &off);
5931 if (amp != NULL)
5932 anon_array_exit(&cookie);
5934 if ((pp = page_lookup(&vp->v_object, off, SE_SHARED)) == NULL) {
5935 panic("segvn_setprot: no page");
5936 /*NOTREACHED*/
5938 ASSERT(seg->s_szc == 0);
5939 if ((VPP_PROT(svp) ^ prot) &
5940 PROT_WRITE) {
5941 if (prot & PROT_WRITE) {
5942 if (!page_addclaim(
5943 pp)) {
5944 page_unlock(pp);
5945 break;
5947 } else {
5948 if (!page_subclaim(
5949 pp)) {
5950 page_unlock(pp);
5951 break;
5955 page_unlock(pp);
5956 } else if (amp != NULL)
5957 anon_array_exit(&cookie);
5959 VPP_SETPROT(svp, prot);
5960 offset += PAGESIZE;
5962 if (amp != NULL)
5963 ANON_LOCK_EXIT(&amp->a_rwlock);
5966 * Did we terminate prematurely? If so, simply unload
5967 * the translations to the things we've updated so far.
5969 if (svp != evp) {
5970 if (unload_done) {
5971 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5972 return (IE_NOMEM);
5974 len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5975 PAGESIZE;
5976 ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5977 if (len != 0)
5978 hat_unload(seg->s_as->a_hat, addr,
5979 len, HAT_UNLOAD);
5980 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5981 return (IE_NOMEM);
5983 } else {
5984 segvn_vpage(seg);
5985 if (svd->vpage == NULL) {
5986 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5987 return (ENOMEM);
5989 svd->pageprot = 1;
5990 evp = &svd->vpage[seg_page(seg, addr + len)];
5991 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5992 VPP_SETPROT(svp, prot);
5996 if (unload_done) {
5997 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5998 return (0);
6001 if (((prot & PROT_WRITE) != 0 &&
6002 (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
6003 (prot & ~PROT_USER) == PROT_NONE) {
6005 * Either private or shared data with write access (in
6006 * which case we need to throw out all former translations
6007 * so that we get the right translations set up on fault
6008 * and we don't allow write access to any copy-on-write pages
6009 * that might be around or to prevent write access to pages
6010 * representing holes in a file), or we don't have permission
6011 * to access the memory at all (in which case we have to
6012 * unload any current translations that might exist).
6014 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
6015 } else {
6017 * A shared mapping or a private mapping in which write
6018 * protection is going to be denied - just change all the
6019 * protections over the range of addresses in question.
6020 * segvn does not support any other attributes other
6021 * than prot so we can use hat_chgattr.
6023 hat_chgattr(seg->s_as->a_hat, addr, len, prot);
6026 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6028 return (0);
6032 * segvn_setpagesize is called via segop_setpagesize from as_setpagesize,
6033 * to determine if the seg is capable of mapping the requested szc.
6035 static int
6036 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
6038 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6039 struct segvn_data *nsvd;
6040 struct anon_map *amp = svd->amp;
6041 struct seg *nseg;
6042 caddr_t eaddr = addr + len, a;
6043 size_t pgsz = page_get_pagesize(szc);
6044 pgcnt_t pgcnt = page_get_pagecnt(szc);
6045 int err;
6046 uoff_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
6048 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
6049 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6051 if (seg->s_szc == szc || segvn_lpg_disable != 0) {
6052 return (0);
6056 * addr should always be pgsz aligned but eaddr may be misaligned if
6057 * it's at the end of the segment.
6059 * XXX we should assert this condition since as_setpagesize() logic
6060 * guarantees it.
6062 if (!IS_P2ALIGNED(addr, pgsz) ||
6063 (!IS_P2ALIGNED(eaddr, pgsz) &&
6064 eaddr != seg->s_base + seg->s_size)) {
6066 segvn_setpgsz_align_err++;
6067 return (EINVAL);
6070 if (amp != NULL && svd->type == MAP_SHARED) {
6071 ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6072 if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6074 segvn_setpgsz_anon_align_err++;
6075 return (EINVAL);
6079 if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6080 szc > segvn_maxpgszc) {
6081 return (EINVAL);
6084 /* paranoid check */
6085 if (svd->vp != NULL &&
6086 (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6087 return (EINVAL);
6090 if (seg->s_szc == 0 && svd->vp != NULL &&
6091 map_addr_vacalign_check(addr, off)) {
6092 return (EINVAL);
6096 * Check that protections are the same within new page
6097 * size boundaries.
6099 if (svd->pageprot) {
6100 for (a = addr; a < eaddr; a += pgsz) {
6101 if ((a + pgsz) > eaddr) {
6102 if (!sameprot(seg, a, eaddr - a)) {
6103 return (EINVAL);
6105 } else {
6106 if (!sameprot(seg, a, pgsz)) {
6107 return (EINVAL);
6114 * Since we are changing page size we first have to flush
6115 * the cache. This makes sure all the pagelock calls have
6116 * to recheck protections.
6118 if (svd->softlockcnt > 0) {
6119 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6122 * If this is shared segment non 0 softlockcnt
6123 * means locked pages are still in use.
6125 if (svd->type == MAP_SHARED) {
6126 return (EAGAIN);
6130 * Since we do have the segvn writers lock nobody can fill
6131 * the cache with entries belonging to this seg during
6132 * the purge. The flush either succeeds or we still have
6133 * pending I/Os.
6135 segvn_purge(seg);
6136 if (svd->softlockcnt > 0) {
6137 return (EAGAIN);
6141 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6142 ASSERT(svd->amp == NULL);
6143 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6144 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6145 HAT_REGION_TEXT);
6146 svd->rcookie = HAT_INVALID_REGION_COOKIE;
6147 } else if (svd->tr_state == SEGVN_TR_INIT) {
6148 svd->tr_state = SEGVN_TR_OFF;
6149 } else if (svd->tr_state == SEGVN_TR_ON) {
6150 ASSERT(svd->amp != NULL);
6151 segvn_textunrepl(seg, 1);
6152 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6153 amp = NULL;
6157 * Operation for sub range of existing segment.
6159 if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6160 if (szc < seg->s_szc) {
6161 VM_STAT_ADD(segvnvmstats.demoterange[2]);
6162 err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6163 if (err == 0) {
6164 return (IE_RETRY);
6166 if (err == ENOMEM) {
6167 return (IE_NOMEM);
6169 return (err);
6171 if (addr != seg->s_base) {
6172 nseg = segvn_split_seg(seg, addr);
6173 if (eaddr != (nseg->s_base + nseg->s_size)) {
6174 /* eaddr is szc aligned */
6175 (void) segvn_split_seg(nseg, eaddr);
6177 return (IE_RETRY);
6179 if (eaddr != (seg->s_base + seg->s_size)) {
6180 /* eaddr is szc aligned */
6181 (void) segvn_split_seg(seg, eaddr);
6183 return (IE_RETRY);
6187 * Break any low level sharing and reset seg->s_szc to 0.
6189 if ((err = segvn_clrszc(seg)) != 0) {
6190 if (err == ENOMEM) {
6191 err = IE_NOMEM;
6193 return (err);
6195 ASSERT(seg->s_szc == 0);
6198 * If the end of the current segment is not pgsz aligned
6199 * then attempt to concatenate with the next segment.
6201 if (!IS_P2ALIGNED(eaddr, pgsz)) {
6202 nseg = AS_SEGNEXT(seg->s_as, seg);
6203 if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6204 return (ENOMEM);
6206 if (nseg->s_ops != &segvn_ops) {
6207 return (EINVAL);
6209 nsvd = (struct segvn_data *)nseg->s_data;
6210 if (nsvd->softlockcnt > 0) {
6212 * If this is shared segment non 0 softlockcnt
6213 * means locked pages are still in use.
6215 if (nsvd->type == MAP_SHARED) {
6216 return (EAGAIN);
6218 segvn_purge(nseg);
6219 if (nsvd->softlockcnt > 0) {
6220 return (EAGAIN);
6223 err = segvn_clrszc(nseg);
6224 if (err == ENOMEM) {
6225 err = IE_NOMEM;
6227 if (err != 0) {
6228 return (err);
6230 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6231 err = segvn_concat(seg, nseg, 1);
6232 if (err == -1) {
6233 return (EINVAL);
6235 if (err == -2) {
6236 return (IE_NOMEM);
6238 return (IE_RETRY);
6242 * May need to re-align anon array to
6243 * new szc.
6245 if (amp != NULL) {
6246 if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6247 struct anon_hdr *nahp;
6249 ASSERT(svd->type == MAP_PRIVATE);
6251 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6252 ASSERT(amp->refcnt == 1);
6253 nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6254 if (nahp == NULL) {
6255 ANON_LOCK_EXIT(&amp->a_rwlock);
6256 return (IE_NOMEM);
6258 if (anon_copy_ptr(amp->ahp, svd->anon_index,
6259 nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6260 anon_release(nahp, btop(amp->size));
6261 ANON_LOCK_EXIT(&amp->a_rwlock);
6262 return (IE_NOMEM);
6264 anon_release(amp->ahp, btop(amp->size));
6265 amp->ahp = nahp;
6266 svd->anon_index = 0;
6267 ANON_LOCK_EXIT(&amp->a_rwlock);
6270 if (svd->vp != NULL && szc != 0) {
6271 struct vattr va;
6272 uoff_t eoffpage = svd->offset;
6273 va.va_mask = AT_SIZE;
6274 eoffpage += seg->s_size;
6275 eoffpage = btopr(eoffpage);
6276 if (fop_getattr(svd->vp, &va, 0, svd->cred, NULL) != 0) {
6277 segvn_setpgsz_getattr_err++;
6278 return (EINVAL);
6280 if (btopr(va.va_size) < eoffpage) {
6281 segvn_setpgsz_eof_err++;
6282 return (EINVAL);
6284 if (amp != NULL) {
6286 * anon_fill_cow_holes() may call fop_getpage().
6287 * don't take anon map lock here to avoid holding it
6288 * across fop_getpage() calls that may call back into
6289 * segvn for klsutering checks. We don't really need
6290 * anon map lock here since it's a private segment and
6291 * we hold as level lock as writers.
6293 if ((err = anon_fill_cow_holes(seg, seg->s_base,
6294 amp->ahp, svd->anon_index, svd->vp, svd->offset,
6295 seg->s_size, szc, svd->prot, svd->vpage,
6296 svd->cred)) != 0) {
6297 return (EINVAL);
6300 segvn_setvnode_mpss(svd->vp);
6303 if (amp != NULL) {
6304 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6305 if (svd->type == MAP_PRIVATE) {
6306 amp->a_szc = szc;
6307 } else if (szc > amp->a_szc) {
6308 amp->a_szc = szc;
6310 ANON_LOCK_EXIT(&amp->a_rwlock);
6313 seg->s_szc = szc;
6315 return (0);
6318 static int
6319 segvn_clrszc(struct seg *seg)
6321 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6322 struct anon_map *amp = svd->amp;
6323 size_t pgsz;
6324 pgcnt_t pages;
6325 int err = 0;
6326 caddr_t a = seg->s_base;
6327 caddr_t ea = a + seg->s_size;
6328 ulong_t an_idx = svd->anon_index;
6329 vnode_t *vp = svd->vp;
6330 struct vpage *vpage = svd->vpage;
6331 page_t *anon_pl[1 + 1], *pp;
6332 struct anon *ap, *oldap;
6333 uint_t prot = svd->prot, vpprot;
6334 int pageflag = 0;
6336 ASSERT(AS_WRITE_HELD(seg->s_as) ||
6337 SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6338 ASSERT(svd->softlockcnt == 0);
6340 if (vp == NULL && amp == NULL) {
6341 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6342 seg->s_szc = 0;
6343 return (0);
6346 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6347 ASSERT(svd->amp == NULL);
6348 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6349 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6350 HAT_REGION_TEXT);
6351 svd->rcookie = HAT_INVALID_REGION_COOKIE;
6352 } else if (svd->tr_state == SEGVN_TR_ON) {
6353 ASSERT(svd->amp != NULL);
6354 segvn_textunrepl(seg, 1);
6355 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6356 amp = NULL;
6357 } else {
6358 if (svd->tr_state != SEGVN_TR_OFF) {
6359 ASSERT(svd->tr_state == SEGVN_TR_INIT);
6360 svd->tr_state = SEGVN_TR_OFF;
6364 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6365 * unload argument is 0 when we are freeing the segment
6366 * and unload was already done.
6368 hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6369 HAT_UNLOAD_UNMAP);
6372 if (amp == NULL || svd->type == MAP_SHARED) {
6373 seg->s_szc = 0;
6374 return (0);
6377 pgsz = page_get_pagesize(seg->s_szc);
6378 pages = btop(pgsz);
6381 * XXX anon rwlock is not really needed because this is a
6382 * private segment and we are writers.
6384 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6386 for (; a < ea; a += pgsz, an_idx += pages) {
6387 if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6388 ASSERT(vpage != NULL || svd->pageprot == 0);
6389 if (vpage != NULL) {
6390 ASSERT(sameprot(seg, a, pgsz));
6391 prot = VPP_PROT(vpage);
6392 pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6394 if (seg->s_szc != 0) {
6395 ASSERT(vp == NULL || anon_pages(amp->ahp,
6396 an_idx, pages) == pages);
6397 if ((err = anon_map_demotepages(amp, an_idx,
6398 seg, a, prot, vpage, svd->cred)) != 0) {
6399 goto out;
6401 } else {
6402 if (oldap->an_refcnt == 1) {
6403 continue;
6405 if ((err = anon_getpage(&oldap, &vpprot,
6406 anon_pl, PAGESIZE, seg, a, S_READ,
6407 svd->cred))) {
6408 goto out;
6410 if ((pp = anon_private(&ap, seg, a, prot,
6411 anon_pl[0], pageflag, svd->cred)) == NULL) {
6412 err = ENOMEM;
6413 goto out;
6415 anon_decref(oldap);
6416 (void) anon_set_ptr(amp->ahp, an_idx, ap,
6417 ANON_SLEEP);
6418 page_unlock(pp);
6421 vpage = (vpage == NULL) ? NULL : vpage + pages;
6424 amp->a_szc = 0;
6425 seg->s_szc = 0;
6426 out:
6427 ANON_LOCK_EXIT(&amp->a_rwlock);
6428 return (err);
6431 static int
6432 segvn_claim_pages(
6433 struct seg *seg,
6434 struct vpage *svp,
6435 uoff_t off,
6436 ulong_t anon_idx,
6437 uint_t prot)
6439 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6440 size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6441 page_t **ppa;
6442 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6443 struct anon_map *amp = svd->amp;
6444 struct vpage *evp = svp + pgcnt;
6445 caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6446 + seg->s_base;
6447 struct anon *ap;
6448 struct vnode *vp = svd->vp;
6449 page_t *pp;
6450 pgcnt_t pg_idx, i;
6451 int err = 0;
6452 anoff_t aoff;
6453 int anon = (amp != NULL) ? 1 : 0;
6455 ASSERT(svd->type == MAP_PRIVATE);
6456 ASSERT(svd->vpage != NULL);
6457 ASSERT(seg->s_szc != 0);
6458 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6459 ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6460 ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6462 if (VPP_PROT(svp) == prot)
6463 return (1);
6464 if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6465 return (1);
6467 ppa = kmem_alloc(ppasize, KM_SLEEP);
6468 if (anon && vp != NULL) {
6469 if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6470 anon = 0;
6471 ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6473 ASSERT(!anon ||
6474 anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6477 for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6478 if (!VPP_ISPPLOCK(svp))
6479 continue;
6480 if (anon) {
6481 ap = anon_get_ptr(amp->ahp, anon_idx);
6482 if (ap == NULL) {
6483 panic("segvn_claim_pages: no anon slot");
6485 swap_xlate(ap, &vp, &aoff);
6486 off = (uoff_t)aoff;
6488 ASSERT(vp != NULL);
6489 if ((pp = page_lookup(&vp->v_object, (uoff_t)off, SE_SHARED)) == NULL) {
6490 panic("segvn_claim_pages: no page");
6492 ppa[pg_idx++] = pp;
6493 off += PAGESIZE;
6496 if (ppa[0] == NULL) {
6497 kmem_free(ppa, ppasize);
6498 return (1);
6501 ASSERT(pg_idx <= pgcnt);
6502 ppa[pg_idx] = NULL;
6505 /* Find each large page within ppa, and adjust its claim */
6507 /* Does ppa cover a single large page? */
6508 if (ppa[0]->p_szc == seg->s_szc) {
6509 if (prot & PROT_WRITE)
6510 err = page_addclaim_pages(ppa);
6511 else
6512 err = page_subclaim_pages(ppa);
6513 } else {
6514 for (i = 0; ppa[i]; i += pgcnt) {
6515 ASSERT(IS_P2ALIGNED(page_pptonum(ppa[i]), pgcnt));
6516 if (prot & PROT_WRITE)
6517 err = page_addclaim_pages(&ppa[i]);
6518 else
6519 err = page_subclaim_pages(&ppa[i]);
6520 if (err == 0)
6521 break;
6525 for (i = 0; i < pg_idx; i++) {
6526 ASSERT(ppa[i] != NULL);
6527 page_unlock(ppa[i]);
6530 kmem_free(ppa, ppasize);
6531 return (err);
6535 * Returns right (upper address) segment if split occurred.
6536 * If the address is equal to the beginning or end of its segment it returns
6537 * the current segment.
6539 static struct seg *
6540 segvn_split_seg(struct seg *seg, caddr_t addr)
6542 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6543 struct seg *nseg;
6544 size_t nsize;
6545 struct segvn_data *nsvd;
6547 ASSERT(AS_WRITE_HELD(seg->s_as));
6548 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6550 ASSERT(addr >= seg->s_base);
6551 ASSERT(addr <= seg->s_base + seg->s_size);
6552 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6554 if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6555 return (seg);
6557 nsize = seg->s_base + seg->s_size - addr;
6558 seg->s_size = addr - seg->s_base;
6559 nseg = seg_alloc(seg->s_as, addr, nsize);
6560 ASSERT(nseg != NULL);
6561 nseg->s_ops = seg->s_ops;
6562 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6563 nseg->s_data = (void *)nsvd;
6564 nseg->s_szc = seg->s_szc;
6565 *nsvd = *svd;
6566 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6567 nsvd->seg = nseg;
6568 rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6570 if (nsvd->vp != NULL) {
6571 VN_HOLD(nsvd->vp);
6572 nsvd->offset = svd->offset +
6573 (uintptr_t)(nseg->s_base - seg->s_base);
6574 if (nsvd->type == MAP_SHARED)
6575 lgrp_shm_policy_init(NULL, nsvd->vp);
6576 } else {
6578 * The offset for an anonymous segment has no signifigance in
6579 * terms of an offset into a file. If we were to use the above
6580 * calculation instead, the structures read out of
6581 * /proc/<pid>/xmap would be more difficult to decipher since
6582 * it would be unclear whether two seemingly contiguous
6583 * prxmap_t structures represented different segments or a
6584 * single segment that had been split up into multiple prxmap_t
6585 * structures (e.g. if some part of the segment had not yet
6586 * been faulted in).
6588 nsvd->offset = 0;
6591 ASSERT(svd->softlockcnt == 0);
6592 ASSERT(svd->softlockcnt_sbase == 0);
6593 ASSERT(svd->softlockcnt_send == 0);
6594 crhold(svd->cred);
6596 if (svd->vpage != NULL) {
6597 size_t bytes = vpgtob(seg_pages(seg));
6598 size_t nbytes = vpgtob(seg_pages(nseg));
6599 struct vpage *ovpage = svd->vpage;
6601 svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6602 bcopy(ovpage, svd->vpage, bytes);
6603 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6604 bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6605 kmem_free(ovpage, bytes + nbytes);
6607 if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6608 struct anon_map *oamp = svd->amp, *namp;
6609 struct anon_hdr *nahp;
6611 ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6612 ASSERT(oamp->refcnt == 1);
6613 nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6614 (void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6615 nahp, 0, btop(seg->s_size), ANON_SLEEP);
6617 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6618 namp->a_szc = nseg->s_szc;
6619 (void) anon_copy_ptr(oamp->ahp,
6620 svd->anon_index + btop(seg->s_size),
6621 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6622 anon_release(oamp->ahp, btop(oamp->size));
6623 oamp->ahp = nahp;
6624 oamp->size = seg->s_size;
6625 svd->anon_index = 0;
6626 nsvd->amp = namp;
6627 nsvd->anon_index = 0;
6628 ANON_LOCK_EXIT(&oamp->a_rwlock);
6629 } else if (svd->amp != NULL) {
6630 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6631 ASSERT(svd->amp == nsvd->amp);
6632 ASSERT(seg->s_szc <= svd->amp->a_szc);
6633 nsvd->anon_index = svd->anon_index + seg_pages(seg);
6634 ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6635 ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6636 svd->amp->refcnt++;
6637 ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6641 * Split the amount of swap reserved.
6643 if (svd->swresv) {
6645 * For MAP_NORESERVE, only allocate swap reserve for pages
6646 * being used. Other segments get enough to cover whole
6647 * segment.
6649 if (svd->flags & MAP_NORESERVE) {
6650 size_t oswresv;
6652 ASSERT(svd->amp);
6653 oswresv = svd->swresv;
6654 svd->swresv = ptob(anon_pages(svd->amp->ahp,
6655 svd->anon_index, btop(seg->s_size)));
6656 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6657 nsvd->anon_index, btop(nseg->s_size)));
6658 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6659 } else {
6660 if (svd->pageswap) {
6661 svd->swresv = segvn_count_swap_by_vpages(seg);
6662 ASSERT(nsvd->swresv >= svd->swresv);
6663 nsvd->swresv -= svd->swresv;
6664 } else {
6665 ASSERT(svd->swresv == seg->s_size +
6666 nseg->s_size);
6667 svd->swresv = seg->s_size;
6668 nsvd->swresv = nseg->s_size;
6673 return (nseg);
6677 * called on memory operations (unmap, setprot, setpagesize) for a subset
6678 * of a large page segment to either demote the memory range (SDR_RANGE)
6679 * or the ends (SDR_END) by addr/len.
6681 * returns 0 on success. returns errno, including ENOMEM, on failure.
6683 static int
6684 segvn_demote_range(
6685 struct seg *seg,
6686 caddr_t addr,
6687 size_t len,
6688 int flag,
6689 uint_t szcvec)
6691 caddr_t eaddr = addr + len;
6692 caddr_t lpgaddr, lpgeaddr;
6693 struct seg *nseg;
6694 struct seg *badseg1 = NULL;
6695 struct seg *badseg2 = NULL;
6696 size_t pgsz;
6697 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6698 int err;
6699 uint_t szc = seg->s_szc;
6700 uint_t tszcvec;
6702 ASSERT(AS_WRITE_HELD(seg->s_as));
6703 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6704 ASSERT(szc != 0);
6705 pgsz = page_get_pagesize(szc);
6706 ASSERT(seg->s_base != addr || seg->s_size != len);
6707 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6708 ASSERT(svd->softlockcnt == 0);
6709 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6710 ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6712 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6713 ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6714 if (flag == SDR_RANGE) {
6715 /* demote entire range */
6716 badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6717 (void) segvn_split_seg(nseg, lpgeaddr);
6718 ASSERT(badseg1->s_base == lpgaddr);
6719 ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6720 } else if (addr != lpgaddr) {
6721 ASSERT(flag == SDR_END);
6722 badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6723 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6724 eaddr < lpgaddr + 2 * pgsz) {
6725 (void) segvn_split_seg(nseg, lpgeaddr);
6726 ASSERT(badseg1->s_base == lpgaddr);
6727 ASSERT(badseg1->s_size == 2 * pgsz);
6728 } else {
6729 nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6730 ASSERT(badseg1->s_base == lpgaddr);
6731 ASSERT(badseg1->s_size == pgsz);
6732 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6733 ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6734 nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6735 badseg2 = nseg;
6736 (void) segvn_split_seg(nseg, lpgeaddr);
6737 ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6738 ASSERT(badseg2->s_size == pgsz);
6741 } else {
6742 ASSERT(flag == SDR_END);
6743 ASSERT(eaddr < lpgeaddr);
6744 badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6745 (void) segvn_split_seg(nseg, lpgeaddr);
6746 ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6747 ASSERT(badseg1->s_size == pgsz);
6750 ASSERT(badseg1 != NULL);
6751 ASSERT(badseg1->s_szc == szc);
6752 ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6753 badseg1->s_size == 2 * pgsz);
6754 ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6755 ASSERT(badseg1->s_size == pgsz ||
6756 sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6757 if (err = segvn_clrszc(badseg1)) {
6758 return (err);
6760 ASSERT(badseg1->s_szc == 0);
6762 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6763 uint_t tszc = highbit(tszcvec) - 1;
6764 caddr_t ta = MAX(addr, badseg1->s_base);
6765 caddr_t te;
6766 size_t tpgsz = page_get_pagesize(tszc);
6768 ASSERT(svd->type == MAP_SHARED);
6769 ASSERT(flag == SDR_END);
6770 ASSERT(tszc < szc && tszc > 0);
6772 if (eaddr > badseg1->s_base + badseg1->s_size) {
6773 te = badseg1->s_base + badseg1->s_size;
6774 } else {
6775 te = eaddr;
6778 ASSERT(ta <= te);
6779 badseg1->s_szc = tszc;
6780 if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6781 if (badseg2 != NULL) {
6782 err = segvn_demote_range(badseg1, ta, te - ta,
6783 SDR_END, tszcvec);
6784 if (err != 0) {
6785 return (err);
6787 } else {
6788 return (segvn_demote_range(badseg1, ta,
6789 te - ta, SDR_END, tszcvec));
6794 if (badseg2 == NULL)
6795 return (0);
6796 ASSERT(badseg2->s_szc == szc);
6797 ASSERT(badseg2->s_size == pgsz);
6798 ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6799 if (err = segvn_clrszc(badseg2)) {
6800 return (err);
6802 ASSERT(badseg2->s_szc == 0);
6804 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6805 uint_t tszc = highbit(tszcvec) - 1;
6806 size_t tpgsz = page_get_pagesize(tszc);
6808 ASSERT(svd->type == MAP_SHARED);
6809 ASSERT(flag == SDR_END);
6810 ASSERT(tszc < szc && tszc > 0);
6811 ASSERT(badseg2->s_base > addr);
6812 ASSERT(eaddr > badseg2->s_base);
6813 ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6815 badseg2->s_szc = tszc;
6816 if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6817 return (segvn_demote_range(badseg2, badseg2->s_base,
6818 eaddr - badseg2->s_base, SDR_END, tszcvec));
6822 return (0);
6825 static int
6826 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6828 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6829 struct vpage *vp, *evp;
6831 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6833 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6835 * If segment protection can be used, simply check against them.
6837 if (svd->pageprot == 0) {
6838 int err;
6840 err = ((svd->prot & prot) != prot) ? EACCES : 0;
6841 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6842 return (err);
6846 * Have to check down to the vpage level.
6848 evp = &svd->vpage[seg_page(seg, addr + len)];
6849 for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6850 if ((VPP_PROT(vp) & prot) != prot) {
6851 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6852 return (EACCES);
6855 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6856 return (0);
6859 static int
6860 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6862 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6863 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6865 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6867 if (pgno != 0) {
6868 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6869 if (svd->pageprot == 0) {
6870 do {
6871 protv[--pgno] = svd->prot;
6872 } while (pgno != 0);
6873 } else {
6874 size_t pgoff = seg_page(seg, addr);
6876 do {
6877 pgno--;
6878 protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6879 } while (pgno != 0);
6881 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6883 return (0);
6886 static uoff_t
6887 segvn_getoffset(struct seg *seg, caddr_t addr)
6889 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6891 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6893 return (svd->offset + (uintptr_t)(addr - seg->s_base));
6896 /*ARGSUSED*/
6897 static int
6898 segvn_gettype(struct seg *seg, caddr_t addr)
6900 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6902 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6904 return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6905 MAP_INITDATA)));
6908 /*ARGSUSED*/
6909 static int
6910 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6912 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6914 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6916 *vpp = svd->vp;
6917 return (0);
6921 * Check to see if it makes sense to do kluster/read ahead to
6922 * addr + delta relative to the mapping at addr. We assume here
6923 * that delta is a signed PAGESIZE'd multiple (which can be negative).
6925 * For segvn, we currently "approve" of the action if we are
6926 * still in the segment and it maps from the same vp/off,
6927 * or if the advice stored in segvn_data or vpages allows it.
6928 * Currently, klustering is not allowed only if MADV_RANDOM is set.
6930 static int
6931 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6933 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6934 struct anon *oap, *ap;
6935 ssize_t pd;
6936 size_t page;
6937 struct vnode *vp1, *vp2;
6938 uoff_t off1, off2;
6939 struct anon_map *amp;
6941 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6942 ASSERT(AS_WRITE_HELD(seg->s_as) ||
6943 SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6945 if (addr + delta < seg->s_base ||
6946 addr + delta >= (seg->s_base + seg->s_size))
6947 return (-1); /* exceeded segment bounds */
6949 pd = delta / (ssize_t)PAGESIZE; /* divide to preserve sign bit */
6950 page = seg_page(seg, addr);
6953 * Check to see if either of the pages addr or addr + delta
6954 * have advice set that prevents klustering (if MADV_RANDOM advice
6955 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6956 * is negative).
6958 if (svd->advice == MADV_RANDOM ||
6959 svd->advice == MADV_SEQUENTIAL && delta < 0)
6960 return (-1);
6961 else if (svd->pageadvice && svd->vpage) {
6962 struct vpage *bvpp, *evpp;
6964 bvpp = &svd->vpage[page];
6965 evpp = &svd->vpage[page + pd];
6966 if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6967 VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6968 return (-1);
6969 if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6970 VPP_ADVICE(evpp) == MADV_RANDOM)
6971 return (-1);
6974 if (svd->type == MAP_SHARED)
6975 return (0); /* shared mapping - all ok */
6977 if ((amp = svd->amp) == NULL)
6978 return (0); /* off original vnode */
6980 page += svd->anon_index;
6982 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6984 oap = anon_get_ptr(amp->ahp, page);
6985 ap = anon_get_ptr(amp->ahp, page + pd);
6987 ANON_LOCK_EXIT(&amp->a_rwlock);
6989 if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6990 return (-1); /* one with and one without an anon */
6993 if (oap == NULL) { /* implies that ap == NULL */
6994 return (0); /* off original vnode */
6998 * Now we know we have two anon pointers - check to
6999 * see if they happen to be properly allocated.
7003 * XXX We cheat here and don't lock the anon slots. We can't because
7004 * we may have been called from the anon layer which might already
7005 * have locked them. We are holding a refcnt on the slots so they
7006 * can't disappear. The worst that will happen is we'll get the wrong
7007 * names (vp, off) for the slots and make a poor klustering decision.
7009 swap_xlate(ap, &vp1, &off1);
7010 swap_xlate(oap, &vp2, &off2);
7013 if (!fop_cmp(vp1, vp2, NULL) || off1 - off2 != delta)
7014 return (-1);
7015 return (0);
7019 * Synchronize primary storage cache with real object in virtual memory.
7021 * XXX - Anonymous pages should not be sync'ed out at all.
7023 static int
7024 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7026 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7027 struct vpage *vpp;
7028 page_t *pp;
7029 uoff_t offset;
7030 struct vnode *vp;
7031 uoff_t off;
7032 caddr_t eaddr;
7033 int bflags;
7034 int err = 0;
7035 int segtype;
7036 int pageprot;
7037 int prot;
7038 ulong_t anon_index;
7039 struct anon_map *amp;
7040 struct anon *ap;
7041 anon_sync_obj_t cookie;
7043 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7045 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7047 if (svd->softlockcnt > 0) {
7049 * If this is shared segment non 0 softlockcnt
7050 * means locked pages are still in use.
7052 if (svd->type == MAP_SHARED) {
7053 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7054 return (EAGAIN);
7058 * flush all pages from seg cache
7059 * otherwise we may deadlock in swap_putpage
7060 * for B_INVAL page (4175402).
7062 * Even if we grab segvn WRITER's lock
7063 * here, there might be another thread which could've
7064 * successfully performed lookup/insert just before
7065 * we acquired the lock here. So, grabbing either
7066 * lock here is of not much use. Until we devise
7067 * a strategy at upper layers to solve the
7068 * synchronization issues completely, we expect
7069 * applications to handle this appropriately.
7071 segvn_purge(seg);
7072 if (svd->softlockcnt > 0) {
7073 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7074 return (EAGAIN);
7076 } else if (svd->type == MAP_SHARED && svd->amp != NULL &&
7077 svd->amp->a_softlockcnt > 0) {
7079 * Try to purge this amp's entries from pcache. It will
7080 * succeed only if other segments that share the amp have no
7081 * outstanding softlock's.
7083 segvn_purge(seg);
7084 if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) {
7085 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7086 return (EAGAIN);
7090 vpp = svd->vpage;
7091 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7092 bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7093 ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7095 if (attr) {
7096 pageprot = attr & ~(SHARED|PRIVATE);
7097 segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7100 * We are done if the segment types don't match
7101 * or if we have segment level protections and
7102 * they don't match.
7104 if (svd->type != segtype) {
7105 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7106 return (0);
7108 if (vpp == NULL) {
7109 if (svd->prot != pageprot) {
7110 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7111 return (0);
7113 prot = svd->prot;
7114 } else
7115 vpp = &svd->vpage[seg_page(seg, addr)];
7117 } else if (svd->vp && svd->amp == NULL &&
7118 (flags & MS_INVALIDATE) == 0) {
7121 * No attributes, no anonymous pages and MS_INVALIDATE flag
7122 * is not on, just use one big request.
7124 err = fop_putpage(svd->vp, (offset_t)offset, len,
7125 bflags, svd->cred, NULL);
7126 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7127 return (err);
7130 if ((amp = svd->amp) != NULL)
7131 anon_index = svd->anon_index + seg_page(seg, addr);
7133 for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7134 ap = NULL;
7135 if (amp != NULL) {
7136 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7137 anon_array_enter(amp, anon_index, &cookie);
7138 ap = anon_get_ptr(amp->ahp, anon_index++);
7139 if (ap != NULL) {
7140 swap_xlate(ap, &vp, &off);
7141 } else {
7142 vp = svd->vp;
7143 off = offset;
7145 anon_array_exit(&cookie);
7146 ANON_LOCK_EXIT(&amp->a_rwlock);
7147 } else {
7148 vp = svd->vp;
7149 off = offset;
7151 offset += PAGESIZE;
7153 if (vp == NULL) /* untouched zfod page */
7154 continue;
7156 if (attr) {
7157 if (vpp) {
7158 prot = VPP_PROT(vpp);
7159 vpp++;
7161 if (prot != pageprot) {
7162 continue;
7167 * See if any of these pages are locked -- if so, then we
7168 * will have to truncate an invalidate request at the first
7169 * locked one. We don't need the page_struct_lock to test
7170 * as this is only advisory; even if we acquire it someone
7171 * might race in and lock the page after we unlock and before
7172 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7174 if (flags & MS_INVALIDATE) {
7175 if ((pp = page_lookup(&vp->v_object, off, SE_SHARED)) != NULL) {
7176 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7177 page_unlock(pp);
7178 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7179 return (EBUSY);
7181 if (ap != NULL && pp->p_szc != 0 &&
7182 page_tryupgrade(pp)) {
7183 if (pp->p_lckcnt == 0 &&
7184 pp->p_cowcnt == 0) {
7186 * swapfs VN_DISPOSE() won't
7187 * invalidate large pages.
7188 * Attempt to demote.
7189 * XXX can't help it if it
7190 * fails. But for swapfs
7191 * pages it is no big deal.
7193 (void) page_try_demote_pages(
7194 pp);
7197 page_unlock(pp);
7199 } else if (svd->type == MAP_SHARED && amp != NULL) {
7201 * Avoid writing out to disk ISM's large pages
7202 * because segspt_free_pages() relies on NULL an_pvp
7203 * of anon slots of such pages.
7206 ASSERT(svd->vp == NULL);
7208 * swapfs uses page_lookup_nowait if not freeing or
7209 * invalidating and skips a page if
7210 * page_lookup_nowait returns NULL.
7212 pp = page_lookup_nowait(&vp->v_object, off, SE_SHARED);
7213 if (pp == NULL) {
7214 continue;
7216 if (pp->p_szc != 0) {
7217 page_unlock(pp);
7218 continue;
7222 * Note ISM pages are created large so (vp, off)'s
7223 * page cannot suddenly become large after we unlock
7224 * pp.
7226 page_unlock(pp);
7229 * XXX - Should ultimately try to kluster
7230 * calls to fop_putpage() for performance.
7232 VN_HOLD(vp);
7233 err = fop_putpage(vp, (offset_t)off, PAGESIZE,
7234 (bflags | (IS_SWAPFSVP(vp) ? B_PAGE_NOWAIT : 0)),
7235 svd->cred, NULL);
7237 VN_RELE(vp);
7238 if (err)
7239 break;
7241 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7242 return (err);
7246 * Determine if we have data corresponding to pages in the
7247 * primary storage virtual memory cache (i.e., "in core").
7249 static size_t
7250 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7252 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7253 struct vnode *vp, *avp;
7254 uoff_t offset, aoffset;
7255 size_t p, ep;
7256 int ret;
7257 struct vpage *vpp;
7258 page_t *pp;
7259 uint_t start;
7260 struct anon_map *amp; /* XXX - for locknest */
7261 struct anon *ap;
7262 uint_t attr;
7263 anon_sync_obj_t cookie;
7265 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7267 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7268 if (svd->amp == NULL && svd->vp == NULL) {
7269 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7270 bzero(vec, btopr(len));
7271 return (len); /* no anonymous pages created yet */
7274 p = seg_page(seg, addr);
7275 ep = seg_page(seg, addr + len);
7276 start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7278 amp = svd->amp;
7279 for (; p < ep; p++, addr += PAGESIZE) {
7280 vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7281 ret = start;
7282 ap = NULL;
7283 avp = NULL;
7284 /* Grab the vnode/offset for the anon slot */
7285 if (amp != NULL) {
7286 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7287 anon_array_enter(amp, svd->anon_index + p, &cookie);
7288 ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7289 if (ap != NULL) {
7290 swap_xlate(ap, &avp, &aoffset);
7292 anon_array_exit(&cookie);
7293 ANON_LOCK_EXIT(&amp->a_rwlock);
7295 if ((avp != NULL) && page_exists(&avp->v_object, aoffset)) {
7296 /* A page exists for the anon slot */
7297 ret |= SEG_PAGE_INCORE;
7300 * If page is mapped and writable
7302 attr = (uint_t)0;
7303 if ((hat_getattr(seg->s_as->a_hat, addr,
7304 &attr) != -1) && (attr & PROT_WRITE)) {
7305 ret |= SEG_PAGE_ANON;
7308 * Don't get page_struct lock for lckcnt and cowcnt,
7309 * since this is purely advisory.
7311 if ((pp = page_lookup_nowait(&avp->v_object,
7312 aoffset,
7313 SE_SHARED)) != NULL) {
7314 if (pp->p_lckcnt)
7315 ret |= SEG_PAGE_SOFTLOCK;
7316 if (pp->p_cowcnt)
7317 ret |= SEG_PAGE_HASCOW;
7318 page_unlock(pp);
7322 /* Gather vnode statistics */
7323 vp = svd->vp;
7324 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7326 if (vp != NULL) {
7328 * Try to obtain a "shared" lock on the page
7329 * without blocking. If this fails, determine
7330 * if the page is in memory.
7332 pp = page_lookup_nowait(&vp->v_object, offset,
7333 SE_SHARED);
7334 if ((pp == NULL) && (page_exists(&vp->v_object, offset))) {
7335 /* Page is incore, and is named */
7336 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7339 * Don't get page_struct lock for lckcnt and cowcnt,
7340 * since this is purely advisory.
7342 if (pp != NULL) {
7343 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7344 if (pp->p_lckcnt)
7345 ret |= SEG_PAGE_SOFTLOCK;
7346 if (pp->p_cowcnt)
7347 ret |= SEG_PAGE_HASCOW;
7348 page_unlock(pp);
7352 /* Gather virtual page information */
7353 if (vpp) {
7354 if (VPP_ISPPLOCK(vpp))
7355 ret |= SEG_PAGE_LOCKED;
7356 vpp++;
7359 *vec++ = (char)ret;
7361 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7362 return (len);
7366 * Statement for p_cowcnts/p_lckcnts.
7368 * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7369 * irrespective of the following factors or anything else:
7371 * (1) anon slots are populated or not
7372 * (2) cow is broken or not
7373 * (3) refcnt on ap is 1 or greater than 1
7375 * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7376 * and munlock.
7379 * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7381 * if vpage has PROT_WRITE
7382 * transfer cowcnt on the oldpage -> cowcnt on the newpage
7383 * else
7384 * transfer lckcnt on the oldpage -> lckcnt on the newpage
7386 * During copy-on-write, decrement p_cowcnt on the oldpage and increment
7387 * p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7389 * We may also break COW if softlocking on read access in the physio case.
7390 * In this case, vpage may not have PROT_WRITE. So, we need to decrement
7391 * p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7392 * vpage doesn't have PROT_WRITE.
7395 * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7397 * If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7398 * increment p_lckcnt by calling page_subclaim() which takes care of
7399 * availrmem accounting and p_lckcnt overflow.
7401 * If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7402 * increment p_cowcnt by calling page_addclaim() which takes care of
7403 * availrmem availability and p_cowcnt overflow.
7407 * Lock down (or unlock) pages mapped by this segment.
7409 * XXX only creates PAGESIZE pages if anon slots are not initialized.
7410 * At fault time they will be relocated into larger pages.
7412 static int
7413 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7414 int attr, int op, ulong_t *lockmap, size_t pos)
7416 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7417 struct vpage *vpp;
7418 struct vpage *evp;
7419 page_t *pp;
7420 uoff_t offset;
7421 uoff_t off;
7422 int segtype;
7423 int pageprot;
7424 int claim;
7425 struct vnode *vp;
7426 ulong_t anon_index;
7427 struct anon_map *amp;
7428 struct anon *ap;
7429 struct vattr va;
7430 anon_sync_obj_t cookie;
7431 struct kshmid *sp = NULL;
7432 struct proc *p = curproc;
7433 kproject_t *proj = NULL;
7434 int chargeproc = 1;
7435 size_t locked_bytes = 0;
7436 size_t unlocked_bytes = 0;
7437 int err = 0;
7440 * Hold write lock on address space because may split or concatenate
7441 * segments
7443 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7446 * If this is a shm, use shm's project and zone, else use
7447 * project and zone of calling process
7450 /* Determine if this segment backs a sysV shm */
7451 if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7452 ASSERT(svd->type == MAP_SHARED);
7453 ASSERT(svd->tr_state == SEGVN_TR_OFF);
7454 sp = svd->amp->a_sp;
7455 proj = sp->shm_perm.ipc_proj;
7456 chargeproc = 0;
7459 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7460 if (attr) {
7461 pageprot = attr & ~(SHARED|PRIVATE);
7462 segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7465 * We are done if the segment types don't match
7466 * or if we have segment level protections and
7467 * they don't match.
7469 if (svd->type != segtype) {
7470 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7471 return (0);
7473 if (svd->pageprot == 0 && svd->prot != pageprot) {
7474 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7475 return (0);
7479 if (op == MC_LOCK) {
7480 if (svd->tr_state == SEGVN_TR_INIT) {
7481 svd->tr_state = SEGVN_TR_OFF;
7482 } else if (svd->tr_state == SEGVN_TR_ON) {
7483 ASSERT(svd->amp != NULL);
7484 segvn_textunrepl(seg, 0);
7485 ASSERT(svd->amp == NULL &&
7486 svd->tr_state == SEGVN_TR_OFF);
7491 * If we're locking, then we must create a vpage structure if
7492 * none exists. If we're unlocking, then check to see if there
7493 * is a vpage -- if not, then we could not have locked anything.
7496 if ((vpp = svd->vpage) == NULL) {
7497 if (op == MC_LOCK) {
7498 segvn_vpage(seg);
7499 if (svd->vpage == NULL) {
7500 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7501 return (ENOMEM);
7503 } else {
7504 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7505 return (0);
7510 * The anonymous data vector (i.e., previously
7511 * unreferenced mapping to swap space) can be allocated
7512 * by lazily testing for its existence.
7514 if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7515 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7516 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7517 svd->amp->a_szc = seg->s_szc;
7520 if ((amp = svd->amp) != NULL) {
7521 anon_index = svd->anon_index + seg_page(seg, addr);
7524 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7525 evp = &svd->vpage[seg_page(seg, addr + len)];
7527 if (sp != NULL)
7528 mutex_enter(&sp->shm_mlock);
7530 /* determine number of unlocked bytes in range for lock operation */
7531 if (op == MC_LOCK) {
7533 if (sp == NULL) {
7534 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7535 vpp++) {
7536 if (!VPP_ISPPLOCK(vpp))
7537 unlocked_bytes += PAGESIZE;
7539 } else {
7540 ulong_t i_idx, i_edx;
7541 anon_sync_obj_t i_cookie;
7542 struct anon *i_ap;
7543 struct vnode *i_vp;
7544 uoff_t i_off;
7546 /* Only count sysV pages once for locked memory */
7547 i_edx = svd->anon_index + seg_page(seg, addr + len);
7548 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7549 for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7550 anon_array_enter(amp, i_idx, &i_cookie);
7551 i_ap = anon_get_ptr(amp->ahp, i_idx);
7552 if (i_ap == NULL) {
7553 unlocked_bytes += PAGESIZE;
7554 anon_array_exit(&i_cookie);
7555 continue;
7557 swap_xlate(i_ap, &i_vp, &i_off);
7558 anon_array_exit(&i_cookie);
7559 pp = page_lookup(&i_vp->v_object, i_off,
7560 SE_SHARED);
7561 if (pp == NULL) {
7562 unlocked_bytes += PAGESIZE;
7563 continue;
7564 } else if (pp->p_lckcnt == 0)
7565 unlocked_bytes += PAGESIZE;
7566 page_unlock(pp);
7568 ANON_LOCK_EXIT(&amp->a_rwlock);
7571 mutex_enter(&p->p_lock);
7572 err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7573 chargeproc);
7574 mutex_exit(&p->p_lock);
7576 if (err) {
7577 if (sp != NULL)
7578 mutex_exit(&sp->shm_mlock);
7579 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7580 return (err);
7584 * Loop over all pages in the range. Process if we're locking and
7585 * page has not already been locked in this mapping; or if we're
7586 * unlocking and the page has been locked.
7588 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7589 vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7590 if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7591 ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7592 (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7594 if (amp != NULL)
7595 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7597 * If this isn't a MAP_NORESERVE segment and
7598 * we're locking, allocate anon slots if they
7599 * don't exist. The page is brought in later on.
7601 if (op == MC_LOCK && svd->vp == NULL &&
7602 ((svd->flags & MAP_NORESERVE) == 0) &&
7603 amp != NULL &&
7604 ((ap = anon_get_ptr(amp->ahp, anon_index))
7605 == NULL)) {
7606 anon_array_enter(amp, anon_index, &cookie);
7608 if ((ap = anon_get_ptr(amp->ahp,
7609 anon_index)) == NULL) {
7610 pp = anon_zero(seg, addr, &ap,
7611 svd->cred);
7612 if (pp == NULL) {
7613 anon_array_exit(&cookie);
7614 ANON_LOCK_EXIT(&amp->a_rwlock);
7615 err = ENOMEM;
7616 goto out;
7618 ASSERT(anon_get_ptr(amp->ahp,
7619 anon_index) == NULL);
7620 (void) anon_set_ptr(amp->ahp,
7621 anon_index, ap, ANON_SLEEP);
7622 page_unlock(pp);
7624 anon_array_exit(&cookie);
7628 * Get name for page, accounting for
7629 * existence of private copy.
7631 ap = NULL;
7632 if (amp != NULL) {
7633 anon_array_enter(amp, anon_index, &cookie);
7634 ap = anon_get_ptr(amp->ahp, anon_index);
7635 if (ap != NULL) {
7636 swap_xlate(ap, &vp, &off);
7637 } else {
7638 if (svd->vp == NULL &&
7639 (svd->flags & MAP_NORESERVE)) {
7640 anon_array_exit(&cookie);
7641 ANON_LOCK_EXIT(&amp->a_rwlock);
7642 continue;
7644 vp = svd->vp;
7645 off = offset;
7647 if (op != MC_LOCK || ap == NULL) {
7648 anon_array_exit(&cookie);
7649 ANON_LOCK_EXIT(&amp->a_rwlock);
7651 } else {
7652 vp = svd->vp;
7653 off = offset;
7657 * Get page frame. It's ok if the page is
7658 * not available when we're unlocking, as this
7659 * may simply mean that a page we locked got
7660 * truncated out of existence after we locked it.
7662 * Invoke fop_getpage() to obtain the page struct
7663 * since we may need to read it from disk if its
7664 * been paged out.
7666 if (op != MC_LOCK)
7667 pp = page_lookup(&vp->v_object, off,
7668 SE_SHARED);
7669 else {
7670 page_t *pl[1 + 1];
7671 int error;
7673 ASSERT(vp != NULL);
7675 error = fop_getpage(vp, (offset_t)off, PAGESIZE,
7676 (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7677 S_OTHER, svd->cred, NULL);
7679 if (error && ap != NULL) {
7680 anon_array_exit(&cookie);
7681 ANON_LOCK_EXIT(&amp->a_rwlock);
7685 * If the error is EDEADLK then we must bounce
7686 * up and drop all vm subsystem locks and then
7687 * retry the operation later
7688 * This behavior is a temporary measure because
7689 * ufs/sds logging is badly designed and will
7690 * deadlock if we don't allow this bounce to
7691 * happen. The real solution is to re-design
7692 * the logging code to work properly. See bug
7693 * 4125102 for details of the problem.
7695 if (error == EDEADLK) {
7696 err = error;
7697 goto out;
7700 * Quit if we fail to fault in the page. Treat
7701 * the failure as an error, unless the addr
7702 * is mapped beyond the end of a file.
7704 if (error && svd->vp) {
7705 va.va_mask = AT_SIZE;
7706 if (fop_getattr(svd->vp, &va, 0,
7707 svd->cred, NULL) != 0) {
7708 err = EIO;
7709 goto out;
7711 if (btopr(va.va_size) >=
7712 btopr(off + 1)) {
7713 err = EIO;
7714 goto out;
7716 goto out;
7718 } else if (error) {
7719 err = EIO;
7720 goto out;
7722 pp = pl[0];
7723 ASSERT(pp != NULL);
7727 * See Statement at the beginning of this routine.
7729 * claim is always set if MAP_PRIVATE and PROT_WRITE
7730 * irrespective of following factors:
7732 * (1) anon slots are populated or not
7733 * (2) cow is broken or not
7734 * (3) refcnt on ap is 1 or greater than 1
7736 * See 4140683 for details
7738 claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7739 (svd->type == MAP_PRIVATE));
7742 * Perform page-level operation appropriate to
7743 * operation. If locking, undo the SOFTLOCK
7744 * performed to bring the page into memory
7745 * after setting the lock. If unlocking,
7746 * and no page was found, account for the claim
7747 * separately.
7749 if (op == MC_LOCK) {
7750 int ret = 1; /* Assume success */
7752 ASSERT(!VPP_ISPPLOCK(vpp));
7754 ret = page_pp_lock(pp, claim, 0);
7755 if (ap != NULL) {
7756 if (ap->an_pvp != NULL) {
7757 anon_swap_free(ap, pp);
7759 anon_array_exit(&cookie);
7760 ANON_LOCK_EXIT(&amp->a_rwlock);
7762 if (ret == 0) {
7763 /* locking page failed */
7764 page_unlock(pp);
7765 err = EAGAIN;
7766 goto out;
7768 VPP_SETPPLOCK(vpp);
7769 if (sp != NULL) {
7770 if (pp->p_lckcnt == 1)
7771 locked_bytes += PAGESIZE;
7772 } else
7773 locked_bytes += PAGESIZE;
7775 if (lockmap != NULL)
7776 BT_SET(lockmap, pos);
7778 page_unlock(pp);
7779 } else {
7780 ASSERT(VPP_ISPPLOCK(vpp));
7781 if (pp != NULL) {
7782 /* sysV pages should be locked */
7783 ASSERT(sp == NULL || pp->p_lckcnt > 0);
7784 page_pp_unlock(pp, claim, 0);
7785 if (sp != NULL) {
7786 if (pp->p_lckcnt == 0)
7787 unlocked_bytes
7788 += PAGESIZE;
7789 } else
7790 unlocked_bytes += PAGESIZE;
7791 page_unlock(pp);
7792 } else {
7793 ASSERT(sp == NULL);
7794 unlocked_bytes += PAGESIZE;
7796 VPP_CLRPPLOCK(vpp);
7800 out:
7801 if (op == MC_LOCK) {
7802 /* Credit back bytes that did not get locked */
7803 if ((unlocked_bytes - locked_bytes) > 0) {
7804 if (proj == NULL)
7805 mutex_enter(&p->p_lock);
7806 rctl_decr_locked_mem(p, proj,
7807 (unlocked_bytes - locked_bytes), chargeproc);
7808 if (proj == NULL)
7809 mutex_exit(&p->p_lock);
7812 } else {
7813 /* Account bytes that were unlocked */
7814 if (unlocked_bytes > 0) {
7815 if (proj == NULL)
7816 mutex_enter(&p->p_lock);
7817 rctl_decr_locked_mem(p, proj, unlocked_bytes,
7818 chargeproc);
7819 if (proj == NULL)
7820 mutex_exit(&p->p_lock);
7823 if (sp != NULL)
7824 mutex_exit(&sp->shm_mlock);
7825 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7827 return (err);
7831 * Set advice from user for specified pages
7832 * There are 10 types of advice:
7833 * MADV_NORMAL - Normal (default) behavior (whatever that is)
7834 * MADV_RANDOM - Random page references
7835 * do not allow readahead or 'klustering'
7836 * MADV_SEQUENTIAL - Sequential page references
7837 * Pages previous to the one currently being
7838 * accessed (determined by fault) are 'not needed'
7839 * and are freed immediately
7840 * MADV_WILLNEED - Pages are likely to be used (fault ahead in mctl)
7841 * MADV_DONTNEED - Pages are not needed (synced out in mctl)
7842 * MADV_FREE - Contents can be discarded
7843 * MADV_ACCESS_DEFAULT- Default access
7844 * MADV_ACCESS_LWP - Next LWP will access heavily
7845 * MADV_ACCESS_MANY- Many LWPs or processes will access heavily
7846 * MADV_PURGE - Contents will be immediately discarded
7848 static int
7849 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
7851 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7852 size_t page;
7853 int err = 0;
7854 int already_set;
7855 struct anon_map *amp;
7856 ulong_t anon_index;
7857 struct seg *next;
7858 lgrp_mem_policy_t policy;
7859 struct seg *prev;
7860 struct vnode *vp;
7862 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7865 * In case of MADV_FREE/MADV_PURGE, we won't be modifying any segment
7866 * private data structures; so, we only need to grab READER's lock
7868 if (behav != MADV_FREE && behav != MADV_PURGE) {
7869 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7870 if (svd->tr_state != SEGVN_TR_OFF) {
7871 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7872 return (0);
7874 } else {
7875 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7879 * Large pages are assumed to be only turned on when accesses to the
7880 * segment's address range have spatial and temporal locality. That
7881 * justifies ignoring MADV_SEQUENTIAL for large page segments.
7882 * Also, ignore advice affecting lgroup memory allocation
7883 * if don't need to do lgroup optimizations on this system
7886 if ((behav == MADV_SEQUENTIAL &&
7887 (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
7888 (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
7889 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
7890 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7891 return (0);
7894 if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
7895 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
7897 * Since we are going to unload hat mappings
7898 * we first have to flush the cache. Otherwise
7899 * this might lead to system panic if another
7900 * thread is doing physio on the range whose
7901 * mappings are unloaded by madvise(3C).
7903 if (svd->softlockcnt > 0) {
7905 * If this is shared segment non 0 softlockcnt
7906 * means locked pages are still in use.
7908 if (svd->type == MAP_SHARED) {
7909 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7910 return (EAGAIN);
7913 * Since we do have the segvn writers lock
7914 * nobody can fill the cache with entries
7915 * belonging to this seg during the purge.
7916 * The flush either succeeds or we still
7917 * have pending I/Os. In the later case,
7918 * madvise(3C) fails.
7920 segvn_purge(seg);
7921 if (svd->softlockcnt > 0) {
7923 * Since madvise(3C) is advisory and
7924 * it's not part of UNIX98, madvise(3C)
7925 * failure here doesn't cause any hardship.
7926 * Note that we don't block in "as" layer.
7928 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7929 return (EAGAIN);
7931 } else if (svd->type == MAP_SHARED && svd->amp != NULL &&
7932 svd->amp->a_softlockcnt > 0) {
7934 * Try to purge this amp's entries from pcache. It
7935 * will succeed only if other segments that share the
7936 * amp have no outstanding softlock's.
7938 segvn_purge(seg);
7942 amp = svd->amp;
7943 vp = svd->vp;
7944 if (behav == MADV_FREE || behav == MADV_PURGE) {
7945 pgcnt_t purged;
7947 if (behav == MADV_FREE && (vp != NULL || amp == NULL)) {
7949 * MADV_FREE is not supported for segments with an
7950 * underlying object; if anonmap is NULL, anon slots
7951 * are not yet populated and there is nothing for us
7952 * to do. As MADV_FREE is advisory, we don't return an
7953 * error in either case.
7955 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7956 return (0);
7959 if (amp == NULL) {
7961 * If we're here with a NULL anonmap, it's because we
7962 * are doing a MADV_PURGE. We have nothing to do, but
7963 * because MADV_PURGE isn't merely advisory, we return
7964 * an error in this case.
7966 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7967 return (EBUSY);
7970 segvn_purge(seg);
7972 page = seg_page(seg, addr);
7973 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7974 err = anon_disclaim(amp,
7975 svd->anon_index + page, len, behav, &purged);
7977 if (purged != 0 && (svd->flags & MAP_NORESERVE)) {
7979 * If we purged pages on a MAP_NORESERVE mapping, we
7980 * need to be sure to now unreserve our reserved swap.
7981 * (We use the atomic operations to manipulate our
7982 * segment and address space counters because we only
7983 * have the corresponding locks held as reader, not
7984 * writer.)
7986 ssize_t bytes = ptob(purged);
7988 anon_unresv_zone(bytes, seg->s_as->a_proc->p_zone);
7989 atomic_add_long(&svd->swresv, -bytes);
7990 atomic_add_long(&seg->s_as->a_resvsize, -bytes);
7993 ANON_LOCK_EXIT(&amp->a_rwlock);
7994 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7997 * MADV_PURGE and MADV_FREE differ in their return semantics:
7998 * because MADV_PURGE is designed to be bug-for-bug compatible
7999 * with its clumsy Linux forebear, it will fail where MADV_FREE
8000 * does not.
8002 return (behav == MADV_PURGE ? err : 0);
8006 * If advice is to be applied to entire segment,
8007 * use advice field in seg_data structure
8008 * otherwise use appropriate vpage entry.
8010 if ((addr == seg->s_base) && (len == seg->s_size)) {
8011 switch (behav) {
8012 case MADV_ACCESS_LWP:
8013 case MADV_ACCESS_MANY:
8014 case MADV_ACCESS_DEFAULT:
8016 * Set memory allocation policy for this segment
8018 policy = lgrp_madv_to_policy(behav, len, svd->type);
8019 if (svd->type == MAP_SHARED)
8020 already_set = lgrp_shm_policy_set(policy, amp,
8021 svd->anon_index, vp, svd->offset, len);
8022 else {
8024 * For private memory, need writers lock on
8025 * address space because the segment may be
8026 * split or concatenated when changing policy
8028 if (AS_READ_HELD(seg->s_as)) {
8029 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8030 return (IE_RETRY);
8033 already_set = lgrp_privm_policy_set(policy,
8034 &svd->policy_info, len);
8038 * If policy set already and it shouldn't be reapplied,
8039 * don't do anything.
8041 if (already_set &&
8042 !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8043 break;
8046 * Mark any existing pages in given range for
8047 * migration
8049 page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8050 &vp->v_object, svd->offset, 1);
8053 * If same policy set already or this is a shared
8054 * memory segment, don't need to try to concatenate
8055 * segment with adjacent ones.
8057 if (already_set || svd->type == MAP_SHARED)
8058 break;
8061 * Try to concatenate this segment with previous
8062 * one and next one, since we changed policy for
8063 * this one and it may be compatible with adjacent
8064 * ones now.
8066 prev = AS_SEGPREV(seg->s_as, seg);
8067 next = AS_SEGNEXT(seg->s_as, seg);
8069 if (next && next->s_ops == &segvn_ops &&
8070 addr + len == next->s_base)
8071 (void) segvn_concat(seg, next, 1);
8073 if (prev && prev->s_ops == &segvn_ops &&
8074 addr == prev->s_base + prev->s_size) {
8076 * Drop lock for private data of current
8077 * segment before concatenating (deleting) it
8078 * and return IE_REATTACH to tell as_ctl() that
8079 * current segment has changed
8081 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8082 if (!segvn_concat(prev, seg, 1))
8083 err = IE_REATTACH;
8085 return (err);
8087 break;
8089 case MADV_SEQUENTIAL:
8091 * unloading mapping guarantees
8092 * detection in segvn_fault
8094 ASSERT(seg->s_szc == 0);
8095 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8096 hat_unload(seg->s_as->a_hat, addr, len,
8097 HAT_UNLOAD);
8098 /* FALLTHROUGH */
8099 case MADV_NORMAL:
8100 case MADV_RANDOM:
8101 svd->advice = (uchar_t)behav;
8102 svd->pageadvice = 0;
8103 break;
8104 case MADV_WILLNEED: /* handled in memcntl */
8105 case MADV_DONTNEED: /* handled in memcntl */
8106 case MADV_FREE: /* handled above */
8107 case MADV_PURGE: /* handled above */
8108 break;
8109 default:
8110 err = EINVAL;
8112 } else {
8113 caddr_t eaddr;
8114 struct seg *new_seg;
8115 struct segvn_data *new_svd;
8116 uoff_t off;
8117 caddr_t oldeaddr;
8119 page = seg_page(seg, addr);
8121 segvn_vpage(seg);
8122 if (svd->vpage == NULL) {
8123 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8124 return (ENOMEM);
8127 switch (behav) {
8128 struct vpage *bvpp, *evpp;
8130 case MADV_ACCESS_LWP:
8131 case MADV_ACCESS_MANY:
8132 case MADV_ACCESS_DEFAULT:
8134 * Set memory allocation policy for portion of this
8135 * segment
8139 * Align address and length of advice to page
8140 * boundaries for large pages
8142 if (seg->s_szc != 0) {
8143 size_t pgsz;
8145 pgsz = page_get_pagesize(seg->s_szc);
8146 addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8147 len = P2ROUNDUP(len, pgsz);
8151 * Check to see whether policy is set already
8153 policy = lgrp_madv_to_policy(behav, len, svd->type);
8155 anon_index = svd->anon_index + page;
8156 off = svd->offset + (uintptr_t)(addr - seg->s_base);
8158 if (svd->type == MAP_SHARED)
8159 already_set = lgrp_shm_policy_set(policy, amp,
8160 anon_index, vp, off, len);
8161 else
8162 already_set =
8163 (policy == svd->policy_info.mem_policy);
8166 * If policy set already and it shouldn't be reapplied,
8167 * don't do anything.
8169 if (already_set &&
8170 !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8171 break;
8174 * For private memory, need writers lock on
8175 * address space because the segment may be
8176 * split or concatenated when changing policy
8178 if (svd->type == MAP_PRIVATE &&
8179 AS_READ_HELD(seg->s_as)) {
8180 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8181 return (IE_RETRY);
8185 * Mark any existing pages in given range for
8186 * migration
8188 page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8189 &vp->v_object, svd->offset, 1);
8192 * Don't need to try to split or concatenate
8193 * segments, since policy is same or this is a shared
8194 * memory segment
8196 if (already_set || svd->type == MAP_SHARED)
8197 break;
8199 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8200 ASSERT(svd->amp == NULL);
8201 ASSERT(svd->tr_state == SEGVN_TR_OFF);
8202 ASSERT(svd->softlockcnt == 0);
8203 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8204 HAT_REGION_TEXT);
8205 svd->rcookie = HAT_INVALID_REGION_COOKIE;
8209 * Split off new segment if advice only applies to a
8210 * portion of existing segment starting in middle
8212 new_seg = NULL;
8213 eaddr = addr + len;
8214 oldeaddr = seg->s_base + seg->s_size;
8215 if (addr > seg->s_base) {
8217 * Must flush I/O page cache
8218 * before splitting segment
8220 if (svd->softlockcnt > 0)
8221 segvn_purge(seg);
8224 * Split segment and return IE_REATTACH to tell
8225 * as_ctl() that current segment changed
8227 new_seg = segvn_split_seg(seg, addr);
8228 new_svd = (struct segvn_data *)new_seg->s_data;
8229 err = IE_REATTACH;
8232 * If new segment ends where old one
8233 * did, try to concatenate the new
8234 * segment with next one.
8236 if (eaddr == oldeaddr) {
8238 * Set policy for new segment
8240 (void) lgrp_privm_policy_set(policy,
8241 &new_svd->policy_info,
8242 new_seg->s_size);
8244 next = AS_SEGNEXT(new_seg->s_as,
8245 new_seg);
8247 if (next &&
8248 next->s_ops == &segvn_ops &&
8249 eaddr == next->s_base)
8250 (void) segvn_concat(new_seg,
8251 next, 1);
8256 * Split off end of existing segment if advice only
8257 * applies to a portion of segment ending before
8258 * end of the existing segment
8260 if (eaddr < oldeaddr) {
8262 * Must flush I/O page cache
8263 * before splitting segment
8265 if (svd->softlockcnt > 0)
8266 segvn_purge(seg);
8269 * If beginning of old segment was already
8270 * split off, use new segment to split end off
8271 * from.
8273 if (new_seg != NULL && new_seg != seg) {
8275 * Split segment
8277 (void) segvn_split_seg(new_seg, eaddr);
8280 * Set policy for new segment
8282 (void) lgrp_privm_policy_set(policy,
8283 &new_svd->policy_info,
8284 new_seg->s_size);
8285 } else {
8287 * Split segment and return IE_REATTACH
8288 * to tell as_ctl() that current
8289 * segment changed
8291 (void) segvn_split_seg(seg, eaddr);
8292 err = IE_REATTACH;
8294 (void) lgrp_privm_policy_set(policy,
8295 &svd->policy_info, seg->s_size);
8298 * If new segment starts where old one
8299 * did, try to concatenate it with
8300 * previous segment.
8302 if (addr == seg->s_base) {
8303 prev = AS_SEGPREV(seg->s_as,
8304 seg);
8307 * Drop lock for private data
8308 * of current segment before
8309 * concatenating (deleting) it
8311 if (prev &&
8312 prev->s_ops ==
8313 &segvn_ops &&
8314 addr == prev->s_base +
8315 prev->s_size) {
8316 SEGVN_LOCK_EXIT(
8317 seg->s_as,
8318 &svd->lock);
8319 (void) segvn_concat(
8320 prev, seg, 1);
8321 return (err);
8326 break;
8327 case MADV_SEQUENTIAL:
8328 ASSERT(seg->s_szc == 0);
8329 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8330 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8331 /* FALLTHROUGH */
8332 case MADV_NORMAL:
8333 case MADV_RANDOM:
8334 bvpp = &svd->vpage[page];
8335 evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8336 for (; bvpp < evpp; bvpp++)
8337 VPP_SETADVICE(bvpp, behav);
8338 svd->advice = MADV_NORMAL;
8339 break;
8340 case MADV_WILLNEED: /* handled in memcntl */
8341 case MADV_DONTNEED: /* handled in memcntl */
8342 case MADV_FREE: /* handled above */
8343 case MADV_PURGE: /* handled above */
8344 break;
8345 default:
8346 err = EINVAL;
8349 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8350 return (err);
8354 * There is one kind of inheritance that can be specified for pages:
8356 * SEGP_INH_ZERO - Pages should be zeroed in the child
8358 static int
8359 segvn_inherit(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8361 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8362 struct vpage *bvpp, *evpp;
8363 size_t page;
8364 int ret = 0;
8366 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8368 /* Can't support something we don't know about */
8369 if (behav != SEGP_INH_ZERO)
8370 return (ENOTSUP);
8372 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8375 * This must be a straightforward anonymous segment that is mapped
8376 * privately and is not backed by a vnode.
8378 if (svd->tr_state != SEGVN_TR_OFF ||
8379 svd->type != MAP_PRIVATE ||
8380 svd->vp != NULL) {
8381 ret = EINVAL;
8382 goto out;
8386 * If the entire segment has been marked as inherit zero, then no reason
8387 * to do anything else.
8389 if (svd->svn_inz == SEGVN_INZ_ALL) {
8390 ret = 0;
8391 goto out;
8395 * If this applies to the entire segment, simply mark it and we're done.
8397 if ((addr == seg->s_base) && (len == seg->s_size)) {
8398 svd->svn_inz = SEGVN_INZ_ALL;
8399 ret = 0;
8400 goto out;
8404 * We've been asked to mark a subset of this segment as inherit zero,
8405 * therefore we need to mainpulate its vpages.
8407 if (svd->vpage == NULL) {
8408 segvn_vpage(seg);
8409 if (svd->vpage == NULL) {
8410 ret = ENOMEM;
8411 goto out;
8415 svd->svn_inz = SEGVN_INZ_VPP;
8416 page = seg_page(seg, addr);
8417 bvpp = &svd->vpage[page];
8418 evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8419 for (; bvpp < evpp; bvpp++)
8420 VPP_SETINHZERO(bvpp);
8421 ret = 0;
8423 out:
8424 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8425 return (ret);
8429 * Create a vpage structure for this seg.
8431 static void
8432 segvn_vpage(struct seg *seg)
8434 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8435 struct vpage *vp, *evp;
8436 static pgcnt_t page_limit = 0;
8438 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8441 * If no vpage structure exists, allocate one. Copy the protections
8442 * and the advice from the segment itself to the individual pages.
8444 if (svd->vpage == NULL) {
8446 * Start by calculating the number of pages we must allocate to
8447 * track the per-page vpage structs needs for this entire
8448 * segment. If we know now that it will require more than our
8449 * heuristic for the maximum amount of kmem we can consume then
8450 * fail. We do this here, instead of trying to detect this deep
8451 * in page_resv and propagating the error up, since the entire
8452 * memory allocation stack is not amenable to passing this
8453 * back. Instead, it wants to keep trying.
8455 * As a heuristic we set a page limit of 5/8s of total_pages
8456 * for this allocation. We use shifts so that no floating
8457 * point conversion takes place and only need to do the
8458 * calculation once.
8460 ulong_t mem_needed = seg_pages(seg) * sizeof (struct vpage);
8461 pgcnt_t npages = mem_needed >> PAGESHIFT;
8463 if (page_limit == 0)
8464 page_limit = (total_pages >> 1) + (total_pages >> 3);
8466 if (npages > page_limit)
8467 return;
8469 svd->pageadvice = 1;
8470 svd->vpage = kmem_zalloc(mem_needed, KM_SLEEP);
8471 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8472 for (vp = svd->vpage; vp < evp; vp++) {
8473 VPP_SETPROT(vp, svd->prot);
8474 VPP_SETADVICE(vp, svd->advice);
8480 * Dump the pages belonging to this segvn segment.
8482 static void
8483 segvn_dump(struct seg *seg)
8485 struct segvn_data *svd;
8486 page_t *pp;
8487 struct anon_map *amp;
8488 ulong_t anon_index;
8489 struct vnode *vp;
8490 uoff_t off, offset;
8491 pfn_t pfn;
8492 pgcnt_t page, npages;
8493 caddr_t addr;
8495 npages = seg_pages(seg);
8496 svd = (struct segvn_data *)seg->s_data;
8497 vp = svd->vp;
8498 off = offset = svd->offset;
8499 addr = seg->s_base;
8501 if ((amp = svd->amp) != NULL) {
8502 anon_index = svd->anon_index;
8503 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8506 for (page = 0; page < npages; page++, offset += PAGESIZE) {
8507 struct anon *ap;
8508 int we_own_it = 0;
8510 if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8511 swap_xlate_nopanic(ap, &vp, &off);
8512 } else {
8513 vp = svd->vp;
8514 off = offset;
8518 * If pp == NULL, the page either does not exist
8519 * or is exclusively locked. So determine if it
8520 * exists before searching for it.
8523 if ((pp = page_lookup_nowait(&vp->v_object, off, SE_SHARED)))
8524 we_own_it = 1;
8525 else
8526 pp = page_exists(&vp->v_object, off);
8528 if (pp) {
8529 pfn = page_pptonum(pp);
8530 dump_addpage(seg->s_as, addr, pfn);
8531 if (we_own_it)
8532 page_unlock(pp);
8534 addr += PAGESIZE;
8535 dump_timeleft = dump_timeout;
8538 if (amp != NULL)
8539 ANON_LOCK_EXIT(&amp->a_rwlock);
8542 #ifdef DEBUG
8543 static uint32_t segvn_pglock_mtbf = 0;
8544 #endif
8546 #define PCACHE_SHWLIST ((page_t *)-2)
8547 #define NOPCACHE_SHWLIST ((page_t *)-1)
8550 * Lock/Unlock anon pages over a given range. Return shadow list. This routine
8551 * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages
8552 * to avoid the overhead of per page locking, unlocking for subsequent IOs to
8553 * the same parts of the segment. Currently shadow list creation is only
8554 * supported for pure anon segments. MAP_PRIVATE segment pcache entries are
8555 * tagged with segment pointer, starting virtual address and length. This
8556 * approach for MAP_SHARED segments may add many pcache entries for the same
8557 * set of pages and lead to long hash chains that decrease pcache lookup
8558 * performance. To avoid this issue for shared segments shared anon map and
8559 * starting anon index are used for pcache entry tagging. This allows all
8560 * segments to share pcache entries for the same anon range and reduces pcache
8561 * chain's length as well as memory overhead from duplicate shadow lists and
8562 * pcache entries.
8564 * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd
8565 * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock
8566 * part of softlockcnt accounting is done differently for private and shared
8567 * segments. In private segment case softlock is only incremented when a new
8568 * shadow list is created but not when an existing one is found via
8569 * seg_plookup(). pcache entries have reference count incremented/decremented
8570 * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0
8571 * reference count can be purged (and purging is needed before segment can be
8572 * freed). When a private segment pcache entry is purged segvn_reclaim() will
8573 * decrement softlockcnt. Since in private segment case each of its pcache
8574 * entries only belongs to this segment we can expect that when
8575 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8576 * segment purge will succeed and softlockcnt will drop to 0. In shared
8577 * segment case reference count in pcache entry counts active locks from many
8578 * different segments so we can't expect segment purging to succeed even when
8579 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8580 * segment. To be able to determine when there're no pending pagelocks in
8581 * shared segment case we don't rely on purging to make softlockcnt drop to 0
8582 * but instead softlockcnt is incremented and decremented for every
8583 * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow
8584 * list was created or an existing one was found. When softlockcnt drops to 0
8585 * this segment no longer has any claims for pcached shadow lists and the
8586 * segment can be freed even if there're still active pcache entries
8587 * shared by this segment anon map. Shared segment pcache entries belong to
8588 * anon map and are typically removed when anon map is freed after all
8589 * processes destroy the segments that use this anon map.
8591 static int
8592 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8593 enum lock_type type, enum seg_rw rw)
8595 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8596 size_t np;
8597 pgcnt_t adjustpages;
8598 pgcnt_t npages;
8599 ulong_t anon_index;
8600 uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE;
8601 uint_t error;
8602 struct anon_map *amp;
8603 pgcnt_t anpgcnt;
8604 struct page **pplist, **pl, *pp;
8605 caddr_t a;
8606 size_t page;
8607 caddr_t lpgaddr, lpgeaddr;
8608 anon_sync_obj_t cookie;
8609 int anlock;
8610 struct anon_map *pamp;
8611 caddr_t paddr;
8612 seg_preclaim_cbfunc_t preclaim_callback;
8613 size_t pgsz;
8614 int use_pcache;
8615 size_t wlen;
8616 uint_t pflags = 0;
8617 int sftlck_sbase = 0;
8618 int sftlck_send = 0;
8620 #ifdef DEBUG
8621 if (type == L_PAGELOCK && segvn_pglock_mtbf) {
8622 hrtime_t ts = gethrtime();
8623 if ((ts % segvn_pglock_mtbf) == 0) {
8624 return (ENOTSUP);
8626 if ((ts % segvn_pglock_mtbf) == 1) {
8627 return (EFAULT);
8630 #endif
8632 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8633 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
8635 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8638 * for now we only support pagelock to anon memory. We would have to
8639 * check protections for vnode objects and call into the vnode driver.
8640 * That's too much for a fast path. Let the fault entry point handle
8641 * it.
8643 if (svd->vp != NULL) {
8644 if (type == L_PAGELOCK) {
8645 error = ENOTSUP;
8646 goto out;
8648 panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL");
8650 if ((amp = svd->amp) == NULL) {
8651 if (type == L_PAGELOCK) {
8652 error = EFAULT;
8653 goto out;
8655 panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL");
8657 if (rw != S_READ && rw != S_WRITE) {
8658 if (type == L_PAGELOCK) {
8659 error = ENOTSUP;
8660 goto out;
8662 panic("segvn_pagelock(L_PAGEUNLOCK): bad rw");
8665 if (seg->s_szc != 0) {
8667 * We are adjusting the pagelock region to the large page size
8668 * boundary because the unlocked part of a large page cannot
8669 * be freed anyway unless all constituent pages of a large
8670 * page are locked. Bigger regions reduce pcache chain length
8671 * and improve lookup performance. The tradeoff is that the
8672 * very first segvn_pagelock() call for a given page is more
8673 * expensive if only 1 page_t is needed for IO. This is only
8674 * an issue if pcache entry doesn't get reused by several
8675 * subsequent calls. We optimize here for the case when pcache
8676 * is heavily used by repeated IOs to the same address range.
8678 * Note segment's page size cannot change while we are holding
8679 * as lock. And then it cannot change while softlockcnt is
8680 * not 0. This will allow us to correctly recalculate large
8681 * page size region for the matching pageunlock/reclaim call
8682 * since as_pageunlock() caller must always match
8683 * as_pagelock() call's addr and len.
8685 * For pageunlock *ppp points to the pointer of page_t that
8686 * corresponds to the real unadjusted start address. Similar
8687 * for pagelock *ppp must point to the pointer of page_t that
8688 * corresponds to the real unadjusted start address.
8690 pgsz = page_get_pagesize(seg->s_szc);
8691 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8692 adjustpages = btop((uintptr_t)(addr - lpgaddr));
8693 } else if (len < segvn_pglock_comb_thrshld) {
8694 lpgaddr = addr;
8695 lpgeaddr = addr + len;
8696 adjustpages = 0;
8697 pgsz = PAGESIZE;
8698 } else {
8700 * Align the address range of large enough requests to allow
8701 * combining of different shadow lists into 1 to reduce memory
8702 * overhead from potentially overlapping large shadow lists
8703 * (worst case is we have a 1MB IO into buffers with start
8704 * addresses separated by 4K). Alignment is only possible if
8705 * padded chunks have sufficient access permissions. Note
8706 * permissions won't change between L_PAGELOCK and
8707 * L_PAGEUNLOCK calls since non 0 softlockcnt will force
8708 * segvn_setprot() to wait until softlockcnt drops to 0. This
8709 * allows us to determine in L_PAGEUNLOCK the same range we
8710 * computed in L_PAGELOCK.
8712 * If alignment is limited by segment ends set
8713 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when
8714 * these flags are set bump softlockcnt_sbase/softlockcnt_send
8715 * per segment counters. In L_PAGEUNLOCK case decrease
8716 * softlockcnt_sbase/softlockcnt_send counters if
8717 * sftlck_sbase/sftlck_send flags are set. When
8718 * softlockcnt_sbase/softlockcnt_send are non 0
8719 * segvn_concat()/segvn_extend_prev()/segvn_extend_next()
8720 * won't merge the segments. This restriction combined with
8721 * restriction on segment unmapping and splitting for segments
8722 * that have non 0 softlockcnt allows L_PAGEUNLOCK to
8723 * correctly determine the same range that was previously
8724 * locked by matching L_PAGELOCK.
8726 pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16);
8727 pgsz = PAGESIZE;
8728 if (svd->type == MAP_PRIVATE) {
8729 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr,
8730 segvn_pglock_comb_balign);
8731 if (lpgaddr < seg->s_base) {
8732 lpgaddr = seg->s_base;
8733 sftlck_sbase = 1;
8735 } else {
8736 ulong_t aix = svd->anon_index + seg_page(seg, addr);
8737 ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign);
8738 if (aaix < svd->anon_index) {
8739 lpgaddr = seg->s_base;
8740 sftlck_sbase = 1;
8741 } else {
8742 lpgaddr = addr - ptob(aix - aaix);
8743 ASSERT(lpgaddr >= seg->s_base);
8746 if (svd->pageprot && lpgaddr != addr) {
8747 struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)];
8748 struct vpage *evp = &svd->vpage[seg_page(seg, addr)];
8749 while (vp < evp) {
8750 if ((VPP_PROT(vp) & protchk) == 0) {
8751 break;
8753 vp++;
8755 if (vp < evp) {
8756 lpgaddr = addr;
8757 pflags = 0;
8760 lpgeaddr = addr + len;
8761 if (pflags) {
8762 if (svd->type == MAP_PRIVATE) {
8763 lpgeaddr = (caddr_t)P2ROUNDUP(
8764 (uintptr_t)lpgeaddr,
8765 segvn_pglock_comb_balign);
8766 } else {
8767 ulong_t aix = svd->anon_index +
8768 seg_page(seg, lpgeaddr);
8769 ulong_t aaix = P2ROUNDUP(aix,
8770 segvn_pglock_comb_palign);
8771 if (aaix < aix) {
8772 lpgeaddr = 0;
8773 } else {
8774 lpgeaddr += ptob(aaix - aix);
8777 if (lpgeaddr == 0 ||
8778 lpgeaddr > seg->s_base + seg->s_size) {
8779 lpgeaddr = seg->s_base + seg->s_size;
8780 sftlck_send = 1;
8783 if (svd->pageprot && lpgeaddr != addr + len) {
8784 struct vpage *vp;
8785 struct vpage *evp;
8787 vp = &svd->vpage[seg_page(seg, addr + len)];
8788 evp = &svd->vpage[seg_page(seg, lpgeaddr)];
8790 while (vp < evp) {
8791 if ((VPP_PROT(vp) & protchk) == 0) {
8792 break;
8794 vp++;
8796 if (vp < evp) {
8797 lpgeaddr = addr + len;
8800 adjustpages = btop((uintptr_t)(addr - lpgaddr));
8804 * For MAP_SHARED segments we create pcache entries tagged by amp and
8805 * anon index so that we can share pcache entries with other segments
8806 * that map this amp. For private segments pcache entries are tagged
8807 * with segment and virtual address.
8809 if (svd->type == MAP_SHARED) {
8810 pamp = amp;
8811 paddr = (caddr_t)((lpgaddr - seg->s_base) +
8812 ptob(svd->anon_index));
8813 preclaim_callback = shamp_reclaim;
8814 } else {
8815 pamp = NULL;
8816 paddr = lpgaddr;
8817 preclaim_callback = segvn_reclaim;
8820 if (type == L_PAGEUNLOCK) {
8821 VM_STAT_ADD(segvnvmstats.pagelock[0]);
8824 * update hat ref bits for /proc. We need to make sure
8825 * that threads tracing the ref and mod bits of the
8826 * address space get the right data.
8827 * Note: page ref and mod bits are updated at reclaim time
8829 if (seg->s_as->a_vbits) {
8830 for (a = addr; a < addr + len; a += PAGESIZE) {
8831 if (rw == S_WRITE) {
8832 hat_setstat(seg->s_as, a,
8833 PAGESIZE, P_REF | P_MOD);
8834 } else {
8835 hat_setstat(seg->s_as, a,
8836 PAGESIZE, P_REF);
8842 * Check the shadow list entry after the last page used in
8843 * this IO request. If it's NOPCACHE_SHWLIST the shadow list
8844 * was not inserted into pcache and is not large page
8845 * adjusted. In this case call reclaim callback directly and
8846 * don't adjust the shadow list start and size for large
8847 * pages.
8849 npages = btop(len);
8850 if ((*ppp)[npages] == NOPCACHE_SHWLIST) {
8851 void *ptag;
8852 if (pamp != NULL) {
8853 ASSERT(svd->type == MAP_SHARED);
8854 ptag = (void *)pamp;
8855 paddr = (caddr_t)((addr - seg->s_base) +
8856 ptob(svd->anon_index));
8857 } else {
8858 ptag = (void *)seg;
8859 paddr = addr;
8861 (*preclaim_callback)(ptag, paddr, len, *ppp, rw, 0);
8862 } else {
8863 ASSERT((*ppp)[npages] == PCACHE_SHWLIST ||
8864 IS_SWAPFSVP((*ppp)[npages]->p_vnode));
8865 len = lpgeaddr - lpgaddr;
8866 npages = btop(len);
8867 seg_pinactive(seg, pamp, paddr, len,
8868 *ppp - adjustpages, rw, pflags, preclaim_callback);
8871 if (pamp != NULL) {
8872 ASSERT(svd->type == MAP_SHARED);
8873 ASSERT(svd->softlockcnt >= npages);
8874 atomic_add_long((ulong_t *)&svd->softlockcnt, -npages);
8877 if (sftlck_sbase) {
8878 ASSERT(svd->softlockcnt_sbase > 0);
8879 atomic_dec_ulong((ulong_t *)&svd->softlockcnt_sbase);
8881 if (sftlck_send) {
8882 ASSERT(svd->softlockcnt_send > 0);
8883 atomic_dec_ulong((ulong_t *)&svd->softlockcnt_send);
8887 * If someone is blocked while unmapping, we purge
8888 * segment page cache and thus reclaim pplist synchronously
8889 * without waiting for seg_pasync_thread. This speeds up
8890 * unmapping in cases where munmap(2) is called, while
8891 * raw async i/o is still in progress or where a thread
8892 * exits on data fault in a multithreaded application.
8894 if (AS_ISUNMAPWAIT(seg->s_as)) {
8895 if (svd->softlockcnt == 0) {
8896 mutex_enter(&seg->s_as->a_contents);
8897 if (AS_ISUNMAPWAIT(seg->s_as)) {
8898 AS_CLRUNMAPWAIT(seg->s_as);
8899 cv_broadcast(&seg->s_as->a_cv);
8901 mutex_exit(&seg->s_as->a_contents);
8902 } else if (pamp == NULL) {
8904 * softlockcnt is not 0 and this is a
8905 * MAP_PRIVATE segment. Try to purge its
8906 * pcache entries to reduce softlockcnt.
8907 * If it drops to 0 segvn_reclaim()
8908 * will wake up a thread waiting on
8909 * unmapwait flag.
8911 * We don't purge MAP_SHARED segments with non
8912 * 0 softlockcnt since IO is still in progress
8913 * for such segments.
8915 ASSERT(svd->type == MAP_PRIVATE);
8916 segvn_purge(seg);
8919 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8920 return (0);
8923 /* The L_PAGELOCK case ... */
8925 VM_STAT_ADD(segvnvmstats.pagelock[1]);
8928 * For MAP_SHARED segments we have to check protections before
8929 * seg_plookup() since pcache entries may be shared by many segments
8930 * with potentially different page protections.
8932 if (pamp != NULL) {
8933 ASSERT(svd->type == MAP_SHARED);
8934 if (svd->pageprot == 0) {
8935 if ((svd->prot & protchk) == 0) {
8936 error = EACCES;
8937 goto out;
8939 } else {
8941 * check page protections
8943 caddr_t ea;
8945 if (seg->s_szc) {
8946 a = lpgaddr;
8947 ea = lpgeaddr;
8948 } else {
8949 a = addr;
8950 ea = addr + len;
8952 for (; a < ea; a += pgsz) {
8953 struct vpage *vp;
8955 ASSERT(seg->s_szc == 0 ||
8956 sameprot(seg, a, pgsz));
8957 vp = &svd->vpage[seg_page(seg, a)];
8958 if ((VPP_PROT(vp) & protchk) == 0) {
8959 error = EACCES;
8960 goto out;
8967 * try to find pages in segment page cache
8969 pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags);
8970 if (pplist != NULL) {
8971 if (pamp != NULL) {
8972 npages = btop((uintptr_t)(lpgeaddr - lpgaddr));
8973 ASSERT(svd->type == MAP_SHARED);
8974 atomic_add_long((ulong_t *)&svd->softlockcnt,
8975 npages);
8977 if (sftlck_sbase) {
8978 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase);
8980 if (sftlck_send) {
8981 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send);
8983 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8984 *ppp = pplist + adjustpages;
8985 return (0);
8989 * For MAP_SHARED segments we already verified above that segment
8990 * protections allow this pagelock operation.
8992 if (pamp == NULL) {
8993 ASSERT(svd->type == MAP_PRIVATE);
8994 if (svd->pageprot == 0) {
8995 if ((svd->prot & protchk) == 0) {
8996 error = EACCES;
8997 goto out;
8999 if (svd->prot & PROT_WRITE) {
9000 wlen = lpgeaddr - lpgaddr;
9001 } else {
9002 wlen = 0;
9003 ASSERT(rw == S_READ);
9005 } else {
9006 int wcont = 1;
9008 * check page protections
9010 for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) {
9011 struct vpage *vp;
9013 ASSERT(seg->s_szc == 0 ||
9014 sameprot(seg, a, pgsz));
9015 vp = &svd->vpage[seg_page(seg, a)];
9016 if ((VPP_PROT(vp) & protchk) == 0) {
9017 error = EACCES;
9018 goto out;
9020 if (wcont && (VPP_PROT(vp) & PROT_WRITE)) {
9021 wlen += pgsz;
9022 } else {
9023 wcont = 0;
9024 ASSERT(rw == S_READ);
9028 ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr);
9029 ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr);
9033 * Only build large page adjusted shadow list if we expect to insert
9034 * it into pcache. For large enough pages it's a big overhead to
9035 * create a shadow list of the entire large page. But this overhead
9036 * should be amortized over repeated pcache hits on subsequent reuse
9037 * of this shadow list (IO into any range within this shadow list will
9038 * find it in pcache since we large page align the request for pcache
9039 * lookups). pcache performance is improved with bigger shadow lists
9040 * as it reduces the time to pcache the entire big segment and reduces
9041 * pcache chain length.
9043 if (seg_pinsert_check(seg, pamp, paddr,
9044 lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) {
9045 addr = lpgaddr;
9046 len = lpgeaddr - lpgaddr;
9047 use_pcache = 1;
9048 } else {
9049 use_pcache = 0;
9051 * Since this entry will not be inserted into the pcache, we
9052 * will not do any adjustments to the starting address or
9053 * size of the memory to be locked.
9055 adjustpages = 0;
9057 npages = btop(len);
9059 pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP);
9060 pl = pplist;
9061 *ppp = pplist + adjustpages;
9063 * If use_pcache is 0 this shadow list is not large page adjusted.
9064 * Record this info in the last entry of shadow array so that
9065 * L_PAGEUNLOCK can determine if it should large page adjust the
9066 * address range to find the real range that was locked.
9068 pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST;
9070 page = seg_page(seg, addr);
9071 anon_index = svd->anon_index + page;
9073 anlock = 0;
9074 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9075 ASSERT(amp->a_szc >= seg->s_szc);
9076 anpgcnt = page_get_pagecnt(amp->a_szc);
9077 for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
9078 struct anon *ap;
9079 struct vnode *vp;
9080 uoff_t off;
9083 * Lock and unlock anon array only once per large page.
9084 * anon_array_enter() locks the root anon slot according to
9085 * a_szc which can't change while anon map is locked. We lock
9086 * anon the first time through this loop and each time we
9087 * reach anon index that corresponds to a root of a large
9088 * page.
9090 if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) {
9091 ASSERT(anlock == 0);
9092 anon_array_enter(amp, anon_index, &cookie);
9093 anlock = 1;
9095 ap = anon_get_ptr(amp->ahp, anon_index);
9098 * We must never use seg_pcache for COW pages
9099 * because we might end up with original page still
9100 * lying in seg_pcache even after private page is
9101 * created. This leads to data corruption as
9102 * aio_write refers to the page still in cache
9103 * while all other accesses refer to the private
9104 * page.
9106 if (ap == NULL || ap->an_refcnt != 1) {
9107 struct vpage *vpage;
9109 if (seg->s_szc) {
9110 error = EFAULT;
9111 break;
9113 if (svd->vpage != NULL) {
9114 vpage = &svd->vpage[seg_page(seg, a)];
9115 } else {
9116 vpage = NULL;
9118 ASSERT(anlock);
9119 anon_array_exit(&cookie);
9120 anlock = 0;
9121 pp = NULL;
9122 error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0,
9123 vpage, &pp, 0, F_INVAL, rw, 1);
9124 if (error) {
9125 error = fc_decode(error);
9126 break;
9128 anon_array_enter(amp, anon_index, &cookie);
9129 anlock = 1;
9130 ap = anon_get_ptr(amp->ahp, anon_index);
9131 if (ap == NULL || ap->an_refcnt != 1) {
9132 error = EFAULT;
9133 break;
9136 swap_xlate(ap, &vp, &off);
9137 pp = page_lookup_nowait(&vp->v_object, off, SE_SHARED);
9138 if (pp == NULL) {
9139 error = EFAULT;
9140 break;
9142 if (ap->an_pvp != NULL) {
9143 anon_swap_free(ap, pp);
9146 * Unlock anon if this is the last slot in a large page.
9148 if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) {
9149 ASSERT(anlock);
9150 anon_array_exit(&cookie);
9151 anlock = 0;
9153 *pplist++ = pp;
9155 if (anlock) { /* Ensure the lock is dropped */
9156 anon_array_exit(&cookie);
9158 ANON_LOCK_EXIT(&amp->a_rwlock);
9160 if (a >= addr + len) {
9161 atomic_add_long((ulong_t *)&svd->softlockcnt, npages);
9162 if (pamp != NULL) {
9163 ASSERT(svd->type == MAP_SHARED);
9164 atomic_add_long((ulong_t *)&pamp->a_softlockcnt,
9165 npages);
9166 wlen = len;
9168 if (sftlck_sbase) {
9169 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase);
9171 if (sftlck_send) {
9172 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send);
9174 if (use_pcache) {
9175 (void) seg_pinsert(seg, pamp, paddr, len, wlen, pl,
9176 rw, pflags, preclaim_callback);
9178 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9179 return (0);
9182 pplist = pl;
9183 np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
9184 while (np > (uint_t)0) {
9185 ASSERT(PAGE_LOCKED(*pplist));
9186 page_unlock(*pplist);
9187 np--;
9188 pplist++;
9190 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9191 out:
9192 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9193 *ppp = NULL;
9194 return (error);
9198 * purge any cached pages in the I/O page cache
9200 static void
9201 segvn_purge(struct seg *seg)
9203 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9206 * pcache is only used by pure anon segments.
9208 if (svd->amp == NULL || svd->vp != NULL) {
9209 return;
9213 * For MAP_SHARED segments non 0 segment's softlockcnt means
9214 * active IO is still in progress via this segment. So we only
9215 * purge MAP_SHARED segments when their softlockcnt is 0.
9217 if (svd->type == MAP_PRIVATE) {
9218 if (svd->softlockcnt) {
9219 seg_ppurge(seg, NULL, 0);
9221 } else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) {
9222 seg_ppurge(seg, svd->amp, 0);
9227 * If async argument is not 0 we are called from pcache async thread and don't
9228 * hold AS lock.
9231 /*ARGSUSED*/
9232 static int
9233 segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9234 enum seg_rw rw, int async)
9236 struct seg *seg = (struct seg *)ptag;
9237 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9238 pgcnt_t np, npages;
9239 struct page **pl;
9241 npages = np = btop(len);
9242 ASSERT(npages);
9244 ASSERT(svd->vp == NULL && svd->amp != NULL);
9245 ASSERT(svd->softlockcnt >= npages);
9246 ASSERT(async || AS_LOCK_HELD(seg->s_as));
9248 pl = pplist;
9250 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9251 ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9253 while (np > (uint_t)0) {
9254 if (rw == S_WRITE) {
9255 hat_setrefmod(*pplist);
9256 } else {
9257 hat_setref(*pplist);
9259 page_unlock(*pplist);
9260 np--;
9261 pplist++;
9264 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9267 * If we are pcache async thread we don't hold AS lock. This means if
9268 * softlockcnt drops to 0 after the decrement below address space may
9269 * get freed. We can't allow it since after softlock derement to 0 we
9270 * still need to access as structure for possible wakeup of unmap
9271 * waiters. To prevent the disappearance of as we take this segment
9272 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to
9273 * make sure this routine completes before segment is freed.
9275 * The second complication we have to deal with in async case is a
9276 * possibility of missed wake up of unmap wait thread. When we don't
9277 * hold as lock here we may take a_contents lock before unmap wait
9278 * thread that was first to see softlockcnt was still not 0. As a
9279 * result we'll fail to wake up an unmap wait thread. To avoid this
9280 * race we set nounmapwait flag in as structure if we drop softlockcnt
9281 * to 0 when we were called by pcache async thread. unmapwait thread
9282 * will not block if this flag is set.
9284 if (async) {
9285 mutex_enter(&svd->segfree_syncmtx);
9288 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) {
9289 if (async || AS_ISUNMAPWAIT(seg->s_as)) {
9290 mutex_enter(&seg->s_as->a_contents);
9291 if (async) {
9292 AS_SETNOUNMAPWAIT(seg->s_as);
9294 if (AS_ISUNMAPWAIT(seg->s_as)) {
9295 AS_CLRUNMAPWAIT(seg->s_as);
9296 cv_broadcast(&seg->s_as->a_cv);
9298 mutex_exit(&seg->s_as->a_contents);
9302 if (async) {
9303 mutex_exit(&svd->segfree_syncmtx);
9305 return (0);
9308 /*ARGSUSED*/
9309 static int
9310 shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9311 enum seg_rw rw, int async)
9313 amp_t *amp = (amp_t *)ptag;
9314 pgcnt_t np, npages;
9315 struct page **pl;
9317 npages = np = btop(len);
9318 ASSERT(npages);
9319 ASSERT(amp->a_softlockcnt >= npages);
9321 pl = pplist;
9323 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9324 ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9326 while (np > (uint_t)0) {
9327 if (rw == S_WRITE) {
9328 hat_setrefmod(*pplist);
9329 } else {
9330 hat_setref(*pplist);
9332 page_unlock(*pplist);
9333 np--;
9334 pplist++;
9337 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9340 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt
9341 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0
9342 * and anonmap_purge() acquires a_purgemtx.
9344 mutex_enter(&amp->a_purgemtx);
9345 if (!atomic_add_long_nv((ulong_t *)&amp->a_softlockcnt, -npages) &&
9346 amp->a_purgewait) {
9347 amp->a_purgewait = 0;
9348 cv_broadcast(&amp->a_purgecv);
9350 mutex_exit(&amp->a_purgemtx);
9351 return (0);
9355 * get a memory ID for an addr in a given segment
9357 * XXX only creates PAGESIZE pages if anon slots are not initialized.
9358 * At fault time they will be relocated into larger pages.
9360 static int
9361 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
9363 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9364 struct anon *ap = NULL;
9365 ulong_t anon_index;
9366 struct anon_map *amp;
9367 anon_sync_obj_t cookie;
9369 if (svd->type == MAP_PRIVATE) {
9370 memidp->val[0] = (uintptr_t)seg->s_as;
9371 memidp->val[1] = (uintptr_t)addr;
9372 return (0);
9375 if (svd->type == MAP_SHARED) {
9376 if (svd->vp) {
9377 memidp->val[0] = (uintptr_t)svd->vp;
9378 memidp->val[1] = (u_longlong_t)svd->offset +
9379 (uintptr_t)(addr - seg->s_base);
9380 return (0);
9381 } else {
9383 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
9384 if ((amp = svd->amp) != NULL) {
9385 anon_index = svd->anon_index +
9386 seg_page(seg, addr);
9388 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9390 ASSERT(amp != NULL);
9392 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9393 anon_array_enter(amp, anon_index, &cookie);
9394 ap = anon_get_ptr(amp->ahp, anon_index);
9395 if (ap == NULL) {
9396 page_t *pp;
9398 pp = anon_zero(seg, addr, &ap, svd->cred);
9399 if (pp == NULL) {
9400 anon_array_exit(&cookie);
9401 ANON_LOCK_EXIT(&amp->a_rwlock);
9402 return (ENOMEM);
9404 ASSERT(anon_get_ptr(amp->ahp, anon_index)
9405 == NULL);
9406 (void) anon_set_ptr(amp->ahp, anon_index,
9407 ap, ANON_SLEEP);
9408 page_unlock(pp);
9411 anon_array_exit(&cookie);
9412 ANON_LOCK_EXIT(&amp->a_rwlock);
9414 memidp->val[0] = (uintptr_t)ap;
9415 memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
9416 return (0);
9419 return (EINVAL);
9422 static int
9423 sameprot(struct seg *seg, caddr_t a, size_t len)
9425 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9426 struct vpage *vpage;
9427 spgcnt_t pages = btop(len);
9428 uint_t prot;
9430 if (svd->pageprot == 0)
9431 return (1);
9433 ASSERT(svd->vpage != NULL);
9435 vpage = &svd->vpage[seg_page(seg, a)];
9436 prot = VPP_PROT(vpage);
9437 vpage++;
9438 pages--;
9439 while (pages-- > 0) {
9440 if (prot != VPP_PROT(vpage))
9441 return (0);
9442 vpage++;
9444 return (1);
9448 * Get memory allocation policy info for specified address in given segment
9450 static lgrp_mem_policy_info_t *
9451 segvn_getpolicy(struct seg *seg, caddr_t addr)
9453 struct anon_map *amp;
9454 ulong_t anon_index;
9455 lgrp_mem_policy_info_t *policy_info;
9456 struct segvn_data *svn_data;
9457 uoff_t vn_off;
9458 vnode_t *vp;
9460 ASSERT(seg != NULL);
9462 svn_data = (struct segvn_data *)seg->s_data;
9463 if (svn_data == NULL)
9464 return (NULL);
9467 * Get policy info for private or shared memory
9469 if (svn_data->type != MAP_SHARED) {
9470 if (svn_data->tr_state != SEGVN_TR_ON) {
9471 policy_info = &svn_data->policy_info;
9472 } else {
9473 policy_info = &svn_data->tr_policy_info;
9474 ASSERT(policy_info->mem_policy ==
9475 LGRP_MEM_POLICY_NEXT_SEG);
9477 } else {
9478 amp = svn_data->amp;
9479 anon_index = svn_data->anon_index + seg_page(seg, addr);
9480 vp = svn_data->vp;
9481 vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
9482 policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
9485 return (policy_info);
9489 * Bind text vnode segment to an amp. If we bind successfully mappings will be
9490 * established to per vnode mapping per lgroup amp pages instead of to vnode
9491 * pages. There's one amp per vnode text mapping per lgroup. Many processes
9492 * may share the same text replication amp. If a suitable amp doesn't already
9493 * exist in svntr hash table create a new one. We may fail to bind to amp if
9494 * segment is not eligible for text replication. Code below first checks for
9495 * these conditions. If binding is successful segment tr_state is set to on
9496 * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
9497 * svd->amp remains as NULL.
9499 static void
9500 segvn_textrepl(struct seg *seg)
9502 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9503 vnode_t *vp = svd->vp;
9504 uoff_t off = svd->offset;
9505 size_t size = seg->s_size;
9506 uoff_t eoff = off + size;
9507 uint_t szc = seg->s_szc;
9508 ulong_t hash = SVNTR_HASH_FUNC(vp);
9509 svntr_t *svntrp;
9510 struct vattr va;
9511 proc_t *p = seg->s_as->a_proc;
9512 lgrp_id_t lgrp_id;
9513 lgrp_id_t olid;
9514 int first;
9515 struct anon_map *amp;
9517 ASSERT(AS_LOCK_HELD(seg->s_as));
9518 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9519 ASSERT(p != NULL);
9520 ASSERT(svd->tr_state == SEGVN_TR_INIT);
9521 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9522 ASSERT(svd->flags & MAP_TEXT);
9523 ASSERT(svd->type == MAP_PRIVATE);
9524 ASSERT(vp != NULL && svd->amp == NULL);
9525 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
9526 ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
9527 ASSERT(seg->s_as != &kas);
9528 ASSERT(off < eoff);
9529 ASSERT(svntr_hashtab != NULL);
9532 * If numa optimizations are no longer desired bail out.
9534 if (!lgrp_optimizations()) {
9535 svd->tr_state = SEGVN_TR_OFF;
9536 return;
9540 * Avoid creating anon maps with size bigger than the file size.
9541 * If fop_getattr() call fails bail out.
9543 va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME;
9544 if (fop_getattr(vp, &va, 0, svd->cred, NULL) != 0) {
9545 svd->tr_state = SEGVN_TR_OFF;
9546 SEGVN_TR_ADDSTAT(gaerr);
9547 return;
9549 if (btopr(va.va_size) < btopr(eoff)) {
9550 svd->tr_state = SEGVN_TR_OFF;
9551 SEGVN_TR_ADDSTAT(overmap);
9552 return;
9556 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9557 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9558 * mapping that checks if trcache for this vnode needs to be
9559 * invalidated can't miss us.
9561 if (!(vp->v_flag & VVMEXEC)) {
9562 mutex_enter(&vp->v_lock);
9563 vp->v_flag |= VVMEXEC;
9564 mutex_exit(&vp->v_lock);
9566 mutex_enter(&svntr_hashtab[hash].tr_lock);
9568 * Bail out if potentially MAP_SHARED writable mappings exist to this
9569 * vnode. We don't want to use old file contents from existing
9570 * replicas if this mapping was established after the original file
9571 * was changed.
9573 if (vn_is_mapped(vp, V_WRITE)) {
9574 mutex_exit(&svntr_hashtab[hash].tr_lock);
9575 svd->tr_state = SEGVN_TR_OFF;
9576 SEGVN_TR_ADDSTAT(wrcnt);
9577 return;
9579 svntrp = svntr_hashtab[hash].tr_head;
9580 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9581 ASSERT(svntrp->tr_refcnt != 0);
9582 if (svntrp->tr_vp != vp) {
9583 continue;
9587 * Bail out if the file or its attributes were changed after
9588 * this replication entry was created since we need to use the
9589 * latest file contents. Note that mtime test alone is not
9590 * sufficient because a user can explicitly change mtime via
9591 * utimes(2) interfaces back to the old value after modifiying
9592 * the file contents. To detect this case we also have to test
9593 * ctime which among other things records the time of the last
9594 * mtime change by utimes(2). ctime is not changed when the file
9595 * is only read or executed so we expect that typically existing
9596 * replication amp's can be used most of the time.
9598 if (!svntrp->tr_valid ||
9599 svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9600 svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec ||
9601 svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec ||
9602 svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) {
9603 mutex_exit(&svntr_hashtab[hash].tr_lock);
9604 svd->tr_state = SEGVN_TR_OFF;
9605 SEGVN_TR_ADDSTAT(stale);
9606 return;
9609 * if off, eoff and szc match current segment we found the
9610 * existing entry we can use.
9612 if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9613 svntrp->tr_szc == szc) {
9614 break;
9617 * Don't create different but overlapping in file offsets
9618 * entries to avoid replication of the same file pages more
9619 * than once per lgroup.
9621 if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9622 (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9623 mutex_exit(&svntr_hashtab[hash].tr_lock);
9624 svd->tr_state = SEGVN_TR_OFF;
9625 SEGVN_TR_ADDSTAT(overlap);
9626 return;
9630 * If we didn't find existing entry create a new one.
9632 if (svntrp == NULL) {
9633 svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9634 if (svntrp == NULL) {
9635 mutex_exit(&svntr_hashtab[hash].tr_lock);
9636 svd->tr_state = SEGVN_TR_OFF;
9637 SEGVN_TR_ADDSTAT(nokmem);
9638 return;
9640 #ifdef DEBUG
9642 lgrp_id_t i;
9643 for (i = 0; i < NLGRPS_MAX; i++) {
9644 ASSERT(svntrp->tr_amp[i] == NULL);
9647 #endif /* DEBUG */
9648 svntrp->tr_vp = vp;
9649 svntrp->tr_off = off;
9650 svntrp->tr_eoff = eoff;
9651 svntrp->tr_szc = szc;
9652 svntrp->tr_valid = 1;
9653 svntrp->tr_mtime = va.va_mtime;
9654 svntrp->tr_ctime = va.va_ctime;
9655 svntrp->tr_refcnt = 0;
9656 svntrp->tr_next = svntr_hashtab[hash].tr_head;
9657 svntr_hashtab[hash].tr_head = svntrp;
9659 first = 1;
9660 again:
9662 * We want to pick a replica with pages on main thread's (t_tid = 1,
9663 * aka T1) lgrp. Currently text replication is only optimized for
9664 * workloads that either have all threads of a process on the same
9665 * lgrp or execute their large text primarily on main thread.
9667 lgrp_id = p->p_t1_lgrpid;
9668 if (lgrp_id == LGRP_NONE) {
9670 * In case exec() prefaults text on non main thread use
9671 * current thread lgrpid. It will become main thread anyway
9672 * soon.
9674 lgrp_id = lgrp_home_id(curthread);
9677 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet. Otherwise
9678 * just set it to NLGRPS_MAX if it's different from current process T1
9679 * home lgrp. p_tr_lgrpid is used to detect if process uses text
9680 * replication and T1 new home is different from lgrp used for text
9681 * replication. When this happens asyncronous segvn thread rechecks if
9682 * segments should change lgrps used for text replication. If we fail
9683 * to set p_tr_lgrpid with atomic_cas_32 then set it to NLGRPS_MAX
9684 * without cas if it's not already NLGRPS_MAX and not equal lgrp_id
9685 * we want to use. We don't need to use cas in this case because
9686 * another thread that races in between our non atomic check and set
9687 * may only change p_tr_lgrpid to NLGRPS_MAX at this point.
9689 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9690 olid = p->p_tr_lgrpid;
9691 if (lgrp_id != olid && olid != NLGRPS_MAX) {
9692 lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9693 if (atomic_cas_32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) !=
9694 olid) {
9695 olid = p->p_tr_lgrpid;
9696 ASSERT(olid != LGRP_NONE);
9697 if (olid != lgrp_id && olid != NLGRPS_MAX) {
9698 p->p_tr_lgrpid = NLGRPS_MAX;
9701 ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9702 membar_producer();
9704 * lgrp_move_thread() won't schedule async recheck after
9705 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9706 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9707 * is not LGRP_NONE.
9709 if (first && p->p_t1_lgrpid != LGRP_NONE &&
9710 p->p_t1_lgrpid != lgrp_id) {
9711 first = 0;
9712 goto again;
9716 * If no amp was created yet for lgrp_id create a new one as long as
9717 * we have enough memory to afford it.
9719 if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9720 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9721 if (trmem > segvn_textrepl_max_bytes) {
9722 SEGVN_TR_ADDSTAT(normem);
9723 goto fail;
9725 if (anon_try_resv_zone(size, NULL) == 0) {
9726 SEGVN_TR_ADDSTAT(noanon);
9727 goto fail;
9729 amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9730 if (amp == NULL) {
9731 anon_unresv_zone(size, NULL);
9732 SEGVN_TR_ADDSTAT(nokmem);
9733 goto fail;
9735 ASSERT(amp->refcnt == 1);
9736 amp->a_szc = szc;
9737 svntrp->tr_amp[lgrp_id] = amp;
9738 SEGVN_TR_ADDSTAT(newamp);
9740 svntrp->tr_refcnt++;
9741 ASSERT(svd->svn_trnext == NULL);
9742 ASSERT(svd->svn_trprev == NULL);
9743 svd->svn_trnext = svntrp->tr_svnhead;
9744 svd->svn_trprev = NULL;
9745 if (svntrp->tr_svnhead != NULL) {
9746 svntrp->tr_svnhead->svn_trprev = svd;
9748 svntrp->tr_svnhead = svd;
9749 ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9750 ASSERT(amp->refcnt >= 1);
9751 svd->amp = amp;
9752 svd->anon_index = 0;
9753 svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9754 svd->tr_policy_info.mem_lgrpid = lgrp_id;
9755 svd->tr_state = SEGVN_TR_ON;
9756 mutex_exit(&svntr_hashtab[hash].tr_lock);
9757 SEGVN_TR_ADDSTAT(repl);
9758 return;
9759 fail:
9760 ASSERT(segvn_textrepl_bytes >= size);
9761 atomic_add_long(&segvn_textrepl_bytes, -size);
9762 ASSERT(svntrp != NULL);
9763 ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
9764 if (svntrp->tr_refcnt == 0) {
9765 ASSERT(svntrp == svntr_hashtab[hash].tr_head);
9766 svntr_hashtab[hash].tr_head = svntrp->tr_next;
9767 mutex_exit(&svntr_hashtab[hash].tr_lock);
9768 kmem_cache_free(svntr_cache, svntrp);
9769 } else {
9770 mutex_exit(&svntr_hashtab[hash].tr_lock);
9772 svd->tr_state = SEGVN_TR_OFF;
9776 * Convert seg back to regular vnode mapping seg by unbinding it from its text
9777 * replication amp. This routine is most typically called when segment is
9778 * unmapped but can also be called when segment no longer qualifies for text
9779 * replication (e.g. due to protection changes). If unload_unmap is set use
9780 * HAT_UNLOAD_UNMAP flag in hat_unload_callback(). If we are the last user of
9781 * svntr free all its anon maps and remove it from the hash table.
9783 static void
9784 segvn_textunrepl(struct seg *seg, int unload_unmap)
9786 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9787 vnode_t *vp = svd->vp;
9788 uoff_t off = svd->offset;
9789 size_t size = seg->s_size;
9790 uoff_t eoff = off + size;
9791 uint_t szc = seg->s_szc;
9792 ulong_t hash = SVNTR_HASH_FUNC(vp);
9793 svntr_t *svntrp;
9794 svntr_t **prv_svntrp;
9795 lgrp_id_t lgrp_id = svd->tr_policy_info.mem_lgrpid;
9796 lgrp_id_t i;
9798 ASSERT(AS_LOCK_HELD(seg->s_as));
9799 ASSERT(AS_WRITE_HELD(seg->s_as) ||
9800 SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9801 ASSERT(svd->tr_state == SEGVN_TR_ON);
9802 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9803 ASSERT(svd->amp != NULL);
9804 ASSERT(svd->amp->refcnt >= 1);
9805 ASSERT(svd->anon_index == 0);
9806 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9807 ASSERT(svntr_hashtab != NULL);
9809 mutex_enter(&svntr_hashtab[hash].tr_lock);
9810 prv_svntrp = &svntr_hashtab[hash].tr_head;
9811 for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
9812 ASSERT(svntrp->tr_refcnt != 0);
9813 if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
9814 svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
9815 break;
9818 if (svntrp == NULL) {
9819 panic("segvn_textunrepl: svntr record not found");
9821 if (svntrp->tr_amp[lgrp_id] != svd->amp) {
9822 panic("segvn_textunrepl: amp mismatch");
9824 svd->tr_state = SEGVN_TR_OFF;
9825 svd->amp = NULL;
9826 if (svd->svn_trprev == NULL) {
9827 ASSERT(svntrp->tr_svnhead == svd);
9828 svntrp->tr_svnhead = svd->svn_trnext;
9829 if (svntrp->tr_svnhead != NULL) {
9830 svntrp->tr_svnhead->svn_trprev = NULL;
9832 svd->svn_trnext = NULL;
9833 } else {
9834 svd->svn_trprev->svn_trnext = svd->svn_trnext;
9835 if (svd->svn_trnext != NULL) {
9836 svd->svn_trnext->svn_trprev = svd->svn_trprev;
9837 svd->svn_trnext = NULL;
9839 svd->svn_trprev = NULL;
9841 if (--svntrp->tr_refcnt) {
9842 mutex_exit(&svntr_hashtab[hash].tr_lock);
9843 goto done;
9845 *prv_svntrp = svntrp->tr_next;
9846 mutex_exit(&svntr_hashtab[hash].tr_lock);
9847 for (i = 0; i < NLGRPS_MAX; i++) {
9848 struct anon_map *amp = svntrp->tr_amp[i];
9849 if (amp == NULL) {
9850 continue;
9852 ASSERT(amp->refcnt == 1);
9853 ASSERT(amp->swresv == size);
9854 ASSERT(amp->size == size);
9855 ASSERT(amp->a_szc == szc);
9856 if (amp->a_szc != 0) {
9857 anon_free_pages(amp->ahp, 0, size, szc);
9858 } else {
9859 anon_free(amp->ahp, 0, size);
9861 svntrp->tr_amp[i] = NULL;
9862 ASSERT(segvn_textrepl_bytes >= size);
9863 atomic_add_long(&segvn_textrepl_bytes, -size);
9864 anon_unresv_zone(amp->swresv, NULL);
9865 amp->refcnt = 0;
9866 anonmap_free(amp);
9868 kmem_cache_free(svntr_cache, svntrp);
9869 done:
9870 hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
9871 unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
9875 * This is called when a MAP_SHARED writable mapping is created to a vnode
9876 * that is currently used for execution (VVMEXEC flag is set). In this case we
9877 * need to prevent further use of existing replicas.
9879 static void
9880 segvn_inval_trcache(vnode_t *vp)
9882 ulong_t hash = SVNTR_HASH_FUNC(vp);
9883 svntr_t *svntrp;
9885 ASSERT(vp->v_flag & VVMEXEC);
9887 if (svntr_hashtab == NULL) {
9888 return;
9891 mutex_enter(&svntr_hashtab[hash].tr_lock);
9892 svntrp = svntr_hashtab[hash].tr_head;
9893 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9894 ASSERT(svntrp->tr_refcnt != 0);
9895 if (svntrp->tr_vp == vp && svntrp->tr_valid) {
9896 svntrp->tr_valid = 0;
9899 mutex_exit(&svntr_hashtab[hash].tr_lock);
9902 static void
9903 segvn_trasync_thread(void)
9905 callb_cpr_t cpr_info;
9906 kmutex_t cpr_lock; /* just for CPR stuff */
9908 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
9910 CALLB_CPR_INIT(&cpr_info, &cpr_lock,
9911 callb_generic_cpr, "segvn_async");
9913 if (segvn_update_textrepl_interval == 0) {
9914 segvn_update_textrepl_interval = segvn_update_tr_time * hz;
9915 } else {
9916 segvn_update_textrepl_interval *= hz;
9918 (void) timeout(segvn_trupdate_wakeup, NULL,
9919 segvn_update_textrepl_interval);
9921 for (;;) {
9922 mutex_enter(&cpr_lock);
9923 CALLB_CPR_SAFE_BEGIN(&cpr_info);
9924 mutex_exit(&cpr_lock);
9925 sema_p(&segvn_trasync_sem);
9926 mutex_enter(&cpr_lock);
9927 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
9928 mutex_exit(&cpr_lock);
9929 segvn_trupdate();
9933 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
9935 static void
9936 segvn_trupdate_wakeup(void *dummy)
9938 uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
9940 if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
9941 segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
9942 sema_v(&segvn_trasync_sem);
9945 if (!segvn_disable_textrepl_update &&
9946 segvn_update_textrepl_interval != 0) {
9947 (void) timeout(segvn_trupdate_wakeup, dummy,
9948 segvn_update_textrepl_interval);
9952 static void
9953 segvn_trupdate(void)
9955 ulong_t hash;
9956 svntr_t *svntrp;
9957 segvn_data_t *svd;
9959 ASSERT(svntr_hashtab != NULL);
9961 for (hash = 0; hash < svntr_hashtab_sz; hash++) {
9962 mutex_enter(&svntr_hashtab[hash].tr_lock);
9963 svntrp = svntr_hashtab[hash].tr_head;
9964 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9965 ASSERT(svntrp->tr_refcnt != 0);
9966 svd = svntrp->tr_svnhead;
9967 for (; svd != NULL; svd = svd->svn_trnext) {
9968 segvn_trupdate_seg(svd->seg, svd, svntrp,
9969 hash);
9972 mutex_exit(&svntr_hashtab[hash].tr_lock);
9976 static void
9977 segvn_trupdate_seg(struct seg *seg,
9978 segvn_data_t *svd,
9979 svntr_t *svntrp,
9980 ulong_t hash)
9982 proc_t *p;
9983 lgrp_id_t lgrp_id;
9984 struct as *as;
9985 size_t size;
9986 struct anon_map *amp;
9988 ASSERT(svd->vp != NULL);
9989 ASSERT(svd->vp == svntrp->tr_vp);
9990 ASSERT(svd->offset == svntrp->tr_off);
9991 ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
9992 ASSERT(seg != NULL);
9993 ASSERT(svd->seg == seg);
9994 ASSERT(seg->s_data == (void *)svd);
9995 ASSERT(seg->s_szc == svntrp->tr_szc);
9996 ASSERT(svd->tr_state == SEGVN_TR_ON);
9997 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9998 ASSERT(svd->amp != NULL);
9999 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10000 ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
10001 ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
10002 ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
10003 ASSERT(svntrp->tr_refcnt != 0);
10004 ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
10006 as = seg->s_as;
10007 ASSERT(as != NULL && as != &kas);
10008 p = as->a_proc;
10009 ASSERT(p != NULL);
10010 ASSERT(p->p_tr_lgrpid != LGRP_NONE);
10011 lgrp_id = p->p_t1_lgrpid;
10012 if (lgrp_id == LGRP_NONE) {
10013 return;
10015 ASSERT(lgrp_id < NLGRPS_MAX);
10016 if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
10017 return;
10021 * Use tryenter locking since we are locking as/seg and svntr hash
10022 * lock in reverse from syncrounous thread order.
10024 if (!AS_LOCK_TRYENTER(as, RW_READER)) {
10025 SEGVN_TR_ADDSTAT(nolock);
10026 if (segvn_lgrp_trthr_migrs_snpsht) {
10027 segvn_lgrp_trthr_migrs_snpsht = 0;
10029 return;
10031 if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
10032 AS_LOCK_EXIT(as);
10033 SEGVN_TR_ADDSTAT(nolock);
10034 if (segvn_lgrp_trthr_migrs_snpsht) {
10035 segvn_lgrp_trthr_migrs_snpsht = 0;
10037 return;
10039 size = seg->s_size;
10040 if (svntrp->tr_amp[lgrp_id] == NULL) {
10041 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
10042 if (trmem > segvn_textrepl_max_bytes) {
10043 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10044 AS_LOCK_EXIT(as);
10045 atomic_add_long(&segvn_textrepl_bytes, -size);
10046 SEGVN_TR_ADDSTAT(normem);
10047 return;
10049 if (anon_try_resv_zone(size, NULL) == 0) {
10050 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10051 AS_LOCK_EXIT(as);
10052 atomic_add_long(&segvn_textrepl_bytes, -size);
10053 SEGVN_TR_ADDSTAT(noanon);
10054 return;
10056 amp = anonmap_alloc(size, size, KM_NOSLEEP);
10057 if (amp == NULL) {
10058 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10059 AS_LOCK_EXIT(as);
10060 atomic_add_long(&segvn_textrepl_bytes, -size);
10061 anon_unresv_zone(size, NULL);
10062 SEGVN_TR_ADDSTAT(nokmem);
10063 return;
10065 ASSERT(amp->refcnt == 1);
10066 amp->a_szc = seg->s_szc;
10067 svntrp->tr_amp[lgrp_id] = amp;
10070 * We don't need to drop the bucket lock but here we give other
10071 * threads a chance. svntr and svd can't be unlinked as long as
10072 * segment lock is held as a writer and AS held as well. After we
10073 * retake bucket lock we'll continue from where we left. We'll be able
10074 * to reach the end of either list since new entries are always added
10075 * to the beginning of the lists.
10077 mutex_exit(&svntr_hashtab[hash].tr_lock);
10078 hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
10079 mutex_enter(&svntr_hashtab[hash].tr_lock);
10081 ASSERT(svd->tr_state == SEGVN_TR_ON);
10082 ASSERT(svd->amp != NULL);
10083 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10084 ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
10085 ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
10087 svd->tr_policy_info.mem_lgrpid = lgrp_id;
10088 svd->amp = svntrp->tr_amp[lgrp_id];
10089 p->p_tr_lgrpid = NLGRPS_MAX;
10090 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10091 AS_LOCK_EXIT(as);
10093 ASSERT(svntrp->tr_refcnt != 0);
10094 ASSERT(svd->vp == svntrp->tr_vp);
10095 ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
10096 ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
10097 ASSERT(svd->seg == seg);
10098 ASSERT(svd->tr_state == SEGVN_TR_ON);
10100 SEGVN_TR_ADDSTAT(asyncrepl);