1 /* $OpenBSD: ecp_nistp224.c,v 1.19 2017/05/02 03:59:44 deraadt Exp $ */
3 * Written by Emilia Kasper (Google) for the OpenSSL project.
6 * Copyright (c) 2011 Google Inc.
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
24 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
25 * and Adam Langley's public domain 64-bit C implementation of curve25519
31 #include <openssl/opensslconf.h>
33 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
35 #include <openssl/err.h>
38 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
39 /* even with gcc, the typedef won't work for 32-bit platforms */
40 typedef __uint128_t uint128_t
; /* nonstandard; implemented by gcc on 64-bit platforms */
42 #error "Need GCC 3.1 or later to define type uint128_t"
50 /******************************************************************************/
51 /* INTERNAL REPRESENTATION OF FIELD ELEMENTS
53 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
54 * using 64-bit coefficients called 'limbs',
55 * and sometimes (for multiplication results) as
56 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
57 * using 128-bit coefficients called 'widelimbs'.
58 * A 4-limb representation is an 'felem';
59 * a 7-widelimb representation is a 'widefelem'.
60 * Even within felems, bits of adjacent limbs overlap, and we don't always
61 * reduce the representations: we ensure that inputs to each felem
62 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
63 * and fit into a 128-bit word without overflow. The coefficients are then
64 * again partially reduced to obtain an felem satisfying a_i < 2^57.
65 * We only reduce to the unique minimal representation at the end of the
69 typedef uint64_t limb
;
70 typedef uint128_t widelimb
;
72 typedef limb felem
[4];
73 typedef widelimb widefelem
[7];
75 /* Field element represented as a byte arrary.
76 * 28*8 = 224 bits is also the group order size for the elliptic curve,
77 * and we also use this type for scalars for point multiplication.
79 typedef u8 felem_bytearray
[28];
81 static const felem_bytearray nistp224_curve_params
[5] = {
82 {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */
83 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
84 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
85 {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */
86 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
87 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
88 {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */
89 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
90 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
91 {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */
92 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
93 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
94 {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */
95 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
96 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
99 /* Precomputed multiples of the standard generator
100 * Points are given in coordinates (X, Y, Z) where Z normally is 1
101 * (0 for the point at infinity).
102 * For each field element, slice a_0 is word 0, etc.
104 * The table has 2 * 16 elements, starting with the following:
105 * index | bits | point
106 * ------+---------+------------------------------
109 * 2 | 0 0 1 0 | 2^56G
110 * 3 | 0 0 1 1 | (2^56 + 1)G
111 * 4 | 0 1 0 0 | 2^112G
112 * 5 | 0 1 0 1 | (2^112 + 1)G
113 * 6 | 0 1 1 0 | (2^112 + 2^56)G
114 * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
115 * 8 | 1 0 0 0 | 2^168G
116 * 9 | 1 0 0 1 | (2^168 + 1)G
117 * 10 | 1 0 1 0 | (2^168 + 2^56)G
118 * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
119 * 12 | 1 1 0 0 | (2^168 + 2^112)G
120 * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
121 * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
122 * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
123 * followed by a copy of this with each element multiplied by 2^28.
125 * The reason for this is so that we can clock bits into four different
126 * locations when doing simple scalar multiplies against the base point,
127 * and then another four locations using the second 16 elements.
129 static const felem gmul
[2][16][3] =
133 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
134 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
136 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
137 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
139 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
140 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
142 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
143 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
145 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
146 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
148 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
149 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
151 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
152 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
154 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
155 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
157 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
158 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
160 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
161 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
163 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
164 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
166 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
167 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
169 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
170 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
172 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
173 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
175 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
176 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
181 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
182 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
184 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
185 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
187 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
188 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
190 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
191 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
193 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
194 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
196 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
197 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
199 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
200 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
202 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
203 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
205 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
206 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
208 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
209 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
211 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
212 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
214 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
215 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
217 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
218 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
220 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
221 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
223 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
224 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
227 /* Precomputation for the group generator. */
229 felem g_pre_comp
[2][16][3];
234 EC_GFp_nistp224_method(void)
236 static const EC_METHOD ret
= {
237 .flags
= EC_FLAGS_DEFAULT_OCT
,
238 .field_type
= NID_X9_62_prime_field
,
239 .group_init
= ec_GFp_nistp224_group_init
,
240 .group_finish
= ec_GFp_simple_group_finish
,
241 .group_clear_finish
= ec_GFp_simple_group_clear_finish
,
242 .group_copy
= ec_GFp_nist_group_copy
,
243 .group_set_curve
= ec_GFp_nistp224_group_set_curve
,
244 .group_get_curve
= ec_GFp_simple_group_get_curve
,
245 .group_get_degree
= ec_GFp_simple_group_get_degree
,
246 .group_check_discriminant
=
247 ec_GFp_simple_group_check_discriminant
,
248 .point_init
= ec_GFp_simple_point_init
,
249 .point_finish
= ec_GFp_simple_point_finish
,
250 .point_clear_finish
= ec_GFp_simple_point_clear_finish
,
251 .point_copy
= ec_GFp_simple_point_copy
,
252 .point_set_to_infinity
= ec_GFp_simple_point_set_to_infinity
,
253 .point_set_Jprojective_coordinates_GFp
=
254 ec_GFp_simple_set_Jprojective_coordinates_GFp
,
255 .point_get_Jprojective_coordinates_GFp
=
256 ec_GFp_simple_get_Jprojective_coordinates_GFp
,
257 .point_set_affine_coordinates
=
258 ec_GFp_simple_point_set_affine_coordinates
,
259 .point_get_affine_coordinates
=
260 ec_GFp_nistp224_point_get_affine_coordinates
,
261 .add
= ec_GFp_simple_add
,
262 .dbl
= ec_GFp_simple_dbl
,
263 .invert
= ec_GFp_simple_invert
,
264 .is_at_infinity
= ec_GFp_simple_is_at_infinity
,
265 .is_on_curve
= ec_GFp_simple_is_on_curve
,
266 .point_cmp
= ec_GFp_simple_cmp
,
267 .make_affine
= ec_GFp_simple_make_affine
,
268 .points_make_affine
= ec_GFp_simple_points_make_affine
,
269 .mul
= ec_GFp_nistp224_points_mul
,
270 .precompute_mult
= ec_GFp_nistp224_precompute_mult
,
271 .have_precompute_mult
= ec_GFp_nistp224_have_precompute_mult
,
272 .field_mul
= ec_GFp_nist_field_mul
,
273 .field_sqr
= ec_GFp_nist_field_sqr
279 /* Helper functions to convert field elements to/from internal representation */
281 bin28_to_felem(felem out
, const u8 in
[28])
283 out
[0] = *((const uint64_t *) (in
)) & 0x00ffffffffffffff;
284 out
[1] = (*((const uint64_t *) (in
+ 7))) & 0x00ffffffffffffff;
285 out
[2] = (*((const uint64_t *) (in
+ 14))) & 0x00ffffffffffffff;
286 out
[3] = (*((const uint64_t *) (in
+ 21))) & 0x00ffffffffffffff;
290 felem_to_bin28(u8 out
[28], const felem in
)
293 for (i
= 0; i
< 7; ++i
) {
294 out
[i
] = in
[0] >> (8 * i
);
295 out
[i
+ 7] = in
[1] >> (8 * i
);
296 out
[i
+ 14] = in
[2] >> (8 * i
);
297 out
[i
+ 21] = in
[3] >> (8 * i
);
301 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
303 flip_endian(u8
* out
, const u8
* in
, unsigned len
)
306 for (i
= 0; i
< len
; ++i
)
307 out
[i
] = in
[len
- 1 - i
];
310 /* From OpenSSL BIGNUM to internal representation */
312 BN_to_felem(felem out
, const BIGNUM
* bn
)
314 felem_bytearray b_in
;
315 felem_bytearray b_out
;
318 /* BN_bn2bin eats leading zeroes */
319 memset(b_out
, 0, sizeof b_out
);
320 num_bytes
= BN_num_bytes(bn
);
321 if (num_bytes
> sizeof b_out
) {
322 ECerror(EC_R_BIGNUM_OUT_OF_RANGE
);
325 if (BN_is_negative(bn
)) {
326 ECerror(EC_R_BIGNUM_OUT_OF_RANGE
);
329 num_bytes
= BN_bn2bin(bn
, b_in
);
330 flip_endian(b_out
, b_in
, num_bytes
);
331 bin28_to_felem(out
, b_out
);
335 /* From internal representation to OpenSSL BIGNUM */
337 felem_to_BN(BIGNUM
* out
, const felem in
)
339 felem_bytearray b_in
, b_out
;
340 felem_to_bin28(b_in
, in
);
341 flip_endian(b_out
, b_in
, sizeof b_out
);
342 return BN_bin2bn(b_out
, sizeof b_out
, out
);
345 /******************************************************************************/
348 * Field operations, using the internal representation of field elements.
349 * NB! These operations are specific to our point multiplication and cannot be
350 * expected to be correct in general - e.g., multiplication with a large scalar
351 * will cause an overflow.
365 felem_assign(felem out
, const felem in
)
373 /* Sum two field elements: out += in */
375 felem_sum(felem out
, const felem in
)
383 /* Get negative value: out = -in */
384 /* Assumes in[i] < 2^57 */
386 felem_neg(felem out
, const felem in
)
388 static const limb two58p2
= (((limb
) 1) << 58) + (((limb
) 1) << 2);
389 static const limb two58m2
= (((limb
) 1) << 58) - (((limb
) 1) << 2);
390 static const limb two58m42m2
= (((limb
) 1) << 58) -
391 (((limb
) 1) << 42) - (((limb
) 1) << 2);
393 /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
394 out
[0] = two58p2
- in
[0];
395 out
[1] = two58m42m2
- in
[1];
396 out
[2] = two58m2
- in
[2];
397 out
[3] = two58m2
- in
[3];
400 /* Subtract field elements: out -= in */
401 /* Assumes in[i] < 2^57 */
403 felem_diff(felem out
, const felem in
)
405 static const limb two58p2
= (((limb
) 1) << 58) + (((limb
) 1) << 2);
406 static const limb two58m2
= (((limb
) 1) << 58) - (((limb
) 1) << 2);
407 static const limb two58m42m2
= (((limb
) 1) << 58) -
408 (((limb
) 1) << 42) - (((limb
) 1) << 2);
410 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
412 out
[1] += two58m42m2
;
422 /* Subtract in unreduced 128-bit mode: out -= in */
423 /* Assumes in[i] < 2^119 */
425 widefelem_diff(widefelem out
, const widefelem in
)
427 static const widelimb two120
= ((widelimb
) 1) << 120;
428 static const widelimb two120m64
= (((widelimb
) 1) << 120) -
429 (((widelimb
) 1) << 64);
430 static const widelimb two120m104m64
= (((widelimb
) 1) << 120) -
431 (((widelimb
) 1) << 104) - (((widelimb
) 1) << 64);
433 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
438 out
[4] += two120m104m64
;
451 /* Subtract in mixed mode: out128 -= in64 */
454 felem_diff_128_64(widefelem out
, const felem in
)
456 static const widelimb two64p8
= (((widelimb
) 1) << 64) +
457 (((widelimb
) 1) << 8);
458 static const widelimb two64m8
= (((widelimb
) 1) << 64) -
459 (((widelimb
) 1) << 8);
460 static const widelimb two64m48m8
= (((widelimb
) 1) << 64) -
461 (((widelimb
) 1) << 48) - (((widelimb
) 1) << 8);
463 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
465 out
[1] += two64m48m8
;
475 /* Multiply a field element by a scalar: out = out * scalar
476 * The scalars we actually use are small, so results fit without overflow */
478 felem_scalar(felem out
, const limb scalar
)
486 /* Multiply an unreduced field element by a scalar: out = out * scalar
487 * The scalars we actually use are small, so results fit without overflow */
489 widefelem_scalar(widefelem out
, const widelimb scalar
)
500 /* Square a field element: out = in^2 */
502 felem_square(widefelem out
, const felem in
)
504 limb tmp0
, tmp1
, tmp2
;
508 out
[0] = ((widelimb
) in
[0]) * in
[0];
509 out
[1] = ((widelimb
) in
[0]) * tmp1
;
510 out
[2] = ((widelimb
) in
[0]) * tmp2
+ ((widelimb
) in
[1]) * in
[1];
511 out
[3] = ((widelimb
) in
[3]) * tmp0
+
512 ((widelimb
) in
[1]) * tmp2
;
513 out
[4] = ((widelimb
) in
[3]) * tmp1
+ ((widelimb
) in
[2]) * in
[2];
514 out
[5] = ((widelimb
) in
[3]) * tmp2
;
515 out
[6] = ((widelimb
) in
[3]) * in
[3];
518 /* Multiply two field elements: out = in1 * in2 */
520 felem_mul(widefelem out
, const felem in1
, const felem in2
)
522 out
[0] = ((widelimb
) in1
[0]) * in2
[0];
523 out
[1] = ((widelimb
) in1
[0]) * in2
[1] + ((widelimb
) in1
[1]) * in2
[0];
524 out
[2] = ((widelimb
) in1
[0]) * in2
[2] + ((widelimb
) in1
[1]) * in2
[1] +
525 ((widelimb
) in1
[2]) * in2
[0];
526 out
[3] = ((widelimb
) in1
[0]) * in2
[3] + ((widelimb
) in1
[1]) * in2
[2] +
527 ((widelimb
) in1
[2]) * in2
[1] + ((widelimb
) in1
[3]) * in2
[0];
528 out
[4] = ((widelimb
) in1
[1]) * in2
[3] + ((widelimb
) in1
[2]) * in2
[2] +
529 ((widelimb
) in1
[3]) * in2
[1];
530 out
[5] = ((widelimb
) in1
[2]) * in2
[3] + ((widelimb
) in1
[3]) * in2
[2];
531 out
[6] = ((widelimb
) in1
[3]) * in2
[3];
534 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
535 * Requires in[i] < 2^126,
536 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
538 felem_reduce(felem out
, const widefelem in
)
540 static const widelimb two127p15
= (((widelimb
) 1) << 127) +
541 (((widelimb
) 1) << 15);
542 static const widelimb two127m71
= (((widelimb
) 1) << 127) -
543 (((widelimb
) 1) << 71);
544 static const widelimb two127m71m55
= (((widelimb
) 1) << 127) -
545 (((widelimb
) 1) << 71) - (((widelimb
) 1) << 55);
548 /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
549 output
[0] = in
[0] + two127p15
;
550 output
[1] = in
[1] + two127m71m55
;
551 output
[2] = in
[2] + two127m71
;
555 /* Eliminate in[4], in[5], in[6] */
556 output
[4] += in
[6] >> 16;
557 output
[3] += (in
[6] & 0xffff) << 40;
560 output
[3] += in
[5] >> 16;
561 output
[2] += (in
[5] & 0xffff) << 40;
564 output
[2] += output
[4] >> 16;
565 output
[1] += (output
[4] & 0xffff) << 40;
566 output
[0] -= output
[4];
568 /* Carry 2 -> 3 -> 4 */
569 output
[3] += output
[2] >> 56;
570 output
[2] &= 0x00ffffffffffffff;
572 output
[4] = output
[3] >> 56;
573 output
[3] &= 0x00ffffffffffffff;
575 /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
577 /* Eliminate output[4] */
578 output
[2] += output
[4] >> 16;
579 /* output[2] < 2^56 + 2^56 = 2^57 */
580 output
[1] += (output
[4] & 0xffff) << 40;
581 output
[0] -= output
[4];
583 /* Carry 0 -> 1 -> 2 -> 3 */
584 output
[1] += output
[0] >> 56;
585 out
[0] = output
[0] & 0x00ffffffffffffff;
587 output
[2] += output
[1] >> 56;
588 /* output[2] < 2^57 + 2^72 */
589 out
[1] = output
[1] & 0x00ffffffffffffff;
590 output
[3] += output
[2] >> 56;
591 /* output[3] <= 2^56 + 2^16 */
592 out
[2] = output
[2] & 0x00ffffffffffffff;
595 * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
596 * (due to final carry), so out < 2*p
602 felem_square_reduce(felem out
, const felem in
)
605 felem_square(tmp
, in
);
606 felem_reduce(out
, tmp
);
610 felem_mul_reduce(felem out
, const felem in1
, const felem in2
)
613 felem_mul(tmp
, in1
, in2
);
614 felem_reduce(out
, tmp
);
617 /* Reduce to unique minimal representation.
618 * Requires 0 <= in < 2*p (always call felem_reduce first) */
620 felem_contract(felem out
, const felem in
)
622 static const int64_t two56
= ((limb
) 1) << 56;
623 /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
624 /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
630 /* Case 1: a = 1 iff in >= 2^224 */
634 tmp
[3] &= 0x00ffffffffffffff;
636 * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all
637 * 1 and the lower part is non-zero
639 a
= ((in
[3] & in
[2] & (in
[1] | 0x000000ffffffffff)) + 1) |
640 (((int64_t) (in
[0] + (in
[1] & 0x000000ffffffffff)) - 1) >> 63);
641 a
&= 0x00ffffffffffffff;
642 /* turn a into an all-one mask (if a = 0) or an all-zero mask */
644 /* subtract 2^224 - 2^96 + 1 if a is all-one */
645 tmp
[3] &= a
^ 0xffffffffffffffff;
646 tmp
[2] &= a
^ 0xffffffffffffffff;
647 tmp
[1] &= (a
^ 0xffffffffffffffff) | 0x000000ffffffffff;
651 * eliminate negative coefficients: if tmp[0] is negative, tmp[1]
652 * must be non-zero, so we only need one step
658 /* carry 1 -> 2 -> 3 */
659 tmp
[2] += tmp
[1] >> 56;
660 tmp
[1] &= 0x00ffffffffffffff;
662 tmp
[3] += tmp
[2] >> 56;
663 tmp
[2] &= 0x00ffffffffffffff;
665 /* Now 0 <= out < p */
672 /* Zero-check: returns 1 if input is 0, and 0 otherwise.
673 * We know that field elements are reduced to in < 2^225,
674 * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
675 * and 2^225 - 2^97 + 2 */
677 felem_is_zero(const felem in
)
679 limb zero
, two224m96p1
, two225m97p2
;
681 zero
= in
[0] | in
[1] | in
[2] | in
[3];
682 zero
= (((int64_t) (zero
) - 1) >> 63) & 1;
683 two224m96p1
= (in
[0] ^ 1) | (in
[1] ^ 0x00ffff0000000000)
684 | (in
[2] ^ 0x00ffffffffffffff) | (in
[3] ^ 0x00ffffffffffffff);
685 two224m96p1
= (((int64_t) (two224m96p1
) - 1) >> 63) & 1;
686 two225m97p2
= (in
[0] ^ 2) | (in
[1] ^ 0x00fffe0000000000)
687 | (in
[2] ^ 0x00ffffffffffffff) | (in
[3] ^ 0x01ffffffffffffff);
688 two225m97p2
= (((int64_t) (two225m97p2
) - 1) >> 63) & 1;
689 return (zero
| two224m96p1
| two225m97p2
);
693 felem_is_zero_int(const felem in
)
695 return (int) (felem_is_zero(in
) & ((limb
) 1));
698 /* Invert a field element */
699 /* Computation chain copied from djb's code */
701 felem_inv(felem out
, const felem in
)
703 felem ftmp
, ftmp2
, ftmp3
, ftmp4
;
707 felem_square(tmp
, in
);
708 felem_reduce(ftmp
, tmp
);/* 2 */
709 felem_mul(tmp
, in
, ftmp
);
710 felem_reduce(ftmp
, tmp
);/* 2^2 - 1 */
711 felem_square(tmp
, ftmp
);
712 felem_reduce(ftmp
, tmp
);/* 2^3 - 2 */
713 felem_mul(tmp
, in
, ftmp
);
714 felem_reduce(ftmp
, tmp
);/* 2^3 - 1 */
715 felem_square(tmp
, ftmp
);
716 felem_reduce(ftmp2
, tmp
); /* 2^4 - 2 */
717 felem_square(tmp
, ftmp2
);
718 felem_reduce(ftmp2
, tmp
); /* 2^5 - 4 */
719 felem_square(tmp
, ftmp2
);
720 felem_reduce(ftmp2
, tmp
); /* 2^6 - 8 */
721 felem_mul(tmp
, ftmp2
, ftmp
);
722 felem_reduce(ftmp
, tmp
);/* 2^6 - 1 */
723 felem_square(tmp
, ftmp
);
724 felem_reduce(ftmp2
, tmp
); /* 2^7 - 2 */
725 for (i
= 0; i
< 5; ++i
) { /* 2^12 - 2^6 */
726 felem_square(tmp
, ftmp2
);
727 felem_reduce(ftmp2
, tmp
);
729 felem_mul(tmp
, ftmp2
, ftmp
);
730 felem_reduce(ftmp2
, tmp
); /* 2^12 - 1 */
731 felem_square(tmp
, ftmp2
);
732 felem_reduce(ftmp3
, tmp
); /* 2^13 - 2 */
733 for (i
= 0; i
< 11; ++i
) { /* 2^24 - 2^12 */
734 felem_square(tmp
, ftmp3
);
735 felem_reduce(ftmp3
, tmp
);
737 felem_mul(tmp
, ftmp3
, ftmp2
);
738 felem_reduce(ftmp2
, tmp
); /* 2^24 - 1 */
739 felem_square(tmp
, ftmp2
);
740 felem_reduce(ftmp3
, tmp
); /* 2^25 - 2 */
741 for (i
= 0; i
< 23; ++i
) { /* 2^48 - 2^24 */
742 felem_square(tmp
, ftmp3
);
743 felem_reduce(ftmp3
, tmp
);
745 felem_mul(tmp
, ftmp3
, ftmp2
);
746 felem_reduce(ftmp3
, tmp
); /* 2^48 - 1 */
747 felem_square(tmp
, ftmp3
);
748 felem_reduce(ftmp4
, tmp
); /* 2^49 - 2 */
749 for (i
= 0; i
< 47; ++i
) { /* 2^96 - 2^48 */
750 felem_square(tmp
, ftmp4
);
751 felem_reduce(ftmp4
, tmp
);
753 felem_mul(tmp
, ftmp3
, ftmp4
);
754 felem_reduce(ftmp3
, tmp
); /* 2^96 - 1 */
755 felem_square(tmp
, ftmp3
);
756 felem_reduce(ftmp4
, tmp
); /* 2^97 - 2 */
757 for (i
= 0; i
< 23; ++i
) { /* 2^120 - 2^24 */
758 felem_square(tmp
, ftmp4
);
759 felem_reduce(ftmp4
, tmp
);
761 felem_mul(tmp
, ftmp2
, ftmp4
);
762 felem_reduce(ftmp2
, tmp
); /* 2^120 - 1 */
763 for (i
= 0; i
< 6; ++i
) { /* 2^126 - 2^6 */
764 felem_square(tmp
, ftmp2
);
765 felem_reduce(ftmp2
, tmp
);
767 felem_mul(tmp
, ftmp2
, ftmp
);
768 felem_reduce(ftmp
, tmp
);/* 2^126 - 1 */
769 felem_square(tmp
, ftmp
);
770 felem_reduce(ftmp
, tmp
);/* 2^127 - 2 */
771 felem_mul(tmp
, ftmp
, in
);
772 felem_reduce(ftmp
, tmp
);/* 2^127 - 1 */
773 for (i
= 0; i
< 97; ++i
) { /* 2^224 - 2^97 */
774 felem_square(tmp
, ftmp
);
775 felem_reduce(ftmp
, tmp
);
777 felem_mul(tmp
, ftmp
, ftmp3
);
778 felem_reduce(out
, tmp
); /* 2^224 - 2^96 - 1 */
781 /* Copy in constant time:
782 * if icopy == 1, copy in to out,
783 * if icopy == 0, copy out to itself. */
785 copy_conditional(felem out
, const felem in
, limb icopy
)
788 /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
789 const limb copy
= -icopy
;
790 for (i
= 0; i
< 4; ++i
) {
791 const limb tmp
= copy
& (in
[i
] ^ out
[i
]);
796 /******************************************************************************/
797 /* ELLIPTIC CURVE POINT OPERATIONS
799 * Points are represented in Jacobian projective coordinates:
800 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
801 * or to the point at infinity if Z == 0.
805 /* Double an elliptic curve point:
806 * (X', Y', Z') = 2 * (X, Y, Z), where
807 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
808 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
809 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
810 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
811 * while x_out == y_in is not (maybe this works, but it's not tested). */
813 point_double(felem x_out
, felem y_out
, felem z_out
,
814 const felem x_in
, const felem y_in
, const felem z_in
)
817 felem delta
, gamma
, beta
, alpha
, ftmp
, ftmp2
;
819 felem_assign(ftmp
, x_in
);
820 felem_assign(ftmp2
, x_in
);
823 felem_square(tmp
, z_in
);
824 felem_reduce(delta
, tmp
);
827 felem_square(tmp
, y_in
);
828 felem_reduce(gamma
, tmp
);
831 felem_mul(tmp
, x_in
, gamma
);
832 felem_reduce(beta
, tmp
);
834 /* alpha = 3*(x-delta)*(x+delta) */
835 felem_diff(ftmp
, delta
);
836 /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
837 felem_sum(ftmp2
, delta
);
838 /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
839 felem_scalar(ftmp2
, 3);
840 /* ftmp2[i] < 3 * 2^58 < 2^60 */
841 felem_mul(tmp
, ftmp
, ftmp2
);
842 /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
843 felem_reduce(alpha
, tmp
);
845 /* x' = alpha^2 - 8*beta */
846 felem_square(tmp
, alpha
);
847 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
848 felem_assign(ftmp
, beta
);
849 felem_scalar(ftmp
, 8);
850 /* ftmp[i] < 8 * 2^57 = 2^60 */
851 felem_diff_128_64(tmp
, ftmp
);
852 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
853 felem_reduce(x_out
, tmp
);
855 /* z' = (y + z)^2 - gamma - delta */
856 felem_sum(delta
, gamma
);
857 /* delta[i] < 2^57 + 2^57 = 2^58 */
858 felem_assign(ftmp
, y_in
);
859 felem_sum(ftmp
, z_in
);
860 /* ftmp[i] < 2^57 + 2^57 = 2^58 */
861 felem_square(tmp
, ftmp
);
862 /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
863 felem_diff_128_64(tmp
, delta
);
864 /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
865 felem_reduce(z_out
, tmp
);
867 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
868 felem_scalar(beta
, 4);
869 /* beta[i] < 4 * 2^57 = 2^59 */
870 felem_diff(beta
, x_out
);
871 /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
872 felem_mul(tmp
, alpha
, beta
);
873 /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
874 felem_square(tmp2
, gamma
);
875 /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
876 widefelem_scalar(tmp2
, 8);
877 /* tmp2[i] < 8 * 2^116 = 2^119 */
878 widefelem_diff(tmp
, tmp2
);
879 /* tmp[i] < 2^119 + 2^120 < 2^121 */
880 felem_reduce(y_out
, tmp
);
883 /* Add two elliptic curve points:
884 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
885 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
886 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
887 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
888 * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
889 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
891 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
894 /* This function is not entirely constant-time:
895 * it includes a branch for checking whether the two input points are equal,
896 * (while not equal to the point at infinity).
897 * This case never happens during single point multiplication,
898 * so there is no timing leak for ECDH or ECDSA signing. */
900 point_add(felem x3
, felem y3
, felem z3
,
901 const felem x1
, const felem y1
, const felem z1
,
902 const int mixed
, const felem x2
, const felem y2
, const felem z2
)
904 felem ftmp
, ftmp2
, ftmp3
, ftmp4
, ftmp5
, x_out
, y_out
, z_out
;
906 limb z1_is_zero
, z2_is_zero
, x_equal
, y_equal
;
910 felem_square(tmp
, z2
);
911 felem_reduce(ftmp2
, tmp
);
914 felem_mul(tmp
, ftmp2
, z2
);
915 felem_reduce(ftmp4
, tmp
);
917 /* ftmp4 = z2^3*y1 */
918 felem_mul(tmp2
, ftmp4
, y1
);
919 felem_reduce(ftmp4
, tmp2
);
921 /* ftmp2 = z2^2*x1 */
922 felem_mul(tmp2
, ftmp2
, x1
);
923 felem_reduce(ftmp2
, tmp2
);
925 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
927 /* ftmp4 = z2^3*y1 */
928 felem_assign(ftmp4
, y1
);
930 /* ftmp2 = z2^2*x1 */
931 felem_assign(ftmp2
, x1
);
935 felem_square(tmp
, z1
);
936 felem_reduce(ftmp
, tmp
);
939 felem_mul(tmp
, ftmp
, z1
);
940 felem_reduce(ftmp3
, tmp
);
943 felem_mul(tmp
, ftmp3
, y2
);
944 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
946 /* ftmp3 = z1^3*y2 - z2^3*y1 */
947 felem_diff_128_64(tmp
, ftmp4
);
948 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
949 felem_reduce(ftmp3
, tmp
);
952 felem_mul(tmp
, ftmp
, x2
);
953 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
955 /* ftmp = z1^2*x2 - z2^2*x1 */
956 felem_diff_128_64(tmp
, ftmp2
);
957 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
958 felem_reduce(ftmp
, tmp
);
961 * the formulae are incorrect if the points are equal so we check for
962 * this and do doubling if this happens
964 x_equal
= felem_is_zero(ftmp
);
965 y_equal
= felem_is_zero(ftmp3
);
966 z1_is_zero
= felem_is_zero(z1
);
967 z2_is_zero
= felem_is_zero(z2
);
968 /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
969 if (x_equal
&& y_equal
&& !z1_is_zero
&& !z2_is_zero
) {
970 point_double(x3
, y3
, z3
, x1
, y1
, z1
);
975 felem_mul(tmp
, z1
, z2
);
976 felem_reduce(ftmp5
, tmp
);
978 /* special case z2 = 0 is handled later */
979 felem_assign(ftmp5
, z1
);
982 /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
983 felem_mul(tmp
, ftmp
, ftmp5
);
984 felem_reduce(z_out
, tmp
);
986 /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
987 felem_assign(ftmp5
, ftmp
);
988 felem_square(tmp
, ftmp
);
989 felem_reduce(ftmp
, tmp
);
991 /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
992 felem_mul(tmp
, ftmp
, ftmp5
);
993 felem_reduce(ftmp5
, tmp
);
995 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
996 felem_mul(tmp
, ftmp2
, ftmp
);
997 felem_reduce(ftmp2
, tmp
);
999 /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1000 felem_mul(tmp
, ftmp4
, ftmp5
);
1001 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1003 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1004 felem_square(tmp2
, ftmp3
);
1005 /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1007 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1008 felem_diff_128_64(tmp2
, ftmp5
);
1009 /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1011 /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1012 felem_assign(ftmp5
, ftmp2
);
1013 felem_scalar(ftmp5
, 2);
1014 /* ftmp5[i] < 2 * 2^57 = 2^58 */
1017 * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1018 * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1020 felem_diff_128_64(tmp2
, ftmp5
);
1021 /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1022 felem_reduce(x_out
, tmp2
);
1024 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1025 felem_diff(ftmp2
, x_out
);
1026 /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1028 /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
1029 felem_mul(tmp2
, ftmp3
, ftmp2
);
1030 /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1033 * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 -
1034 * x_out) - z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1036 widefelem_diff(tmp2
, tmp
);
1037 /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1038 felem_reduce(y_out
, tmp2
);
1041 * the result (x_out, y_out, z_out) is incorrect if one of the inputs
1042 * is the point at infinity, so we need to check for this separately
1045 /* if point 1 is at infinity, copy point 2 to output, and vice versa */
1046 copy_conditional(x_out
, x2
, z1_is_zero
);
1047 copy_conditional(x_out
, x1
, z2_is_zero
);
1048 copy_conditional(y_out
, y2
, z1_is_zero
);
1049 copy_conditional(y_out
, y1
, z2_is_zero
);
1050 copy_conditional(z_out
, z2
, z1_is_zero
);
1051 copy_conditional(z_out
, z1
, z2_is_zero
);
1052 felem_assign(x3
, x_out
);
1053 felem_assign(y3
, y_out
);
1054 felem_assign(z3
, z_out
);
1057 /* select_point selects the |idx|th point from a precomputation table and
1058 * copies it to out. */
1060 select_point(const u64 idx
, unsigned int size
, const felem pre_comp
[ /* size */ ][3], felem out
[3])
1063 limb
*outlimbs
= &out
[0][0];
1064 memset(outlimbs
, 0, 3 * sizeof(felem
));
1066 for (i
= 0; i
< size
; i
++) {
1067 const limb
*inlimbs
= &pre_comp
[i
][0][0];
1074 for (j
= 0; j
< 4 * 3; j
++)
1075 outlimbs
[j
] |= inlimbs
[j
] & mask
;
1079 /* get_bit returns the |i|th bit in |in| */
1081 get_bit(const felem_bytearray in
, unsigned i
)
1085 return (in
[i
>> 3] >> (i
& 7)) & 1;
1088 /* Interleaved point multiplication using precomputed point multiples:
1089 * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
1090 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1091 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1092 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1094 batch_mul(felem x_out
, felem y_out
, felem z_out
,
1095 const felem_bytearray scalars
[], const unsigned num_points
, const u8
* g_scalar
,
1096 const int mixed
, const felem pre_comp
[][17][3], const felem g_pre_comp
[2][16][3])
1100 unsigned gen_mul
= (g_scalar
!= NULL
);
1101 felem nq
[3], tmp
[4];
1105 /* set nq to the point at infinity */
1106 memset(nq
, 0, 3 * sizeof(felem
));
1109 * Loop over all scalars msb-to-lsb, interleaving additions of
1110 * multiples of the generator (two in each of the last 28 rounds) and
1111 * additions of other points multiples (every 5th round).
1113 skip
= 1; /* save two point operations in the first
1115 for (i
= (num_points
? 220 : 27); i
>= 0; --i
) {
1118 point_double(nq
[0], nq
[1], nq
[2], nq
[0], nq
[1], nq
[2]);
1120 /* add multiples of the generator */
1121 if (gen_mul
&& (i
<= 27)) {
1122 /* first, look 28 bits upwards */
1123 bits
= get_bit(g_scalar
, i
+ 196) << 3;
1124 bits
|= get_bit(g_scalar
, i
+ 140) << 2;
1125 bits
|= get_bit(g_scalar
, i
+ 84) << 1;
1126 bits
|= get_bit(g_scalar
, i
+ 28);
1127 /* select the point to add, in constant time */
1128 select_point(bits
, 16, g_pre_comp
[1], tmp
);
1131 point_add(nq
[0], nq
[1], nq
[2],
1132 nq
[0], nq
[1], nq
[2],
1133 1 /* mixed */ , tmp
[0], tmp
[1], tmp
[2]);
1135 memcpy(nq
, tmp
, 3 * sizeof(felem
));
1139 /* second, look at the current position */
1140 bits
= get_bit(g_scalar
, i
+ 168) << 3;
1141 bits
|= get_bit(g_scalar
, i
+ 112) << 2;
1142 bits
|= get_bit(g_scalar
, i
+ 56) << 1;
1143 bits
|= get_bit(g_scalar
, i
);
1144 /* select the point to add, in constant time */
1145 select_point(bits
, 16, g_pre_comp
[0], tmp
);
1146 point_add(nq
[0], nq
[1], nq
[2],
1147 nq
[0], nq
[1], nq
[2],
1148 1 /* mixed */ , tmp
[0], tmp
[1], tmp
[2]);
1150 /* do other additions every 5 doublings */
1151 if (num_points
&& (i
% 5 == 0)) {
1152 /* loop over all scalars */
1153 for (num
= 0; num
< num_points
; ++num
) {
1154 bits
= get_bit(scalars
[num
], i
+ 4) << 5;
1155 bits
|= get_bit(scalars
[num
], i
+ 3) << 4;
1156 bits
|= get_bit(scalars
[num
], i
+ 2) << 3;
1157 bits
|= get_bit(scalars
[num
], i
+ 1) << 2;
1158 bits
|= get_bit(scalars
[num
], i
) << 1;
1159 bits
|= get_bit(scalars
[num
], i
- 1);
1160 ec_GFp_nistp_recode_scalar_bits(&sign
, &digit
, bits
);
1162 /* select the point to add or subtract */
1163 select_point(digit
, 17, pre_comp
[num
], tmp
);
1164 felem_neg(tmp
[3], tmp
[1]); /* (X, -Y, Z) is the
1166 copy_conditional(tmp
[1], tmp
[3], sign
);
1169 point_add(nq
[0], nq
[1], nq
[2],
1170 nq
[0], nq
[1], nq
[2],
1171 mixed
, tmp
[0], tmp
[1], tmp
[2]);
1173 memcpy(nq
, tmp
, 3 * sizeof(felem
));
1179 felem_assign(x_out
, nq
[0]);
1180 felem_assign(y_out
, nq
[1]);
1181 felem_assign(z_out
, nq
[2]);
1184 /******************************************************************************/
1185 /* FUNCTIONS TO MANAGE PRECOMPUTATION
1188 static NISTP224_PRE_COMP
*
1189 nistp224_pre_comp_new()
1191 NISTP224_PRE_COMP
*ret
= NULL
;
1192 ret
= malloc(sizeof *ret
);
1194 ECerror(ERR_R_MALLOC_FAILURE
);
1197 memset(ret
->g_pre_comp
, 0, sizeof(ret
->g_pre_comp
));
1198 ret
->references
= 1;
1203 nistp224_pre_comp_dup(void *src_
)
1205 NISTP224_PRE_COMP
*src
= src_
;
1207 /* no need to actually copy, these objects never change! */
1208 CRYPTO_add(&src
->references
, 1, CRYPTO_LOCK_EC_PRE_COMP
);
1214 nistp224_pre_comp_free(void *pre_
)
1217 NISTP224_PRE_COMP
*pre
= pre_
;
1222 i
= CRYPTO_add(&pre
->references
, -1, CRYPTO_LOCK_EC_PRE_COMP
);
1230 nistp224_pre_comp_clear_free(void *pre_
)
1233 NISTP224_PRE_COMP
*pre
= pre_
;
1238 i
= CRYPTO_add(&pre
->references
, -1, CRYPTO_LOCK_EC_PRE_COMP
);
1242 freezero(pre
, sizeof *pre
);
1245 /******************************************************************************/
1246 /* OPENSSL EC_METHOD FUNCTIONS
1250 ec_GFp_nistp224_group_init(EC_GROUP
* group
)
1253 ret
= ec_GFp_simple_group_init(group
);
1254 group
->a_is_minus3
= 1;
1259 ec_GFp_nistp224_group_set_curve(EC_GROUP
* group
, const BIGNUM
* p
,
1260 const BIGNUM
* a
, const BIGNUM
* b
, BN_CTX
* ctx
)
1263 BN_CTX
*new_ctx
= NULL
;
1264 BIGNUM
*curve_p
, *curve_a
, *curve_b
;
1267 if ((ctx
= new_ctx
= BN_CTX_new()) == NULL
)
1270 if (((curve_p
= BN_CTX_get(ctx
)) == NULL
) ||
1271 ((curve_a
= BN_CTX_get(ctx
)) == NULL
) ||
1272 ((curve_b
= BN_CTX_get(ctx
)) == NULL
))
1274 BN_bin2bn(nistp224_curve_params
[0], sizeof(felem_bytearray
), curve_p
);
1275 BN_bin2bn(nistp224_curve_params
[1], sizeof(felem_bytearray
), curve_a
);
1276 BN_bin2bn(nistp224_curve_params
[2], sizeof(felem_bytearray
), curve_b
);
1277 if ((BN_cmp(curve_p
, p
)) || (BN_cmp(curve_a
, a
)) ||
1278 (BN_cmp(curve_b
, b
))) {
1279 ECerror(EC_R_WRONG_CURVE_PARAMETERS
);
1282 group
->field_mod_func
= BN_nist_mod_224
;
1283 ret
= ec_GFp_simple_group_set_curve(group
, p
, a
, b
, ctx
);
1286 BN_CTX_free(new_ctx
);
1290 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1291 * (X', Y') = (X/Z^2, Y/Z^3) */
1293 ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP
* group
,
1294 const EC_POINT
* point
, BIGNUM
* x
, BIGNUM
* y
, BN_CTX
* ctx
)
1296 felem z1
, z2
, x_in
, y_in
, x_out
, y_out
;
1299 if (EC_POINT_is_at_infinity(group
, point
) > 0) {
1300 ECerror(EC_R_POINT_AT_INFINITY
);
1303 if ((!BN_to_felem(x_in
, &point
->X
)) || (!BN_to_felem(y_in
, &point
->Y
)) ||
1304 (!BN_to_felem(z1
, &point
->Z
)))
1307 felem_square(tmp
, z2
);
1308 felem_reduce(z1
, tmp
);
1309 felem_mul(tmp
, x_in
, z1
);
1310 felem_reduce(x_in
, tmp
);
1311 felem_contract(x_out
, x_in
);
1313 if (!felem_to_BN(x
, x_out
)) {
1314 ECerror(ERR_R_BN_LIB
);
1318 felem_mul(tmp
, z1
, z2
);
1319 felem_reduce(z1
, tmp
);
1320 felem_mul(tmp
, y_in
, z1
);
1321 felem_reduce(y_in
, tmp
);
1322 felem_contract(y_out
, y_in
);
1324 if (!felem_to_BN(y
, y_out
)) {
1325 ECerror(ERR_R_BN_LIB
);
1333 make_points_affine(size_t num
, felem points
[ /* num */ ][3], felem tmp_felems
[ /* num+1 */ ])
1336 * Runs in constant time, unless an input is the point at infinity
1337 * (which normally shouldn't happen).
1339 ec_GFp_nistp_points_make_affine_internal(
1344 (void (*) (void *)) felem_one
,
1345 (int (*) (const void *)) felem_is_zero_int
,
1346 (void (*) (void *, const void *)) felem_assign
,
1347 (void (*) (void *, const void *)) felem_square_reduce
,
1348 (void (*) (void *, const void *, const void *)) felem_mul_reduce
,
1349 (void (*) (void *, const void *)) felem_inv
,
1350 (void (*) (void *, const void *)) felem_contract
);
1353 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1354 * Result is stored in r (r can equal one of the inputs). */
1356 ec_GFp_nistp224_points_mul(const EC_GROUP
* group
, EC_POINT
* r
,
1357 const BIGNUM
* scalar
, size_t num
, const EC_POINT
* points
[],
1358 const BIGNUM
* scalars
[], BN_CTX
* ctx
)
1364 BN_CTX
*new_ctx
= NULL
;
1365 BIGNUM
*x
, *y
, *z
, *tmp_scalar
;
1366 felem_bytearray g_secret
;
1367 felem_bytearray
*secrets
= NULL
;
1368 felem(*pre_comp
)[17][3] = NULL
;
1369 felem
*tmp_felems
= NULL
;
1370 felem_bytearray tmp
;
1372 int have_pre_comp
= 0;
1373 size_t num_points
= num
;
1374 felem x_in
, y_in
, z_in
, x_out
, y_out
, z_out
;
1375 NISTP224_PRE_COMP
*pre
= NULL
;
1376 const felem(*g_pre_comp
)[16][3] = NULL
;
1377 EC_POINT
*generator
= NULL
;
1378 const EC_POINT
*p
= NULL
;
1379 const BIGNUM
*p_scalar
= NULL
;
1382 if ((ctx
= new_ctx
= BN_CTX_new()) == NULL
)
1385 if (((x
= BN_CTX_get(ctx
)) == NULL
) ||
1386 ((y
= BN_CTX_get(ctx
)) == NULL
) ||
1387 ((z
= BN_CTX_get(ctx
)) == NULL
) ||
1388 ((tmp_scalar
= BN_CTX_get(ctx
)) == NULL
))
1391 if (scalar
!= NULL
) {
1392 pre
= EC_EX_DATA_get_data(group
->extra_data
,
1393 nistp224_pre_comp_dup
, nistp224_pre_comp_free
,
1394 nistp224_pre_comp_clear_free
);
1396 /* we have precomputation, try to use it */
1397 g_pre_comp
= (const felem(*)[16][3]) pre
->g_pre_comp
;
1399 /* try to use the standard precomputation */
1400 g_pre_comp
= &gmul
[0];
1401 generator
= EC_POINT_new(group
);
1402 if (generator
== NULL
)
1404 /* get the generator from precomputation */
1405 if (!felem_to_BN(x
, g_pre_comp
[0][1][0]) ||
1406 !felem_to_BN(y
, g_pre_comp
[0][1][1]) ||
1407 !felem_to_BN(z
, g_pre_comp
[0][1][2])) {
1408 ECerror(ERR_R_BN_LIB
);
1411 if (!EC_POINT_set_Jprojective_coordinates_GFp(group
,
1412 generator
, x
, y
, z
, ctx
))
1414 if (0 == EC_POINT_cmp(group
, generator
, group
->generator
, ctx
))
1415 /* precomputation matches generator */
1419 * we don't have valid precomputation: treat the
1420 * generator as a random point
1422 num_points
= num_points
+ 1;
1424 if (num_points
> 0) {
1425 if (num_points
>= 3) {
1427 * unless we precompute multiples for just one or two
1428 * points, converting those into affine form is time
1433 secrets
= calloc(num_points
, sizeof(felem_bytearray
));
1434 pre_comp
= calloc(num_points
, 17 * 3 * sizeof(felem
));
1436 /* XXX should do more int overflow checking */
1437 tmp_felems
= reallocarray(NULL
,
1438 (num_points
* 17 + 1), sizeof(felem
));
1440 if ((secrets
== NULL
) || (pre_comp
== NULL
) || (mixed
&& (tmp_felems
== NULL
))) {
1441 ECerror(ERR_R_MALLOC_FAILURE
);
1445 * we treat NULL scalars as 0, and NULL points as points at
1446 * infinity, i.e., they contribute nothing to the linear
1449 for (i
= 0; i
< num_points
; ++i
) {
1453 p
= EC_GROUP_get0_generator(group
);
1456 /* the i^th point */
1459 p_scalar
= scalars
[i
];
1461 if ((p_scalar
!= NULL
) && (p
!= NULL
)) {
1462 /* reduce scalar to 0 <= scalar < 2^224 */
1463 if ((BN_num_bits(p_scalar
) > 224) || (BN_is_negative(p_scalar
))) {
1465 * this is an unusual input, and we
1466 * don't guarantee constant-timeness
1468 if (!BN_nnmod(tmp_scalar
, p_scalar
, &group
->order
, ctx
)) {
1469 ECerror(ERR_R_BN_LIB
);
1472 num_bytes
= BN_bn2bin(tmp_scalar
, tmp
);
1474 num_bytes
= BN_bn2bin(p_scalar
, tmp
);
1475 flip_endian(secrets
[i
], tmp
, num_bytes
);
1476 /* precompute multiples */
1477 if ((!BN_to_felem(x_out
, &p
->X
)) ||
1478 (!BN_to_felem(y_out
, &p
->Y
)) ||
1479 (!BN_to_felem(z_out
, &p
->Z
)))
1481 felem_assign(pre_comp
[i
][1][0], x_out
);
1482 felem_assign(pre_comp
[i
][1][1], y_out
);
1483 felem_assign(pre_comp
[i
][1][2], z_out
);
1484 for (j
= 2; j
<= 16; ++j
) {
1487 pre_comp
[i
][j
][0], pre_comp
[i
][j
][1], pre_comp
[i
][j
][2],
1488 pre_comp
[i
][1][0], pre_comp
[i
][1][1], pre_comp
[i
][1][2],
1489 0, pre_comp
[i
][j
- 1][0], pre_comp
[i
][j
- 1][1], pre_comp
[i
][j
- 1][2]);
1492 pre_comp
[i
][j
][0], pre_comp
[i
][j
][1], pre_comp
[i
][j
][2],
1493 pre_comp
[i
][j
/ 2][0], pre_comp
[i
][j
/ 2][1], pre_comp
[i
][j
/ 2][2]);
1499 make_points_affine(num_points
* 17, pre_comp
[0], tmp_felems
);
1501 /* the scalar for the generator */
1502 if ((scalar
!= NULL
) && (have_pre_comp
)) {
1503 memset(g_secret
, 0, sizeof g_secret
);
1504 /* reduce scalar to 0 <= scalar < 2^224 */
1505 if ((BN_num_bits(scalar
) > 224) || (BN_is_negative(scalar
))) {
1507 * this is an unusual input, and we don't guarantee
1510 if (!BN_nnmod(tmp_scalar
, scalar
, &group
->order
, ctx
)) {
1511 ECerror(ERR_R_BN_LIB
);
1514 num_bytes
= BN_bn2bin(tmp_scalar
, tmp
);
1516 num_bytes
= BN_bn2bin(scalar
, tmp
);
1517 flip_endian(g_secret
, tmp
, num_bytes
);
1518 /* do the multiplication with generator precomputation */
1519 batch_mul(x_out
, y_out
, z_out
,
1520 (const felem_bytearray(*)) secrets
, num_points
,
1522 mixed
, (const felem(*)[17][3]) pre_comp
,
1525 /* do the multiplication without generator precomputation */
1526 batch_mul(x_out
, y_out
, z_out
,
1527 (const felem_bytearray(*)) secrets
, num_points
,
1528 NULL
, mixed
, (const felem(*)[17][3]) pre_comp
, NULL
);
1529 /* reduce the output to its unique minimal representation */
1530 felem_contract(x_in
, x_out
);
1531 felem_contract(y_in
, y_out
);
1532 felem_contract(z_in
, z_out
);
1533 if ((!felem_to_BN(x
, x_in
)) || (!felem_to_BN(y
, y_in
)) ||
1534 (!felem_to_BN(z
, z_in
))) {
1535 ECerror(ERR_R_BN_LIB
);
1538 ret
= EC_POINT_set_Jprojective_coordinates_GFp(group
, r
, x
, y
, z
, ctx
);
1542 EC_POINT_free(generator
);
1543 BN_CTX_free(new_ctx
);
1551 ec_GFp_nistp224_precompute_mult(EC_GROUP
* group
, BN_CTX
* ctx
)
1554 NISTP224_PRE_COMP
*pre
= NULL
;
1556 BN_CTX
*new_ctx
= NULL
;
1558 EC_POINT
*generator
= NULL
;
1559 felem tmp_felems
[32];
1561 /* throw away old precomputation */
1562 EC_EX_DATA_free_data(&group
->extra_data
, nistp224_pre_comp_dup
,
1563 nistp224_pre_comp_free
, nistp224_pre_comp_clear_free
);
1565 if ((ctx
= new_ctx
= BN_CTX_new()) == NULL
)
1568 if (((x
= BN_CTX_get(ctx
)) == NULL
) ||
1569 ((y
= BN_CTX_get(ctx
)) == NULL
))
1571 /* get the generator */
1572 if (group
->generator
== NULL
)
1574 generator
= EC_POINT_new(group
);
1575 if (generator
== NULL
)
1577 BN_bin2bn(nistp224_curve_params
[3], sizeof(felem_bytearray
), x
);
1578 BN_bin2bn(nistp224_curve_params
[4], sizeof(felem_bytearray
), y
);
1579 if (!EC_POINT_set_affine_coordinates_GFp(group
, generator
, x
, y
, ctx
))
1581 if ((pre
= nistp224_pre_comp_new()) == NULL
)
1583 /* if the generator is the standard one, use built-in precomputation */
1584 if (0 == EC_POINT_cmp(group
, generator
, group
->generator
, ctx
)) {
1585 memcpy(pre
->g_pre_comp
, gmul
, sizeof(pre
->g_pre_comp
));
1589 if ((!BN_to_felem(pre
->g_pre_comp
[0][1][0], &group
->generator
->X
)) ||
1590 (!BN_to_felem(pre
->g_pre_comp
[0][1][1], &group
->generator
->Y
)) ||
1591 (!BN_to_felem(pre
->g_pre_comp
[0][1][2], &group
->generator
->Z
)))
1594 * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G,
1595 * 2^84*G, 2^140*G, 2^196*G for the second one
1597 for (i
= 1; i
<= 8; i
<<= 1) {
1599 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2],
1600 pre
->g_pre_comp
[0][i
][0], pre
->g_pre_comp
[0][i
][1], pre
->g_pre_comp
[0][i
][2]);
1601 for (j
= 0; j
< 27; ++j
) {
1603 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2],
1604 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2]);
1609 pre
->g_pre_comp
[0][2 * i
][0], pre
->g_pre_comp
[0][2 * i
][1], pre
->g_pre_comp
[0][2 * i
][2],
1610 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2]);
1611 for (j
= 0; j
< 27; ++j
) {
1613 pre
->g_pre_comp
[0][2 * i
][0], pre
->g_pre_comp
[0][2 * i
][1], pre
->g_pre_comp
[0][2 * i
][2],
1614 pre
->g_pre_comp
[0][2 * i
][0], pre
->g_pre_comp
[0][2 * i
][1], pre
->g_pre_comp
[0][2 * i
][2]);
1617 for (i
= 0; i
< 2; i
++) {
1618 /* g_pre_comp[i][0] is the point at infinity */
1619 memset(pre
->g_pre_comp
[i
][0], 0, sizeof(pre
->g_pre_comp
[i
][0]));
1620 /* the remaining multiples */
1621 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1623 pre
->g_pre_comp
[i
][6][0], pre
->g_pre_comp
[i
][6][1],
1624 pre
->g_pre_comp
[i
][6][2], pre
->g_pre_comp
[i
][4][0],
1625 pre
->g_pre_comp
[i
][4][1], pre
->g_pre_comp
[i
][4][2],
1626 0, pre
->g_pre_comp
[i
][2][0], pre
->g_pre_comp
[i
][2][1],
1627 pre
->g_pre_comp
[i
][2][2]);
1628 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1630 pre
->g_pre_comp
[i
][10][0], pre
->g_pre_comp
[i
][10][1],
1631 pre
->g_pre_comp
[i
][10][2], pre
->g_pre_comp
[i
][8][0],
1632 pre
->g_pre_comp
[i
][8][1], pre
->g_pre_comp
[i
][8][2],
1633 0, pre
->g_pre_comp
[i
][2][0], pre
->g_pre_comp
[i
][2][1],
1634 pre
->g_pre_comp
[i
][2][2]);
1635 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1637 pre
->g_pre_comp
[i
][12][0], pre
->g_pre_comp
[i
][12][1],
1638 pre
->g_pre_comp
[i
][12][2], pre
->g_pre_comp
[i
][8][0],
1639 pre
->g_pre_comp
[i
][8][1], pre
->g_pre_comp
[i
][8][2],
1640 0, pre
->g_pre_comp
[i
][4][0], pre
->g_pre_comp
[i
][4][1],
1641 pre
->g_pre_comp
[i
][4][2]);
1643 * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G +
1647 pre
->g_pre_comp
[i
][14][0], pre
->g_pre_comp
[i
][14][1],
1648 pre
->g_pre_comp
[i
][14][2], pre
->g_pre_comp
[i
][12][0],
1649 pre
->g_pre_comp
[i
][12][1], pre
->g_pre_comp
[i
][12][2],
1650 0, pre
->g_pre_comp
[i
][2][0], pre
->g_pre_comp
[i
][2][1],
1651 pre
->g_pre_comp
[i
][2][2]);
1652 for (j
= 1; j
< 8; ++j
) {
1653 /* odd multiples: add G resp. 2^28*G */
1655 pre
->g_pre_comp
[i
][2 * j
+ 1][0], pre
->g_pre_comp
[i
][2 * j
+ 1][1],
1656 pre
->g_pre_comp
[i
][2 * j
+ 1][2], pre
->g_pre_comp
[i
][2 * j
][0],
1657 pre
->g_pre_comp
[i
][2 * j
][1], pre
->g_pre_comp
[i
][2 * j
][2],
1658 0, pre
->g_pre_comp
[i
][1][0], pre
->g_pre_comp
[i
][1][1],
1659 pre
->g_pre_comp
[i
][1][2]);
1662 make_points_affine(31, &(pre
->g_pre_comp
[0][1]), tmp_felems
);
1664 if (!EC_EX_DATA_set_data(&group
->extra_data
, pre
, nistp224_pre_comp_dup
,
1665 nistp224_pre_comp_free
, nistp224_pre_comp_clear_free
))
1671 EC_POINT_free(generator
);
1672 BN_CTX_free(new_ctx
);
1673 nistp224_pre_comp_free(pre
);
1678 ec_GFp_nistp224_have_precompute_mult(const EC_GROUP
* group
)
1680 if (EC_EX_DATA_get_data(group
->extra_data
, nistp224_pre_comp_dup
,
1681 nistp224_pre_comp_free
, nistp224_pre_comp_clear_free
)