1 /* $OpenBSD: ecp_nistp256.c,v 1.18 2017/05/02 03:59:44 deraadt Exp $ */
3 * Written by Adam Langley (Google) for the OpenSSL project
6 * Copyright (c) 2011 Google Inc.
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
24 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26 * work which got its smarts from Daniel J. Bernstein's work on the same.
32 #include <openssl/opensslconf.h>
34 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
36 #include <openssl/err.h>
39 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
40 /* even with gcc, the typedef won't work for 32-bit platforms */
41 typedef __uint128_t uint128_t
; /* nonstandard; implemented by gcc on 64-bit platforms */
42 typedef __int128_t int128_t
;
44 #error "Need GCC 3.1 or later to define type uint128_t"
52 /* The underlying field.
54 * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element
55 * of this field into 32 bytes. We call this an felem_bytearray. */
57 typedef u8 felem_bytearray
[32];
59 /* These are the parameters of P256, taken from FIPS 186-3, page 86. These
60 * values are big-endian. */
61 static const felem_bytearray nistp256_curve_params
[5] = {
62 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
63 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
64 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
65 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
66 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
68 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
69 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
70 {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
71 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
72 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
73 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
74 {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
75 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
76 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
77 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
78 {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
79 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
80 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
81 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
84 /* The representation of field elements.
85 * ------------------------------------
87 * We represent field elements with either four 128-bit values, eight 128-bit
88 * values, or four 64-bit values. The field element represented is:
89 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
91 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
93 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
94 * apart, but are 128-bits wide, the most significant bits of each limb overlap
95 * with the least significant bits of the next.
97 * A field element with four limbs is an 'felem'. One with eight limbs is a
100 * A field element with four, 64-bit values is called a 'smallfelem'. Small
101 * values are used as intermediate values before multiplication.
106 typedef uint128_t limb
;
107 typedef limb felem
[NLIMBS
];
108 typedef limb longfelem
[NLIMBS
* 2];
109 typedef u64 smallfelem
[NLIMBS
];
111 /* This is the value of the prime as four 64-bit words, little-endian. */
112 static const u64 kPrime
[4] = {0xfffffffffffffffful
, 0xffffffff, 0, 0xffffffff00000001ul
};
113 static const limb bottom32bits
= 0xffffffff;
114 static const u64 bottom63bits
= 0x7ffffffffffffffful
;
116 /* bin32_to_felem takes a little-endian byte array and converts it into felem
117 * form. This assumes that the CPU is little-endian. */
119 bin32_to_felem(felem out
, const u8 in
[32])
121 out
[0] = *((u64
*) & in
[0]);
122 out
[1] = *((u64
*) & in
[8]);
123 out
[2] = *((u64
*) & in
[16]);
124 out
[3] = *((u64
*) & in
[24]);
127 /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
128 * 32 byte array. This assumes that the CPU is little-endian. */
130 smallfelem_to_bin32(u8 out
[32], const smallfelem in
)
132 *((u64
*) & out
[0]) = in
[0];
133 *((u64
*) & out
[8]) = in
[1];
134 *((u64
*) & out
[16]) = in
[2];
135 *((u64
*) & out
[24]) = in
[3];
138 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
140 flip_endian(u8
* out
, const u8
* in
, unsigned len
)
143 for (i
= 0; i
< len
; ++i
)
144 out
[i
] = in
[len
- 1 - i
];
147 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
149 BN_to_felem(felem out
, const BIGNUM
* bn
)
151 felem_bytearray b_in
;
152 felem_bytearray b_out
;
155 /* BN_bn2bin eats leading zeroes */
156 memset(b_out
, 0, sizeof b_out
);
157 num_bytes
= BN_num_bytes(bn
);
158 if (num_bytes
> sizeof b_out
) {
159 ECerror(EC_R_BIGNUM_OUT_OF_RANGE
);
162 if (BN_is_negative(bn
)) {
163 ECerror(EC_R_BIGNUM_OUT_OF_RANGE
);
166 num_bytes
= BN_bn2bin(bn
, b_in
);
167 flip_endian(b_out
, b_in
, num_bytes
);
168 bin32_to_felem(out
, b_out
);
172 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
174 smallfelem_to_BN(BIGNUM
* out
, const smallfelem in
)
176 felem_bytearray b_in
, b_out
;
177 smallfelem_to_bin32(b_in
, in
);
178 flip_endian(b_out
, b_in
, sizeof b_out
);
179 return BN_bin2bn(b_out
, sizeof b_out
, out
);
184 * ---------------- */
187 smallfelem_one(smallfelem out
)
196 smallfelem_assign(smallfelem out
, const smallfelem in
)
205 felem_assign(felem out
, const felem in
)
213 /* felem_sum sets out = out + in. */
215 felem_sum(felem out
, const felem in
)
223 /* felem_small_sum sets out = out + in. */
225 felem_small_sum(felem out
, const smallfelem in
)
233 /* felem_scalar sets out = out * scalar */
235 felem_scalar(felem out
, const u64 scalar
)
243 /* longfelem_scalar sets out = out * scalar */
245 longfelem_scalar(longfelem out
, const u64 scalar
)
257 #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
258 #define two105 (((limb)1) << 105)
259 #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
261 /* zero105 is 0 mod p */
262 static const felem zero105
= {two105m41m9
, two105
, two105m41p9
, two105m41p9
};
264 /* smallfelem_neg sets |out| to |-small|
266 * out[i] < out[i] + 2^105
269 smallfelem_neg(felem out
, const smallfelem small
)
271 /* In order to prevent underflow, we subtract from 0 mod p. */
272 out
[0] = zero105
[0] - small
[0];
273 out
[1] = zero105
[1] - small
[1];
274 out
[2] = zero105
[2] - small
[2];
275 out
[3] = zero105
[3] - small
[3];
278 /* felem_diff subtracts |in| from |out|
282 * out[i] < out[i] + 2^105
285 felem_diff(felem out
, const felem in
)
287 /* In order to prevent underflow, we add 0 mod p before subtracting. */
288 out
[0] += zero105
[0];
289 out
[1] += zero105
[1];
290 out
[2] += zero105
[2];
291 out
[3] += zero105
[3];
299 #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
300 #define two107 (((limb)1) << 107)
301 #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
303 /* zero107 is 0 mod p */
304 static const felem zero107
= {two107m43m11
, two107
, two107m43p11
, two107m43p11
};
306 /* An alternative felem_diff for larger inputs |in|
307 * felem_diff_zero107 subtracts |in| from |out|
311 * out[i] < out[i] + 2^107
314 felem_diff_zero107(felem out
, const felem in
)
316 /* In order to prevent underflow, we add 0 mod p before subtracting. */
317 out
[0] += zero107
[0];
318 out
[1] += zero107
[1];
319 out
[2] += zero107
[2];
320 out
[3] += zero107
[3];
328 /* longfelem_diff subtracts |in| from |out|
332 * out[i] < out[i] + 2^70 + 2^40
335 longfelem_diff(longfelem out
, const longfelem in
)
337 static const limb two70m8p6
= (((limb
) 1) << 70) - (((limb
) 1) << 8) + (((limb
) 1) << 6);
338 static const limb two70p40
= (((limb
) 1) << 70) + (((limb
) 1) << 40);
339 static const limb two70
= (((limb
) 1) << 70);
340 static const limb two70m40m38p6
= (((limb
) 1) << 70) - (((limb
) 1) << 40) - (((limb
) 1) << 38) + (((limb
) 1) << 6);
341 static const limb two70m6
= (((limb
) 1) << 70) - (((limb
) 1) << 6);
343 /* add 0 mod p to avoid underflow */
347 out
[3] += two70m40m38p6
;
353 /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
364 #define two64m0 (((limb)1) << 64) - 1
365 #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
366 #define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
367 #define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
369 /* zero110 is 0 mod p */
370 static const felem zero110
= {two64m0
, two110p32m0
, two64m46
, two64m32
};
372 /* felem_shrink converts an felem into a smallfelem. The result isn't quite
373 * minimal as the value may be greater than p.
381 felem_shrink(smallfelem out
, const felem in
)
386 static const u64 kPrime3Test
= 0x7fffffff00000001ul
; /* 2^63 - 2^32 + 1 */
389 tmp
[3] = zero110
[3] + in
[3] + ((u64
) (in
[2] >> 64));
392 tmp
[2] = zero110
[2] + (u64
) in
[2];
393 tmp
[0] = zero110
[0] + in
[0];
394 tmp
[1] = zero110
[1] + in
[1];
395 /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
398 * We perform two partial reductions where we eliminate the high-word
399 * of tmp[3]. We don't update the other words till the end.
401 a
= tmp
[3] >> 64; /* a < 2^46 */
402 tmp
[3] = (u64
) tmp
[3];
404 tmp
[3] += ((limb
) a
) << 32;
408 a
= tmp
[3] >> 64; /* a < 2^15 */
409 b
+= a
; /* b < 2^46 + 2^15 < 2^47 */
410 tmp
[3] = (u64
) tmp
[3];
412 tmp
[3] += ((limb
) a
) << 32;
413 /* tmp[3] < 2^64 + 2^47 */
416 * This adjusts the other two words to complete the two partial
420 tmp
[1] -= (((limb
) b
) << 32);
423 * In order to make space in tmp[3] for the carry from 2 -> 3, we
424 * conditionally subtract kPrime if tmp[3] is large enough.
427 /* As tmp[3] < 2^65, high is either 1 or 0 */
431 * high is: all ones if the high word of tmp[3] is 1 all zeros if
432 * the high word of tmp[3] if 0
437 * mask is: all ones if the MSB of low is 1 all zeros if the MSB
442 /* if low was greater than kPrime3Test then the MSB is zero */
446 * low is: all ones if low was > kPrime3Test all zeros if low was
449 mask
= (mask
& low
) | high
;
450 tmp
[0] -= mask
& kPrime
[0];
451 tmp
[1] -= mask
& kPrime
[1];
452 /* kPrime[2] is zero, so omitted */
453 tmp
[3] -= mask
& kPrime
[3];
454 /* tmp[3] < 2**64 - 2**32 + 1 */
456 tmp
[1] += ((u64
) (tmp
[0] >> 64));
457 tmp
[0] = (u64
) tmp
[0];
458 tmp
[2] += ((u64
) (tmp
[1] >> 64));
459 tmp
[1] = (u64
) tmp
[1];
460 tmp
[3] += ((u64
) (tmp
[2] >> 64));
461 tmp
[2] = (u64
) tmp
[2];
470 /* smallfelem_expand converts a smallfelem to an felem */
472 smallfelem_expand(felem out
, const smallfelem in
)
480 /* smallfelem_square sets |out| = |small|^2
484 * out[i] < 7 * 2^64 < 2^67
487 smallfelem_square(longfelem out
, const smallfelem small
)
492 a
= ((uint128_t
) small
[0]) * small
[0];
498 a
= ((uint128_t
) small
[0]) * small
[1];
505 a
= ((uint128_t
) small
[0]) * small
[2];
512 a
= ((uint128_t
) small
[0]) * small
[3];
518 a
= ((uint128_t
) small
[1]) * small
[2];
525 a
= ((uint128_t
) small
[1]) * small
[1];
531 a
= ((uint128_t
) small
[1]) * small
[3];
538 a
= ((uint128_t
) small
[2]) * small
[3];
546 a
= ((uint128_t
) small
[2]) * small
[2];
552 a
= ((uint128_t
) small
[3]) * small
[3];
559 /* felem_square sets |out| = |in|^2
563 * out[i] < 7 * 2^64 < 2^67
566 felem_square(longfelem out
, const felem in
)
569 felem_shrink(small
, in
);
570 smallfelem_square(out
, small
);
573 /* smallfelem_mul sets |out| = |small1| * |small2|
578 * out[i] < 7 * 2^64 < 2^67
581 smallfelem_mul(longfelem out
, const smallfelem small1
, const smallfelem small2
)
586 a
= ((uint128_t
) small1
[0]) * small2
[0];
593 a
= ((uint128_t
) small1
[0]) * small2
[1];
599 a
= ((uint128_t
) small1
[1]) * small2
[0];
606 a
= ((uint128_t
) small1
[0]) * small2
[2];
612 a
= ((uint128_t
) small1
[1]) * small2
[1];
618 a
= ((uint128_t
) small1
[2]) * small2
[0];
625 a
= ((uint128_t
) small1
[0]) * small2
[3];
631 a
= ((uint128_t
) small1
[1]) * small2
[2];
637 a
= ((uint128_t
) small1
[2]) * small2
[1];
643 a
= ((uint128_t
) small1
[3]) * small2
[0];
650 a
= ((uint128_t
) small1
[1]) * small2
[3];
656 a
= ((uint128_t
) small1
[2]) * small2
[2];
662 a
= ((uint128_t
) small1
[3]) * small2
[1];
669 a
= ((uint128_t
) small1
[2]) * small2
[3];
675 a
= ((uint128_t
) small1
[3]) * small2
[2];
682 a
= ((uint128_t
) small1
[3]) * small2
[3];
689 /* felem_mul sets |out| = |in1| * |in2|
694 * out[i] < 7 * 2^64 < 2^67
697 felem_mul(longfelem out
, const felem in1
, const felem in2
)
699 smallfelem small1
, small2
;
700 felem_shrink(small1
, in1
);
701 felem_shrink(small2
, in2
);
702 smallfelem_mul(out
, small1
, small2
);
705 /* felem_small_mul sets |out| = |small1| * |in2|
710 * out[i] < 7 * 2^64 < 2^67
713 felem_small_mul(longfelem out
, const smallfelem small1
, const felem in2
)
716 felem_shrink(small2
, in2
);
717 smallfelem_mul(out
, small1
, small2
);
720 #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
721 #define two100 (((limb)1) << 100)
722 #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
723 /* zero100 is 0 mod p */
724 static const felem zero100
= {two100m36m4
, two100
, two100m36p4
, two100m36p4
};
726 /* Internal function for the different flavours of felem_reduce.
727 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
729 * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
730 * out[1] >= in[7] + 2^32*in[4]
731 * out[2] >= in[5] + 2^32*in[5]
732 * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
734 * out[0] <= out[0] + in[4] + 2^32*in[5]
735 * out[1] <= out[1] + in[5] + 2^33*in[6]
736 * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
737 * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
740 felem_reduce_(felem out
, const longfelem in
)
743 /* combine common terms from below */
744 c
= in
[4] + (in
[5] << 32);
752 /* the remaining terms */
753 /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
754 out
[1] -= (in
[4] << 32);
755 out
[3] += (in
[4] << 32);
757 /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
758 out
[2] -= (in
[5] << 32);
760 /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
762 out
[0] -= (in
[6] << 32);
763 out
[1] += (in
[6] << 33);
764 out
[2] += (in
[6] * 2);
765 out
[3] -= (in
[6] << 32);
767 /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
769 out
[0] -= (in
[7] << 32);
770 out
[2] += (in
[7] << 33);
771 out
[3] += (in
[7] * 3);
774 /* felem_reduce converts a longfelem into an felem.
775 * To be called directly after felem_square or felem_mul.
777 * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
778 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
783 felem_reduce(felem out
, const longfelem in
)
785 out
[0] = zero100
[0] + in
[0];
786 out
[1] = zero100
[1] + in
[1];
787 out
[2] = zero100
[2] + in
[2];
788 out
[3] = zero100
[3] + in
[3];
790 felem_reduce_(out
, in
);
793 * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
794 * out[1] > 2^100 - 2^64 - 7*2^96 > 0 out[2] > 2^100 - 2^36 + 2^4 -
795 * 5*2^64 - 5*2^96 > 0 out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96
798 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 out[1] < 2^100 +
799 * 3*2^64 + 5*2^64 + 3*2^97 < 2^101 out[2] < 2^100 + 5*2^64 + 2^64 +
800 * 3*2^65 + 2^97 < 2^101 out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 <
805 /* felem_reduce_zero105 converts a larger longfelem into an felem.
812 felem_reduce_zero105(felem out
, const longfelem in
)
814 out
[0] = zero105
[0] + in
[0];
815 out
[1] = zero105
[1] + in
[1];
816 out
[2] = zero105
[2] + in
[2];
817 out
[3] = zero105
[3] + in
[3];
819 felem_reduce_(out
, in
);
822 * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
823 * out[1] > 2^105 - 2^71 - 2^103 > 0 out[2] > 2^105 - 2^41 + 2^9 -
824 * 2^71 - 2^103 > 0 out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 -
827 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 out[1] < 2^105 + 2^71 +
828 * 2^71 + 2^103 < 2^106 out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 <
829 * 2^106 out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
833 /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction
836 subtract_u64(u64
* result
, u64
* carry
, u64 v
)
838 uint128_t r
= *result
;
840 *carry
= (r
>> 64) & 1;
844 /* felem_contract converts |in| to its unique, minimal representation.
849 felem_contract(smallfelem out
, const felem in
)
852 u64 all_equal_so_far
= 0, result
= 0, carry
;
854 felem_shrink(out
, in
);
855 /* small is minimal except that the value might be > p */
859 * We are doing a constant time test if out >= kPrime. We need to
860 * compare each u64, from most-significant to least significant. For
861 * each one, if all words so far have been equal (m is all ones) then
862 * a non-equal result is the answer. Otherwise we continue.
864 for (i
= 3; i
< 4; i
--) {
866 uint128_t a
= ((uint128_t
) kPrime
[i
]) - out
[i
];
868 * if out[i] > kPrime[i] then a will underflow and the high
869 * 64-bits will all be set.
871 result
|= all_equal_so_far
& ((u64
) (a
>> 64));
874 * if kPrime[i] == out[i] then |equal| will be all zeros and
875 * the decrement will make it all ones.
877 equal
= kPrime
[i
] ^ out
[i
];
879 equal
&= equal
<< 32;
880 equal
&= equal
<< 16;
885 equal
= ((s64
) equal
) >> 63;
887 all_equal_so_far
&= equal
;
891 * if all_equal_so_far is still all ones then the two values are
892 * equal and so out >= kPrime is true.
894 result
|= all_equal_so_far
;
896 /* if out >= kPrime then we subtract kPrime. */
897 subtract_u64(&out
[0], &carry
, result
& kPrime
[0]);
898 subtract_u64(&out
[1], &carry
, carry
);
899 subtract_u64(&out
[2], &carry
, carry
);
900 subtract_u64(&out
[3], &carry
, carry
);
902 subtract_u64(&out
[1], &carry
, result
& kPrime
[1]);
903 subtract_u64(&out
[2], &carry
, carry
);
904 subtract_u64(&out
[3], &carry
, carry
);
906 subtract_u64(&out
[2], &carry
, result
& kPrime
[2]);
907 subtract_u64(&out
[3], &carry
, carry
);
909 subtract_u64(&out
[3], &carry
, result
& kPrime
[3]);
913 smallfelem_square_contract(smallfelem out
, const smallfelem in
)
918 smallfelem_square(longtmp
, in
);
919 felem_reduce(tmp
, longtmp
);
920 felem_contract(out
, tmp
);
924 smallfelem_mul_contract(smallfelem out
, const smallfelem in1
, const smallfelem in2
)
929 smallfelem_mul(longtmp
, in1
, in2
);
930 felem_reduce(tmp
, longtmp
);
931 felem_contract(out
, tmp
);
934 /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
940 smallfelem_is_zero(const smallfelem small
)
945 u64 is_zero
= small
[0] | small
[1] | small
[2] | small
[3];
947 is_zero
&= is_zero
<< 32;
948 is_zero
&= is_zero
<< 16;
949 is_zero
&= is_zero
<< 8;
950 is_zero
&= is_zero
<< 4;
951 is_zero
&= is_zero
<< 2;
952 is_zero
&= is_zero
<< 1;
953 is_zero
= ((s64
) is_zero
) >> 63;
955 is_p
= (small
[0] ^ kPrime
[0]) |
956 (small
[1] ^ kPrime
[1]) |
957 (small
[2] ^ kPrime
[2]) |
958 (small
[3] ^ kPrime
[3]);
966 is_p
= ((s64
) is_p
) >> 63;
971 result
|= ((limb
) is_zero
) << 64;
976 smallfelem_is_zero_int(const smallfelem small
)
978 return (int) (smallfelem_is_zero(small
) & ((limb
) 1));
981 /* felem_inv calculates |out| = |in|^{-1}
983 * Based on Fermat's Little Theorem:
985 * a^{p-1} = 1 (mod p)
986 * a^{p-2} = a^{-1} (mod p)
989 felem_inv(felem out
, const felem in
)
992 /* each e_I will hold |in|^{2^I - 1} */
993 felem e2
, e4
, e8
, e16
, e32
, e64
;
997 felem_square(tmp
, in
);
998 felem_reduce(ftmp
, tmp
);/* 2^1 */
999 felem_mul(tmp
, in
, ftmp
);
1000 felem_reduce(ftmp
, tmp
);/* 2^2 - 2^0 */
1001 felem_assign(e2
, ftmp
);
1002 felem_square(tmp
, ftmp
);
1003 felem_reduce(ftmp
, tmp
);/* 2^3 - 2^1 */
1004 felem_square(tmp
, ftmp
);
1005 felem_reduce(ftmp
, tmp
);/* 2^4 - 2^2 */
1006 felem_mul(tmp
, ftmp
, e2
);
1007 felem_reduce(ftmp
, tmp
);/* 2^4 - 2^0 */
1008 felem_assign(e4
, ftmp
);
1009 felem_square(tmp
, ftmp
);
1010 felem_reduce(ftmp
, tmp
);/* 2^5 - 2^1 */
1011 felem_square(tmp
, ftmp
);
1012 felem_reduce(ftmp
, tmp
);/* 2^6 - 2^2 */
1013 felem_square(tmp
, ftmp
);
1014 felem_reduce(ftmp
, tmp
);/* 2^7 - 2^3 */
1015 felem_square(tmp
, ftmp
);
1016 felem_reduce(ftmp
, tmp
);/* 2^8 - 2^4 */
1017 felem_mul(tmp
, ftmp
, e4
);
1018 felem_reduce(ftmp
, tmp
);/* 2^8 - 2^0 */
1019 felem_assign(e8
, ftmp
);
1020 for (i
= 0; i
< 8; i
++) {
1021 felem_square(tmp
, ftmp
);
1022 felem_reduce(ftmp
, tmp
);
1024 felem_mul(tmp
, ftmp
, e8
);
1025 felem_reduce(ftmp
, tmp
);/* 2^16 - 2^0 */
1026 felem_assign(e16
, ftmp
);
1027 for (i
= 0; i
< 16; i
++) {
1028 felem_square(tmp
, ftmp
);
1029 felem_reduce(ftmp
, tmp
);
1031 felem_mul(tmp
, ftmp
, e16
);
1032 felem_reduce(ftmp
, tmp
);/* 2^32 - 2^0 */
1033 felem_assign(e32
, ftmp
);
1034 for (i
= 0; i
< 32; i
++) {
1035 felem_square(tmp
, ftmp
);
1036 felem_reduce(ftmp
, tmp
);
1038 felem_assign(e64
, ftmp
);
1039 felem_mul(tmp
, ftmp
, in
);
1040 felem_reduce(ftmp
, tmp
);/* 2^64 - 2^32 + 2^0 */
1041 for (i
= 0; i
< 192; i
++) {
1042 felem_square(tmp
, ftmp
);
1043 felem_reduce(ftmp
, tmp
);
1044 } /* 2^256 - 2^224 + 2^192 */
1046 felem_mul(tmp
, e64
, e32
);
1047 felem_reduce(ftmp2
, tmp
); /* 2^64 - 2^0 */
1048 for (i
= 0; i
< 16; i
++) {
1049 felem_square(tmp
, ftmp2
);
1050 felem_reduce(ftmp2
, tmp
);
1052 felem_mul(tmp
, ftmp2
, e16
);
1053 felem_reduce(ftmp2
, tmp
); /* 2^80 - 2^0 */
1054 for (i
= 0; i
< 8; i
++) {
1055 felem_square(tmp
, ftmp2
);
1056 felem_reduce(ftmp2
, tmp
);
1058 felem_mul(tmp
, ftmp2
, e8
);
1059 felem_reduce(ftmp2
, tmp
); /* 2^88 - 2^0 */
1060 for (i
= 0; i
< 4; i
++) {
1061 felem_square(tmp
, ftmp2
);
1062 felem_reduce(ftmp2
, tmp
);
1064 felem_mul(tmp
, ftmp2
, e4
);
1065 felem_reduce(ftmp2
, tmp
); /* 2^92 - 2^0 */
1066 felem_square(tmp
, ftmp2
);
1067 felem_reduce(ftmp2
, tmp
); /* 2^93 - 2^1 */
1068 felem_square(tmp
, ftmp2
);
1069 felem_reduce(ftmp2
, tmp
); /* 2^94 - 2^2 */
1070 felem_mul(tmp
, ftmp2
, e2
);
1071 felem_reduce(ftmp2
, tmp
); /* 2^94 - 2^0 */
1072 felem_square(tmp
, ftmp2
);
1073 felem_reduce(ftmp2
, tmp
); /* 2^95 - 2^1 */
1074 felem_square(tmp
, ftmp2
);
1075 felem_reduce(ftmp2
, tmp
); /* 2^96 - 2^2 */
1076 felem_mul(tmp
, ftmp2
, in
);
1077 felem_reduce(ftmp2
, tmp
); /* 2^96 - 3 */
1079 felem_mul(tmp
, ftmp2
, ftmp
);
1080 felem_reduce(out
, tmp
); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1084 smallfelem_inv_contract(smallfelem out
, const smallfelem in
)
1088 smallfelem_expand(tmp
, in
);
1089 felem_inv(tmp
, tmp
);
1090 felem_contract(out
, tmp
);
1096 * Building on top of the field operations we have the operations on the
1097 * elliptic curve group itself. Points on the curve are represented in Jacobian
1100 /* point_double calculates 2*(x_in, y_in, z_in)
1102 * The method is taken from:
1103 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1105 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1106 * while x_out == y_in is not (maybe this works, but it's not tested). */
1108 point_double(felem x_out
, felem y_out
, felem z_out
,
1109 const felem x_in
, const felem y_in
, const felem z_in
)
1111 longfelem tmp
, tmp2
;
1112 felem delta
, gamma
, beta
, alpha
, ftmp
, ftmp2
;
1113 smallfelem small1
, small2
;
1115 felem_assign(ftmp
, x_in
);
1116 /* ftmp[i] < 2^106 */
1117 felem_assign(ftmp2
, x_in
);
1118 /* ftmp2[i] < 2^106 */
1121 felem_square(tmp
, z_in
);
1122 felem_reduce(delta
, tmp
);
1123 /* delta[i] < 2^101 */
1126 felem_square(tmp
, y_in
);
1127 felem_reduce(gamma
, tmp
);
1128 /* gamma[i] < 2^101 */
1129 felem_shrink(small1
, gamma
);
1131 /* beta = x*gamma */
1132 felem_small_mul(tmp
, small1
, x_in
);
1133 felem_reduce(beta
, tmp
);
1134 /* beta[i] < 2^101 */
1136 /* alpha = 3*(x-delta)*(x+delta) */
1137 felem_diff(ftmp
, delta
);
1138 /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1139 felem_sum(ftmp2
, delta
);
1140 /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1141 felem_scalar(ftmp2
, 3);
1142 /* ftmp2[i] < 3 * 2^107 < 2^109 */
1143 felem_mul(tmp
, ftmp
, ftmp2
);
1144 felem_reduce(alpha
, tmp
);
1145 /* alpha[i] < 2^101 */
1146 felem_shrink(small2
, alpha
);
1148 /* x' = alpha^2 - 8*beta */
1149 smallfelem_square(tmp
, small2
);
1150 felem_reduce(x_out
, tmp
);
1151 felem_assign(ftmp
, beta
);
1152 felem_scalar(ftmp
, 8);
1153 /* ftmp[i] < 8 * 2^101 = 2^104 */
1154 felem_diff(x_out
, ftmp
);
1155 /* x_out[i] < 2^105 + 2^101 < 2^106 */
1157 /* z' = (y + z)^2 - gamma - delta */
1158 felem_sum(delta
, gamma
);
1159 /* delta[i] < 2^101 + 2^101 = 2^102 */
1160 felem_assign(ftmp
, y_in
);
1161 felem_sum(ftmp
, z_in
);
1162 /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1163 felem_square(tmp
, ftmp
);
1164 felem_reduce(z_out
, tmp
);
1165 felem_diff(z_out
, delta
);
1166 /* z_out[i] < 2^105 + 2^101 < 2^106 */
1168 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1169 felem_scalar(beta
, 4);
1170 /* beta[i] < 4 * 2^101 = 2^103 */
1171 felem_diff_zero107(beta
, x_out
);
1172 /* beta[i] < 2^107 + 2^103 < 2^108 */
1173 felem_small_mul(tmp
, small2
, beta
);
1174 /* tmp[i] < 7 * 2^64 < 2^67 */
1175 smallfelem_square(tmp2
, small1
);
1176 /* tmp2[i] < 7 * 2^64 */
1177 longfelem_scalar(tmp2
, 8);
1178 /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1179 longfelem_diff(tmp
, tmp2
);
1180 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1181 felem_reduce_zero105(y_out
, tmp
);
1182 /* y_out[i] < 2^106 */
1185 /* point_double_small is the same as point_double, except that it operates on
1188 point_double_small(smallfelem x_out
, smallfelem y_out
, smallfelem z_out
,
1189 const smallfelem x_in
, const smallfelem y_in
, const smallfelem z_in
)
1191 felem felem_x_out
, felem_y_out
, felem_z_out
;
1192 felem felem_x_in
, felem_y_in
, felem_z_in
;
1194 smallfelem_expand(felem_x_in
, x_in
);
1195 smallfelem_expand(felem_y_in
, y_in
);
1196 smallfelem_expand(felem_z_in
, z_in
);
1197 point_double(felem_x_out
, felem_y_out
, felem_z_out
,
1198 felem_x_in
, felem_y_in
, felem_z_in
);
1199 felem_shrink(x_out
, felem_x_out
);
1200 felem_shrink(y_out
, felem_y_out
);
1201 felem_shrink(z_out
, felem_z_out
);
1204 /* copy_conditional copies in to out iff mask is all ones. */
1206 copy_conditional(felem out
, const felem in
, limb mask
)
1209 for (i
= 0; i
< NLIMBS
; ++i
) {
1210 const limb tmp
= mask
& (in
[i
] ^ out
[i
]);
1215 /* copy_small_conditional copies in to out iff mask is all ones. */
1217 copy_small_conditional(felem out
, const smallfelem in
, limb mask
)
1220 const u64 mask64
= mask
;
1221 for (i
= 0; i
< NLIMBS
; ++i
) {
1222 out
[i
] = ((limb
) (in
[i
] & mask64
)) | (out
[i
] & ~mask
);
1226 /* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1228 * The method is taken from:
1229 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1230 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1232 * This function includes a branch for checking whether the two input points
1233 * are equal, (while not equal to the point at infinity). This case never
1234 * happens during single point multiplication, so there is no timing leak for
1235 * ECDH or ECDSA signing. */
1237 point_add(felem x3
, felem y3
, felem z3
,
1238 const felem x1
, const felem y1
, const felem z1
,
1239 const int mixed
, const smallfelem x2
, const smallfelem y2
, const smallfelem z2
)
1241 felem ftmp
, ftmp2
, ftmp3
, ftmp4
, ftmp5
, ftmp6
, x_out
, y_out
, z_out
;
1242 longfelem tmp
, tmp2
;
1243 smallfelem small1
, small2
, small3
, small4
, small5
;
1244 limb x_equal
, y_equal
, z1_is_zero
, z2_is_zero
;
1246 felem_shrink(small3
, z1
);
1248 z1_is_zero
= smallfelem_is_zero(small3
);
1249 z2_is_zero
= smallfelem_is_zero(z2
);
1251 /* ftmp = z1z1 = z1**2 */
1252 smallfelem_square(tmp
, small3
);
1253 felem_reduce(ftmp
, tmp
);
1254 /* ftmp[i] < 2^101 */
1255 felem_shrink(small1
, ftmp
);
1258 /* ftmp2 = z2z2 = z2**2 */
1259 smallfelem_square(tmp
, z2
);
1260 felem_reduce(ftmp2
, tmp
);
1261 /* ftmp2[i] < 2^101 */
1262 felem_shrink(small2
, ftmp2
);
1264 felem_shrink(small5
, x1
);
1266 /* u1 = ftmp3 = x1*z2z2 */
1267 smallfelem_mul(tmp
, small5
, small2
);
1268 felem_reduce(ftmp3
, tmp
);
1269 /* ftmp3[i] < 2^101 */
1271 /* ftmp5 = z1 + z2 */
1272 felem_assign(ftmp5
, z1
);
1273 felem_small_sum(ftmp5
, z2
);
1274 /* ftmp5[i] < 2^107 */
1276 /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1277 felem_square(tmp
, ftmp5
);
1278 felem_reduce(ftmp5
, tmp
);
1279 /* ftmp2 = z2z2 + z1z1 */
1280 felem_sum(ftmp2
, ftmp
);
1281 /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1282 felem_diff(ftmp5
, ftmp2
);
1283 /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1285 /* ftmp2 = z2 * z2z2 */
1286 smallfelem_mul(tmp
, small2
, z2
);
1287 felem_reduce(ftmp2
, tmp
);
1289 /* s1 = ftmp2 = y1 * z2**3 */
1290 felem_mul(tmp
, y1
, ftmp2
);
1291 felem_reduce(ftmp6
, tmp
);
1292 /* ftmp6[i] < 2^101 */
1294 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
1296 /* u1 = ftmp3 = x1*z2z2 */
1297 felem_assign(ftmp3
, x1
);
1298 /* ftmp3[i] < 2^106 */
1301 felem_assign(ftmp5
, z1
);
1302 felem_scalar(ftmp5
, 2);
1303 /* ftmp5[i] < 2*2^106 = 2^107 */
1305 /* s1 = ftmp2 = y1 * z2**3 */
1306 felem_assign(ftmp6
, y1
);
1307 /* ftmp6[i] < 2^106 */
1311 smallfelem_mul(tmp
, x2
, small1
);
1312 felem_reduce(ftmp4
, tmp
);
1314 /* h = ftmp4 = u2 - u1 */
1315 felem_diff_zero107(ftmp4
, ftmp3
);
1316 /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1317 felem_shrink(small4
, ftmp4
);
1319 x_equal
= smallfelem_is_zero(small4
);
1321 /* z_out = ftmp5 * h */
1322 felem_small_mul(tmp
, small4
, ftmp5
);
1323 felem_reduce(z_out
, tmp
);
1324 /* z_out[i] < 2^101 */
1326 /* ftmp = z1 * z1z1 */
1327 smallfelem_mul(tmp
, small1
, small3
);
1328 felem_reduce(ftmp
, tmp
);
1330 /* s2 = tmp = y2 * z1**3 */
1331 felem_small_mul(tmp
, y2
, ftmp
);
1332 felem_reduce(ftmp5
, tmp
);
1334 /* r = ftmp5 = (s2 - s1)*2 */
1335 felem_diff_zero107(ftmp5
, ftmp6
);
1336 /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1337 felem_scalar(ftmp5
, 2);
1338 /* ftmp5[i] < 2^109 */
1339 felem_shrink(small1
, ftmp5
);
1340 y_equal
= smallfelem_is_zero(small1
);
1342 if (x_equal
&& y_equal
&& !z1_is_zero
&& !z2_is_zero
) {
1343 point_double(x3
, y3
, z3
, x1
, y1
, z1
);
1346 /* I = ftmp = (2h)**2 */
1347 felem_assign(ftmp
, ftmp4
);
1348 felem_scalar(ftmp
, 2);
1349 /* ftmp[i] < 2*2^108 = 2^109 */
1350 felem_square(tmp
, ftmp
);
1351 felem_reduce(ftmp
, tmp
);
1353 /* J = ftmp2 = h * I */
1354 felem_mul(tmp
, ftmp4
, ftmp
);
1355 felem_reduce(ftmp2
, tmp
);
1357 /* V = ftmp4 = U1 * I */
1358 felem_mul(tmp
, ftmp3
, ftmp
);
1359 felem_reduce(ftmp4
, tmp
);
1361 /* x_out = r**2 - J - 2V */
1362 smallfelem_square(tmp
, small1
);
1363 felem_reduce(x_out
, tmp
);
1364 felem_assign(ftmp3
, ftmp4
);
1365 felem_scalar(ftmp4
, 2);
1366 felem_sum(ftmp4
, ftmp2
);
1367 /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1368 felem_diff(x_out
, ftmp4
);
1369 /* x_out[i] < 2^105 + 2^101 */
1371 /* y_out = r(V-x_out) - 2 * s1 * J */
1372 felem_diff_zero107(ftmp3
, x_out
);
1373 /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1374 felem_small_mul(tmp
, small1
, ftmp3
);
1375 felem_mul(tmp2
, ftmp6
, ftmp2
);
1376 longfelem_scalar(tmp2
, 2);
1377 /* tmp2[i] < 2*2^67 = 2^68 */
1378 longfelem_diff(tmp
, tmp2
);
1379 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1380 felem_reduce_zero105(y_out
, tmp
);
1381 /* y_out[i] < 2^106 */
1383 copy_small_conditional(x_out
, x2
, z1_is_zero
);
1384 copy_conditional(x_out
, x1
, z2_is_zero
);
1385 copy_small_conditional(y_out
, y2
, z1_is_zero
);
1386 copy_conditional(y_out
, y1
, z2_is_zero
);
1387 copy_small_conditional(z_out
, z2
, z1_is_zero
);
1388 copy_conditional(z_out
, z1
, z2_is_zero
);
1389 felem_assign(x3
, x_out
);
1390 felem_assign(y3
, y_out
);
1391 felem_assign(z3
, z_out
);
1394 /* point_add_small is the same as point_add, except that it operates on
1397 point_add_small(smallfelem x3
, smallfelem y3
, smallfelem z3
,
1398 smallfelem x1
, smallfelem y1
, smallfelem z1
,
1399 smallfelem x2
, smallfelem y2
, smallfelem z2
)
1401 felem felem_x3
, felem_y3
, felem_z3
;
1402 felem felem_x1
, felem_y1
, felem_z1
;
1403 smallfelem_expand(felem_x1
, x1
);
1404 smallfelem_expand(felem_y1
, y1
);
1405 smallfelem_expand(felem_z1
, z1
);
1406 point_add(felem_x3
, felem_y3
, felem_z3
, felem_x1
, felem_y1
, felem_z1
, 0, x2
, y2
, z2
);
1407 felem_shrink(x3
, felem_x3
);
1408 felem_shrink(y3
, felem_y3
);
1409 felem_shrink(z3
, felem_z3
);
1412 /* Base point pre computation
1413 * --------------------------
1415 * Two different sorts of precomputed tables are used in the following code.
1416 * Each contain various points on the curve, where each point is three field
1417 * elements (x, y, z).
1419 * For the base point table, z is usually 1 (0 for the point at infinity).
1420 * This table has 2 * 16 elements, starting with the following:
1421 * index | bits | point
1422 * ------+---------+------------------------------
1425 * 2 | 0 0 1 0 | 2^64G
1426 * 3 | 0 0 1 1 | (2^64 + 1)G
1427 * 4 | 0 1 0 0 | 2^128G
1428 * 5 | 0 1 0 1 | (2^128 + 1)G
1429 * 6 | 0 1 1 0 | (2^128 + 2^64)G
1430 * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1431 * 8 | 1 0 0 0 | 2^192G
1432 * 9 | 1 0 0 1 | (2^192 + 1)G
1433 * 10 | 1 0 1 0 | (2^192 + 2^64)G
1434 * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1435 * 12 | 1 1 0 0 | (2^192 + 2^128)G
1436 * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1437 * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1438 * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1439 * followed by a copy of this with each element multiplied by 2^32.
1441 * The reason for this is so that we can clock bits into four different
1442 * locations when doing simple scalar multiplies against the base point,
1443 * and then another four locations using the second 16 elements.
1445 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1447 /* gmul is the table of precomputed base points */
1448 static const smallfelem gmul
[2][16][3] =
1452 {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247},
1453 {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b},
1455 {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5},
1456 {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d},
1458 {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f},
1459 {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644},
1461 {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67},
1462 {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee},
1464 {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff},
1465 {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b},
1467 {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8},
1468 {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851},
1470 {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea},
1471 {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b},
1473 {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276},
1474 {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816},
1476 {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad},
1477 {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663},
1479 {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d},
1480 {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321},
1482 {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287},
1483 {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6},
1485 {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466},
1486 {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20},
1488 {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9},
1489 {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61},
1491 {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a},
1492 {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc},
1494 {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c},
1495 {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab},
1500 {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89},
1501 {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624},
1503 {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6},
1504 {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1},
1506 {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a},
1507 {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593},
1509 {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617},
1510 {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7},
1512 {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276},
1513 {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a},
1515 {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908},
1516 {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e},
1518 {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7},
1519 {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec},
1521 {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee},
1522 {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6},
1524 {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109},
1525 {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5},
1527 {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba},
1528 {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44},
1530 {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b},
1531 {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc},
1533 {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107},
1534 {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387},
1536 {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503},
1537 {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be},
1539 {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9},
1540 {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a},
1542 {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6},
1543 {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81},
1546 /* select_point selects the |idx|th point from a precomputation table and
1547 * copies it to out. */
1549 select_point(const u64 idx
, unsigned int size
, const smallfelem pre_comp
[16][3], smallfelem out
[3])
1552 u64
*outlimbs
= &out
[0][0];
1553 memset(outlimbs
, 0, 3 * sizeof(smallfelem
));
1555 for (i
= 0; i
< size
; i
++) {
1556 const u64
*inlimbs
= (u64
*) & pre_comp
[i
][0][0];
1563 for (j
= 0; j
< NLIMBS
* 3; j
++)
1564 outlimbs
[j
] |= inlimbs
[j
] & mask
;
1568 /* get_bit returns the |i|th bit in |in| */
1570 get_bit(const felem_bytearray in
, int i
)
1572 if ((i
< 0) || (i
>= 256))
1574 return (in
[i
>> 3] >> (i
& 7)) & 1;
1577 /* Interleaved point multiplication using precomputed point multiples:
1578 * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[],
1579 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1580 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1581 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1583 batch_mul(felem x_out
, felem y_out
, felem z_out
,
1584 const felem_bytearray scalars
[], const unsigned num_points
, const u8
* g_scalar
,
1585 const int mixed
, const smallfelem pre_comp
[][17][3], const smallfelem g_pre_comp
[2][16][3])
1588 unsigned num
, gen_mul
= (g_scalar
!= NULL
);
1594 /* set nq to the point at infinity */
1595 memset(nq
, 0, 3 * sizeof(felem
));
1598 * Loop over all scalars msb-to-lsb, interleaving additions of
1599 * multiples of the generator (two in each of the last 32 rounds) and
1600 * additions of other points multiples (every 5th round).
1602 skip
= 1; /* save two point operations in the first
1604 for (i
= (num_points
? 255 : 31); i
>= 0; --i
) {
1607 point_double(nq
[0], nq
[1], nq
[2], nq
[0], nq
[1], nq
[2]);
1609 /* add multiples of the generator */
1610 if (gen_mul
&& (i
<= 31)) {
1611 /* first, look 32 bits upwards */
1612 bits
= get_bit(g_scalar
, i
+ 224) << 3;
1613 bits
|= get_bit(g_scalar
, i
+ 160) << 2;
1614 bits
|= get_bit(g_scalar
, i
+ 96) << 1;
1615 bits
|= get_bit(g_scalar
, i
+ 32);
1616 /* select the point to add, in constant time */
1617 select_point(bits
, 16, g_pre_comp
[1], tmp
);
1620 point_add(nq
[0], nq
[1], nq
[2],
1621 nq
[0], nq
[1], nq
[2],
1622 1 /* mixed */ , tmp
[0], tmp
[1], tmp
[2]);
1624 smallfelem_expand(nq
[0], tmp
[0]);
1625 smallfelem_expand(nq
[1], tmp
[1]);
1626 smallfelem_expand(nq
[2], tmp
[2]);
1630 /* second, look at the current position */
1631 bits
= get_bit(g_scalar
, i
+ 192) << 3;
1632 bits
|= get_bit(g_scalar
, i
+ 128) << 2;
1633 bits
|= get_bit(g_scalar
, i
+ 64) << 1;
1634 bits
|= get_bit(g_scalar
, i
);
1635 /* select the point to add, in constant time */
1636 select_point(bits
, 16, g_pre_comp
[0], tmp
);
1637 point_add(nq
[0], nq
[1], nq
[2],
1638 nq
[0], nq
[1], nq
[2],
1639 1 /* mixed */ , tmp
[0], tmp
[1], tmp
[2]);
1641 /* do other additions every 5 doublings */
1642 if (num_points
&& (i
% 5 == 0)) {
1643 /* loop over all scalars */
1644 for (num
= 0; num
< num_points
; ++num
) {
1645 bits
= get_bit(scalars
[num
], i
+ 4) << 5;
1646 bits
|= get_bit(scalars
[num
], i
+ 3) << 4;
1647 bits
|= get_bit(scalars
[num
], i
+ 2) << 3;
1648 bits
|= get_bit(scalars
[num
], i
+ 1) << 2;
1649 bits
|= get_bit(scalars
[num
], i
) << 1;
1650 bits
|= get_bit(scalars
[num
], i
- 1);
1651 ec_GFp_nistp_recode_scalar_bits(&sign
, &digit
, bits
);
1654 * select the point to add or subtract, in
1657 select_point(digit
, 17, pre_comp
[num
], tmp
);
1658 smallfelem_neg(ftmp
, tmp
[1]); /* (X, -Y, Z) is the
1660 copy_small_conditional(ftmp
, tmp
[1], (((limb
) sign
) - 1));
1661 felem_contract(tmp
[1], ftmp
);
1664 point_add(nq
[0], nq
[1], nq
[2],
1665 nq
[0], nq
[1], nq
[2],
1666 mixed
, tmp
[0], tmp
[1], tmp
[2]);
1668 smallfelem_expand(nq
[0], tmp
[0]);
1669 smallfelem_expand(nq
[1], tmp
[1]);
1670 smallfelem_expand(nq
[2], tmp
[2]);
1676 felem_assign(x_out
, nq
[0]);
1677 felem_assign(y_out
, nq
[1]);
1678 felem_assign(z_out
, nq
[2]);
1681 /* Precomputation for the group generator. */
1683 smallfelem g_pre_comp
[2][16][3];
1685 } NISTP256_PRE_COMP
;
1688 EC_GFp_nistp256_method(void)
1690 static const EC_METHOD ret
= {
1691 .flags
= EC_FLAGS_DEFAULT_OCT
,
1692 .field_type
= NID_X9_62_prime_field
,
1693 .group_init
= ec_GFp_nistp256_group_init
,
1694 .group_finish
= ec_GFp_simple_group_finish
,
1695 .group_clear_finish
= ec_GFp_simple_group_clear_finish
,
1696 .group_copy
= ec_GFp_nist_group_copy
,
1697 .group_set_curve
= ec_GFp_nistp256_group_set_curve
,
1698 .group_get_curve
= ec_GFp_simple_group_get_curve
,
1699 .group_get_degree
= ec_GFp_simple_group_get_degree
,
1700 .group_check_discriminant
=
1701 ec_GFp_simple_group_check_discriminant
,
1702 .point_init
= ec_GFp_simple_point_init
,
1703 .point_finish
= ec_GFp_simple_point_finish
,
1704 .point_clear_finish
= ec_GFp_simple_point_clear_finish
,
1705 .point_copy
= ec_GFp_simple_point_copy
,
1706 .point_set_to_infinity
= ec_GFp_simple_point_set_to_infinity
,
1707 .point_set_Jprojective_coordinates_GFp
=
1708 ec_GFp_simple_set_Jprojective_coordinates_GFp
,
1709 .point_get_Jprojective_coordinates_GFp
=
1710 ec_GFp_simple_get_Jprojective_coordinates_GFp
,
1711 .point_set_affine_coordinates
=
1712 ec_GFp_simple_point_set_affine_coordinates
,
1713 .point_get_affine_coordinates
=
1714 ec_GFp_nistp256_point_get_affine_coordinates
,
1715 .add
= ec_GFp_simple_add
,
1716 .dbl
= ec_GFp_simple_dbl
,
1717 .invert
= ec_GFp_simple_invert
,
1718 .is_at_infinity
= ec_GFp_simple_is_at_infinity
,
1719 .is_on_curve
= ec_GFp_simple_is_on_curve
,
1720 .point_cmp
= ec_GFp_simple_cmp
,
1721 .make_affine
= ec_GFp_simple_make_affine
,
1722 .points_make_affine
= ec_GFp_simple_points_make_affine
,
1723 .mul
= ec_GFp_nistp256_points_mul
,
1724 .precompute_mult
= ec_GFp_nistp256_precompute_mult
,
1725 .have_precompute_mult
= ec_GFp_nistp256_have_precompute_mult
,
1726 .field_mul
= ec_GFp_nist_field_mul
,
1727 .field_sqr
= ec_GFp_nist_field_sqr
1733 /******************************************************************************/
1734 /* FUNCTIONS TO MANAGE PRECOMPUTATION
1737 static NISTP256_PRE_COMP
*
1738 nistp256_pre_comp_new()
1740 NISTP256_PRE_COMP
*ret
= NULL
;
1741 ret
= malloc(sizeof *ret
);
1743 ECerror(ERR_R_MALLOC_FAILURE
);
1746 memset(ret
->g_pre_comp
, 0, sizeof(ret
->g_pre_comp
));
1747 ret
->references
= 1;
1752 nistp256_pre_comp_dup(void *src_
)
1754 NISTP256_PRE_COMP
*src
= src_
;
1756 /* no need to actually copy, these objects never change! */
1757 CRYPTO_add(&src
->references
, 1, CRYPTO_LOCK_EC_PRE_COMP
);
1763 nistp256_pre_comp_free(void *pre_
)
1766 NISTP256_PRE_COMP
*pre
= pre_
;
1771 i
= CRYPTO_add(&pre
->references
, -1, CRYPTO_LOCK_EC_PRE_COMP
);
1779 nistp256_pre_comp_clear_free(void *pre_
)
1782 NISTP256_PRE_COMP
*pre
= pre_
;
1787 i
= CRYPTO_add(&pre
->references
, -1, CRYPTO_LOCK_EC_PRE_COMP
);
1791 freezero(pre
, sizeof *pre
);
1794 /******************************************************************************/
1795 /* OPENSSL EC_METHOD FUNCTIONS
1799 ec_GFp_nistp256_group_init(EC_GROUP
* group
)
1802 ret
= ec_GFp_simple_group_init(group
);
1803 group
->a_is_minus3
= 1;
1808 ec_GFp_nistp256_group_set_curve(EC_GROUP
* group
, const BIGNUM
* p
,
1809 const BIGNUM
* a
, const BIGNUM
* b
, BN_CTX
* ctx
)
1812 BN_CTX
*new_ctx
= NULL
;
1813 BIGNUM
*curve_p
, *curve_a
, *curve_b
;
1816 if ((ctx
= new_ctx
= BN_CTX_new()) == NULL
)
1819 if (((curve_p
= BN_CTX_get(ctx
)) == NULL
) ||
1820 ((curve_a
= BN_CTX_get(ctx
)) == NULL
) ||
1821 ((curve_b
= BN_CTX_get(ctx
)) == NULL
))
1823 BN_bin2bn(nistp256_curve_params
[0], sizeof(felem_bytearray
), curve_p
);
1824 BN_bin2bn(nistp256_curve_params
[1], sizeof(felem_bytearray
), curve_a
);
1825 BN_bin2bn(nistp256_curve_params
[2], sizeof(felem_bytearray
), curve_b
);
1826 if ((BN_cmp(curve_p
, p
)) || (BN_cmp(curve_a
, a
)) ||
1827 (BN_cmp(curve_b
, b
))) {
1828 ECerror(EC_R_WRONG_CURVE_PARAMETERS
);
1831 group
->field_mod_func
= BN_nist_mod_256
;
1832 ret
= ec_GFp_simple_group_set_curve(group
, p
, a
, b
, ctx
);
1835 BN_CTX_free(new_ctx
);
1839 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1840 * (X', Y') = (X/Z^2, Y/Z^3) */
1842 ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP
* group
,
1843 const EC_POINT
* point
, BIGNUM
* x
, BIGNUM
* y
, BN_CTX
* ctx
)
1845 felem z1
, z2
, x_in
, y_in
;
1846 smallfelem x_out
, y_out
;
1849 if (EC_POINT_is_at_infinity(group
, point
) > 0) {
1850 ECerror(EC_R_POINT_AT_INFINITY
);
1853 if ((!BN_to_felem(x_in
, &point
->X
)) || (!BN_to_felem(y_in
, &point
->Y
)) ||
1854 (!BN_to_felem(z1
, &point
->Z
)))
1857 felem_square(tmp
, z2
);
1858 felem_reduce(z1
, tmp
);
1859 felem_mul(tmp
, x_in
, z1
);
1860 felem_reduce(x_in
, tmp
);
1861 felem_contract(x_out
, x_in
);
1863 if (!smallfelem_to_BN(x
, x_out
)) {
1864 ECerror(ERR_R_BN_LIB
);
1868 felem_mul(tmp
, z1
, z2
);
1869 felem_reduce(z1
, tmp
);
1870 felem_mul(tmp
, y_in
, z1
);
1871 felem_reduce(y_in
, tmp
);
1872 felem_contract(y_out
, y_in
);
1874 if (!smallfelem_to_BN(y
, y_out
)) {
1875 ECerror(ERR_R_BN_LIB
);
1883 make_points_affine(size_t num
, smallfelem points
[ /* num */ ][3], smallfelem tmp_smallfelems
[ /* num+1 */ ])
1886 * Runs in constant time, unless an input is the point at infinity
1887 * (which normally shouldn't happen).
1889 ec_GFp_nistp_points_make_affine_internal(
1894 (void (*) (void *)) smallfelem_one
,
1895 (int (*) (const void *)) smallfelem_is_zero_int
,
1896 (void (*) (void *, const void *)) smallfelem_assign
,
1897 (void (*) (void *, const void *)) smallfelem_square_contract
,
1898 (void (*) (void *, const void *, const void *)) smallfelem_mul_contract
,
1899 (void (*) (void *, const void *)) smallfelem_inv_contract
,
1900 (void (*) (void *, const void *)) smallfelem_assign
/* nothing to contract */ );
1903 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1904 * Result is stored in r (r can equal one of the inputs). */
1906 ec_GFp_nistp256_points_mul(const EC_GROUP
* group
, EC_POINT
* r
,
1907 const BIGNUM
* scalar
, size_t num
, const EC_POINT
* points
[],
1908 const BIGNUM
* scalars
[], BN_CTX
* ctx
)
1913 BN_CTX
*new_ctx
= NULL
;
1914 BIGNUM
*x
, *y
, *z
, *tmp_scalar
;
1915 felem_bytearray g_secret
;
1916 felem_bytearray
*secrets
= NULL
;
1917 smallfelem(*pre_comp
)[17][3] = NULL
;
1918 smallfelem
*tmp_smallfelems
= NULL
;
1919 felem_bytearray tmp
;
1920 unsigned i
, num_bytes
;
1921 int have_pre_comp
= 0;
1922 size_t num_points
= num
;
1923 smallfelem x_in
, y_in
, z_in
;
1924 felem x_out
, y_out
, z_out
;
1925 NISTP256_PRE_COMP
*pre
= NULL
;
1926 const smallfelem(*g_pre_comp
)[16][3] = NULL
;
1927 EC_POINT
*generator
= NULL
;
1928 const EC_POINT
*p
= NULL
;
1929 const BIGNUM
*p_scalar
= NULL
;
1932 if ((ctx
= new_ctx
= BN_CTX_new()) == NULL
)
1935 if (((x
= BN_CTX_get(ctx
)) == NULL
) ||
1936 ((y
= BN_CTX_get(ctx
)) == NULL
) ||
1937 ((z
= BN_CTX_get(ctx
)) == NULL
) ||
1938 ((tmp_scalar
= BN_CTX_get(ctx
)) == NULL
))
1941 if (scalar
!= NULL
) {
1942 pre
= EC_EX_DATA_get_data(group
->extra_data
,
1943 nistp256_pre_comp_dup
, nistp256_pre_comp_free
,
1944 nistp256_pre_comp_clear_free
);
1946 /* we have precomputation, try to use it */
1947 g_pre_comp
= (const smallfelem(*)[16][3]) pre
->g_pre_comp
;
1949 /* try to use the standard precomputation */
1950 g_pre_comp
= &gmul
[0];
1951 generator
= EC_POINT_new(group
);
1952 if (generator
== NULL
)
1954 /* get the generator from precomputation */
1955 if (!smallfelem_to_BN(x
, g_pre_comp
[0][1][0]) ||
1956 !smallfelem_to_BN(y
, g_pre_comp
[0][1][1]) ||
1957 !smallfelem_to_BN(z
, g_pre_comp
[0][1][2])) {
1958 ECerror(ERR_R_BN_LIB
);
1961 if (!EC_POINT_set_Jprojective_coordinates_GFp(group
,
1962 generator
, x
, y
, z
, ctx
))
1964 if (0 == EC_POINT_cmp(group
, generator
, group
->generator
, ctx
))
1965 /* precomputation matches generator */
1969 * we don't have valid precomputation: treat the
1970 * generator as a random point
1974 if (num_points
> 0) {
1975 if (num_points
>= 3) {
1977 * unless we precompute multiples for just one or two
1978 * points, converting those into affine form is time
1983 secrets
= calloc(num_points
, sizeof(felem_bytearray
));
1984 pre_comp
= calloc(num_points
, 17 * 3 * sizeof(smallfelem
));
1986 /* XXX should do more int overflow checking */
1987 tmp_smallfelems
= reallocarray(NULL
,
1988 (num_points
* 17 + 1), sizeof(smallfelem
));
1990 if ((secrets
== NULL
) || (pre_comp
== NULL
) || (mixed
&& (tmp_smallfelems
== NULL
))) {
1991 ECerror(ERR_R_MALLOC_FAILURE
);
1995 * we treat NULL scalars as 0, and NULL points as points at
1996 * infinity, i.e., they contribute nothing to the linear
1999 for (i
= 0; i
< num_points
; ++i
) {
2002 * we didn't have a valid precomputation, so
2003 * we pick the generator
2006 p
= EC_GROUP_get0_generator(group
);
2009 /* the i^th point */
2012 p_scalar
= scalars
[i
];
2014 if ((p_scalar
!= NULL
) && (p
!= NULL
)) {
2015 /* reduce scalar to 0 <= scalar < 2^256 */
2016 if ((BN_num_bits(p_scalar
) > 256) || (BN_is_negative(p_scalar
))) {
2018 * this is an unusual input, and we
2019 * don't guarantee constant-timeness
2021 if (!BN_nnmod(tmp_scalar
, p_scalar
, &group
->order
, ctx
)) {
2022 ECerror(ERR_R_BN_LIB
);
2025 num_bytes
= BN_bn2bin(tmp_scalar
, tmp
);
2027 num_bytes
= BN_bn2bin(p_scalar
, tmp
);
2028 flip_endian(secrets
[i
], tmp
, num_bytes
);
2029 /* precompute multiples */
2030 if ((!BN_to_felem(x_out
, &p
->X
)) ||
2031 (!BN_to_felem(y_out
, &p
->Y
)) ||
2032 (!BN_to_felem(z_out
, &p
->Z
)))
2034 felem_shrink(pre_comp
[i
][1][0], x_out
);
2035 felem_shrink(pre_comp
[i
][1][1], y_out
);
2036 felem_shrink(pre_comp
[i
][1][2], z_out
);
2037 for (j
= 2; j
<= 16; ++j
) {
2040 pre_comp
[i
][j
][0], pre_comp
[i
][j
][1], pre_comp
[i
][j
][2],
2041 pre_comp
[i
][1][0], pre_comp
[i
][1][1], pre_comp
[i
][1][2],
2042 pre_comp
[i
][j
- 1][0], pre_comp
[i
][j
- 1][1], pre_comp
[i
][j
- 1][2]);
2045 pre_comp
[i
][j
][0], pre_comp
[i
][j
][1], pre_comp
[i
][j
][2],
2046 pre_comp
[i
][j
/ 2][0], pre_comp
[i
][j
/ 2][1], pre_comp
[i
][j
/ 2][2]);
2052 make_points_affine(num_points
* 17, pre_comp
[0], tmp_smallfelems
);
2054 /* the scalar for the generator */
2055 if ((scalar
!= NULL
) && (have_pre_comp
)) {
2056 memset(g_secret
, 0, sizeof(g_secret
));
2057 /* reduce scalar to 0 <= scalar < 2^256 */
2058 if ((BN_num_bits(scalar
) > 256) || (BN_is_negative(scalar
))) {
2060 * this is an unusual input, and we don't guarantee
2063 if (!BN_nnmod(tmp_scalar
, scalar
, &group
->order
, ctx
)) {
2064 ECerror(ERR_R_BN_LIB
);
2067 num_bytes
= BN_bn2bin(tmp_scalar
, tmp
);
2069 num_bytes
= BN_bn2bin(scalar
, tmp
);
2070 flip_endian(g_secret
, tmp
, num_bytes
);
2071 /* do the multiplication with generator precomputation */
2072 batch_mul(x_out
, y_out
, z_out
,
2073 (const felem_bytearray(*)) secrets
, num_points
,
2075 mixed
, (const smallfelem(*)[17][3]) pre_comp
,
2078 /* do the multiplication without generator precomputation */
2079 batch_mul(x_out
, y_out
, z_out
,
2080 (const felem_bytearray(*)) secrets
, num_points
,
2081 NULL
, mixed
, (const smallfelem(*)[17][3]) pre_comp
, NULL
);
2082 /* reduce the output to its unique minimal representation */
2083 felem_contract(x_in
, x_out
);
2084 felem_contract(y_in
, y_out
);
2085 felem_contract(z_in
, z_out
);
2086 if ((!smallfelem_to_BN(x
, x_in
)) || (!smallfelem_to_BN(y
, y_in
)) ||
2087 (!smallfelem_to_BN(z
, z_in
))) {
2088 ECerror(ERR_R_BN_LIB
);
2091 ret
= EC_POINT_set_Jprojective_coordinates_GFp(group
, r
, x
, y
, z
, ctx
);
2095 EC_POINT_free(generator
);
2096 BN_CTX_free(new_ctx
);
2099 free(tmp_smallfelems
);
2104 ec_GFp_nistp256_precompute_mult(EC_GROUP
* group
, BN_CTX
* ctx
)
2107 NISTP256_PRE_COMP
*pre
= NULL
;
2109 BN_CTX
*new_ctx
= NULL
;
2111 EC_POINT
*generator
= NULL
;
2112 smallfelem tmp_smallfelems
[32];
2113 felem x_tmp
, y_tmp
, z_tmp
;
2115 /* throw away old precomputation */
2116 EC_EX_DATA_free_data(&group
->extra_data
, nistp256_pre_comp_dup
,
2117 nistp256_pre_comp_free
, nistp256_pre_comp_clear_free
);
2119 if ((ctx
= new_ctx
= BN_CTX_new()) == NULL
)
2122 if (((x
= BN_CTX_get(ctx
)) == NULL
) ||
2123 ((y
= BN_CTX_get(ctx
)) == NULL
))
2125 /* get the generator */
2126 if (group
->generator
== NULL
)
2128 generator
= EC_POINT_new(group
);
2129 if (generator
== NULL
)
2131 BN_bin2bn(nistp256_curve_params
[3], sizeof(felem_bytearray
), x
);
2132 BN_bin2bn(nistp256_curve_params
[4], sizeof(felem_bytearray
), y
);
2133 if (!EC_POINT_set_affine_coordinates_GFp(group
, generator
, x
, y
, ctx
))
2135 if ((pre
= nistp256_pre_comp_new()) == NULL
)
2137 /* if the generator is the standard one, use built-in precomputation */
2138 if (0 == EC_POINT_cmp(group
, generator
, group
->generator
, ctx
)) {
2139 memcpy(pre
->g_pre_comp
, gmul
, sizeof(pre
->g_pre_comp
));
2143 if ((!BN_to_felem(x_tmp
, &group
->generator
->X
)) ||
2144 (!BN_to_felem(y_tmp
, &group
->generator
->Y
)) ||
2145 (!BN_to_felem(z_tmp
, &group
->generator
->Z
)))
2147 felem_shrink(pre
->g_pre_comp
[0][1][0], x_tmp
);
2148 felem_shrink(pre
->g_pre_comp
[0][1][1], y_tmp
);
2149 felem_shrink(pre
->g_pre_comp
[0][1][2], z_tmp
);
2151 * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G,
2152 * 2^96*G, 2^160*G, 2^224*G for the second one
2154 for (i
= 1; i
<= 8; i
<<= 1) {
2156 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2],
2157 pre
->g_pre_comp
[0][i
][0], pre
->g_pre_comp
[0][i
][1], pre
->g_pre_comp
[0][i
][2]);
2158 for (j
= 0; j
< 31; ++j
) {
2160 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2],
2161 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2]);
2166 pre
->g_pre_comp
[0][2 * i
][0], pre
->g_pre_comp
[0][2 * i
][1], pre
->g_pre_comp
[0][2 * i
][2],
2167 pre
->g_pre_comp
[1][i
][0], pre
->g_pre_comp
[1][i
][1], pre
->g_pre_comp
[1][i
][2]);
2168 for (j
= 0; j
< 31; ++j
) {
2170 pre
->g_pre_comp
[0][2 * i
][0], pre
->g_pre_comp
[0][2 * i
][1], pre
->g_pre_comp
[0][2 * i
][2],
2171 pre
->g_pre_comp
[0][2 * i
][0], pre
->g_pre_comp
[0][2 * i
][1], pre
->g_pre_comp
[0][2 * i
][2]);
2174 for (i
= 0; i
< 2; i
++) {
2175 /* g_pre_comp[i][0] is the point at infinity */
2176 memset(pre
->g_pre_comp
[i
][0], 0, sizeof(pre
->g_pre_comp
[i
][0]));
2177 /* the remaining multiples */
2178 /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2180 pre
->g_pre_comp
[i
][6][0], pre
->g_pre_comp
[i
][6][1], pre
->g_pre_comp
[i
][6][2],
2181 pre
->g_pre_comp
[i
][4][0], pre
->g_pre_comp
[i
][4][1], pre
->g_pre_comp
[i
][4][2],
2182 pre
->g_pre_comp
[i
][2][0], pre
->g_pre_comp
[i
][2][1], pre
->g_pre_comp
[i
][2][2]);
2183 /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2185 pre
->g_pre_comp
[i
][10][0], pre
->g_pre_comp
[i
][10][1], pre
->g_pre_comp
[i
][10][2],
2186 pre
->g_pre_comp
[i
][8][0], pre
->g_pre_comp
[i
][8][1], pre
->g_pre_comp
[i
][8][2],
2187 pre
->g_pre_comp
[i
][2][0], pre
->g_pre_comp
[i
][2][1], pre
->g_pre_comp
[i
][2][2]);
2188 /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2190 pre
->g_pre_comp
[i
][12][0], pre
->g_pre_comp
[i
][12][1], pre
->g_pre_comp
[i
][12][2],
2191 pre
->g_pre_comp
[i
][8][0], pre
->g_pre_comp
[i
][8][1], pre
->g_pre_comp
[i
][8][2],
2192 pre
->g_pre_comp
[i
][4][0], pre
->g_pre_comp
[i
][4][1], pre
->g_pre_comp
[i
][4][2]);
2194 * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G +
2198 pre
->g_pre_comp
[i
][14][0], pre
->g_pre_comp
[i
][14][1], pre
->g_pre_comp
[i
][14][2],
2199 pre
->g_pre_comp
[i
][12][0], pre
->g_pre_comp
[i
][12][1], pre
->g_pre_comp
[i
][12][2],
2200 pre
->g_pre_comp
[i
][2][0], pre
->g_pre_comp
[i
][2][1], pre
->g_pre_comp
[i
][2][2]);
2201 for (j
= 1; j
< 8; ++j
) {
2202 /* odd multiples: add G resp. 2^32*G */
2204 pre
->g_pre_comp
[i
][2 * j
+ 1][0], pre
->g_pre_comp
[i
][2 * j
+ 1][1], pre
->g_pre_comp
[i
][2 * j
+ 1][2],
2205 pre
->g_pre_comp
[i
][2 * j
][0], pre
->g_pre_comp
[i
][2 * j
][1], pre
->g_pre_comp
[i
][2 * j
][2],
2206 pre
->g_pre_comp
[i
][1][0], pre
->g_pre_comp
[i
][1][1], pre
->g_pre_comp
[i
][1][2]);
2209 make_points_affine(31, &(pre
->g_pre_comp
[0][1]), tmp_smallfelems
);
2211 if (!EC_EX_DATA_set_data(&group
->extra_data
, pre
, nistp256_pre_comp_dup
,
2212 nistp256_pre_comp_free
, nistp256_pre_comp_clear_free
))
2218 EC_POINT_free(generator
);
2219 BN_CTX_free(new_ctx
);
2220 nistp256_pre_comp_free(pre
);
2225 ec_GFp_nistp256_have_precompute_mult(const EC_GROUP
* group
)
2227 if (EC_EX_DATA_get_data(group
->extra_data
, nistp256_pre_comp_dup
,
2228 nistp256_pre_comp_free
, nistp256_pre_comp_clear_free
)