dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / usr / src / boot / lib / libstand / qdivrem.c
blobbde3b0d56e49bf3abe77067efe017066aa56b0d2
1 /*-
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * From: Id: qdivrem.c,v 1.7 1997/11/07 09:20:40 phk Exp
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
40 * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
41 * section 4.3.1, pp. 257--259.
44 #include "quad.h"
46 #define B (1 << HALF_BITS) /* digit base */
48 /* Combine two `digits' to make a single two-digit number. */
49 #define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
51 _Static_assert(sizeof(int) / 2 == sizeof(short),
52 "Bitwise functions in libstand are broken on this architecture\n");
54 /* select a type for digits in base B: use unsigned short if they fit */
55 typedef unsigned short digit;
58 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
59 * `fall out' the left (there never will be any such anyway).
60 * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
62 static void
63 shl(digit *p, int len, int sh)
65 int i;
67 for (i = 0; i < len; i++)
68 p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
69 p[i] = LHALF(p[i] << sh);
73 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
75 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
76 * fit within u_int. As a consequence, the maximum length dividend and
77 * divisor are 4 `digits' in this base (they are shorter if they have
78 * leading zeros).
80 u_quad_t
81 __qdivrem(uq, vq, arq)
82 u_quad_t uq, vq, *arq;
84 union uu tmp;
85 digit *u, *v, *q;
86 digit v1, v2;
87 u_int qhat, rhat, t;
88 int m, n, d, j, i;
89 digit uspace[5], vspace[5], qspace[5];
92 * Take care of special cases: divide by zero, and u < v.
94 if (vq == 0) {
95 /* divide by zero. */
96 static volatile const unsigned int zero = 0;
98 tmp.ul[H] = tmp.ul[L] = 1 / zero;
99 if (arq)
100 *arq = uq;
101 return (tmp.q);
103 if (uq < vq) {
104 if (arq)
105 *arq = uq;
106 return (0);
108 u = &uspace[0];
109 v = &vspace[0];
110 q = &qspace[0];
113 * Break dividend and divisor into digits in base B, then
114 * count leading zeros to determine m and n. When done, we
115 * will have:
116 * u = (u[1]u[2]...u[m+n]) sub B
117 * v = (v[1]v[2]...v[n]) sub B
118 * v[1] != 0
119 * 1 < n <= 4 (if n = 1, we use a different division algorithm)
120 * m >= 0 (otherwise u < v, which we already checked)
121 * m + n = 4
122 * and thus
123 * m = 4 - n <= 2
125 tmp.uq = uq;
126 u[0] = 0;
127 u[1] = HHALF(tmp.ul[H]);
128 u[2] = LHALF(tmp.ul[H]);
129 u[3] = HHALF(tmp.ul[L]);
130 u[4] = LHALF(tmp.ul[L]);
131 tmp.uq = vq;
132 v[1] = HHALF(tmp.ul[H]);
133 v[2] = LHALF(tmp.ul[H]);
134 v[3] = HHALF(tmp.ul[L]);
135 v[4] = LHALF(tmp.ul[L]);
136 for (n = 4; v[1] == 0; v++) {
137 if (--n == 1) {
138 u_int rbj; /* r*B+u[j] (not root boy jim) */
139 digit q1, q2, q3, q4;
142 * Change of plan, per exercise 16.
143 * r = 0;
144 * for j = 1..4:
145 * q[j] = floor((r*B + u[j]) / v),
146 * r = (r*B + u[j]) % v;
147 * We unroll this completely here.
149 t = v[2]; /* nonzero, by definition */
150 q1 = u[1] / t;
151 rbj = COMBINE(u[1] % t, u[2]);
152 q2 = rbj / t;
153 rbj = COMBINE(rbj % t, u[3]);
154 q3 = rbj / t;
155 rbj = COMBINE(rbj % t, u[4]);
156 q4 = rbj / t;
157 if (arq)
158 *arq = rbj % t;
159 tmp.ul[H] = COMBINE(q1, q2);
160 tmp.ul[L] = COMBINE(q3, q4);
161 return (tmp.q);
166 * By adjusting q once we determine m, we can guarantee that
167 * there is a complete four-digit quotient at &qspace[1] when
168 * we finally stop.
170 for (m = 4 - n; u[1] == 0; u++)
171 m--;
172 for (i = 4 - m; --i >= 0;)
173 q[i] = 0;
174 q += 4 - m;
177 * Here we run Program D, translated from MIX to C and acquiring
178 * a few minor changes.
180 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
182 d = 0;
183 for (t = v[1]; t < B / 2; t <<= 1)
184 d++;
185 if (d > 0) {
186 shl(&u[0], m + n, d); /* u <<= d */
187 shl(&v[1], n - 1, d); /* v <<= d */
190 * D2: j = 0.
192 j = 0;
193 v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
194 v2 = v[2]; /* for D3 */
195 do {
196 digit uj0, uj1, uj2;
199 * D3: Calculate qhat (\^q, in TeX notation).
200 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
201 * let rhat = (u[j]*B + u[j+1]) mod v[1].
202 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
203 * decrement qhat and increase rhat correspondingly.
204 * Note that if rhat >= B, v[2]*qhat < rhat*B.
206 uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
207 uj1 = u[j + 1]; /* for D3 only */
208 uj2 = u[j + 2]; /* for D3 only */
209 if (uj0 == v1) {
210 qhat = B;
211 rhat = uj1;
212 goto qhat_too_big;
213 } else {
214 u_int nn = COMBINE(uj0, uj1);
215 qhat = nn / v1;
216 rhat = nn % v1;
218 while (v2 * qhat > COMBINE(rhat, uj2)) {
219 qhat_too_big:
220 qhat--;
221 if ((rhat += v1) >= B)
222 break;
225 * D4: Multiply and subtract.
226 * The variable `t' holds any borrows across the loop.
227 * We split this up so that we do not require v[0] = 0,
228 * and to eliminate a final special case.
230 for (t = 0, i = n; i > 0; i--) {
231 t = u[i + j] - v[i] * qhat - t;
232 u[i + j] = LHALF(t);
233 t = (B - HHALF(t)) & (B - 1);
235 t = u[j] - t;
236 u[j] = LHALF(t);
238 * D5: test remainder.
239 * There is a borrow if and only if HHALF(t) is nonzero;
240 * in that (rare) case, qhat was too large (by exactly 1).
241 * Fix it by adding v[1..n] to u[j..j+n].
243 if (HHALF(t)) {
244 qhat--;
245 for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
246 t += u[i + j] + v[i];
247 u[i + j] = LHALF(t);
248 t = HHALF(t);
250 u[j] = LHALF(u[j] + t);
252 q[j] = qhat;
253 } while (++j <= m); /* D7: loop on j. */
256 * If caller wants the remainder, we have to calculate it as
257 * u[m..m+n] >> d (this is at most n digits and thus fits in
258 * u[m+1..m+n], but we may need more source digits).
260 if (arq) {
261 if (d) {
262 for (i = m + n; i > m; --i)
263 u[i] = (u[i] >> d) |
264 LHALF(u[i - 1] << (HALF_BITS - d));
265 u[i] = 0;
267 tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
268 tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
269 *arq = tmp.q;
272 tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
273 tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
274 return (tmp.q);
278 * Divide two unsigned quads.
281 u_quad_t
282 __udivdi3(a, b)
283 u_quad_t a, b;
286 return (__qdivrem(a, b, (u_quad_t *)0));
290 * Return remainder after dividing two unsigned quads.
292 u_quad_t
293 __umoddi3(a, b)
294 u_quad_t a, b;
296 u_quad_t r;
298 (void)__qdivrem(a, b, &r);
299 return (r);
303 * Divide two signed quads.
304 * ??? if -1/2 should produce -1 on this machine, this code is wrong
306 quad_t
307 __divdi3(a, b)
308 quad_t a, b;
310 u_quad_t ua, ub, uq;
311 int neg;
313 if (a < 0)
314 ua = -(u_quad_t)a, neg = 1;
315 else
316 ua = a, neg = 0;
317 if (b < 0)
318 ub = -(u_quad_t)b, neg ^= 1;
319 else
320 ub = b;
321 uq = __qdivrem(ua, ub, (u_quad_t *)0);
322 return (neg ? -uq : uq);
326 * Return remainder after dividing two signed quads.
328 * XXX
329 * If -1/2 should produce -1 on this machine, this code is wrong.
331 quad_t
332 __moddi3(a, b)
333 quad_t a, b;
335 u_quad_t ua, ub, ur;
336 int neg;
338 if (a < 0)
339 ua = -(u_quad_t)a, neg = 1;
340 else
341 ua = a, neg = 0;
342 if (b < 0)
343 ub = -(u_quad_t)b;
344 else
345 ub = b;
346 (void)__qdivrem(ua, ub, &ur);
347 return (neg ? -ur : ur);