dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / usr / src / cmd / cmd-inet / usr.sbin / ping / ping.c
blob8d7c5fb04255bde82b8ea267dd97abf18348ace2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
21 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 * Use is subject to license terms.
26 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
27 * All Rights Reserved.
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California.
33 * All Rights Reserved.
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
41 * Copyright 2015, Joyent, Inc.
44 #include <assert.h>
45 #include <stdio.h>
46 #include <strings.h>
47 #include <errno.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 #include <signal.h>
51 #include <limits.h>
52 #include <math.h>
53 #include <locale.h>
54 #include <thread.h>
55 #include <synch.h>
57 #include <sys/time.h>
58 #include <sys/param.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/stropts.h>
62 #include <sys/file.h>
63 #include <sys/sysmacros.h>
64 #include <sys/debug.h>
66 #include <arpa/inet.h>
67 #include <net/if.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <netinet/udp.h>
76 #include <netdb.h>
77 #include <stdlib.h>
78 #include <priv_utils.h>
80 #include <libinetutil.h>
81 #include "ping.h"
84 * This macro is used to compare 16bit, wrapping sequence numbers. Inspired by
85 * TCP's SEQ_LEQ macro.
87 #define PINGSEQ_LEQ(a, b) ((int16_t)((a)-(b)) <= 0)
89 #define MAX_WAIT 10 /* max sec. to wait for response */
90 #define MAX_TRAFFIC_CLASS 255 /* max traffic class for IPv6 */
91 #define MAX_FLOW_LABEL 0xFFFFF /* max flow label for IPv6 */
92 #define MAX_TOS 255 /* max type-of-service for IPv4 */
94 #define TIMEOUT 20 /* default timeout value */
95 #define DEFAULT_DATALEN 56
97 #define MULTICAST_NOLOOP 1 /* multicast options */
98 #define MULTICAST_TTL 2
99 #define MULTICAST_IF 4
101 #define IF_INDEX 0 /* types of -i argument */
102 #define IF_NAME 1
103 #define IF_ADDR 2
104 #define IF_ADDR6 3
106 #ifdef BSD
107 #define setbuf(s, b) setlinebuf((s))
108 #endif /* BSD */
111 /* interface identification */
112 union if_id {
113 int index; /* interface index (e.g., 1, 2) */
114 char *name; /* interface name (e.g., le0, hme0) */
115 union any_in_addr addr; /* interface address (e.g., 10.123.4.5) */
118 /* stores the interface supplied by the user */
119 struct if_entry {
120 char *str; /* unresolved, string input */
121 int id_type; /* type of ID (index, name, addr, addr6) */
122 union if_id id; /* ID */
125 char *progname;
126 char *targethost;
127 char *nexthop;
129 static int send_sock; /* send sockets */
130 static int send_sock6;
131 static struct sockaddr_in to; /* where to send */
132 static struct sockaddr_in6 to6;
133 static union any_in_addr gw_IP_list[MAX_GWS]; /* gateways */
134 static union any_in_addr gw_IP_list6[MAX_GWS6];
135 static int if_index = 0; /* outgoing interface index */
136 boolean_t is_alive = _B_FALSE; /* is target host alive */
137 struct targetaddr *current_targetaddr; /* current target IP address to probe */
138 static struct targetaddr *targetaddr_list; /* list of IP addresses to probe */
139 static int num_targetaddrs; /* no of target addresses to probe */
140 static int num_v4 = 0; /* count of IPv4 addresses */
141 static int num_v6 = 0; /* count of IPv6 addresses */
142 boolean_t verbose = _B_FALSE; /* verbose output */
143 boolean_t stats = _B_FALSE; /* display statistics */
144 static boolean_t settos = _B_FALSE; /* set type-of-service value */
145 boolean_t rr_option = _B_FALSE; /* true if using record route */
146 boolean_t send_reply = _B_FALSE; /* Send an ICMP_{ECHO|TSTAMP}REPLY */
147 /* that goes to target and comes back */
148 /* to the the sender via src routing. */
149 boolean_t strict = _B_FALSE; /* true if using strict source route */
150 boolean_t ts_option = _B_FALSE; /* true if using timestamp option */
151 boolean_t use_icmp_ts = _B_FALSE; /* Use ICMP timestamp request */
152 boolean_t use_udp = _B_FALSE; /* Use UDP instead of ICMP */
153 boolean_t probe_all = _B_FALSE; /* probe all the IP addresses */
154 boolean_t nflag = _B_FALSE; /* do not reverse lookup addresses */
155 boolean_t bypass = _B_FALSE; /* bypass IPsec policy */
156 static int family_input = AF_UNSPEC; /* address family supplied by user */
157 int datalen = DEFAULT_DATALEN; /* How much data */
158 int ts_flag; /* timestamp flag value */
159 static int num_gw; /* number of gateways */
160 static int eff_num_gw; /* effective number of gateways */
161 /* if send_reply, it's 2*num_gw+1 */
162 static int num_wraps = -1; /* no of times 64K icmp_seq wrapped */
163 static ushort_t dest_port = 32768 + 666; /* starting port for the UDP probes */
164 static char *gw_list[MAXMAX_GWS]; /* list of gateways as user enters */
165 static int options; /* socket options */
166 static int moptions; /* multicast options */
167 int npackets; /* number of packets to send */
168 static ushort_t tos; /* type-of-service value */
169 static int hoplimit = -1; /* time-to-live value */
170 static int dontfrag; /* IP*_DONTFRAG */
171 static int timeout = TIMEOUT; /* timeout value (sec) for probes */
172 static struct if_entry out_if; /* interface argument */
173 int ident; /* ID for this ping run */
174 static hrtime_t t_last_probe_sent; /* the time we sent the last probe */
175 static timer_t timer; /* timer for waiting */
176 static volatile boolean_t timer_done = _B_FALSE; /* timer finished? */
177 static struct itimerspec interval = { { 0, 0 }, { 1, 0 } }; /* Interval for */
178 /* -I. The default interval is 1s. */
179 static hrtime_t mintime = NSEC2MSEC(500); /* minimum time between pings */
182 * Globals for our name services warning. See ns_warning_thr() for more on why
183 * this exists.
185 static mutex_t ns_lock = ERRORCHECKMUTEX; /* Protects the following data */
186 static boolean_t ns_active = _B_FALSE; /* Lookup is going on */
187 static hrtime_t ns_starttime; /* Time the lookup started */
188 static int ns_sleeptime = 2; /* Time in seconds between checks */
189 static int ns_warntime = 2; /* Time in seconds before warning */
190 static int ns_warninter = 60; /* Time in seconds between warnings */
193 * This buffer stores the received packets. Currently it needs to be 32 bit
194 * aligned. In the future, we'll be using 64 bit alignment, so let's use 64 bit
195 * alignment now.
197 static uint64_t in_pkt[(IP_MAXPACKET + 1)/8];
199 /* Used to store the ancillary data that comes with the received packets */
200 static uint64_t ancillary_data[(IP_MAXPACKET + 1)/8];
202 static int ntransmitted; /* number of packet sent to single IP address */
203 int nreceived; /* # of packets we got back from target host */
204 int nreceived_last_target; /* received from last target IP */
206 * These are used for statistics. tmin is initialized to maximum longint value.
207 * The max value is also used for timeouts. All times are in microseconds.
209 long long tmin = LLONG_MAX;
210 long long tmax;
211 int64_t tsum; /* sum of all times, for doing average */
212 int64_t tsum2; /* sum of squared times, for std. dev. */
214 static struct targetaddr *build_targetaddr_list(struct addrinfo *,
215 union any_in_addr *);
216 extern void check_reply(struct addrinfo *, struct msghdr *, int, ushort_t);
217 extern void check_reply6(struct addrinfo *, struct msghdr *, int, ushort_t);
218 static struct targetaddr *create_targetaddr_item(int, union any_in_addr *,
219 union any_in_addr *);
220 void find_dstaddr(ushort_t, union any_in_addr *);
221 static struct ifaddrlist *find_if(struct ifaddrlist *, int);
222 static void finish();
223 static void get_gwaddrs(char *[], int, union any_in_addr *,
224 union any_in_addr *, int *, int *);
225 static void get_hostinfo(char *, int, struct addrinfo **);
226 static ushort_t in_cksum(ushort_t *, int);
227 static int int_arg(char *s, char *what);
228 boolean_t is_a_target(struct addrinfo *, union any_in_addr *);
229 static void mirror_gws(union any_in_addr *, int);
230 static void *ns_warning_thr(void *);
231 static void parse_interval(char *s);
232 static void pinger(int, struct sockaddr *, struct msghdr *, int);
233 char *pr_name(char *, int);
234 char *pr_protocol(int);
235 static void print_unknown_host_msg(const char *, const char *);
236 static void recv_icmp_packet(struct addrinfo *, int, int, ushort_t, ushort_t);
237 static void resolve_nodes(struct addrinfo **, struct addrinfo **,
238 union any_in_addr **);
239 void schedule_sigalrm();
240 static void select_all_src_addrs(union any_in_addr **, struct addrinfo *,
241 union any_in_addr *, union any_in_addr *);
242 static void select_src_addr(union any_in_addr *, int, union any_in_addr *);
243 void send_scheduled_probe();
244 boolean_t seq_match(ushort_t, int, ushort_t);
245 extern void set_ancillary_data(struct msghdr *, int, union any_in_addr *, int,
246 uint_t);
247 extern void set_IPv4_options(int, union any_in_addr *, int, struct in_addr *,
248 struct in_addr *);
249 static void set_nexthop(int, struct addrinfo *, int);
250 static boolean_t setup_socket(int, int *, int *, int *, ushort_t *,
251 struct addrinfo *);
252 void sigalrm_handler();
253 void tvsub(struct timeval *, struct timeval *);
254 static void usage(char *);
257 * main()
260 main(int argc, char *argv[])
262 struct addrinfo *ai_dst = NULL; /* addrinfo host list */
263 struct addrinfo *ai_nexthop = NULL; /* addrinfo nexthop */
264 union any_in_addr *src_addr_list = NULL; /* src addrs to use */
265 int recv_sock = -1; /* receive sockets */
266 int recv_sock6 = -1;
267 ushort_t udp_src_port; /* src ports for UDP probes */
268 ushort_t udp_src_port6; /* used to identify replies */
269 uint_t flowinfo = 0;
270 uint_t class = 0;
271 char abuf[INET6_ADDRSTRLEN];
272 int c;
273 int i;
274 boolean_t has_sys_ip_config;
276 progname = argv[0];
278 (void) setlocale(LC_ALL, "");
281 * This program needs the net_icmpaccess privilege for creating
282 * raw ICMP sockets. It needs sys_ip_config for using the
283 * IP_NEXTHOP socket option (IPv4 only). We'll fail
284 * on the socket call and report the error there when we have
285 * insufficient privileges.
287 * Shared-IP zones don't have the sys_ip_config privilege, so
288 * we need to check for it in our limit set before trying
289 * to set it.
291 has_sys_ip_config = priv_ineffect(PRIV_SYS_IP_CONFIG);
293 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_NET_ICMPACCESS,
294 has_sys_ip_config ? PRIV_SYS_IP_CONFIG : NULL, NULL);
296 setbuf(stdout, (char *)0);
298 while ((c = getopt(argc, argv,
299 "abA:c:dDF:G:g:I:i:LlnN:P:p:rRSsTt:UvX:x:Y0123?")) != -1) {
300 switch ((char)c) {
301 case 'A':
302 if (strcmp(optarg, "inet") == 0) {
303 family_input = AF_INET;
304 } else if (strcmp(optarg, "inet6") == 0) {
305 family_input = AF_INET6;
306 } else {
307 Fprintf(stderr,
308 "%s: unknown address family %s\n",
309 progname, optarg);
310 exit(EXIT_FAILURE);
312 break;
314 case 'a':
315 probe_all = _B_TRUE;
316 break;
318 case 'c':
319 i = int_arg(optarg, "traffic class");
320 if (i > MAX_TRAFFIC_CLASS) {
321 Fprintf(stderr, "%s: traffic class %d out of "
322 "range\n", progname, i);
323 exit(EXIT_FAILURE);
325 class = (uint_t)i;
326 break;
328 case 'd':
329 options |= SO_DEBUG;
330 break;
332 case 'D':
333 dontfrag = 1;
334 break;
336 case 'b':
337 bypass = _B_TRUE;
338 break;
340 case 'F':
341 i = int_arg(optarg, "flow label");
342 if (i > MAX_FLOW_LABEL) {
343 Fprintf(stderr, "%s: flow label %d out of "
344 "range\n", progname, i);
345 exit(EXIT_FAILURE);
347 flowinfo = (uint_t)i;
348 break;
350 case 'I':
351 stats = _B_TRUE;
352 parse_interval(optarg);
353 break;
355 case 'i':
357 * this can accept interface index, interface name, and
358 * address configured on the interface
360 moptions |= MULTICAST_IF;
361 out_if.str = optarg;
363 if (inet_pton(AF_INET6, optarg, &out_if.id.addr) > 0) {
364 out_if.id_type = IF_ADDR6;
365 } else if (inet_pton(AF_INET, optarg,
366 &out_if.id.addr) > 0) {
367 out_if.id_type = IF_ADDR;
368 } else if (strcmp(optarg, "0") == 0) {
369 out_if.id_type = IF_INDEX;
370 out_if.id.index = 0;
371 } else if ((out_if.id.index = atoi(optarg)) != 0) {
372 out_if.id_type = IF_INDEX;
373 } else {
374 out_if.id.name = optarg;
375 out_if.id_type = IF_NAME;
377 break;
379 case 'L':
380 moptions |= MULTICAST_NOLOOP;
381 break;
383 case 'l':
384 send_reply = _B_TRUE;
385 strict = _B_FALSE;
386 break;
388 case 'n':
389 nflag = _B_TRUE;
390 break;
392 case 'P':
393 settos = _B_TRUE;
394 i = int_arg(optarg, "type-of-service");
395 if (i > MAX_TOS) {
396 Fprintf(stderr, "%s: tos value %d out of "
397 "range\n", progname, i);
398 exit(EXIT_FAILURE);
400 tos = (ushort_t)i;
401 break;
403 case 'p':
404 i = int_arg(optarg, "port number");
405 if (i > MAX_PORT) {
406 Fprintf(stderr, "%s: port number %d out of "
407 "range\n", progname, i);
408 exit(EXIT_FAILURE);
410 dest_port = (ushort_t)i;
411 break;
413 case 'r':
414 options |= SO_DONTROUTE;
415 break;
417 case 'R':
418 rr_option = _B_TRUE;
419 break;
421 case 'S':
422 send_reply = _B_TRUE;
423 strict = _B_TRUE;
424 break;
426 case 's':
427 stats = _B_TRUE;
428 break;
430 case 'T':
431 ts_option = _B_TRUE;
432 break;
434 case 't':
435 moptions |= MULTICAST_TTL;
436 hoplimit = int_arg(optarg, "ttl");
437 if (hoplimit > MAXTTL) {
438 Fprintf(stderr, "%s: ttl %d out of range\n",
439 progname, hoplimit);
440 exit(EXIT_FAILURE);
442 break;
444 case 'U':
445 use_udp = _B_TRUE;
446 use_icmp_ts = _B_FALSE;
447 break;
449 case 'v':
450 verbose = _B_TRUE;
451 break;
453 * 'x' and 'X' has been undocumented flags for source routing.
454 * Now we document loose source routing with the new flag 'g',
455 * which is same as in traceroute. We still keep x/X as
456 * as undocumented. 'G', which is for strict source routing is
457 * also undocumented.
459 case 'x':
460 case 'g':
461 strict = _B_FALSE;
462 if (num_gw > MAXMAX_GWS) {
463 Fprintf(stderr, "%s: too many gateways\n",
464 progname);
465 exit(EXIT_FAILURE);
467 gw_list[num_gw++] = optarg;
468 break;
470 case 'X':
471 case 'G':
472 strict = _B_TRUE;
473 if (num_gw > MAXMAX_GWS) {
474 Fprintf(stderr, "%s: too many gateways\n",
475 progname);
476 exit(EXIT_FAILURE);
478 gw_list[num_gw++] = optarg;
479 break;
481 case 'N':
482 if (nexthop != NULL) {
483 Fprintf(stderr, "%s: only one next hop gateway"
484 " allowed\n", progname);
485 exit(EXIT_FAILURE);
487 nexthop = optarg;
488 break;
490 case 'Y':
491 use_icmp_ts = _B_TRUE;
492 use_udp = _B_FALSE;
493 break;
495 case '0':
496 case '1':
497 case '2':
498 case '3':
499 ts_flag = (char)c - '0';
500 break;
502 case '?':
503 usage(progname);
504 exit(EXIT_FAILURE);
505 break;
507 default:
508 usage(progname);
509 exit(EXIT_FAILURE);
510 break;
514 if (optind >= argc) {
515 usage(progname);
516 exit(EXIT_FAILURE);
520 * send_reply, which sends the probe packet back to itself
521 * doesn't work with UDP
523 if (use_udp)
524 send_reply = _B_FALSE;
526 if (getenv("MACHINE_THAT_GOES_PING") != NULL)
527 stats = _B_TRUE;
529 targethost = argv[optind];
530 optind++;
531 if (optind < argc) {
532 if (stats) {
533 datalen = int_arg(argv[optind], "data size");
534 optind++;
535 if (optind < argc) {
536 npackets = int_arg(argv[optind],
537 "packet count");
538 if (npackets < 1) {
539 Fprintf(stderr, "%s: packet count %d "
540 "out of range\n", progname,
541 npackets);
542 exit(EXIT_FAILURE);
545 } else {
546 timeout = int_arg(argv[optind], "timeout");
551 * Let's prepare sockaddr_in* structures, cause we might need both of
552 * them.
554 bzero((char *)&to, sizeof (struct sockaddr_in));
555 to.sin_family = AF_INET;
557 bzero((char *)&to6, sizeof (struct sockaddr_in6));
558 to6.sin6_family = AF_INET6;
559 to6.sin6_flowinfo = htonl((class << 20) | flowinfo);
561 if (stats)
562 (void) sigset(SIGINT, finish);
564 ident = (int)getpid() & 0xFFFF;
566 /* resolve the hostnames */
567 resolve_nodes(&ai_dst, &ai_nexthop, &src_addr_list);
570 * We should make sure datalen is reasonable.
571 * IP_MAXPACKET >= IPv4/IPv6 header length +
572 * IPv4 options/IPv6 routing header length +
573 * ICMP/ICMP6/UDP header length +
574 * datalen
577 if (family_input == AF_INET6 ||
578 (family_input == AF_UNSPEC && num_v6 != 0)) {
579 size_t exthdr_len = 0;
581 if (send_reply) {
582 exthdr_len = sizeof (struct ip6_rthdr0) +
583 2 * num_gw * sizeof (struct in6_addr);
584 } else if (num_gw > 0) {
585 exthdr_len = sizeof (struct ip6_rthdr0) +
586 num_gw * sizeof (struct in6_addr);
590 * Size of ICMP6 header and UDP header are the same. Let's
591 * use ICMP6_MINLEN.
593 if (datalen > (IP_MAXPACKET - (sizeof (struct ip6_hdr) +
594 exthdr_len + ICMP6_MINLEN))) {
595 Fprintf(stderr,
596 "%s: data size too large for IPv6 packet\n",
597 progname);
598 num_v6 = 0;
602 if (family_input == AF_INET ||
603 (family_input == AF_UNSPEC && num_v4 != 0)) {
604 size_t opt_len = 0;
606 if (send_reply) {
608 * Includes 3 bytes code+ptr+len, the intermediate
609 * gateways, the actual and the effective target.
611 opt_len = 3 +
612 (2 * num_gw + 2) * sizeof (struct in_addr);
613 } else if (num_gw > 0) {
614 opt_len = 3 + (num_gw + 1) * sizeof (struct in_addr);
617 if (rr_option) {
618 opt_len = MAX_IPOPTLEN;
619 } else if (ts_option) {
620 if ((ts_flag & 0x0f) <= IPOPT_TS_TSANDADDR) {
621 opt_len = MAX_IPOPTLEN;
622 } else {
623 opt_len += IPOPT_MINOFF +
624 2 * sizeof (struct ipt_ta);
626 * Note: BSD/4.X is broken in their check so we
627 * have to bump up this number by at least one.
629 opt_len++;
633 /* Round up to 4 byte boundary */
634 if (opt_len & 0x3)
635 opt_len = (opt_len & ~0x3) + 4;
637 if (datalen > (IP_MAXPACKET - (sizeof (struct ip) + opt_len +
638 ICMP_MINLEN))) {
639 Fprintf(stderr,
640 "%s: data size too large for IPv4 packet\n",
641 progname);
642 num_v4 = 0;
646 if (num_v4 == 0 && num_v6 == 0) {
647 exit(EXIT_FAILURE);
650 /* setup the sockets */
651 if (num_v6 != 0) {
652 if (!setup_socket(AF_INET6, &send_sock6, &recv_sock6,
653 &if_index, &udp_src_port6, ai_nexthop))
654 exit(EXIT_FAILURE);
657 if (num_v4 != 0) {
658 if (!setup_socket(AF_INET, &send_sock, &recv_sock, &if_index,
659 &udp_src_port, ai_nexthop))
660 exit(EXIT_FAILURE);
663 __priv_relinquish();
666 * If sending back to ourself, add the mirror image of current
667 * gateways, so that the probes travel to and from the target
668 * by visiting the same gateways in reverse order.
670 if (send_reply) {
671 if (num_v6 != 0)
672 mirror_gws(gw_IP_list6, AF_INET6);
673 if (num_v4 != 0)
674 mirror_gws(gw_IP_list, AF_INET);
676 /* We add 1 because we put the target as the middle gateway */
677 eff_num_gw = 2 * num_gw + 1;
679 } else {
680 eff_num_gw = num_gw;
683 targetaddr_list = build_targetaddr_list(ai_dst, src_addr_list);
684 current_targetaddr = targetaddr_list;
687 * Set the starting_seq_num for the first targetaddr.
688 * If we are sending ICMP Echo Requests, the sequence number is same as
689 * ICMP sequence number, and it starts from zero. If we are sending UDP
690 * packets, the sequence number is the destination UDP port number,
691 * which starts from dest_port. At each probe, this sequence number is
692 * incremented by one.
693 * We set the starting_seq_num for first targetaddr here. The
694 * following ones will be set by looking at where we left with the last
695 * targetaddr.
697 current_targetaddr->starting_seq_num = use_udp ? dest_port : 0;
699 if (stats) {
700 if (probe_all || !nflag) {
701 Printf("PING %s: %d data bytes\n", targethost, datalen);
702 } else {
703 if (ai_dst->ai_family == AF_INET) {
704 (void) inet_ntop(AF_INET,
705 &((struct sockaddr_in *)(void *)
706 ai_dst->ai_addr)->sin_addr,
707 abuf, sizeof (abuf));
708 } else {
709 (void) inet_ntop(AF_INET6,
710 &((struct sockaddr_in6 *)(void *)
711 ai_dst->ai_addr)->sin6_addr,
712 abuf, sizeof (abuf));
714 Printf("PING %s (%s): %d data bytes\n",
715 targethost, abuf, datalen);
719 /* Create our timer for future use */
720 if (timer_create(CLOCK_REALTIME, NULL, &timer) != 0) {
721 Fprintf(stderr, "%s: failed to create timer: %s\n",
722 progname, strerror(errno));
723 exit(EXIT_FAILURE);
727 * Finally start up the name services warning thread.
729 if (thr_create(NULL, 0, ns_warning_thr, NULL,
730 THR_DETACHED | THR_DAEMON, NULL) != 0) {
731 Fprintf(stderr, "%s: failed to create name services "
732 "thread: %s\n", progname, strerror(errno));
733 exit(EXIT_FAILURE);
736 /* Let's get things going */
737 send_scheduled_probe();
739 /* SIGALRM is used to send the next scheduled probe */
740 (void) sigset(SIGALRM, sigalrm_handler);
741 schedule_sigalrm();
744 * From now on, we'll always be listening to ICMP packets. As SIGALRM
745 * comes in, sigalrm_handler() will be invoked and send another
746 * probe.
748 recv_icmp_packet(ai_dst, recv_sock6, recv_sock, udp_src_port6,
749 udp_src_port);
751 return (EXIT_SUCCESS); /* should never come here */
755 * Build the target IP address list. Use command line options and
756 * name lookup results returned from name server to determine which addresses
757 * to probe, how many times, in which order.
759 static struct targetaddr *
760 build_targetaddr_list(struct addrinfo *ai_dst, union any_in_addr *src_addr_list)
762 struct targetaddr *head = NULL;
763 struct targetaddr *targetaddr;
764 struct targetaddr **nextp;
765 int num_dst;
766 int i;
767 struct addrinfo *aip;
769 aip = ai_dst;
770 if (probe_all)
771 num_dst = num_v4 + num_v6;
772 else
773 num_dst = 1;
774 num_targetaddrs = num_dst;
775 nextp = &head;
776 for (aip = ai_dst, i = 0; aip != NULL; aip = aip->ai_next, i++) {
777 if (aip->ai_family == AF_INET && num_v4 != 0) {
778 targetaddr = create_targetaddr_item(aip->ai_family,
779 (union any_in_addr *)
780 /* LINTED E_BAD_PTR_CAST_ALIGN */
781 &((struct sockaddr_in *)
782 aip->ai_addr)->sin_addr,
783 &src_addr_list[i]);
784 } else if (aip->ai_family == AF_INET6 && num_v6 != 0) {
785 targetaddr = create_targetaddr_item(aip->ai_family,
786 (union any_in_addr *)
787 /* LINTED E_BAD_PTR_CAST_ALIGN */
788 &((struct sockaddr_in6 *)
789 aip->ai_addr)->sin6_addr,
790 &src_addr_list[i]);
791 } else {
792 continue;
794 *nextp = targetaddr;
795 nextp = &targetaddr->next;
796 if (num_targetaddrs == 1)
797 break;
799 if (npackets == 0 && stats)
800 *nextp = head; /* keep going indefinitely */
802 return (head);
806 * Given an address family, dst and src addresses, by also looking at the
807 * options provided at the command line, this function creates a targetaddr
808 * to be linked with others, forming a global targetaddr list. Each targetaddr
809 * item contains information about probes sent to a specific IP address.
811 static struct targetaddr *
812 create_targetaddr_item(int family, union any_in_addr *dst_addr,
813 union any_in_addr *src_addr)
815 struct targetaddr *targetaddr;
817 targetaddr = (struct targetaddr *)malloc(sizeof (struct targetaddr));
818 if (targetaddr == NULL) {
819 Fprintf(stderr, "%s: malloc %s\n", progname, strerror(errno));
820 exit(EXIT_FAILURE);
822 targetaddr->family = family;
823 targetaddr->dst_addr = *dst_addr;
824 targetaddr->src_addr = *src_addr;
825 if (stats) {
827 * npackets is only defined if we are in stats mode.
828 * npackets determines how many probes to send to each target
829 * IP address. npackets == 0 means send only 1 and move on to
830 * next target IP.
832 if (npackets > 0)
833 targetaddr->num_probes = npackets;
834 else
835 targetaddr->num_probes = 1;
836 } else {
837 targetaddr->num_probes = timeout;
839 targetaddr->num_sent = 0;
840 targetaddr->got_reply = _B_FALSE;
841 targetaddr->probing_done = _B_FALSE;
842 targetaddr->starting_seq_num = 0; /* actual value will be set later */
843 targetaddr->next = NULL; /* actual value will be set later */
845 return (targetaddr);
849 * print "unknown host" message
851 static void
852 print_unknown_host_msg(const char *protocol, const char *hostname)
854 Fprintf(stderr, "%s: unknown%s host %s\n", progname, protocol,
855 hostname);
859 * Resolve hostnames for the target host and gateways. Also, determine source
860 * addresses to use for each target address.
862 static void
863 resolve_nodes(struct addrinfo **ai_dstp, struct addrinfo **ai_nexthopp,
864 union any_in_addr **src_addr_listp)
866 struct addrinfo *ai_dst = NULL;
867 struct addrinfo *ai_nexthop = NULL;
868 struct addrinfo *aip = NULL;
869 union any_in_addr *src_addr_list = NULL;
870 int num_resolved_gw = 0;
871 int num_resolved_gw6 = 0;
873 get_hostinfo(targethost, family_input, &ai_dst);
874 if (ai_dst == NULL) {
875 print_unknown_host_msg("", targethost);
876 exit(EXIT_FAILURE);
878 if (nexthop != NULL) {
879 get_hostinfo(nexthop, family_input, &ai_nexthop);
880 if (ai_nexthop == NULL) {
881 print_unknown_host_msg("", nexthop);
882 exit(EXIT_FAILURE);
885 /* Get a count of the v4 & v6 addresses */
886 for (aip = ai_dst; aip != NULL; aip = aip->ai_next) {
887 switch (aip->ai_family) {
888 case AF_INET:
889 num_v4++;
890 break;
891 case AF_INET6:
892 num_v6++;
893 break;
897 if (family_input == AF_UNSPEC && !probe_all) {
898 family_input = ai_dst->ai_family;
901 /* resolve gateways */
902 if (num_gw > 0) {
903 get_gwaddrs(gw_list, family_input, gw_IP_list, gw_IP_list6,
904 &num_resolved_gw, &num_resolved_gw6);
906 /* we couldn't resolve a gateway as an IPv6 host */
907 if (num_resolved_gw6 != num_gw && num_v6 != 0 &&
908 (family_input == AF_INET6 || family_input == AF_UNSPEC)) {
909 print_unknown_host_msg(" IPv6",
910 gw_list[num_resolved_gw6]);
911 num_v6 = 0;
914 /* we couldn't resolve a gateway as an IPv4 host */
915 if (num_resolved_gw != num_gw && num_v4 != 0 &&
916 (family_input == AF_INET || family_input == AF_UNSPEC)) {
917 print_unknown_host_msg(" IPv4",
918 gw_list[num_resolved_gw]);
919 num_v4 = 0;
923 if (num_v4 == 0 && num_v6 == 0)
924 exit(EXIT_FAILURE);
926 select_all_src_addrs(&src_addr_list, ai_dst, gw_IP_list, gw_IP_list6);
927 *ai_dstp = ai_dst;
928 *ai_nexthopp = ai_nexthop;
929 *src_addr_listp = src_addr_list;
933 * Resolve the gateway names, splitting results into v4 and v6 lists.
934 * Gateway addresses are added to the appropriate passed-in array; the
935 * number of resolved gateways for each af is returned in resolved[6].
936 * Assumes that passed-in arrays are large enough for MAX_GWS[6] addrs
937 * and resolved[6] ptrs are non-null; ignores array and counter if the
938 * address family param makes them irrelevant.
940 static void
941 get_gwaddrs(char **gw_list, int family, union any_in_addr *gwIPlist,
942 union any_in_addr *gwIPlist6, int *resolved, int *resolved6)
944 int i;
945 boolean_t check_v4 = _B_TRUE, check_v6 = _B_TRUE;
946 struct addrinfo *ai = NULL;
947 struct addrinfo *aip = NULL;
949 *resolved = *resolved6 = 0;
950 switch (family) {
951 case AF_UNSPEC:
952 break;
953 case AF_INET:
954 check_v6 = _B_FALSE;
955 break;
956 case AF_INET6:
957 check_v4 = _B_FALSE;
958 break;
959 default:
960 return;
963 if (check_v4 && num_gw >= MAX_GWS) {
964 check_v4 = _B_FALSE;
965 Fprintf(stderr, "%s: too many IPv4 gateways\n", progname);
967 if (check_v6 && num_gw > MAX_GWS6) {
968 check_v6 = _B_FALSE;
969 Fprintf(stderr, "%s: too many IPv6 gateways\n", progname);
972 for (i = 0; i < num_gw; i++) {
973 if (!check_v4 && !check_v6)
974 return;
975 get_hostinfo(gw_list[i], family, &ai);
976 if (ai == NULL)
977 return;
978 if (check_v4 && num_v4 != 0) {
979 for (aip = ai; aip != NULL; aip = aip->ai_next) {
980 if (aip->ai_family == AF_INET) {
981 /* LINTED E_BAD_PTR_CAST_ALIGN */
982 bcopy(&((struct sockaddr_in *)
983 aip->ai_addr)->sin_addr,
984 &gwIPlist[i].addr,
985 aip->ai_addrlen);
986 (*resolved)++;
987 break;
990 } else if (check_v4) {
991 check_v4 = _B_FALSE;
993 if (check_v6 && num_v6 != 0) {
994 for (aip = ai; aip != NULL; aip = aip->ai_next) {
995 if (aip->ai_family == AF_INET6) {
996 /* LINTED E_BAD_PTR_CAST_ALIGN */
997 bcopy(&((struct sockaddr_in6 *)
998 aip->ai_addr)->sin6_addr,
999 &gwIPlist6[i].addr6,
1000 aip->ai_addrlen);
1001 (*resolved6)++;
1002 break;
1005 } else if (check_v6) {
1006 check_v6 = _B_FALSE;
1009 freeaddrinfo(ai);
1013 * Given the list of gateways, extends the list with its mirror image. This is
1014 * used when -l/-S is used. The middle gateway will be the target address. We'll
1015 * leave it blank for now.
1017 static void
1018 mirror_gws(union any_in_addr *gwIPlist, int family)
1020 int effective_num_gw;
1021 int i;
1023 /* We add 1 because we put the target as the middle gateway */
1024 effective_num_gw = 2 * num_gw + 1;
1026 if ((family == AF_INET && effective_num_gw >= MAX_GWS) ||
1027 (family == AF_INET6 && effective_num_gw > MAX_GWS6)) {
1028 Fprintf(stderr, "%s: too many %s gateways\n",
1029 progname, (family == AF_INET) ? "IPv4" : "IPv6");
1030 exit(EXIT_FAILURE);
1033 for (i = 0; i < num_gw; i++)
1034 gwIPlist[num_gw + i + 1].addr6 = gwIPlist[num_gw - i - 1].addr6;
1038 * Given IP address or hostname, return addrinfo list.
1039 * Assumes that addrinfo ** ptr is non-null.
1041 static void
1042 get_hostinfo(char *host, int family, struct addrinfo **aipp)
1044 struct addrinfo hints, *ai;
1045 struct in6_addr addr6;
1046 struct in_addr addr;
1047 boolean_t broadcast; /* is this 255.255.255.255? */
1048 char tmp_buf[INET6_ADDRSTRLEN];
1049 int rc;
1051 /* check if broadcast */
1052 if (strcmp(host, "255.255.255.255") == 0)
1053 broadcast = _B_TRUE;
1054 else
1055 broadcast = _B_FALSE;
1057 /* check if IPv4-mapped address or broadcast */
1058 if (((inet_pton(AF_INET6, host, &addr6) > 0) &&
1059 IN6_IS_ADDR_V4MAPPED(&addr6)) || broadcast) {
1060 if (!broadcast) {
1062 * Peel off the "mapping" stuff, leaving 32 bit IPv4
1063 * address.
1065 IN6_V4MAPPED_TO_INADDR(&addr6, &addr);
1067 /* convert it back to a string */
1068 (void) inet_ntop(AF_INET, (void *)&addr, tmp_buf,
1069 sizeof (tmp_buf));
1071 * Now the host is an IPv4 address.
1072 * Since it previously was a v4 mapped v6 address
1073 * we can be sure that the size of buffer 'host'
1074 * is large enough to contain the associated v4
1075 * address and so we don't need to use a strn/lcpy
1076 * here.
1078 (void) strcpy(host, tmp_buf);
1081 * If it's a broadcast address, it cannot be an IPv6 address.
1082 * Also, if it's a mapped address, we convert it into IPv4
1083 * address because ping will send and receive IPv4 packets for
1084 * that address. Therefore, it's a failure case to ask
1085 * get_hostinfo() to treat a broadcast or a mapped address
1086 * as an IPv6 address.
1088 if (family == AF_INET6) {
1089 return;
1093 (void) memset(&hints, 0, sizeof (hints));
1094 hints.ai_family = family;
1095 hints.ai_flags = AI_ADDRCONFIG;
1096 rc = getaddrinfo(host, NULL, &hints, &ai);
1097 if (rc != 0) {
1098 if (rc != EAI_NONAME)
1099 Fprintf(stderr, "%s: getaddrinfo: %s\n", progname,
1100 gai_strerror(rc));
1101 return;
1103 *aipp = ai;
1107 * For each IP address of the target host, determine a source address to use.
1109 static void
1110 select_all_src_addrs(union any_in_addr **src_addr_list, struct addrinfo *ai,
1111 union any_in_addr *gwv4, union any_in_addr *gwv6)
1113 union any_in_addr *list;
1114 struct addrinfo *aip;
1115 int num_dst = 1;
1116 int i;
1118 if (probe_all) {
1119 for (aip = ai; aip->ai_next != NULL; aip = aip->ai_next)
1120 num_dst++;
1123 list = calloc((size_t)num_dst, sizeof (union any_in_addr));
1124 if (list == NULL) {
1125 Fprintf(stderr, "%s: calloc: %s\n", progname, strerror(errno));
1126 exit(EXIT_FAILURE);
1130 * If there's a gateway, a routing header as a consequence, our kernel
1131 * picks the source address based on the first hop address, rather than
1132 * final destination address.
1134 if (num_gw > 0) {
1135 if (ai->ai_family == AF_INET)
1136 select_src_addr(gwv4, ai->ai_family, &list[0]);
1137 else
1138 select_src_addr(gwv6, ai->ai_family, &list[0]);
1140 * Since the first gateway address is fixed, we'll use the same
1141 * src address for every different final destination address
1142 * we send to.
1144 for (i = 1; i < num_dst; i++)
1145 list[i] = list[0];
1146 } else {
1148 * Although something like 'ping -l host' results in a routing
1149 * header, the first gateway address is the target host's
1150 * address. Therefore, as far as src address selection goes,
1151 * the result is same as having no routing header.
1153 for (i = 0, aip = ai; i < num_dst && aip != NULL;
1154 i++, aip = aip->ai_next) {
1155 if (aip->ai_family == AF_INET) {
1156 if (num_v4 != 0) {
1157 select_src_addr((union any_in_addr *)
1158 /* LINTED E_BAD_PTR_CAST_ALIGN */
1159 &((struct sockaddr_in *)
1160 aip->ai_addr)->sin_addr,
1161 aip->ai_family,
1162 &list[i]);
1164 } else {
1165 if (num_v6 != 0) {
1166 select_src_addr((union any_in_addr *)
1167 /* LINTED E_BAD_PTR_CAST_ALIGN */
1168 &((struct sockaddr_in6 *)
1169 aip->ai_addr)->sin6_addr,
1170 aip->ai_family,
1171 &list[i]);
1177 *src_addr_list = list;
1181 * For a given destination address, determine a source address to use.
1182 * Returns wildcard address if it cannot determine the source address.
1184 static void
1185 select_src_addr(union any_in_addr *dst_addr, int family,
1186 union any_in_addr *src_addr)
1188 struct sockaddr *sock;
1189 struct sockaddr_in *sin = NULL;
1190 struct sockaddr_in6 *sin6 = NULL;
1191 int tmp_fd;
1192 size_t sock_len;
1194 sock = (struct sockaddr *)malloc(sizeof (struct sockaddr_in6));
1195 if (sock == NULL) {
1196 Fprintf(stderr, "%s: malloc: %s\n", progname, strerror(errno));
1197 exit(EXIT_FAILURE);
1199 (void) bzero(sock, sizeof (struct sockaddr_in6));
1201 if (family == AF_INET) {
1202 /* LINTED E_BAD_PTR_CAST_ALIGN */
1203 sin = (struct sockaddr_in *)sock;
1204 sin->sin_family = AF_INET;
1205 sin->sin_addr = dst_addr->addr;
1206 sin->sin_port = IPPORT_ECHO; /* port shouldn't be 0 */
1207 sock_len = sizeof (struct sockaddr_in);
1208 } else {
1209 /* LINTED E_BAD_PTR_CAST_ALIGN */
1210 sin6 = (struct sockaddr_in6 *)sock;
1211 sin6->sin6_family = AF_INET6;
1212 sin6->sin6_addr = dst_addr->addr6;
1213 sin6->sin6_port = IPPORT_ECHO; /* port shouldn't be 0 */
1214 sock_len = sizeof (struct sockaddr_in6);
1217 /* open a UDP socket */
1218 if ((tmp_fd = socket(family, SOCK_DGRAM, 0)) < 0) {
1219 Fprintf(stderr, "%s: udp socket: %s\n", progname,
1220 strerror(errno));
1221 exit(EXIT_FAILURE);
1224 /* connect it */
1225 if (connect(tmp_fd, sock, sock_len) < 0) {
1227 * If there's no route to the destination, this connect() call
1228 * fails. We just return all-zero (wildcard) as the source
1229 * address, so that user can get to see "no route to dest"
1230 * message, as it'll try to send the probe packet out and will
1231 * receive ICMP unreachable.
1233 if (family == AF_INET)
1234 src_addr->addr.s_addr = INADDR_ANY;
1235 else
1236 src_addr->addr6 = in6addr_any;
1237 free(sock);
1238 return;
1241 /* get the local sock info */
1242 if (getsockname(tmp_fd, sock, &sock_len) < 0) {
1243 Fprintf(stderr, "%s: getsockname: %s\n", progname,
1244 strerror(errno));
1245 exit(EXIT_FAILURE);
1248 if (family == AF_INET) {
1249 assert(sin != NULL);
1250 src_addr->addr = sin->sin_addr;
1251 } else {
1252 assert(sin6 != NULL);
1253 src_addr->addr6 = sin6->sin6_addr;
1256 (void) close(tmp_fd);
1257 free(sock);
1261 * Set the IP_NEXTHOP/IPV6_NEXTHOP socket option.
1262 * exits on failure
1264 static void
1265 set_nexthop(int family, struct addrinfo *ai_nexthop, int sock)
1267 if (family == AF_INET) {
1268 ipaddr_t nh;
1270 /* LINTED E_BAD_PTR_CAST_ALIGN */
1271 nh = ((struct sockaddr_in *)ai_nexthop->
1272 ai_addr)->sin_addr.s_addr;
1274 /* now we need the sys_ip_config privilege */
1275 (void) __priv_bracket(PRIV_ON);
1276 if (setsockopt(sock, IPPROTO_IP, IP_NEXTHOP,
1277 &nh, sizeof (ipaddr_t)) < 0) {
1278 if (errno == EPERM)
1279 Fprintf(stderr, "%s: Insufficient privilege "
1280 "to specify IPv4 nexthop router.\n",
1281 progname);
1282 else
1283 Fprintf(stderr, "%s: setsockopt %s\n",
1284 progname, strerror(errno));
1285 exit(EXIT_FAILURE);
1287 (void) __priv_bracket(PRIV_OFF);
1288 /* revert to non-privileged user */
1289 } else {
1290 struct sockaddr_in6 *nh;
1292 /* LINTED E_BAD_PTR_CAST_ALIGN */
1293 nh = (struct sockaddr_in6 *)ai_nexthop->
1294 ai_addr;
1296 if (setsockopt(sock, IPPROTO_IPV6, IPV6_NEXTHOP,
1297 nh, sizeof (struct sockaddr_in6)) < 0) {
1298 Fprintf(stderr, "%s: setsockopt %s\n",
1299 progname, strerror(errno));
1300 exit(EXIT_FAILURE);
1306 * Setup the socket for the given address family.
1307 * Returns _B_TRUE on success, _B_FALSE on failure. Failure is the case when no
1308 * interface can be found, or the specified interface (-i) is not found. On
1309 * library call failures, it exit()s.
1311 static boolean_t
1312 setup_socket(int family, int *send_sockp, int *recv_sockp, int *if_index,
1313 ushort_t *udp_src_port, struct addrinfo *ai_nexthop)
1315 int send_sock;
1316 int recv_sock;
1317 struct sockaddr_in6 sin6;
1318 struct sockaddr_in sin;
1319 struct sockaddr *sp;
1320 struct ipsec_req req;
1321 size_t slen;
1322 int on = 1;
1323 uchar_t char_op;
1324 int int_op;
1326 /* now we need the net_icmpaccess privilege */
1327 (void) __priv_bracket(PRIV_ON);
1329 recv_sock = socket(family, SOCK_RAW,
1330 (family == AF_INET) ? IPPROTO_ICMP : IPPROTO_ICMPV6);
1332 if (recv_sock < 0) {
1333 Fprintf(stderr, "%s: socket %s\n", progname, strerror(errno));
1334 exit(EXIT_FAILURE);
1337 /* revert to non-privileged user after opening sockets */
1338 (void) __priv_bracket(PRIV_OFF);
1340 if (bypass) {
1341 (void) memset(&req, 0, sizeof (req));
1342 req.ipsr_ah_req = IPSEC_PREF_NEVER;
1343 req.ipsr_esp_req = IPSEC_PREF_NEVER;
1345 if (setsockopt(recv_sock, (family == AF_INET) ? IPPROTO_IP :
1346 IPPROTO_IPV6, IP_SEC_OPT, &req, sizeof (req)) < 0) {
1347 switch (errno) {
1348 case EPROTONOSUPPORT:
1350 * No IPsec subsystem or policy loaded.
1351 * Bypass implicitly allowed.
1353 break;
1354 case EPERM:
1355 Fprintf(stderr, "%s: Insufficient privilege "
1356 "to bypass IPsec policy.\n", progname);
1357 exit(EXIT_FAILURE);
1358 break;
1359 default:
1360 Fprintf(stderr, "%s: setsockopt %s\n", progname,
1361 strerror(errno));
1362 exit(EXIT_FAILURE);
1363 break;
1369 * We always receive on raw icmp socket. But the sending socket can be
1370 * raw icmp or udp, depending on the use of -U flag.
1372 if (use_udp) {
1373 send_sock = socket(family, SOCK_DGRAM, IPPROTO_UDP);
1374 if (send_sock < 0) {
1375 Fprintf(stderr, "%s: socket %s\n", progname,
1376 strerror(errno));
1377 exit(EXIT_FAILURE);
1380 if (bypass) {
1381 if (setsockopt(send_sock, (family == AF_INET) ?
1382 IPPROTO_IP : IPPROTO_IPV6, IP_SEC_OPT, &req,
1383 sizeof (req)) < 0) {
1384 switch (errno) {
1385 case EPROTONOSUPPORT:
1387 * No IPsec subsystem or policy loaded.
1388 * Bypass implicitly allowed.
1390 break;
1391 case EPERM:
1392 Fprintf(stderr, "%s: Insufficient "
1393 "privilege to bypass IPsec "
1394 "policy.\n", progname);
1395 exit(EXIT_FAILURE);
1396 break;
1397 default:
1398 Fprintf(stderr, "%s: setsockopt %s\n",
1399 progname, strerror(errno));
1400 exit(EXIT_FAILURE);
1401 break;
1407 * In order to distinguish replies to our UDP probes from
1408 * other pings', we need to know our source port number.
1410 if (family == AF_INET) {
1411 sp = (struct sockaddr *)&sin;
1412 slen = sizeof (sin);
1413 } else {
1414 sp = (struct sockaddr *)&sin6;
1415 slen = sizeof (sin6);
1417 bzero(sp, slen);
1418 sp->sa_family = family;
1420 /* Let's bind() send_sock to wildcard address and port */
1421 if (bind(send_sock, sp, slen) < 0) {
1422 Fprintf(stderr, "%s: bind %s\n", progname,
1423 strerror(errno));
1424 exit(EXIT_FAILURE);
1427 /* .... and see what port kernel picked for us */
1428 if (getsockname(send_sock, sp, &slen) < 0) {
1429 Fprintf(stderr, "%s: getsockname %s\n", progname,
1430 strerror(errno));
1431 exit(EXIT_FAILURE);
1433 *udp_src_port = (family == AF_INET) ? sin.sin_port :
1434 sin6.sin6_port;
1435 } else {
1436 send_sock = recv_sock;
1439 if (nexthop != NULL)
1440 set_nexthop(family, ai_nexthop, send_sock);
1442 int_op = 48 * 1024;
1443 if (int_op < datalen)
1444 int_op = datalen;
1445 if (setsockopt(recv_sock, SOL_SOCKET, SO_RCVBUF, (char *)&int_op,
1446 sizeof (int_op)) == -1) {
1447 Fprintf(stderr, "%s: setsockopt SO_RCVBUF %s\n", progname,
1448 strerror(errno));
1449 exit(EXIT_FAILURE);
1452 if (setsockopt(send_sock, SOL_SOCKET, SO_SNDBUF, (char *)&int_op,
1453 sizeof (int_op)) == -1) {
1454 Fprintf(stderr, "%s: setsockopt SO_SNDBUF %s\n", progname,
1455 strerror(errno));
1456 exit(EXIT_FAILURE);
1459 if (options & SO_DEBUG) {
1460 if (setsockopt(send_sock, SOL_SOCKET, SO_DEBUG, (char *)&on,
1461 sizeof (on)) == -1) {
1462 Fprintf(stderr, "%s: setsockopt SO_DEBUG %s\n",
1463 progname, strerror(errno));
1464 exit(EXIT_FAILURE);
1468 if (options & SO_DONTROUTE) {
1469 if (setsockopt(send_sock, SOL_SOCKET, SO_DONTROUTE, (char *)&on,
1470 sizeof (on)) == -1) {
1471 Fprintf(stderr, "%s: setsockopt SO_DONTROUTE %s\n",
1472 progname, strerror(errno));
1473 exit(EXIT_FAILURE);
1477 if (moptions & MULTICAST_NOLOOP) {
1478 if (family == AF_INET) {
1479 char_op = 0; /* used to turn off option */
1481 if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_LOOP,
1482 (char *)&char_op, sizeof (char_op)) == -1) {
1483 Fprintf(stderr, "%s: setsockopt "
1484 "IP_MULTICAST_NOLOOP %s\n", progname,
1485 strerror(errno));
1486 exit(EXIT_FAILURE);
1488 } else {
1489 int_op = 0; /* used to turn off option */
1491 if (setsockopt(send_sock, IPPROTO_IPV6,
1492 IPV6_MULTICAST_LOOP, (char *)&int_op,
1493 sizeof (int_op)) == -1) {
1494 Fprintf(stderr, "%s: setsockopt "
1495 "IPV6_MULTICAST_NOLOOP %s\n", progname,
1496 strerror(errno));
1497 exit(EXIT_FAILURE);
1502 if (moptions & MULTICAST_TTL) {
1503 char_op = hoplimit;
1505 /* Applies to unicast and multicast. */
1506 if (family == AF_INET) {
1507 if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_TTL,
1508 (char *)&char_op, sizeof (char)) == -1) {
1509 Fprintf(stderr, "%s: setsockopt "
1510 "IP_MULTICAST_TTL %s\n", progname,
1511 strerror(errno));
1512 exit(EXIT_FAILURE);
1514 if (setsockopt(send_sock, IPPROTO_IP, IP_TTL,
1515 (char *)&hoplimit, sizeof (hoplimit)) == -1) {
1516 Fprintf(stderr, "%s: setsockopt IP_TTL %s\n",
1517 progname, strerror(errno));
1518 exit(EXIT_FAILURE);
1522 * AF_INET6 case is handled in set_ancillary_data() function.
1523 * This is because when ancillary data is used (for routing
1524 * header and outgoing interface index), the hoplimit set using
1525 * setsockopt() is ignored.
1530 * did the user specify an interface?
1531 * Applies to unicast, broadcast and multicast.
1533 if (moptions & MULTICAST_IF) {
1534 struct ifaddrlist *al = NULL; /* interface list */
1535 struct ifaddrlist *my_if;
1536 char errbuf[ERRBUFSIZE];
1537 int num_ifs;
1538 int num_src_ifs; /* exclude down and loopback */
1539 int i;
1541 /* pull out the interface list */
1542 num_ifs = ifaddrlist(&al, family, LIFC_UNDER_IPMP, errbuf);
1543 if (num_ifs == -1) {
1544 Fprintf(stderr, "%s: %s\n", progname, errbuf);
1545 exit(EXIT_FAILURE);
1548 /* filter out down and loopback interfaces */
1549 num_src_ifs = 0;
1550 for (i = 0; i < num_ifs; i++) {
1551 if (!(al[i].flags & IFF_LOOPBACK) &&
1552 (al[i].flags & IFF_UP))
1553 num_src_ifs++;
1556 if (num_src_ifs == 0) {
1557 Fprintf(stderr, "%s: can't find any %s interface\n",
1558 progname, (family == AF_INET) ? "IPv4" : "IPv6");
1560 return (_B_FALSE); /* failure */
1563 /* locate the specified interface */
1564 my_if = find_if(al, num_ifs);
1565 if (my_if == NULL) {
1566 Fprintf(stderr, "%s: %s is an invalid %s interface\n",
1567 progname, out_if.str,
1568 (family == AF_INET) ? "IPv4" : "IPv6");
1570 return (_B_FALSE);
1573 if (family == AF_INET) {
1574 struct in_pktinfo pktinfo;
1576 if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_IF,
1577 (char *)&my_if->addr.addr,
1578 sizeof (struct in_addr)) == -1) {
1579 Fprintf(stderr, "%s: setsockopt "
1580 "IP_MULTICAST_IF %s\n", progname,
1581 strerror(errno));
1582 exit(EXIT_FAILURE);
1584 bzero(&pktinfo, sizeof (pktinfo));
1585 pktinfo.ipi_ifindex = my_if->index;
1586 if (setsockopt(send_sock, IPPROTO_IP, IP_PKTINFO,
1587 (char *)&pktinfo, sizeof (pktinfo)) == -1) {
1588 Fprintf(stderr, "%s: setsockopt "
1589 "IP_PKTINFO %s\n", progname,
1590 strerror(errno));
1591 exit(EXIT_FAILURE);
1593 } else {
1595 * the outgoing interface is set in set_ancillary_data()
1596 * function
1598 *if_index = my_if->index;
1601 free(al);
1604 if (settos && family == AF_INET) {
1605 int_op = tos;
1606 if (setsockopt(send_sock, IPPROTO_IP, IP_TOS, (char *)&int_op,
1607 sizeof (int_op)) == -1) {
1608 Fprintf(stderr, "%s: setsockopt IP_TOS %s\n",
1609 progname, strerror(errno));
1610 exit(EXIT_FAILURE);
1614 /* We enable or disable to not depend on the kernel default */
1615 if (family == AF_INET) {
1616 if (setsockopt(send_sock, IPPROTO_IP, IP_DONTFRAG,
1617 (char *)&dontfrag, sizeof (dontfrag)) == -1) {
1618 Fprintf(stderr, "%s: setsockopt IP_DONTFRAG %s\n",
1619 progname, strerror(errno));
1620 exit(EXIT_FAILURE);
1622 } else {
1623 if (setsockopt(send_sock, IPPROTO_IPV6, IPV6_DONTFRAG,
1624 (char *)&dontfrag, sizeof (dontfrag)) == -1) {
1625 Fprintf(stderr, "%s: setsockopt IPV6_DONTFRAG %s\n",
1626 progname, strerror(errno));
1627 exit(EXIT_FAILURE);
1631 /* receiving IPv6 extension headers in verbose mode */
1632 if (verbose && family == AF_INET6) {
1633 if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVHOPOPTS,
1634 (char *)&on, sizeof (on)) == -1) {
1635 Fprintf(stderr, "%s: setsockopt IPV6_RECVHOPOPTS %s\n",
1636 progname, strerror(errno));
1637 exit(EXIT_FAILURE);
1640 if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVDSTOPTS,
1641 (char *)&on, sizeof (on)) == -1) {
1642 Fprintf(stderr, "%s: setsockopt IPV6_RECVDSTOPTS %s\n",
1643 progname, strerror(errno));
1644 exit(EXIT_FAILURE);
1647 if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVRTHDR,
1648 (char *)&on, sizeof (on)) == -1) {
1649 Fprintf(stderr, "%s: setsockopt IPV6_RECVRTHDR %s\n",
1650 progname, strerror(errno));
1651 exit(EXIT_FAILURE);
1655 /* Ensure that timestamping is requested on the receive socket */
1656 if (setsockopt(recv_sock, SOL_SOCKET, SO_TIMESTAMP,
1657 &on, sizeof (on)) == -1) {
1658 Fprintf(stderr, "%s: warning: timing accuracy diminished -- "
1659 "setsockopt SO_TIMESTAMP failed %s", progname,
1660 strerror(errno));
1663 *send_sockp = send_sock;
1664 *recv_sockp = recv_sock;
1666 /* successful */
1667 return (_B_TRUE);
1671 * Pull out the record containing all the info about the interface specified by
1672 * `out_if'. Skips interfaces which are down or loopback.
1674 static struct ifaddrlist *
1675 find_if(struct ifaddrlist *al, int num_ifs)
1677 static struct ifaddrlist tmp_if;
1678 boolean_t found;
1679 int i;
1681 i = 0;
1682 found = _B_FALSE;
1684 while (i < num_ifs && !found) {
1685 tmp_if = al[i];
1687 /* skip down or loopback interfaces */
1688 if ((tmp_if.flags & IFF_LOOPBACK) || !(tmp_if.flags & IFF_UP)) {
1689 i++;
1690 continue;
1693 /* the type of interface id is variable */
1694 switch (out_if.id_type) {
1695 case IF_INDEX:
1696 if (out_if.id.index == tmp_if.index)
1697 found = _B_TRUE;
1698 break;
1700 case IF_NAME:
1701 if (strcmp(out_if.id.name, tmp_if.device) == 0)
1702 found = _B_TRUE;
1703 break;
1705 case IF_ADDR:
1706 if (out_if.id.addr.addr.s_addr ==
1707 tmp_if.addr.addr.s_addr) {
1708 found = _B_TRUE;
1710 break;
1712 case IF_ADDR6:
1713 if (IN6_ARE_ADDR_EQUAL(&out_if.id.addr.addr6,
1714 &tmp_if.addr.addr6)) {
1715 found = _B_TRUE;
1717 break;
1719 default:
1720 break;
1723 i++;
1726 if (found)
1727 return (&tmp_if);
1728 else
1729 return (NULL);
1733 * Invoked by SIGALRM, sigalrm_handler() is, responsible for calling
1734 * send_scheduled_probe() to send next probe.
1736 void
1737 sigalrm_handler(void)
1740 * If we've been told that we're done, the timer should be cancelled
1741 * and not rescheduled, just return.
1743 if (timer_done == _B_TRUE)
1744 return;
1747 * Guard against denial-of-service attacks. Make sure ping doesn't send
1748 * probes for every SIGALRM it receives in the case of errant SIGALRMs.
1749 * ping will ignore those which are received too soon (the smaller of
1750 * 0.5 sec and the ping interval, if in effect) after it sent the last
1751 * probe. We use gethrtime() instead of gettimeofday() because the
1752 * latter is not linear and is prone to resetting or drifting.
1754 if ((gethrtime() - t_last_probe_sent) < mintime) {
1755 return;
1757 send_scheduled_probe();
1758 schedule_sigalrm();
1762 * Schedule next SIGALRM.
1764 void
1765 schedule_sigalrm(void)
1767 int waittime;
1768 struct itimerspec it;
1770 bzero(&it, sizeof (struct itimerspec));
1771 if (npackets == 0 ||
1772 current_targetaddr->num_sent < current_targetaddr->num_probes) {
1773 it = interval;
1774 } else {
1775 if (current_targetaddr->got_reply) {
1776 waittime = 2 * tmax / MICROSEC;
1777 if (waittime == 0)
1778 waittime = 1;
1779 } else {
1780 waittime = MAX_WAIT;
1782 it.it_value.tv_sec = waittime;
1785 if (timer_settime(timer, TIMER_RELTIME, &it, NULL) != 0) {
1786 Fprintf(stderr, "%s: unexpected error updating time: %s\n",
1787 progname, strerror(errno));
1788 exit(EXIT_FAILURE);
1793 * Called by sigalrm_handler(), check_reply() or check_reply6(),
1794 * send_scheduled_probe() looks at the current_targetaddr and determines what
1795 * should be sent next and calls pinger().
1797 void
1798 send_scheduled_probe()
1800 static struct msghdr msg6;
1801 static boolean_t first_probe = _B_TRUE;
1802 char tmp_buf[INET6_ADDRSTRLEN];
1805 * We are about to move to next targetaddr if it's either we sent
1806 * all the probes, or somebody set the probing_done flag to
1807 * _B_TRUE prompting us to move on.
1809 if (current_targetaddr->num_sent == current_targetaddr->num_probes ||
1810 current_targetaddr->probing_done) {
1812 * is this a dead target?
1814 if (!stats && !current_targetaddr->got_reply) {
1815 if (!probe_all) {
1816 Printf("no answer from %s\n", targethost);
1817 } else {
1818 Printf("no answer from %s(%s)\n", targethost,
1819 inet_ntop(current_targetaddr->family,
1820 &current_targetaddr->dst_addr,
1821 tmp_buf, sizeof (tmp_buf)));
1825 * Before we move onto next item, let's do some clean up.
1827 current_targetaddr->got_reply = _B_FALSE;
1828 current_targetaddr->probing_done = _B_FALSE;
1830 * If this is probe-all without stats mode, then we need to
1831 * preserve this count. This is needed when we try to map an
1832 * icmp_seq to IP address. Otherwise, clear it.
1834 if (stats || !probe_all)
1835 current_targetaddr->num_sent = 0;
1836 nreceived_last_target = 0;
1838 current_targetaddr = current_targetaddr->next;
1841 * Did we reach the end of road?
1843 if (current_targetaddr == NULL) {
1844 timer_done = _B_TRUE;
1845 if (stats)
1846 finish();
1847 if (is_alive)
1848 exit(EXIT_SUCCESS);
1849 else
1850 exit(EXIT_FAILURE);
1851 } else {
1853 * We use starting_seq_num for authenticating replies.
1854 * Each time we move to a new targetaddr, which has
1855 * a different target IP address, we update this field.
1857 current_targetaddr->starting_seq_num = use_udp ?
1858 dest_port : (ntransmitted % (MAX_ICMP_SEQ + 1));
1862 if (current_targetaddr->family == AF_INET6) {
1863 if (send_reply) {
1864 /* sending back to ourself */
1865 to6.sin6_addr = current_targetaddr->src_addr.addr6;
1866 } else {
1867 to6.sin6_addr = current_targetaddr->dst_addr.addr6;
1870 * Setting the ancillary data once is enough, if we are
1871 * not using source routing through target (-l/-S). In
1872 * case -l/-S used, the middle gateway will be the
1873 * IP address of the source, which can be different
1874 * for each target IP.
1876 if (first_probe ||
1877 (send_reply && current_targetaddr->num_sent == 0)) {
1878 if (send_reply) {
1879 /* target is the middle gateway now */
1880 gw_IP_list6[num_gw].addr6 =
1881 current_targetaddr->dst_addr.addr6;
1883 set_ancillary_data(&msg6, hoplimit, gw_IP_list6,
1884 eff_num_gw, if_index);
1885 first_probe = _B_FALSE;
1887 pinger(send_sock6, (struct sockaddr *)&to6, &msg6, AF_INET6);
1888 } else {
1889 to.sin_addr = current_targetaddr->dst_addr.addr;
1891 * Set IPv4 options when sending the first probe to a target
1892 * IP address. Some options change when the target address
1893 * changes.
1895 if (current_targetaddr->num_sent == 0) {
1896 if (eff_num_gw > 0) {
1897 gw_IP_list[num_gw].addr =
1898 current_targetaddr->dst_addr.addr;
1900 * If send_reply, the target becomes the
1901 * middle gateway, sender becomes the last
1902 * gateway.
1904 if (send_reply) {
1905 gw_IP_list[eff_num_gw].addr =
1906 current_targetaddr->src_addr.addr;
1910 * In IPv4, if source routing is used, the target
1911 * address shows up as the last gateway, hence +1.
1913 set_IPv4_options(send_sock, gw_IP_list,
1914 (eff_num_gw > 0) ? eff_num_gw + 1 : 0,
1915 &current_targetaddr->src_addr.addr, &to.sin_addr);
1917 pinger(send_sock, (struct sockaddr *)&to, NULL, AF_INET);
1920 current_targetaddr->num_sent++;
1924 * recv_icmp_packet()'s job is to listen to icmp packets and filter out
1925 * those ping is interested in.
1927 static void
1928 recv_icmp_packet(struct addrinfo *ai_dst, int recv_sock6, int recv_sock,
1929 ushort_t udp_src_port6, ushort_t udp_src_port)
1931 struct msghdr in_msg;
1932 struct iovec iov;
1933 struct sockaddr_in6 from6;
1934 fd_set fds;
1935 int result;
1936 int cc;
1937 boolean_t always_true = _B_TRUE; /* lint doesn't like while(_B_TRUE) */
1939 while (always_true) {
1940 (void) FD_ZERO(&fds);
1941 if (recv_sock6 != -1)
1942 FD_SET(recv_sock6, &fds);
1943 if (recv_sock != -1)
1944 FD_SET(recv_sock, &fds);
1946 result = select(MAX(recv_sock6, recv_sock) + 1, &fds,
1947 (fd_set *)NULL, (fd_set *)NULL, NULL);
1948 if (result == -1) {
1949 if (errno == EINTR) {
1950 continue;
1951 } else {
1952 Fprintf(stderr, "%s: select %s\n", progname,
1953 strerror(errno));
1954 exit(EXIT_FAILURE);
1956 } else if (result > 0) {
1957 in_msg.msg_name = &from6;
1958 in_msg.msg_namelen = sizeof (from6);
1959 iov.iov_base = in_pkt;
1960 iov.iov_len = sizeof (in_pkt);
1961 in_msg.msg_iov = &iov;
1962 in_msg.msg_iovlen = 1;
1963 in_msg.msg_control = ancillary_data;
1964 in_msg.msg_controllen = sizeof (ancillary_data);
1966 /* Do we have an ICMP6 packet waiting? */
1967 if ((recv_sock6 != -1) &&
1968 (FD_ISSET(recv_sock6, &fds))) {
1969 cc = recvmsg(recv_sock6, &in_msg, 0);
1970 if (cc < 0) {
1971 if (errno != EINTR) {
1972 Fprintf(stderr,
1973 "%s: recvmsg %s\n",
1974 progname, strerror(errno));
1976 continue;
1977 } else if (cc > 0) {
1978 check_reply6(ai_dst, &in_msg, cc,
1979 udp_src_port6);
1982 /* Do we have an ICMP packet waiting? */
1983 if ((recv_sock != -1) && (FD_ISSET(recv_sock, &fds))) {
1984 cc = recvmsg(recv_sock, &in_msg, 0);
1985 if (cc < 0) {
1986 if (errno != EINTR) {
1987 Fprintf(stderr,
1988 "%s: recvmsg %s\n",
1989 progname, strerror(errno));
1991 continue;
1992 } if (cc > 0) {
1993 check_reply(ai_dst, &in_msg, cc,
1994 udp_src_port);
1999 * If we were probing last IP address of the target host and
2000 * received a reply for each probe sent to this address,
2001 * then we are done!
2003 if ((npackets > 0) && (current_targetaddr->next == NULL) &&
2004 (nreceived_last_target == npackets)) {
2005 timer_done = _B_TRUE;
2006 finish();
2008 } /* infinite loop */
2012 * Given a host (with possibly multiple IP addresses) and an IP address, this
2013 * function determines if this IP address is one of the host's addresses to
2014 * which we're sending probes. Used to determine if we are interested in a
2015 * packet.
2017 boolean_t
2018 is_a_target(struct addrinfo *ai, union any_in_addr *addr)
2020 int num_addrs;
2021 int i;
2022 struct addrinfo *aip;
2024 aip = ai;
2025 if (probe_all)
2026 num_addrs = num_v4 + num_v6;
2027 else
2028 num_addrs = 1;
2029 for (i = 0; i < num_addrs && aip != NULL; i++) {
2030 if (aip->ai_family == AF_INET6) {
2031 /* LINTED E_BAD_PTR_CAST_ALIGN */
2032 if (IN6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *)
2033 aip->ai_addr)->sin6_addr, &addr->addr6))
2034 return (_B_TRUE);
2035 } else {
2036 /* LINTED E_BAD_PTR_CAST_ALIGN */
2037 if (((struct sockaddr_in *)
2038 aip->ai_addr)->sin_addr.s_addr == addr->addr.s_addr)
2039 return (_B_TRUE);
2043 return (_B_FALSE);
2047 * Compose and transmit an ICMP ECHO REQUEST packet. The IP packet
2048 * will be added on by the kernel. The ID field is our UNIX process ID,
2049 * and the sequence number is an ascending integer. The first 8 bytes
2050 * of the data portion are used to hold a UNIX "timeval" struct in network
2051 * byte-order, to compute the round-trip time.
2053 static void
2054 pinger(int send_sock, struct sockaddr *whereto, struct msghdr *msg6,
2055 int family)
2057 static uint64_t out_pkt_buf[(IP_MAXPACKET + 1) / 8];
2058 uchar_t *out_pkt = (uchar_t *)&out_pkt_buf;
2059 /* LINTED E_BAD_PTR_CAST_ALIGN */
2060 struct icmp *icp = (struct icmp *)out_pkt;
2061 /* LINTED E_BAD_PTR_CAST_ALIGN */
2062 struct sockaddr_in6 *to6 = (struct sockaddr_in6 *)whereto;
2063 /* LINTED E_BAD_PTR_CAST_ALIGN */
2064 struct sockaddr_in *to = (struct sockaddr_in *)whereto;
2065 struct timeval *tp;
2066 struct timeval t_snd;
2067 uchar_t *datap;
2068 struct iovec iov;
2069 int start = 0;
2070 int cc;
2071 int i;
2073 /* using UDP? */
2074 if (use_udp) {
2075 cc = datalen;
2077 /* LINTED E_BAD_PTR_CAST_ALIGN */
2078 tp = (struct timeval *)out_pkt;
2079 datap = &out_pkt[sizeof (struct timeval)];
2082 * This sets the port whether we are handling a v4 or v6
2083 * sockaddr structure.
2085 to->sin_port = htons(dest_port);
2087 dest_port = (dest_port + 1) % (MAX_PORT + 1);
2088 ntransmitted++;
2089 } else { /* using ICMP */
2090 cc = datalen + ICMP_MINLEN;
2092 if (family == AF_INET6) {
2093 icp->icmp_type = send_reply ?
2094 ICMP6_ECHO_REPLY : ICMP6_ECHO_REQUEST;
2095 } else if (use_icmp_ts) { /* family is AF_INET */
2096 icp->icmp_type = send_reply ?
2097 ICMP_TSTAMPREPLY : ICMP_TSTAMP;
2098 } else {
2099 icp->icmp_type = send_reply ?
2100 ICMP_ECHOREPLY : ICMP_ECHO;
2103 icp->icmp_code = 0;
2104 icp->icmp_cksum = 0;
2105 icp->icmp_seq = htons(ntransmitted++ % (MAX_ICMP_SEQ + 1));
2106 if (icp->icmp_seq == 0)
2107 num_wraps++;
2108 icp->icmp_id = htons(ident); /* ID */
2110 /* LINTED E_BAD_PTR_CAST_ALIGN */
2111 tp = (struct timeval *)&out_pkt[ICMP_MINLEN];
2112 datap = &out_pkt[ICMP_MINLEN + sizeof (struct timeval)];
2115 start = sizeof (struct timeval); /* skip for time */
2117 (void) gettimeofday(&t_snd, NULL);
2119 /* if packet is big enough to store timeval OR ... */
2120 if ((datalen >= sizeof (struct timeval)) ||
2121 (family == AF_INET && use_icmp_ts))
2122 *tp = t_snd;
2124 if (family == AF_INET && use_icmp_ts) {
2125 start = sizeof (struct id_ts); /* skip for ICMP timestamps */
2126 /* Number of milliseconds since midnight */
2127 icp->icmp_otime = htonl((tp->tv_sec % (24*60*60)) * 1000 +
2128 tp->tv_usec / 1000);
2131 for (i = start; i < datalen; i++)
2132 *datap++ = i;
2134 if (family == AF_INET) {
2135 if (!use_udp)
2136 icp->icmp_cksum = in_cksum((ushort_t *)icp, cc);
2138 i = sendto(send_sock, (char *)out_pkt, cc, 0, whereto,
2139 sizeof (struct sockaddr_in));
2140 } else {
2142 * Fill in the rest of the msghdr structure. msg_control is set
2143 * in set_ancillary_data().
2145 msg6->msg_name = to6;
2146 msg6->msg_namelen = sizeof (struct sockaddr_in6);
2148 iov.iov_base = out_pkt;
2149 iov.iov_len = cc;
2151 msg6->msg_iov = &iov;
2152 msg6->msg_iovlen = 1;
2154 i = sendmsg(send_sock, msg6, 0);
2157 /* This is a more precise time (right after we send the packet) */
2158 t_last_probe_sent = gethrtime();
2160 if (i < 0 || i != cc) {
2161 if (i < 0) {
2162 Fprintf(stderr, "%s: sendto %s\n", progname,
2163 strerror(errno));
2164 if (!stats)
2165 exit(EXIT_FAILURE);
2167 Printf("ping: wrote %s %d chars, ret=%d\n",
2168 targethost, cc, i);
2169 (void) fflush(stdout);
2174 * Return a hostname for the given IP address.
2176 char *
2177 pr_name(char *addr, int family)
2179 struct sockaddr_in sin;
2180 struct sockaddr_in6 sin6;
2181 struct sockaddr *sa;
2182 static struct in6_addr prev_addr = IN6ADDR_ANY_INIT;
2183 char *cp;
2184 char abuf[INET6_ADDRSTRLEN];
2185 static char buf[NI_MAXHOST + INET6_ADDRSTRLEN + 3];
2186 uint_t slen, alen, hlen;
2188 switch (family) {
2189 case AF_INET:
2190 (void) memset(&sin, 0, sizeof (sin));
2191 slen = sizeof (struct sockaddr_in);
2192 alen = sizeof (struct in_addr);
2193 /* LINTED E_BAD_PTR_CAST_ALIGN */
2194 sin.sin_addr = *(struct in_addr *)addr;
2195 sin.sin_port = 0;
2196 sa = (struct sockaddr *)&sin;
2197 break;
2198 case AF_INET6:
2199 (void) memset(&sin6, 0, sizeof (sin6));
2200 slen = sizeof (struct sockaddr_in6);
2201 alen = sizeof (struct in6_addr);
2202 /* LINTED E_BAD_PTR_CAST_ALIGN */
2203 sin6.sin6_addr = *(struct in6_addr *)addr;
2204 sin6.sin6_port = 0;
2205 sa = (struct sockaddr *)&sin6;
2206 break;
2207 default:
2208 (void) snprintf(buf, sizeof (buf), "<invalid address family>");
2209 return (buf);
2211 sa->sa_family = family;
2213 /* compare with the buffered (previous) lookup */
2214 if (memcmp(addr, &prev_addr, alen) != 0) {
2215 int flags = (nflag) ? NI_NUMERICHOST : NI_NAMEREQD;
2216 mutex_enter(&ns_lock);
2217 ns_active = _B_TRUE;
2218 ns_starttime = gethrtime();
2219 mutex_exit(&ns_lock);
2220 if (getnameinfo(sa, slen, buf, sizeof (buf),
2221 NULL, 0, flags) != 0) {
2222 /* getnameinfo() failed; return just the address */
2223 if (inet_ntop(family, (const void*)addr,
2224 buf, sizeof (buf)) == NULL)
2225 buf[0] = 0;
2226 } else if (!nflag) {
2227 /* append numeric address to hostname string */
2228 hlen = strlen(buf);
2229 cp = (char *)(buf + hlen);
2230 (void) snprintf(cp, sizeof (buf) - hlen, " (%s)",
2231 inet_ntop(family, (const void *)addr, abuf,
2232 sizeof (abuf)));
2234 mutex_enter(&ns_lock);
2235 ns_active = _B_FALSE;
2236 mutex_exit(&ns_lock);
2238 /* LINTED E_BAD_PTR_CAST_ALIGN */
2239 prev_addr = *(struct in6_addr *)addr;
2241 return (buf);
2245 * Return the protocol string, given its protocol number.
2247 char *
2248 pr_protocol(int prot)
2250 static char buf[20];
2252 switch (prot) {
2253 case IPPROTO_ICMPV6:
2254 (void) strlcpy(buf, "icmp6", sizeof (buf));
2255 break;
2257 case IPPROTO_ICMP:
2258 (void) strlcpy(buf, "icmp", sizeof (buf));
2259 break;
2261 case IPPROTO_TCP:
2262 (void) strlcpy(buf, "tcp", sizeof (buf));
2263 break;
2265 case IPPROTO_UDP:
2266 (void) strlcpy(buf, "udp", sizeof (buf));
2267 break;
2269 default:
2270 (void) snprintf(buf, sizeof (buf), "prot %d", prot);
2271 break;
2274 return (buf);
2278 * Checks if value is between seq_begin and seq_begin+seq_len. Note that
2279 * sequence numbers wrap around after MAX_ICMP_SEQ (== MAX_PORT).
2281 boolean_t
2282 seq_match(ushort_t seq_begin, int seq_len, ushort_t value)
2285 * If seq_len is too big, like some value greater than MAX_ICMP_SEQ/2,
2286 * truncate it down to MAX_ICMP_SEQ/2. We are not going to accept any
2287 * reply which come 83hr later!
2289 if (seq_len > MAX_ICMP_SEQ / 2) {
2290 seq_begin = (seq_begin + seq_len - MAX_ICMP_SEQ / 2) %
2291 (MAX_ICMP_SEQ + 1);
2292 seq_len = MAX_ICMP_SEQ / 2;
2295 if (PINGSEQ_LEQ(seq_begin, value) &&
2296 PINGSEQ_LEQ(value, (seq_begin + seq_len - 1) % (MAX_ICMP_SEQ + 1)))
2297 return (_B_TRUE);
2298 else
2299 return (_B_FALSE);
2303 * For a given icmp_seq, find which destination address we must have sent this
2304 * to.
2306 void
2307 find_dstaddr(ushort_t icmpseq, union any_in_addr *ipaddr)
2309 struct targetaddr *target = targetaddr_list;
2310 int real_seq;
2311 int targetaddr_index;
2312 int real_npackets;
2313 int i;
2315 ipaddr->addr6 = in6addr_any;
2318 * If this is probe_all and not stats, then the number of probes sent to
2319 * each IP address may be different (remember, we stop sending to one IP
2320 * address as soon as it replies). They are stored in target->num_sent
2321 * field. Since we don't wrap around the list (!stats), they are also
2322 * preserved.
2324 if (probe_all && !stats) {
2325 do {
2326 if (seq_match(target->starting_seq_num,
2327 target->num_sent, icmpseq)) {
2328 ipaddr->addr6 = target->dst_addr.addr6;
2330 * We are not immediately return()ing here.
2331 * Because of wrapping, we might find another
2332 * match later, which is more likely to be the
2333 * real one.
2336 target = target->next;
2337 } while (target != NULL);
2338 } else {
2340 * Find the absolute (non-wrapped) seq number within the last
2341 * 64K
2343 if (icmpseq < (ntransmitted % (MAX_ICMP_SEQ + 1))) {
2344 real_seq = num_wraps * (MAX_ICMP_SEQ + 1) + icmpseq;
2345 } else {
2346 real_seq = (num_wraps - 1) * (MAX_ICMP_SEQ + 1) +
2347 icmpseq;
2350 /* Make sure it's non-negative */
2351 if (real_seq < 0)
2352 return;
2353 real_npackets = (npackets == 0) ? 1 : npackets;
2356 * We sent npackets many packets to each of those
2357 * num_targetaddrs many IP addresses.
2359 targetaddr_index =
2360 (real_seq % (num_targetaddrs * real_npackets)) /
2361 real_npackets;
2362 for (i = 0; i < targetaddr_index; i++)
2363 target = target->next;
2364 ipaddr->addr6 = target->dst_addr.addr6;
2369 * Checksum routine for Internet Protocol family headers (C Version)
2371 static ushort_t
2372 in_cksum(ushort_t *addr, int len)
2374 int nleft = len;
2375 ushort_t *w = addr;
2376 ushort_t answer;
2377 ushort_t odd_byte = 0;
2378 int sum = 0;
2381 * Our algorithm is simple, using a 32 bit accumulator (sum),
2382 * we add sequential 16 bit words to it, and at the end, fold
2383 * back all the carry bits from the top 16 bits into the lower
2384 * 16 bits.
2386 while (nleft > 1) {
2387 sum += *w++;
2388 nleft -= 2;
2391 /* mop up an odd byte, if necessary */
2392 if (nleft == 1) {
2393 *(uchar_t *)(&odd_byte) = *(uchar_t *)w;
2394 sum += odd_byte;
2398 * add back carry outs from top 16 bits to low 16 bits
2400 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
2401 sum += (sum >> 16); /* add carry */
2402 answer = ~sum; /* truncate to 16 bits */
2403 return (answer);
2407 * Subtract 2 timeval structs: out = out - in.
2408 * Out is assumed to be >= in.
2410 void
2411 tvsub(struct timeval *out, struct timeval *in)
2413 if ((out->tv_usec -= in->tv_usec) < 0) {
2414 out->tv_sec--;
2415 out->tv_usec += 1000000;
2417 out->tv_sec -= in->tv_sec;
2421 * Print out statistics, and give up.
2422 * Heavily buffered STDIO is used here, so that all the statistics
2423 * will be written with 1 sys-write call. This is nice when more
2424 * than one copy of the program is running on a terminal; it prevents
2425 * the statistics output from becoming intermingled.
2427 static void
2428 finish()
2430 Printf("\n----%s PING Statistics----\n", targethost);
2431 Printf("%d packets transmitted, ", ntransmitted);
2432 Printf("%d packets received, ", nreceived);
2433 if (ntransmitted) {
2434 if (nreceived <= ntransmitted) {
2435 Printf("%d%% packet loss",
2436 (int)(((ntransmitted-nreceived)*100) /
2437 ntransmitted));
2438 } else {
2439 Printf("%.2f times amplification",
2440 (double)nreceived / (double)ntransmitted);
2443 (void) putchar('\n');
2445 /* if packet is big enough to store timeval AND ... */
2446 if ((datalen >= sizeof (struct timeval)) && (nreceived > 0)) {
2447 double mean = (double)tsum / nreceived;
2448 double smean = (double)tsum2 / nreceived;
2449 double sd =
2450 sqrt(((smean - mean*mean) * nreceived) / (nreceived-1));
2452 Printf("round-trip (ms) min/avg/max/stddev = "
2453 TIMEFORMAT "/" TIMEFORMAT "/"
2454 TIMEFORMAT "/" TIMEFORMAT "\n",
2455 (double)tmin / 1000, mean / 1000,
2456 (double)tmax / 1000, sd / 1000);
2458 (void) fflush(stdout);
2460 exit(is_alive ? EXIT_SUCCESS : EXIT_FAILURE);
2464 * print the usage line
2466 static void
2467 usage(char *cmdname)
2469 Fprintf(stderr, "usage: %s host [timeout]\n", cmdname);
2470 Fprintf(stderr,
2471 /* CSTYLED */
2472 "usage: %s -s [-l | -U] [-abdDLnRrv] [-A addr_family] [-c traffic_class]\n\t"
2473 "[-g gateway [-g gateway ...]] [-N nexthop] [-F flow_label] [-I interval]\n\t"
2474 "[-i interface] [-P tos] [-p port] [-t ttl] host [data_size] [npackets]\n",
2475 cmdname);
2479 * Parse integer argument; exit with an error if it's not a number.
2480 * Now it also accepts hex. values.
2482 static int
2483 int_arg(char *s, char *what)
2485 char *cp;
2486 char *ep;
2487 int num;
2489 errno = 0;
2490 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
2491 cp = s + 2;
2492 num = (int)strtol(cp, &ep, 16);
2493 } else {
2494 num = (int)strtol(s, &ep, 10);
2497 if (errno || *ep != '\0' || num < 0) {
2498 Fprintf(stderr, "%s: bad %s: %s\n", progname, what, s);
2499 exit(EXIT_FAILURE);
2502 return (num);
2506 * Parse the interval into a itimerspec. The interval used to originally be
2507 * parsed as an integer argument. That means that one used to be able to specify
2508 * an interval in hex. The strtod() family honors that at times, with strtod
2509 * sometimes doing so depending on the compilation environment and strtof() and
2510 * srtold() always doing that. To facilitiate that and not worry about a
2511 * careless Makefile change breaking us, we instead just use strtold here, even
2512 * though we really don't need the precision.
2514 static void
2515 parse_interval(char *s)
2517 long double val;
2518 char *end;
2520 errno = 0;
2521 val = strtold(s, &end);
2522 if (errno != 0 || *end != '\0') {
2523 Fprintf(stderr, "%s: bad interval: %s\n", progname, s);
2524 exit(EXIT_FAILURE);
2528 * Check values that we know are going to be bad. Anything greater than
2529 * INT_MAX, anything less than 0, look for specific NaNs. Also, clamp
2530 * the value at 0.01 seconds.
2532 if (val == NAN || val <= 0.0 || val >= INT_MAX) {
2533 Fprintf(stderr, "%s: bad interval: %s\n", progname, s);
2534 exit(EXIT_FAILURE);
2537 if (val < 0.01) {
2538 Fprintf(stderr, "%s: interval too small: %Lf\n", progname, val);
2539 exit(EXIT_FAILURE);
2542 interval.it_value.tv_sec = (long)val;
2543 interval.it_value.tv_nsec = (long)((val - interval.it_value.tv_sec) *
2544 NANOSEC);
2546 if (interval.it_value.tv_sec == 0 &&
2547 interval.it_value.tv_nsec < mintime) {
2548 mintime = interval.it_value.tv_nsec;
2553 * We should have an SO_TIMESTAMP message for this socket to indicate
2554 * the actual time that the message took. If we don't we'll fall back to
2555 * gettimeofday(); however, that can cause any delays due to DNS
2556 * resolution and the like to end up wreaking havoc on us.
2558 void
2559 ping_gettime(struct msghdr *msg, struct timeval *tv)
2561 struct cmsghdr *cmsg;
2563 for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
2564 cmsg = CMSG_NXTHDR(msg, cmsg)) {
2565 if (cmsg->cmsg_level == SOL_SOCKET &&
2566 cmsg->cmsg_type == SO_TIMESTAMP &&
2567 cmsg->cmsg_len == CMSG_LEN(sizeof (*tv))) {
2568 bcopy(CMSG_DATA(cmsg), tv, sizeof (*tv));
2569 return;
2573 (void) gettimeofday(tv, NULL);
2577 * The purpose of this thread is to try and inform a user that we're blocked
2578 * doing name lookups. For various reasons, ping has to try and look up the IP
2579 * addresses it receives via name services unless the -n flag is specified. The
2580 * irony of this is that when trying to use ping to actually diagnose a broken
2581 * network, name services are unlikely to be available and that will result in a
2582 * lot of confusion as to why pings seem like they're not working. As such, we
2583 * basically wake up every 2 seconds and check whether or not we've hit such a
2584 * condition where we should inform the user via stderr.
2586 * Once they've been informed, we do not inform them again until approximately a
2587 * minute of time has passed, in case that things are working intermittently.
2589 /*ARGSUSED*/
2590 static void *
2591 ns_warning_thr(void *unused)
2593 hrtime_t last_warn = 0;
2594 for (;;) {
2595 hrtime_t now;
2597 (void) sleep(ns_sleeptime);
2598 now = gethrtime();
2599 mutex_enter(&ns_lock);
2600 if (ns_active == _B_TRUE &&
2601 now - ns_starttime >= ns_warntime * NANOSEC) {
2602 if (now - last_warn >=
2603 ns_warninter * NANOSEC) {
2604 last_warn = now;
2605 Fprintf(stderr, "%s: warning: ICMP responses "
2606 "received, but name service lookups are "
2607 "taking a while. Use ping -n to disable "
2608 "name service lookups.\n",
2609 progname);
2612 mutex_exit(&ns_lock);
2615 /* LINTED: E_STMT_NOT_REACHED */
2616 return (NULL);