dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / usr / src / cmd / mdb / common / modules / genunix / leaky_subr.c
blobe7cb743d94cedcc44d40ef5a68b07f912bfcebc3
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
20 * CDDL HEADER END
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #include <mdb/mdb_param.h>
28 #include <mdb/mdb_modapi.h>
30 #include <sys/fs/ufs_inode.h>
31 #include <sys/kmem_impl.h>
32 #include <sys/vmem_impl.h>
33 #include <sys/modctl.h>
34 #include <sys/kobj.h>
35 #include <sys/kobj_impl.h>
36 #include <vm/seg_vn.h>
37 #include <vm/as.h>
38 #include <vm/seg_map.h>
39 #include <mdb/mdb_ctf.h>
41 #include "kmem.h"
42 #include "leaky_impl.h"
45 * This file defines the genunix target for leaky.c. There are three types
46 * of buffers in the kernel's heap: TYPE_VMEM, for kmem_oversize allocations,
47 * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and
48 * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts.
50 * See "leaky_impl.h" for the target interface definition.
53 #define TYPE_VMEM 0 /* lkb_data is the vmem_seg's size */
54 #define TYPE_CACHE 1 /* lkb_cid is the bufctl's cache */
55 #define TYPE_KMEM 2 /* lkb_cid is the bufctl's cache */
57 #define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */
58 #define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */
59 #define LKM_CTL_CACHE 2 /* normal alloc, non-debug, PTR is cache */
60 #define LKM_CTL_MASK 3L
62 #define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type))
63 #define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK))
64 #define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK))
66 static int kmem_lite_count = 0; /* cache of the kernel's version */
68 /*ARGSUSED*/
69 static int
70 leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp)
72 leak_mtab_t *lm = (*lmp)++;
74 lm->lkm_base = (uintptr_t)bcp->bc_addr;
75 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL);
77 return (WALK_NEXT);
80 /*ARGSUSED*/
81 static int
82 leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp)
84 leak_mtab_t *lm = (*lmp)++;
86 lm->lkm_base = addr;
88 return (WALK_NEXT);
91 static int
92 leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp)
94 leak_mtab_t *lm = (*lmp)++;
96 lm->lkm_base = seg->vs_start;
97 lm->lkm_limit = seg->vs_end;
98 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG);
100 return (WALK_NEXT);
103 static int
104 leaky_vmem_interested(const vmem_t *vmem)
106 if (strcmp(vmem->vm_name, "kmem_oversize") != 0 &&
107 strcmp(vmem->vm_name, "static_alloc") != 0)
108 return (0);
109 return (1);
112 static int
113 leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp)
115 if (!leaky_vmem_interested(vmem))
116 return (WALK_NEXT);
118 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1)
119 mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr);
121 return (WALK_NEXT);
124 /*ARGSUSED*/
125 static int
126 leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est)
128 if (!leaky_vmem_interested(vmem))
129 return (WALK_NEXT);
131 *est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 -
132 vmem->vm_kstat.vk_free.value.ui64);
134 return (WALK_NEXT);
137 static int
138 leaky_interested(const kmem_cache_t *c)
140 vmem_t vmem;
143 * ignore HAT-related caches that happen to derive from kmem_default
145 if (strcmp(c->cache_name, "sfmmu1_cache") == 0 ||
146 strcmp(c->cache_name, "sf_hment_cache") == 0 ||
147 strcmp(c->cache_name, "pa_hment_cache") == 0)
148 return (0);
150 if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) {
151 mdb_warn("cannot read arena %p for cache '%s'",
152 (uintptr_t)c->cache_arena, c->cache_name);
153 return (0);
157 * If this cache isn't allocating from the kmem_default,
158 * kmem_firewall, or static vmem arenas, we're not interested.
160 if (strcmp(vmem.vm_name, "kmem_default") != 0 &&
161 strcmp(vmem.vm_name, "kmem_firewall") != 0 &&
162 strcmp(vmem.vm_name, "static") != 0)
163 return (0);
165 return (1);
168 static int
169 leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est)
171 if (!leaky_interested(c))
172 return (WALK_NEXT);
174 *est += kmem_estimate_allocated(addr, c);
176 return (WALK_NEXT);
179 /*ARGSUSED*/
180 static int
181 leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp)
183 leak_mtab_t *lm = *lmp;
184 mdb_walk_cb_t cb;
185 const char *walk;
186 int audit = (c->cache_flags & KMF_AUDIT);
188 if (!leaky_interested(c))
189 return (WALK_NEXT);
191 if (audit) {
192 walk = "bufctl";
193 cb = (mdb_walk_cb_t)leaky_mtab;
194 } else {
195 walk = "kmem";
196 cb = (mdb_walk_cb_t)leaky_mtab_addr;
198 if (mdb_pwalk(walk, cb, lmp, addr) == -1) {
199 mdb_warn("can't walk kmem for cache %p (%s)", addr,
200 c->cache_name);
201 return (WALK_DONE);
204 for (; lm < *lmp; lm++) {
205 lm->lkm_limit = lm->lkm_base + c->cache_bufsize;
206 if (!audit)
207 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE);
210 return (WALK_NEXT);
213 /*ARGSUSED*/
214 static int
215 leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c)
217 leaky_grep(addr, c->cache_bufsize);
220 * free, constructed KMF_LITE buffers keep their first uint64_t in
221 * their buftag's redzone.
223 if (c->cache_flags & KMF_LITE) {
224 /* LINTED alignment */
225 kmem_buftag_t *btp = KMEM_BUFTAG(c, addr);
226 leaky_grep((uintptr_t)&btp->bt_redzone,
227 sizeof (btp->bt_redzone));
230 return (WALK_NEXT);
233 /*ARGSUSED*/
234 static int
235 leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored)
237 if (!leaky_interested(c))
238 return (WALK_NEXT);
241 * Scan all of the free, constructed buffers, since they may have
242 * pointers to allocated objects.
244 if (mdb_pwalk("freemem_constructed",
245 (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) {
246 mdb_warn("can't walk freemem_constructed for cache %p (%s)",
247 addr, c->cache_name);
248 return (WALK_DONE);
251 return (WALK_NEXT);
254 /*ARGSUSED*/
255 static int
256 leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored)
258 struct module mod;
259 char name[MODMAXNAMELEN];
261 if (m->mod_mp == NULL)
262 return (WALK_NEXT);
264 if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
265 mdb_warn("couldn't read modctl %p's module", addr);
266 return (WALK_NEXT);
269 if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
270 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr);
272 leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module));
273 leaky_grep((uintptr_t)mod.data, mod.data_size);
274 leaky_grep((uintptr_t)mod.bss, mod.bss_size);
276 return (WALK_NEXT);
279 /*ARGSUSED*/
280 static int
281 leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize)
283 uintptr_t size, base = (uintptr_t)t->t_stkbase;
284 uintptr_t stk = (uintptr_t)t->t_stk;
286 if (t->t_state != TS_FREE)
287 leaky_grep(base, stk - base);
290 * There is always gunk hanging out between t_stk and the page
291 * boundary. If this thread structure wasn't kmem allocated,
292 * this will include the thread structure itself. If the thread
293 * _is_ kmem allocated, we'll be able to get to it via allthreads.
295 size = *pagesize - (stk & (*pagesize - 1));
297 leaky_grep(stk, size);
299 return (WALK_NEXT);
302 /*ARGSUSED*/
303 static int
304 leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored)
306 leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start);
308 return (WALK_NEXT);
311 static void
312 leaky_kludge(void)
314 GElf_Sym sym;
315 mdb_ctf_id_t id, rid;
317 int max_mem_nodes;
318 uintptr_t *counters;
319 size_t ncounters;
320 ssize_t hwpm_size;
321 int idx;
324 * Because of DR, the page counters (which live in the kmem64 segment)
325 * can point into kmem_alloc()ed memory. The "page_counters" array
326 * is multi-dimensional, and each entry points to an array of
327 * "hw_page_map_t"s which is "max_mem_nodes" in length.
329 * To keep this from having too much grotty knowledge of internals,
330 * we use CTF data to get the size of the structure. For simplicity,
331 * we treat the page_counters array as a flat array of pointers, and
332 * use its size to determine how much to scan. Unused entries will
333 * be NULL.
335 if (mdb_lookup_by_name("page_counters", &sym) == -1) {
336 mdb_warn("unable to lookup page_counters");
337 return;
340 if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) {
341 mdb_warn("unable to read max_mem_nodes");
342 return;
345 if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 ||
346 mdb_ctf_type_resolve(id, &rid) == -1 ||
347 (hwpm_size = mdb_ctf_type_size(rid)) < 0) {
348 mdb_warn("unable to lookup unix`hw_page_map_t");
349 return;
352 counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
354 if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) {
355 mdb_warn("unable to read page_counters");
356 return;
359 ncounters = sym.st_size / sizeof (counters);
361 for (idx = 0; idx < ncounters; idx++) {
362 uintptr_t addr = counters[idx];
363 if (addr != (uintptr_t)NULL)
364 leaky_grep(addr, hwpm_size * max_mem_nodes);
369 leaky_subr_estimate(size_t *estp)
371 uintptr_t panicstr;
372 int state;
374 if ((state = mdb_get_state()) == MDB_STATE_RUNNING) {
375 mdb_warn("findleaks: can only be run on a system "
376 "dump or under kmdb; see dumpadm(1M)\n");
377 return (DCMD_ERR);
380 if (mdb_readvar(&panicstr, "panicstr") == -1) {
381 mdb_warn("can't read variable 'panicstr'");
382 return (DCMD_ERR);
385 if (state != MDB_STATE_STOPPED && panicstr == (uintptr_t)NULL) {
386 mdb_warn("findleaks: cannot be run on a live dump.\n");
387 return (DCMD_ERR);
390 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) {
391 mdb_warn("couldn't walk 'kmem_cache'");
392 return (DCMD_ERR);
395 if (*estp == 0) {
396 mdb_warn("findleaks: no buffers found\n");
397 return (DCMD_ERR);
400 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) {
401 mdb_warn("couldn't walk 'vmem'");
402 return (DCMD_ERR);
405 return (DCMD_OK);
409 leaky_subr_fill(leak_mtab_t **lmpp)
411 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) {
412 mdb_warn("couldn't walk 'vmem'");
413 return (DCMD_ERR);
416 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) {
417 mdb_warn("couldn't walk 'kmem_cache'");
418 return (DCMD_ERR);
421 if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) {
422 mdb_warn("couldn't read 'kmem_lite_count'");
423 kmem_lite_count = 0;
424 } else if (kmem_lite_count > 16) {
425 mdb_warn("kmem_lite_count nonsensical, ignored\n");
426 kmem_lite_count = 0;
429 return (DCMD_OK);
433 leaky_subr_run(void)
435 unsigned long ps = PAGESIZE;
436 uintptr_t kstat_arena;
437 uintptr_t dmods;
439 leaky_kludge();
441 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache,
442 NULL) == -1) {
443 mdb_warn("couldn't walk 'kmem_cache'");
444 return (DCMD_ERR);
447 if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) {
448 mdb_warn("couldn't walk 'modctl'");
449 return (DCMD_ERR);
453 * If kmdb is loaded, we need to walk it's module list, since kmdb
454 * modctl structures can reference kmem allocations.
456 if ((mdb_readvar(&dmods, "kdi_dmods") != -1) &&
457 (dmods != (uintptr_t)NULL))
458 (void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl,
459 NULL, dmods);
461 if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
462 mdb_warn("couldn't walk 'thread'");
463 return (DCMD_ERR);
466 if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
467 mdb_warn("couldn't walk 'deathrow'");
468 return (DCMD_ERR);
471 if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) {
472 mdb_warn("couldn't read 'kstat_arena'");
473 return (DCMD_ERR);
476 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat,
477 NULL, kstat_arena) == -1) {
478 mdb_warn("couldn't walk kstat vmem arena");
479 return (DCMD_ERR);
482 return (DCMD_OK);
485 void
486 leaky_subr_add_leak(leak_mtab_t *lmp)
488 uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl);
489 size_t depth;
491 switch (LKM_CTLTYPE(lmp->lkm_bufctl)) {
492 case LKM_CTL_VMSEG: {
493 vmem_seg_t vs;
495 if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
496 mdb_warn("couldn't read leaked vmem_seg at addr %p",
497 addr);
498 return;
500 depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH);
502 leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp,
503 vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start));
504 break;
506 case LKM_CTL_BUFCTL: {
507 kmem_bufctl_audit_t bc;
509 if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
510 mdb_warn("couldn't read leaked bufctl at addr %p",
511 addr);
512 return;
515 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);
518 * The top of the stack will be kmem_cache_alloc+offset.
519 * Since the offset in kmem_cache_alloc() isn't interesting
520 * we skip that frame for the purposes of uniquifying stacks.
522 * We also use the cache pointer as the leaks's cid, to
523 * prevent the coalescing of leaks from different caches.
525 if (depth > 0)
526 depth--;
527 leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr,
528 bc.bc_timestamp, bc.bc_stack + 1, depth,
529 (uintptr_t)bc.bc_cache, 0);
530 break;
532 case LKM_CTL_CACHE: {
533 kmem_cache_t cache;
534 kmem_buftag_lite_t bt;
535 pc_t caller;
536 int depth = 0;
539 * For KMF_LITE caches, we can get the allocation PC
540 * out of the buftag structure.
542 if (mdb_vread(&cache, sizeof (cache), addr) != -1 &&
543 (cache.cache_flags & KMF_LITE) &&
544 kmem_lite_count > 0 &&
545 mdb_vread(&bt, sizeof (bt),
546 /* LINTED alignment */
547 (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) {
548 caller = bt.bt_history[0];
549 depth = 1;
551 leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0,
552 &caller, depth, addr, addr);
553 break;
555 default:
556 mdb_warn("internal error: invalid leak_bufctl_t\n");
557 break;
561 static void
562 leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp)
564 int i;
565 GElf_Sym sym;
566 uintptr_t pc = 0;
568 buf[0] = 0;
570 for (i = 0; i < depth; i++) {
571 pc = stack[i];
573 if (mdb_lookup_by_addr(pc,
574 MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1)
575 continue;
576 if (strncmp(buf, "kmem_", 5) == 0)
577 continue;
578 if (strncmp(buf, "vmem_", 5) == 0)
579 continue;
580 *pcp = pc;
582 return;
586 * We're only here if the entire call chain begins with "kmem_";
587 * this shouldn't happen, but we'll just use the last caller.
589 *pcp = pc;
593 leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs)
595 char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN];
596 uintptr_t lcaller, rcaller;
597 int rval;
599 leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller);
600 leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller);
602 if (rval = strcmp(lbuf, rbuf))
603 return (rval);
605 if (lcaller < rcaller)
606 return (-1);
608 if (lcaller > rcaller)
609 return (1);
611 if (lhs->lkb_data < rhs->lkb_data)
612 return (-1);
614 if (lhs->lkb_data > rhs->lkb_data)
615 return (1);
617 return (0);
621 * Global state variables used by the leaky_subr_dump_* routines. Note that
622 * they are carefully cleared before use.
624 static int lk_vmem_seen;
625 static int lk_cache_seen;
626 static int lk_kmem_seen;
627 static size_t lk_ttl;
628 static size_t lk_bytes;
630 void
631 leaky_subr_dump_start(int type)
633 switch (type) {
634 case TYPE_VMEM:
635 lk_vmem_seen = 0;
636 break;
637 case TYPE_CACHE:
638 lk_cache_seen = 0;
639 break;
640 case TYPE_KMEM:
641 lk_kmem_seen = 0;
642 break;
643 default:
644 break;
647 lk_ttl = 0;
648 lk_bytes = 0;
651 void
652 leaky_subr_dump(const leak_bufctl_t *lkb, int verbose)
654 const leak_bufctl_t *cur;
655 kmem_cache_t cache;
656 size_t min, max, size;
657 char sz[30];
658 char c[MDB_SYM_NAMLEN];
659 uintptr_t caller;
661 if (verbose) {
662 lk_ttl = 0;
663 lk_bytes = 0;
666 switch (lkb->lkb_type) {
667 case TYPE_VMEM:
668 if (!verbose && !lk_vmem_seen) {
669 lk_vmem_seen = 1;
670 mdb_printf("%-16s %7s %?s %s\n",
671 "BYTES", "LEAKED", "VMEM_SEG", "CALLER");
674 min = max = lkb->lkb_data;
676 for (cur = lkb; cur != NULL; cur = cur->lkb_next) {
677 size = cur->lkb_data;
679 if (size < min)
680 min = size;
681 if (size > max)
682 max = size;
684 lk_ttl++;
685 lk_bytes += size;
688 if (min == max)
689 (void) mdb_snprintf(sz, sizeof (sz), "%ld", min);
690 else
691 (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld",
692 min, max);
694 if (!verbose) {
695 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
696 c, &caller);
698 if (caller != 0) {
699 (void) mdb_snprintf(c, sizeof (c),
700 "%a", caller);
701 } else {
702 (void) mdb_snprintf(c, sizeof (c),
703 "%s", "?");
705 mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1,
706 lkb->lkb_addr, c);
707 } else {
708 mdb_arg_t v;
710 if (lk_ttl == 1)
711 mdb_printf("kmem_oversize leak: 1 vmem_seg, "
712 "%ld bytes\n", lk_bytes);
713 else
714 mdb_printf("kmem_oversize leak: %d vmem_segs, "
715 "%s bytes each, %ld bytes total\n",
716 lk_ttl, sz, lk_bytes);
718 v.a_type = MDB_TYPE_STRING;
719 v.a_un.a_str = "-v";
721 if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr,
722 DCMD_ADDRSPEC, 1, &v) == -1) {
723 mdb_warn("'%p::vmem_seg -v' failed",
724 lkb->lkb_addr);
727 return;
729 case TYPE_CACHE:
730 if (!verbose && !lk_cache_seen) {
731 lk_cache_seen = 1;
732 if (lk_vmem_seen)
733 mdb_printf("\n");
734 mdb_printf("%-?s %7s %?s %s\n",
735 "CACHE", "LEAKED", "BUFFER", "CALLER");
738 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
740 * This _really_ shouldn't happen; we shouldn't
741 * have been able to get this far if this
742 * cache wasn't readable.
744 mdb_warn("can't read cache %p for leaked "
745 "buffer %p", lkb->lkb_data, lkb->lkb_addr);
746 return;
749 lk_ttl += lkb->lkb_dups + 1;
750 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
752 caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0];
753 if (caller != 0) {
754 (void) mdb_snprintf(c, sizeof (c), "%a", caller);
755 } else {
756 (void) mdb_snprintf(c, sizeof (c),
757 "%s", (verbose) ? "" : "?");
760 if (!verbose) {
761 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
762 lkb->lkb_dups + 1, lkb->lkb_addr, c);
763 } else {
764 if (lk_ttl == 1)
765 mdb_printf("%s leak: 1 buffer, %ld bytes,\n",
766 cache.cache_name, lk_bytes);
767 else
768 mdb_printf("%s leak: %d buffers, "
769 "%ld bytes each, %ld bytes total,\n",
770 cache.cache_name, lk_ttl,
771 cache.cache_bufsize, lk_bytes);
773 mdb_printf(" sample addr %p%s%s\n",
774 lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c);
776 return;
778 case TYPE_KMEM:
779 if (!verbose && !lk_kmem_seen) {
780 lk_kmem_seen = 1;
781 if (lk_vmem_seen || lk_cache_seen)
782 mdb_printf("\n");
783 mdb_printf("%-?s %7s %?s %s\n",
784 "CACHE", "LEAKED", "BUFCTL", "CALLER");
787 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) {
789 * This _really_ shouldn't happen; we shouldn't
790 * have been able to get this far if this
791 * cache wasn't readable.
793 mdb_warn("can't read cache %p for leaked "
794 "bufctl %p", lkb->lkb_cid, lkb->lkb_addr);
795 return;
798 lk_ttl += lkb->lkb_dups + 1;
799 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
801 if (!verbose) {
802 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
803 c, &caller);
805 if (caller != 0) {
806 (void) mdb_snprintf(c, sizeof (c),
807 "%a", caller);
808 } else {
809 (void) mdb_snprintf(c, sizeof (c),
810 "%s", "?");
812 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
813 lkb->lkb_dups + 1, lkb->lkb_addr, c);
814 } else {
815 mdb_arg_t v;
817 if (lk_ttl == 1)
818 mdb_printf("%s leak: 1 buffer, %ld bytes\n",
819 cache.cache_name, lk_bytes);
820 else
821 mdb_printf("%s leak: %d buffers, "
822 "%ld bytes each, %ld bytes total\n",
823 cache.cache_name, lk_ttl,
824 cache.cache_bufsize, lk_bytes);
826 v.a_type = MDB_TYPE_STRING;
827 v.a_un.a_str = "-v";
829 if (mdb_call_dcmd("bufctl", lkb->lkb_addr,
830 DCMD_ADDRSPEC, 1, &v) == -1) {
831 mdb_warn("'%p::bufctl -v' failed",
832 lkb->lkb_addr);
835 return;
837 default:
838 return;
842 void
843 leaky_subr_dump_end(int type)
845 int i;
846 int width;
847 const char *leaks;
849 switch (type) {
850 case TYPE_VMEM:
851 if (!lk_vmem_seen)
852 return;
854 width = 16;
855 leaks = "kmem_oversize leak";
856 break;
858 case TYPE_CACHE:
859 if (!lk_cache_seen)
860 return;
862 width = sizeof (uintptr_t) * 2;
863 leaks = "buffer";
864 break;
866 case TYPE_KMEM:
867 if (!lk_kmem_seen)
868 return;
870 width = sizeof (uintptr_t) * 2;
871 leaks = "buffer";
872 break;
874 default:
875 return;
878 for (i = 0; i < 72; i++)
879 mdb_printf("-");
880 mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n",
881 width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s",
882 lk_bytes, (lk_bytes == 1) ? "" : "s");
886 leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb,
887 void *cbdata)
889 kmem_bufctl_audit_t bc;
890 vmem_seg_t vs;
892 switch (lkb->lkb_type) {
893 case TYPE_VMEM:
894 if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) {
895 mdb_warn("unable to read vmem_seg at %p",
896 lkb->lkb_addr);
897 return (WALK_NEXT);
899 return (cb(lkb->lkb_addr, &vs, cbdata));
901 case TYPE_CACHE:
902 return (cb(lkb->lkb_addr, NULL, cbdata));
904 case TYPE_KMEM:
905 if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) {
906 mdb_warn("unable to read bufctl at %p",
907 lkb->lkb_addr);
908 return (WALK_NEXT);
910 return (cb(lkb->lkb_addr, &bc, cbdata));
911 default:
912 return (WALK_NEXT);