4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #include <sys/types.h>
53 #include <debug.h> /* liblddb */
58 * Column at which elfedit_format_command_usage() will wrap the
59 * generated usage string if the wrap argument is True (1).
61 #define USAGE_WRAP_COL 55
67 * Type used to represent a string buffer that can grow as needed
68 * to hold strings of arbitrary length. The user should declare
69 * variables of this type sa static. The strbuf_ensure_size() function
70 * is used to ensure that it has a minimum desired size.
73 char *buf
; /* String buffer */
74 size_t n
; /* Size of buffer */
81 * Types used by tokenize_user_cmd() to represent the result of
82 * spliting a user command into individual tokens.
85 char *tok_str
; /* Token string */
86 size_t tok_len
; /* strlen(str) */
87 size_t tok_line_off
; /* Token offset in original string */
90 size_t tokst_cmd_len
; /* Length of original user command, without */
91 /* newline or NULL termination chars */
92 size_t tokst_str_size
; /* Space needed to hold all the resulting */
93 /* tokens, including terminating NULL */
94 TOK_ELT
*tokst_buf
; /* The array of tokens */
95 size_t tokst_cnt
; /* # of tokens in array */
96 size_t tokst_bufsize
; /* capacity of array */
102 /* State block used by gettok_init() and gettok() */
104 const char *gtok_buf
; /* Addr of buffer containing string */
105 char *gtok_cur_buf
; /* Addr withing buffer for next token */
106 int gtok_inc_null_final
; /* True if final NULL token used */
107 int gtok_null_seen
; /* True when NULL byte seen */
108 TOK_ELT gtok_last_token
; /* Last token parsed */
116 * The elfedit_cpl_*() functions are used for command line completion.
117 * Currently this uses the tecla library, but to allow for changing the
118 * library used, we hide all tecla interfaces from our modules. Instead,
119 * cmd_match_fcn() builds an ELFEDIT_CPL_STATE struct, and we pass the
120 * address of that struct as an opaque handle to the modules. Since the
121 * pointer is opaque, the contents of ELFEDIT_CPL_STATE are free to change
125 WordCompletion
*ecpl_cpl
; /* tecla handle */
126 const char *ecpl_line
; /* raw input line */
127 int ecpl_word_start
; /* start offset within line */
128 int ecpl_word_end
; /* offset just past token */
130 * ecpl_add_mod_colon is a secret handshake between
131 * elfedit_cpl_command() and elfedit_cpl_add_match(). It adds
132 * ':' to end of matched modules.
134 int ecpl_add_mod_colon
;
135 const char *ecpl_token_str
; /* token being completed */
136 size_t ecpl_token_len
; /* strlen(ecpl_token_str) */
142 /* This structure maintains elfedit global state */
148 * Define a pair of static global variables that contain the
149 * ISA strings that correspond to %i and %I tokens in module search
152 * isa_i_str - The ISA string for the currently running program
153 * isa_I_str - For 64-bit programs, the same as isa_i_str. For
154 * 32-bit programs, an empty string.
158 static const char *isa_i_str
= MSG_ORIG(MSG_ISA_X86_32
);
159 static const char *isa_I_str
= MSG_ORIG(MSG_STR_EMPTY
);
162 static const char *isa_i_str
= MSG_ORIG(MSG_ISA_X86_64
);
163 static const char *isa_I_str
= MSG_ORIG(MSG_ISA_X86_64
);
168 /* Forward declarations */
169 static void free_user_cmds(void);
170 static void elfedit_pager_cleanup(void);
175 * We supply this function for the msg module
178 _elfedit_msg(Msg mid
)
180 return (gettext(MSG_ORIG(mid
)));
185 * Copy at most min(cpsize, dstsize-1) bytes from src into dst,
186 * truncating src if necessary. The result is always null-terminated.
189 * dst - Destination buffer
190 * src - Source string
191 * dstsize - sizeof(dst)
194 * This is similar to strncpy(), but with two modifications:
195 * 1) You specify the number of characters to copy, not just
196 * the size of the destination. Hence, you can copy non-NULL
197 * terminated strings.
198 * 2) The destination is guaranteed to be NULL terminated. strncpy()
199 * does not terminate a completely full buffer.
202 elfedit_strnbcpy(char *dst
, const char *src
, size_t cpsize
, size_t dstsize
)
204 if (cpsize
>= dstsize
)
205 cpsize
= dstsize
- 1;
207 (void) strncpy(dst
, src
, cpsize
+ 1);
213 * Calls exit() on behalf of elfedit.
216 elfedit_exit(int status
)
218 if (state
.file
.present
) {
219 /* Exiting with unflushed changes pending? Issue debug notice */
220 if (state
.file
.dirty
)
221 elfedit_msg(ELFEDIT_MSG_DEBUG
,
222 MSG_INTL(MSG_DEBUG_DIRTYEXIT
));
225 * If the edit file is marked for unlink on exit, then
226 * take care of it here.
228 if (state
.file
.unlink_on_exit
) {
229 elfedit_msg(ELFEDIT_MSG_DEBUG
,
230 MSG_INTL(MSG_DEBUG_UNLINKFILE
),
232 (void) unlink(state
.file
.outfile
);
241 * Standard message function for elfedit. All user visible
242 * output, for error or informational reasons, should go through
246 * type - Type of message. One of the ELFEDIT_MSG_* values.
247 * format, ... - As per the printf() family
250 * The desired message has been output. For informational
251 * messages, control returns to the caller. For errors,
252 * this routine will terminate execution or strip the execution
253 * stack and return control directly to the outer control loop.
254 * In either case, the caller will not receive control.
258 elfedit_msg(elfedit_msg_t type
, const char *format
, ...)
260 typedef enum { /* What to do after finished */
261 DISP_RET
= 0, /* Return to caller */
262 DISP_JMP
= 1, /* if (interactive) longjmp else exit */
263 DISP_EXIT
= 2 /* exit under all circumstances */
267 FILE *stream
= stderr
;
268 DISP disp
= DISP_RET
;
272 va_start(args
, format
);
275 case ELFEDIT_MSG_ERR
:
276 case ELFEDIT_MSG_CMDUSAGE
:
279 case ELFEDIT_MSG_FATAL
:
282 case ELFEDIT_MSG_USAGE
:
285 case ELFEDIT_MSG_DEBUG
:
286 if (!(state
.flags
& ELFEDIT_F_DEBUG
))
290 case ELFEDIT_MSG_QUIET
:
298 * If there is a pager process running, we are returning to the
299 * caller, and the output is going to stdout, then let the
300 * pager handle it instead of writing it directly from this process.
301 * That way, the output gets paged along with everything else.
303 * If there is a pager process running, and we are not returning
304 * to the caller, then end the pager process now, before we generate
305 * any new output. This allows for any text buffered in the pager
306 * pipe to be output before the new stuff.
308 if (state
.pager
.fptr
!= NULL
) {
309 if (disp
== DISP_RET
) {
310 if (stream
== stdout
)
311 stream
= state
.pager
.fptr
;
313 elfedit_pager_cleanup();
318 * If this message is coming from within the libtecla command
319 * completion code, call gl_normal_io() to give the library notice.
320 * That function sets the tty back to cooked mode and advances
321 * the cursor to the beginning of the next line so that our output
322 * will appear properly. When we return to the command completion code,
323 * tecla will re-enter raw mode and redraw the current command line.
325 if (state
.input
.in_tecla
)
326 (void) gl_normal_io(state
.input
.gl
);
330 (void) fprintf(stream
, MSG_ORIG(MSG_STR_ELFEDIT
));
331 (void) vfprintf(stream
, format
, args
);
332 (void) fflush(stream
);
337 * If this is an error, then we do not return to the caller.
338 * The action taken depends on whether the outer loop has registered
339 * a jump buffer for us or not.
341 if (disp
!= DISP_RET
) {
342 if (state
.msg_jbuf
.active
&& (disp
== DISP_JMP
)) {
343 /* Free the user command list */
346 /* Clean up to reflect effect of non-local goto */
347 state
.input
.in_tecla
= FALSE
;
349 /* Jump to the outer loop to resume */
350 siglongjmp(state
.msg_jbuf
.env
, 1);
359 * Wrapper on elfedit_msg() that issues an error that results from
363 * file - Name of ELF object
364 * libelf_rtn_name - Name of routine that was called
367 * An error has been issued that shows the routine called
368 * and the libelf error string for it from elf_errmsg().
369 * This routine does not return to the caller.
372 elfedit_elferr(const char *file
, const char *libelf_rtn_name
)
374 const char *errstr
= elf_errmsg(elf_errno());
376 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_LIBELF
), file
,
377 libelf_rtn_name
, errstr
? errstr
: MSG_INTL(MSG_FMT_UNKNOWN
));
382 * Start an output pager process for elfedit_printf()/elfedit_write() to use.
385 * If this elfedit session is not interactive, then no pager is
386 * started. Paging is only intended for interactive use. The caller
387 * is not supposed to worry about this point, but simply to use
388 * this function to flag situations in which paging might be needed.
391 elfedit_pager_init(void)
398 * If there is no pager process running, start one.
399 * Only do this for interactive sessions --- elfedit_pager()
400 * won't use a pager in batch mode.
402 if (state
.msg_jbuf
.active
&& state
.input
.full_tty
&&
403 (state
.pager
.fptr
== NULL
)) {
405 * If the user has the PAGER environment variable set,
406 * then we will use that program. Otherwise we default
409 cmd
= getenv(MSG_ORIG(MSG_STR_PAGER
));
410 if ((cmd
== NULL
) || (*cmd
== '\0'))
411 cmd
= MSG_ORIG(MSG_STR_BINMORE
);
414 * The popen() manpage says that on failure, it "may set errno",
415 * which is somewhat ambiguous. We explicitly zero it here, and
416 * assume that any change is due to popen() failing.
419 state
.pager
.fptr
= popen(cmd
, MSG_ORIG(MSG_STR_W
));
420 if (state
.pager
.fptr
== NULL
) {
422 errstr
= (err
== 0) ? MSG_INTL(MSG_ERR_UNKNOWNSYSERR
) :
424 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTEXEC
),
425 MSG_ORIG(MSG_STR_ELFEDIT
), cmd
, errstr
);
432 * If there is a pager process present, close it out.
435 * This function is called from within elfedit_msg(), and as
436 * such, must not use elfedit_msg() to report errors. Furthermore,
437 * any such errors are not a sufficient reason to terminate the process
438 * or to longjmp(). This is a rare case where errors are written
439 * directly to stderr.
442 elfedit_pager_cleanup(void)
444 if (state
.pager
.fptr
!= NULL
) {
445 if (pclose(state
.pager
.fptr
) == -1)
446 (void) fprintf(stderr
, MSG_INTL(MSG_ERR_PAGERFINI
));
448 state
.pager
.fptr
= NULL
;
454 * Print general formtted text for the user, using printf()-style
455 * formatting. Uses the pager process if one has been started, or
459 elfedit_printf(const char *format
, ...)
468 * If there is a pager process, then use it. Otherwise write
469 * directly to stdout.
471 pager
= (state
.pager
.fptr
!= NULL
);
472 fptr
= pager
? state
.pager
.fptr
: stdout
;
474 va_start(args
, format
);
476 err
= vfprintf(fptr
, format
, args
);
478 /* Did we fail because a child pager process has exited? */
479 broken_pipe
= pager
&& (err
< 0) && (errno
== EPIPE
);
484 * On error, we simply issue the error without cleaning up
485 * the pager process. The message code handles that as a standard
486 * part of error processing.
488 * We handle failure due to an exited pager process differently
489 * than a normal error, because it is usually due to the user
490 * intentionally telling it to.
494 elfedit_msg(ELFEDIT_MSG_QUIET
, MSG_ORIG(MSG_STR_NULL
));
496 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_PRINTF
));
502 * Some our modules use liblddb routines to format ELF output.
503 * In order to ensure that such output is sent to the pager pipe
504 * when there is one, and stdout otherwise, we redefine the dbg_print()
507 * This item should be defined NODIRECT.
511 dbg_print(Lm_list
*lml
, const char *format
, ...)
521 * If there is a pager process, then use it. Otherwise write
522 * directly to stdout.
524 pager
= (state
.pager
.fptr
!= NULL
);
525 fptr
= pager
? state
.pager
.fptr
: stdout
;
527 va_start(ap
, format
);
529 err
= vfprintf(fptr
, format
, ap
);
531 err
= fprintf(fptr
, MSG_ORIG(MSG_STR_NL
));
533 /* Did we fail because a child pager process has exited? */
534 broken_pipe
= (err
< 0) && pager
&& (errno
== EPIPE
);
539 * On error, we simply issue the error without cleaning up
540 * the pager process. The message code handles that as a standard
541 * part of error processing.
543 * We handle failure due to an exited pager process differently
544 * than a normal error, because it is usually due to the user
545 * intentionally telling it to.
549 elfedit_msg(ELFEDIT_MSG_QUIET
, MSG_ORIG(MSG_STR_NULL
));
551 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_PRINTF
));
557 * Write raw bytes of text in a manner similar to fwrite().
558 * Uses the pager process if one has been started, or
562 elfedit_write(const void *ptr
, size_t size
)
568 * If there is a pager process, then use it. Otherwise write
569 * directly to stdout.
571 fptr
= (state
.pager
.fptr
== NULL
) ? stdout
: state
.pager
.fptr
;
573 if (fwrite(ptr
, 1, size
, fptr
) != size
) {
575 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_FWRITE
),
582 * Convert the NULL terminated string to the form used by the C
583 * language to represent literal strings. See conv_str_to_c_literal()
586 * This routine differs from conv_str_to_c_literal() in two ways:
587 * 1) String is NULL terminated instead of counted
588 * 2) Signature of outfunc
591 * str - String to be processed
592 * outfunc - Function to be called to move output characters. Note
593 * that this function has the same signature as elfedit_write(),
594 * and that function can be used to write the characters to
598 * The string has been processed, with the resulting data passed
599 * to outfunc for processing.
602 elfedit_str_to_c_literal_cb(const void *ptr
, size_t size
, void *uvalue
)
604 elfedit_write_func_t
*outfunc
= (elfedit_write_func_t
*)uvalue
;
606 (* outfunc
)(ptr
, size
);
610 elfedit_str_to_c_literal(const char *str
, elfedit_write_func_t
*outfunc
)
612 conv_str_to_c_literal(str
, strlen(str
),
613 elfedit_str_to_c_literal_cb
, (void *) outfunc
);
618 * Wrappers on malloc() and realloc() that check the result for success
619 * and issue an error if not. The caller can use the result of these
620 * functions without checking for a NULL pointer, as we do not return to
621 * the caller in the failure case.
624 elfedit_malloc(const char *item_name
, size_t size
)
631 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_MALLOC
),
632 item_name
, strerror(err
));
639 elfedit_realloc(const char *item_name
, void *ptr
, size_t size
)
643 m
= realloc(ptr
, size
);
646 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_MALLOC
),
647 item_name
, strerror(err
));
655 * Ensure that the given buffer has room for n bytes of data.
658 strbuf_ensure_size(STRBUF
*str
, size_t size
)
660 #define INITIAL_STR_ALLOC 128
664 n
= (str
->n
== 0) ? INITIAL_STR_ALLOC
: str
->n
;
665 while (size
> n
) /* Double buffer until string fits */
667 if (n
!= str
->n
) { /* Alloc new string buffer if needed */
668 str
->buf
= elfedit_realloc(MSG_INTL(MSG_ALLOC_UCMDSTR
),
673 #undef INITIAL_STR_ALLOC
678 * Extract the argument/option information for the next item referenced
679 * by optarg, and advance the pointer to the next item.
682 * optarg - Address of pointer to argument or option array
683 * item - Struct to be filled in.
686 * The item block has been filled in with the information for
687 * the next item in the optarg array. *optarg has been advanced
691 elfedit_next_optarg(elfedit_cmd_optarg_t
**optarg
, elfedit_optarg_item_t
*item
)
694 * Array of inheritable options/arguments. Indexed by one less
695 * than the corresponding ELFEDIT_STDOA_ value.
697 static const elfedit_optarg_item_t stdoa
[] = {
698 /* ELFEDIT_STDOA_O */
699 { MSG_ORIG(MSG_STR_MINUS_O
), MSG_ORIG(MSG_STR_OUTSTYLE
),
700 /* MSG_INTL(MSG_STDOA_OPTDESC_O) */
701 (elfedit_i18nhdl_t
)MSG_STDOA_OPTDESC_O
,
702 ELFEDIT_CMDOA_F_VALUE
},
704 /* ELFEDIT_STDOA_AND */
705 { MSG_ORIG(MSG_STR_MINUS_AND
), NULL
,
706 /* MSG_INTL(MSG_STDOA_OPTDESC_AND) */
707 (elfedit_i18nhdl_t
)MSG_STDOA_OPTDESC_AND
, 0 },
709 /* ELFEDIT_STDOA_CMP */
710 { MSG_ORIG(MSG_STR_MINUS_CMP
), NULL
,
711 /* MSG_INTL(MSG_STDOA_OPTDESC_CMP) */
712 (elfedit_i18nhdl_t
)MSG_STDOA_OPTDESC_CMP
, 0 },
714 /* ELFEDIT_STDOA_OR */
715 { MSG_ORIG(MSG_STR_MINUS_OR
), NULL
,
716 /* MSG_INTL(MSG_STDOA_OPTDESC_OR) */
717 (elfedit_i18nhdl_t
)MSG_STDOA_OPTDESC_OR
, 0 },
720 elfedit_cmd_optarg_t
*oa
;
723 /* Grab first item, advance the callers pointer over it */
726 if (oa
->oa_flags
& ELFEDIT_CMDOA_F_INHERIT
) {
727 /* Values are pre-chewed in the stdoa array above */
728 *item
= stdoa
[((uintptr_t)oa
->oa_name
) - 1];
731 * Set the inherited flag so that elfedit_optarg_helpstr()
732 * can tell who is responsible for translating the help string.
734 item
->oai_flags
|= ELFEDIT_CMDOA_F_INHERIT
;
735 } else { /* Non-inherited item */
736 item
->oai_name
= oa
->oa_name
;
737 if ((oa
->oa_flags
& ELFEDIT_CMDOA_F_VALUE
) != 0) {
738 item
->oai_vname
= oa
[1].oa_name
;
740 /* Advance users pointer past value element */
743 item
->oai_vname
= NULL
;
745 item
->oai_help
= oa
->oa_help
;
746 item
->oai_flags
= oa
->oa_flags
;
750 * The module determines the idmask and excmask fields whether
751 * or not inheritance is in play.
753 item
->oai_idmask
= oa
->oa_idmask
;
754 item
->oai_excmask
= oa
->oa_excmask
;
760 * Return the help string for an option/argument item, as returned
761 * by elfedit_next_optarg(). This routine handles the details of
762 * knowing whether the string is provided by elfedit itself (inherited),
763 * or needs to be translated by the module.
766 elfedit_optarg_helpstr(elfeditGC_module_t
*mod
, elfedit_optarg_item_t
*item
)
769 * The help string from an inherited item comes right out
770 * of the main elfedit string table.
772 if (item
->oai_flags
& ELFEDIT_CMDOA_F_INHERIT
)
773 return (MSG_INTL((Msg
) item
->oai_help
));
776 * If the string is defined by the module, then we need to
777 * have the module translate it for us.
779 return ((* mod
->mod_i18nhdl_to_str
)(item
->oai_help
));
785 * Used by usage_optarg() to insert a character into the output buffer,
786 * advancing the buffer pointer and current column, and reducing the
787 * amount of remaining space.
790 usage_optarg_insert_ch(int ch
, char **cur
, size_t *n
, size_t *cur_col
)
800 * Used by usage_optarg() to insert a string into the output
801 * buffer, advancing the buffer pointer and current column, and reducing
802 * the amount of remaining space.
805 usage_optarg_insert_str(char **cur
, size_t *n
, size_t *cur_col
,
806 const char *format
, ...)
811 va_start(args
, format
);
812 len
= vsnprintf(*cur
, *n
, format
, args
);
820 * Used by usage_optarg() to insert an optarg item string into the output
821 * buffer, advancing the buffer pointer and current column, and reducing
822 * the amount of remaining space.
825 usage_optarg_insert_item(elfedit_optarg_item_t
*item
, char **cur
,
826 size_t *n
, size_t *cur_col
)
830 if (item
->oai_flags
& ELFEDIT_CMDOA_F_VALUE
) {
831 len
= snprintf(*cur
, *n
, MSG_ORIG(MSG_STR_HLPOPTARG2
),
832 item
->oai_name
, item
->oai_vname
);
834 len
= snprintf(*cur
, *n
, MSG_ORIG(MSG_STR_HLPOPTARG
),
845 * Write the options/arguments to the usage string.
848 * main_buf_n - Size of main buffer from which buf and buf_n are
850 * buf - Address of pointer to where next item is to be placed.
851 * buf_n - Address of count of remaining bytes in buffer
852 * buf_cur_col - Address of current output column for current line
853 * of generated string.
854 * optarg - Options list
855 * isopt - True if these are options, false for arguments.
856 * wrap_str - String to indent wrapped lines. If NULL, lines
860 usage_optarg(size_t main_buf_n
, char **buf
, size_t *buf_n
, size_t *buf_cur_col
,
861 elfedit_cmd_optarg_t
*optarg
, int isopt
, const char *wrap_str
)
864 * An option can be combined into a simple format if it lacks
865 * these flags and is only one character in length.
867 static const elfedit_cmd_oa_flag_t exflags
=
868 (ELFEDIT_CMDOA_F_VALUE
| ELFEDIT_CMDOA_F_MULT
);
871 * A static buffer, which is grown as needed to accomodate
872 * the maximum usage string seen.
874 static STRBUF simple_str
;
878 size_t cur_col
= *buf_cur_col
;
881 elfedit_optarg_item_t item
;
882 elfedit_cmd_oa_mask_t optmask
= 0;
886 * If processing options, pull the 1-character ones that don't have
887 * an associated value and don't have any mutual exclusion issues into
888 * a single combination string to go at the beginning of the usage.
891 elfedit_cmd_optarg_t
*tmp_optarg
= optarg
;
895 * The simple string is guaranteed to fit in the same
896 * amount of space reserved for the main buffer.
898 strbuf_ensure_size(&simple_str
, main_buf_n
);
903 while (tmp_optarg
->oa_name
!= NULL
) {
904 elfedit_next_optarg(&tmp_optarg
, &item
);
905 if (((item
.oai_flags
& exflags
) == 0) &&
906 (item
.oai_name
[2] == '\0') &&
907 (item
.oai_excmask
== 0)) {
908 optmask
|= item
.oai_idmask
;
909 *s
++ = item
.oai_name
[1];
914 * If we found more than one, then finish the string and
915 * add it. Don't do this for a single option, because
916 * it looks better in that case if the option shows up
917 * in alphabetical order rather than being hoisted.
919 use_simple
= (s
> (simple_str
.buf
+ 4));
923 usage_optarg_insert_str(&cur
, &n
, &cur_col
,
924 MSG_ORIG(MSG_STR_HLPOPTARG
), simple_str
.buf
);
926 /* Not using it, so reset the cumulative options mask */
931 while (optarg
->oa_name
!= NULL
) {
932 elfedit_next_optarg(&optarg
, &item
);
936 * If this is an option that was pulled into the
937 * combination string above, then skip over it.
939 if (use_simple
&& ((item
.oai_flags
& exflags
) == 0) &&
940 (item
.oai_name
[2] == '\0') &&
941 (item
.oai_excmask
== 0))
945 * If this is a mutual exclusion option that was
946 * picked up out of order by a previous iteration
947 * of this loop, then skip over it.
949 if ((optmask
& item
.oai_idmask
) != 0)
952 /* Add this item to the accumulating options mask */
953 optmask
|= item
.oai_idmask
;
956 /* Wrap line, or insert blank separator */
957 if ((wrap_str
!= NULL
) && (cur_col
> USAGE_WRAP_COL
)) {
958 len
= snprintf(cur
, n
, MSG_ORIG(MSG_FMT_WRAPUSAGE
),
962 cur_col
= len
- 1; /* Don't count the newline */
964 usage_optarg_insert_ch(' ', &cur
, &n
, &cur_col
);
967 use_bkt
= (item
.oai_flags
& ELFEDIT_CMDOA_F_OPT
) || isopt
;
969 usage_optarg_insert_ch('[', &cur
, &n
, &cur_col
);
971 /* Add the item to the buffer */
972 usage_optarg_insert_item(&item
, &cur
, &n
, &cur_col
);
975 * If this item has a non-zero mutual exclusion mask,
976 * then look for the other items and display them all
977 * together with alternation (|). Note that plain arguments
978 * cannot have a non-0 exclusion mask, so this is
979 * effectively options-only (isopt != 0).
981 if (item
.oai_excmask
!= 0) {
982 elfedit_cmd_optarg_t
*tmp_optarg
= optarg
;
983 elfedit_optarg_item_t tmp_item
;
986 * When showing alternation, elipses for multiple
987 * copies need to appear inside the [] brackets.
989 if (item
.oai_flags
& ELFEDIT_CMDOA_F_MULT
)
990 usage_optarg_insert_str(&cur
, &n
, &cur_col
,
991 MSG_ORIG(MSG_STR_ELIPSES
));
994 while (tmp_optarg
->oa_name
!= NULL
) {
995 elfedit_next_optarg(&tmp_optarg
, &tmp_item
);
996 if ((item
.oai_excmask
& tmp_item
.oai_idmask
) ==
999 usage_optarg_insert_str(&cur
, &n
, &cur_col
,
1000 MSG_ORIG(MSG_STR_SP_BAR_SP
));
1001 usage_optarg_insert_item(&tmp_item
,
1002 &cur
, &n
, &cur_col
);
1005 * Add it to the mask of seen options.
1006 * This will keep us from showing it twice.
1008 optmask
|= tmp_item
.oai_idmask
;
1012 usage_optarg_insert_ch(']', &cur
, &n
, &cur_col
);
1015 * If alternation was not shown above (non-zero exclusion mask)
1016 * then the elipses for multiple copies are shown outside
1019 if ((item
.oai_excmask
== 0) &&
1020 (item
.oai_flags
& ELFEDIT_CMDOA_F_MULT
))
1021 usage_optarg_insert_str(&cur
, &n
, &cur_col
,
1022 MSG_ORIG(MSG_STR_ELIPSES
));
1028 *buf_cur_col
= cur_col
;
1034 * Format the usage string for a command into a static buffer and
1035 * return the pointer to the user. The resultant string is valid
1036 * until the next call to this routine, and which point it
1037 * will be overwritten or the memory is freed.
1040 * mod, cmd - Module and command definitions for command to be described
1041 * wrap_str - NULL, or string to be used to indent when
1042 * lines are wrapped. If NULL, no wrapping is done, and
1043 * all output is on a single line.
1044 * cur_col - Starting column at which the string will be displayed.
1045 * Ignored if wrap_str is NULL.
1048 elfedit_format_command_usage(elfeditGC_module_t
*mod
, elfeditGC_cmd_t
*cmd
,
1049 const char *wrap_str
, size_t cur_col
)
1053 * A static buffer, which is grown as needed to accomodate
1054 * the maximum usage string seen.
1058 elfedit_cmd_optarg_t
*optarg
;
1059 size_t len
, n
, elipses_len
;
1061 elfedit_optarg_item_t item
;
1064 * Estimate a worst case size for the usage string:
1066 * - lengths of the strings
1067 * - every option or argument is enclosed in brackets
1068 * - space in between each item, with an alternation (" | ")
1069 * - elipses will be displayed with each option and argument
1071 n
= strlen(mod
->mod_name
) + strlen(cmd
->cmd_name
[0]) + 6;
1072 elipses_len
= strlen(MSG_ORIG(MSG_STR_ELIPSES
));
1073 if ((optarg
= cmd
->cmd_opt
) != NULL
)
1074 while (optarg
->oa_name
!= NULL
) {
1075 elfedit_next_optarg(&optarg
, &item
);
1076 n
+= strlen(item
.oai_name
) + 5 + elipses_len
;
1078 if ((optarg
= cmd
->cmd_args
) != NULL
)
1079 while (optarg
->oa_name
!= NULL
) {
1080 elfedit_next_optarg(&optarg
, &item
);
1081 n
+= strlen(item
.oai_name
) + 5 + elipses_len
;
1083 n
++; /* Null termination */
1086 * If wrapping lines, we insert a newline and then wrap_str
1087 * every USAGE_WRAP_COL characters.
1089 if (wrap_str
!= NULL
)
1090 n
+= ((n
+ USAGE_WRAP_COL
) / USAGE_WRAP_COL
) *
1091 (strlen(wrap_str
) + 1);
1093 strbuf_ensure_size(&str
, n
);
1098 if (strcmp(mod
->mod_name
, MSG_ORIG(MSG_MOD_SYS
)) == 0)
1099 len
= snprintf(cur
, n
, MSG_ORIG(MSG_FMT_SYSCMD
),
1102 len
= snprintf(cur
, n
, MSG_ORIG(MSG_FMT_MODCMD
),
1103 mod
->mod_name
, cmd
->cmd_name
[0]);
1108 if (cmd
->cmd_opt
!= NULL
)
1109 usage_optarg(str
.n
, &cur
, &n
, &cur_col
, cmd
->cmd_opt
,
1111 if (cmd
->cmd_args
!= NULL
)
1112 usage_optarg(str
.n
, &cur
, &n
, &cur_col
, cmd
->cmd_args
,
1119 * Wrapper on elfedit_msg() that issues an ELFEDIT_MSG_USAGE
1120 * error giving usage information for the command currently
1121 * referenced by state.cur_cmd.
1124 elfedit_command_usage(void)
1126 elfedit_msg(ELFEDIT_MSG_CMDUSAGE
, MSG_INTL(MSG_USAGE_CMD
),
1127 elfedit_format_command_usage(state
.cur_cmd
->ucmd_mod
,
1128 state
.cur_cmd
->ucmd_cmd
, NULL
, 0));
1133 * This function allows the loadable modules to get the command line
1139 return (state
.flags
);
1143 * This function is used to register a per-command invocation output style
1144 * that will momentarily override the global output style for the duration
1145 * of the current command. This function must only be called by an
1149 * str - One of the valid strings for the output style
1152 elfedit_set_cmd_outstyle(const char *str
)
1154 if ((state
.cur_cmd
!= NULL
) && (str
!= NULL
)) {
1155 if (elfedit_atooutstyle(str
, &state
.cur_cmd
->ucmd_ostyle
) == 0)
1156 elfedit_msg(ELFEDIT_MSG_ERR
,
1157 MSG_INTL(MSG_ERR_BADOSTYLE
), str
);
1158 state
.cur_cmd
->ucmd_ostyle_set
= 1;
1163 * This function allows the loadable modules to get the output style.
1166 elfedit_outstyle(void)
1169 * If there is an active per-command output style,
1172 if ((state
.cur_cmd
!= NULL
) && (state
.cur_cmd
->ucmd_ostyle_set
))
1173 return (state
.cur_cmd
->ucmd_ostyle
);
1176 return (state
.outstyle
);
1180 * Return the command descriptor of the currently executing command.
1181 * For use only by the modules or code called by the modules.
1184 elfedit_curcmd(void)
1186 return (state
.cur_cmd
->ucmd_cmd
);
1190 * Build a dynamically allocated elfedit_obj_state_t struct that
1191 * contains a cache of the ELF file contents. This pre-chewed form
1192 * is fed to each command, reducing the amount of ELF boilerplate
1193 * code each command needs to contain.
1196 * file - Name of file to process
1199 * Fills state.elf with the necessary information for the open file.
1201 * note: The resulting elfedit_obj_state_t is allocated from a single
1202 * piece of memory, such that a single call to free() suffices
1203 * to release it as well as any memory it references.
1206 init_obj_state(const char *file
)
1213 * In readonly mode, we open the file readonly so that it is
1214 * impossible to modify the file by accident. This also allows
1215 * us to access readonly files, perhaps in a case where we don't
1216 * intend to change it.
1218 * We always use ELF_C_RDWR with elf_begin(), even in a readonly
1219 * session. This allows us to modify the in-memory image, which
1220 * can be useful when examining a file, even though we don't intend
1221 * to modify the on-disk data. The file is not writable in
1222 * this case, and we don't call elf_update(), so it is safe to do so.
1224 open_flag
= ((state
.flags
& ELFEDIT_F_READONLY
) ? O_RDONLY
: O_RDWR
);
1225 if ((fd
= open(file
, open_flag
)) == -1) {
1227 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTOPNFILE
),
1228 file
, strerror(err
));
1230 (void) elf_version(EV_CURRENT
);
1231 elf
= elf_begin(fd
, ELF_C_RDWR
, NULL
);
1234 elfedit_elferr(file
, MSG_ORIG(MSG_ELF_BEGIN
));
1238 /* We only handle standalone ELF files */
1239 switch (elf_kind(elf
)) {
1242 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_NOAR
), file
);
1248 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_UNRECELFFILE
),
1254 * Tell libelf that we take responsibility for object layout.
1255 * Otherwise, it will compute "proper" values for layout and
1256 * alignment fields, and these values can overwrite the values
1257 * set in the elfedit session. We are modifying existing
1258 * objects --- the layout concerns have already been dealt
1259 * with when the object was built.
1261 (void) elf_flagelf(elf
, ELF_C_SET
, ELF_F_LAYOUT
);
1263 /* Fill in state.elf.obj_state */
1264 state
.elf
.elfclass
= gelf_getclass(elf
);
1265 switch (state
.elf
.elfclass
) {
1267 elfedit32_init_obj_state(file
, fd
, elf
);
1270 elfedit64_init_obj_state(file
, fd
, elf
);
1274 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_BADELFCLASS
),
1281 #ifdef DEBUG_MODULE_LIST
1283 * Debug routine. Dump the module list to stdout.
1286 dbg_module_list(char *title
)
1290 printf("<MODULE LIST: %s>\n", title
);
1291 for (m
= state
.modlist
; m
!= NULL
; m
= m
->next
) {
1292 printf("Module: >%s<\n", m
->mod
->mod_name
);
1293 printf(" hdl: %llx\n", m
->dl_hdl
);
1294 printf(" path: >%s<\n", m
->path
? m
->path
: "<builtin>");
1296 printf("<END OF MODULE LIST>\n");
1302 * Search the module list for the named module.
1305 * name - Name of module to find
1306 * insdef - Address of variable to receive address of predecessor
1307 * node to the desired one.
1310 * If the module is it is found, this routine returns the pointer to
1311 * its MODLIST_T structure. *insdef references the predecessor node, or
1312 * is NULL if the found item is at the head of the list.
1314 * If the module is not found, NULL is returned. *insdef references
1315 * the predecessor node of the position where an entry for this module
1316 * would be placed, or NULL if it would go at the beginning.
1319 module_loaded(const char *name
, MODLIST_T
**insdef
)
1325 moddef
= state
.modlist
;
1326 if (moddef
!= NULL
) {
1327 cmp
= strcasecmp(name
, moddef
->ml_mod
->mod_name
);
1328 if (cmp
== 0) { /* Desired module is first in list */
1330 } else if (cmp
> 0) { /* cmp > 0: Insert in middle/end */
1332 moddef
= moddef
->ml_next
;
1334 while (moddef
&& (cmp
< 0)) {
1335 cmp
= strcasecmp(moddef
->ml_mod
->mod_name
,
1341 moddef
= (*insdef
)->ml_next
;
1352 * Determine if a file is a sharable object based on its file path.
1353 * If path ends in a .so, followed optionally by a period and 1 or more
1354 * digits, we say that it is and return a pointer to the first character
1355 * of the suffix. Otherwise NULL is returned.
1358 path_is_so(const char *path
)
1368 if (isdigit(*(tail
- 1))) {
1369 while ((tail
> path
) && isdigit(*(tail
- 1)))
1371 if ((tail
<= path
) || (*tail
!= '.'))
1374 dotso_len
= strlen(MSG_ORIG(MSG_STR_DOTSO
));
1375 if ((tail
- path
) < dotso_len
)
1378 if (strncmp(tail
, MSG_ORIG(MSG_STR_DOTSO
), dotso_len
) == 0)
1386 * Locate the start of the unsuffixed file name within path. Returns pointer
1387 * to first character of that name in path.
1390 * path - Path to be examined.
1391 * tail - NULL, or pointer to position at tail of path from which
1392 * the search for '/' characters should start. If NULL,
1393 * strlen() is used to locate the end of the string.
1394 * buf - NULL, or buffer to receive a copy of the characters that
1395 * lie between the start of the filename and tail.
1396 * bufsize - sizeof(buf)
1399 * The pointer to the first character of the unsuffixed file name
1400 * within path is returned. If buf is non-NULL, the characters
1401 * lying between that point and tail (or the end of path if tail
1402 * is NULL) are copied into buf.
1405 elfedit_basename(const char *path
, const char *tail
, char *buf
, size_t bufsiz
)
1410 tail
= path
+ strlen(path
);
1412 while ((s
> path
) && (*(s
- 1) != '/'))
1415 elfedit_strnbcpy(buf
, s
, tail
- s
, bufsiz
);
1421 * Issue an error on behalf of load_module(), taking care to release
1422 * resources that routine may have aquired:
1425 * moddef - NULL, or a module definition to be released via free()
1426 * dl_hdl - NULL, or a handle to a sharable object to release via
1428 * dl_path - If dl_hdl is non-NULL, the path to the sharable object
1429 * file that was loaded.
1430 * format - A format string to pass to elfedit_msg(), containing
1431 * no more than (3) %s format codes, and no other format codes.
1432 * [s1-s4] - Strings to pass to elfedit_msg() to satisfy the four
1433 * allowed %s codes in format. Should be set to NULL if the
1434 * format string does not need them.
1437 * This routine makes a copy of the s1-s4 strings before freeing any
1438 * memory or unmapping the sharable library. It is therefore safe to
1439 * use strings from moddef, or from the sharable library (which will
1440 * be unmapped) to satisfy the other arguments s1-s4.
1443 load_module_err(MODLIST_T
*moddef
, void *dl_hdl
, const char *dl_path
,
1444 const char *format
, const char *s1
, const char *s2
, const char *s3
,
1447 #define SCRBUFSIZE (PATH_MAX + 256) /* A path, plus some extra */
1449 char s1_buf
[SCRBUFSIZE
];
1450 char s2_buf
[SCRBUFSIZE
];
1451 char s3_buf
[SCRBUFSIZE
];
1452 char s4_buf
[SCRBUFSIZE
];
1455 * The caller may provide strings for s1-s3 that are from
1456 * moddef. If we free moddef, the printf() will die on access
1457 * to free memory. We could push back on the user and force
1458 * each call to carefully make copies of such data. However, this
1459 * is an easy case to miss. Furthermore, this is an error case,
1460 * and machine efficiency is not the main issue. We therefore make
1461 * copies of the s1-s3 strings here into auto variables, and then
1462 * use those copies. The user is freed from worrying about it.
1464 * We use oversized stack based buffers instead of malloc() to
1465 * reduce the number of ways that things can go wrong while
1466 * reporting the error.
1469 (void) strlcpy(s1_buf
, s1
, sizeof (s1_buf
));
1471 (void) strlcpy(s2_buf
, s2
, sizeof (s2_buf
));
1473 (void) strlcpy(s3_buf
, s3
, sizeof (s3_buf
));
1475 (void) strlcpy(s4_buf
, s4
, sizeof (s4_buf
));
1480 if ((dl_hdl
!= NULL
) && (dlclose(dl_hdl
) != 0))
1481 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTDLCLOSE
),
1482 dl_path
, dlerror());
1484 elfedit_msg(ELFEDIT_MSG_ERR
, format
, s1_buf
, s2_buf
, s3_buf
, s4_buf
);
1490 * Load a module sharable object for load_module().
1493 * path - Path of file to open
1494 * moddef - If this function issues a non-returning error, it will
1495 * first return the memory referenced by moddef. This argument
1496 * is not used otherwise.
1497 * must_exist - If True, we consider it to be an error if the file given
1498 * by path does not exist. If False, no error is issued
1499 * and a NULL value is quietly returned.
1502 * Returns a handle to the loaded object on success, or NULL if no
1506 load_module_dlopen(const char *path
, MODLIST_T
*moddef
, int must_exist
)
1512 * If the file is not required to exist, and it doesn't, then
1513 * we want to quietly return without an error.
1516 fd
= open(path
, O_RDONLY
);
1519 } else if (errno
== ENOENT
) {
1524 if ((hdl
= dlopen(path
, RTLD_LAZY
|RTLD_FIRST
)) == NULL
)
1525 load_module_err(moddef
, NULL
, NULL
,
1526 MSG_INTL(MSG_ERR_CNTDLOPEN
), path
, dlerror(), NULL
, NULL
);
1533 * Sanity check option arguments to prevent common errors. The rest of
1534 * elfedit assumes these tests have been done, and does not check
1538 validate_optarg(elfedit_cmd_optarg_t
*optarg
, int isopt
, MODLIST_T
*moddef
,
1539 const char *mod_name
, const char *cmd_name
,
1540 void *dl_hdl
, const char *dl_path
)
1542 #define FAIL(_msg) errmsg = _msg; goto fail
1545 elfedit_cmd_oa_mask_t optmask
= 0;
1547 for (; optarg
->oa_name
!= NULL
; optarg
++) {
1549 * If ELFEDIT_CMDOA_F_INHERIT is set:
1550 * - oa_name must be a value in the range of
1551 * known ELFEDIT_STDOA_ values.
1552 * - oa_help must be NULL
1553 * - ELFEDIT_CMDOA_F_INHERIT must be the only flag set
1555 if (optarg
->oa_flags
& ELFEDIT_CMDOA_F_INHERIT
) {
1556 if ((((uintptr_t)optarg
->oa_name
) >
1557 ELFEDIT_NUM_STDOA
) ||
1558 (optarg
->oa_help
!= 0) ||
1559 (optarg
->oa_flags
!= ELFEDIT_CMDOA_F_INHERIT
))
1561 * Can't use FAIL --- oa_name is not a valid
1562 * string, and load_module_err() looks at args.
1564 load_module_err(moddef
, dl_hdl
, dl_path
,
1565 MSG_INTL(MSG_ERR_BADSTDOA
), dl_path
,
1566 mod_name
, cmd_name
, NULL
);
1572 * Option name must start with a '-', and must
1573 * have at one following character.
1575 if (optarg
->oa_name
[0] != '-') {
1576 /* MSG_INTL(MSG_ERR_OPT_MODPRE) */
1577 FAIL(MSG_ERR_OPT_MODPRE
);
1579 if (optarg
->oa_name
[1] == '\0') {
1580 /* MSG_INTL(MSG_ERR_OPT_MODLEN) */
1581 FAIL(MSG_ERR_OPT_MODLEN
);
1585 * oa_idmask must be 0, or it must have a single
1586 * bit set (a power of 2).oa_excmask must be 0
1589 if (optarg
->oa_idmask
== 0) {
1590 if (optarg
->oa_excmask
!= 0) {
1591 /* MSG_INTL(MSG_ERR_OPT_EXCMASKN0) */
1592 FAIL(MSG_ERR_OPT_EXCMASKN0
);
1595 if (elfedit_bits_set(optarg
->oa_idmask
,
1596 sizeof (optarg
->oa_idmask
)) != 1) {
1597 /* MSG_INTL(MSG_ERR_OPT_IDMASKPOW2) */
1598 FAIL(MSG_ERR_OPT_IDMASKPOW2
);
1601 /* Non-zero idmask must be unique */
1602 if ((optarg
->oa_idmask
& optmask
) != 0) {
1603 /* MSG_INTL(MSG_ERR_OPT_IDMASKUNIQ) */
1604 FAIL(MSG_ERR_OPT_IDMASKUNIQ
);
1607 /* Add this one to the overall mask */
1608 optmask
|= optarg
->oa_idmask
;
1612 * Argument name cannot start with a'-', and must
1613 * not be a null string.
1615 if (optarg
->oa_name
[0] == '-') {
1616 /* MSG_INTL(MSG_ERR_ARG_MODPRE) */
1617 FAIL(MSG_ERR_ARG_MODPRE
);
1619 if (optarg
->oa_name
[1] == '\0') {
1620 /* MSG_INTL(MSG_ERR_ARG_MODLEN) */
1621 FAIL(MSG_ERR_ARG_MODLEN
);
1625 /* oa_idmask and oa_excmask must both be 0 */
1626 if ((optarg
->oa_idmask
!= 0) ||
1627 (optarg
->oa_excmask
!= 0)) {
1628 /* MSG_INTL(MSG_ERR_ARG_MASKNOT0) */
1629 FAIL(MSG_ERR_ARG_MASKNOT0
);
1635 * If it takes a value, make sure that we are
1636 * processing options, because CMDOA_F_VALUE is not
1637 * allowed for plain arguments. Then check the following
1639 * - There must be a following item.
1640 * - oa_name must be non-NULL. This is the only field
1641 * that is used by elfedit.
1642 * - oa_help, oa_flags, oa_idmask, and oa_excmask
1645 if (optarg
->oa_flags
& ELFEDIT_CMDOA_F_VALUE
) {
1646 elfedit_cmd_optarg_t
*oa1
= optarg
+ 1;
1649 /* MSG_INTL(MSG_ERR_ARG_CMDOA_VAL) */
1650 FAIL(MSG_ERR_ARG_CMDOA_VAL
);
1653 if ((optarg
+ 1)->oa_name
== NULL
) {
1654 /* MSG_INTL(MSG_ERR_BADMODOPTVAL) */
1655 FAIL(MSG_ERR_BADMODOPTVAL
);
1658 if (oa1
->oa_name
== NULL
) {
1659 /* MSG_INTL(MSG_ERR_CMDOA_VALNAM) */
1660 FAIL(MSG_ERR_CMDOA_VALNAM
);
1662 if ((oa1
->oa_help
!= (elfedit_i18nhdl_t
)NULL
) ||
1663 (oa1
->oa_flags
!= 0) ||
1664 (oa1
->oa_idmask
!= 0) || (oa1
->oa_excmask
!= 0)) {
1665 /* MSG_INTL(MSG_ERR_CMDOA_VALNOT0) */
1666 FAIL(MSG_ERR_CMDOA_VALNOT0
);
1676 load_module_err(moddef
, dl_hdl
, dl_path
, MSG_INTL(errmsg
),
1677 dl_path
, mod_name
, cmd_name
, optarg
->oa_name
);
1681 * Look up the specified module, loading the module if necessary,
1682 * and return its definition, or NULL on failure.
1685 * name - Name of module to load. If name contains a '/' character or has
1686 * a ".so" suffix, then it is taken to be an absolute file path,
1687 * and is used directly as is. If name does not contain a '/'
1688 * character, then we look for it against the locations in
1689 * the module path, addint the '.so' suffix, and taking the first
1691 * must_exist - If True, we consider it to be an error if we are unable
1692 * to locate a file to load and the module does not already exist.
1693 * If False, NULL is returned quietly in this case.
1694 * allow_abs - True if absolute paths are allowed. False to disallow
1698 * If the path is absolute, then we load the file and take the module
1699 * name from the data returned by its elfedit_init() function. If a
1700 * module of that name is already loaded, it is unloaded and replaced
1703 * If the path is non absolute, then we check to see if the module has
1704 * already been loaded, and if so, we return that module definition.
1705 * In this case, nothing new is loaded. If the module has not been loaded,
1706 * we search the path for it and load it. If the module name provided
1707 * by the elfedit_init() function does not match the name of the file,
1710 elfeditGC_module_t
*
1711 elfedit_load_module(const char *name
, int must_exist
, int allow_abs
)
1713 elfedit_init_func_t
*init_func
;
1714 elfeditGC_module_t
*mod
;
1715 MODLIST_T
*moddef
, *insdef
;
1717 char path_buf
[PATH_MAX
+ 1];
1721 elfeditGC_cmd_t
*cmd
;
1724 * If the name includes a .so suffix, or has any '/' characters,
1725 * then it is an absolute path that we use as is to load the named
1726 * file. Otherwise, we iterate over the path, adding the .so suffix
1727 * and load the first file that matches.
1729 is_abs_path
= (path_is_so(name
) != NULL
) ||
1730 (name
!= elfedit_basename(name
, NULL
, NULL
, 0));
1732 if (is_abs_path
&& !allow_abs
)
1733 load_module_err(NULL
, NULL
, NULL
,
1734 MSG_INTL(MSG_ERR_UNRECMOD
), name
, NULL
, NULL
, NULL
);
1737 * If this is a non-absolute path, search for the module already
1738 * having been loaded, and return it if so.
1741 moddef
= module_loaded(name
, &insdef
);
1743 return (moddef
->ml_mod
);
1745 * As a result of module_loaded(), insdef now contains the
1746 * immediate predecessor node for the new one, or NULL if
1747 * it goes at the front. In the absolute-path case, we take
1748 * care of this below, after the sharable object is loaded.
1753 * malloc() a module definition block before trying to dlopen().
1754 * Doing things in the other order can cause the dlopen()'d object
1755 * to leak: If elfedit_malloc() fails, it can cause a jump to the
1756 * outer command loop without returning to the caller. Hence,
1757 * there will be no opportunity to clean up. Allocaing the module
1758 * first allows us to free it if necessary.
1760 moddef
= elfedit_malloc(MSG_INTL(MSG_ALLOC_MODDEF
),
1761 sizeof (*moddef
) + PATH_MAX
+ 1);
1762 moddef
->ml_path
= ((char *)moddef
) + sizeof (*moddef
);
1766 hdl
= load_module_dlopen(name
, moddef
, must_exist
);
1770 for (i
= 0; i
< state
.modpath
.n
; i
++) {
1771 if (snprintf(path_buf
, sizeof (path_buf
),
1772 MSG_ORIG(MSG_FMT_BLDSOPATH
), state
.modpath
.seg
[i
],
1773 name
) > sizeof (path_buf
))
1774 load_module_err(moddef
, NULL
, NULL
,
1775 MSG_INTL(MSG_ERR_PATHTOOLONG
),
1776 state
.modpath
.seg
[i
], name
, NULL
, NULL
);
1777 hdl
= load_module_dlopen(path
, moddef
, 0);
1779 if (must_exist
&& (hdl
== NULL
))
1780 load_module_err(moddef
, NULL
, NULL
,
1781 MSG_INTL(MSG_ERR_UNRECMOD
), name
, NULL
, NULL
, NULL
);
1789 if (state
.elf
.elfclass
== ELFCLASS32
) {
1790 init_func
= (elfedit_init_func_t
*)
1791 dlsym(hdl
, MSG_ORIG(MSG_STR_ELFEDITINIT32
));
1793 init_func
= (elfedit_init_func_t
*)
1794 dlsym(hdl
, MSG_ORIG(MSG_STR_ELFEDITINIT64
));
1796 if (init_func
== NULL
)
1797 load_module_err(moddef
, hdl
, path
,
1798 MSG_INTL(MSG_ERR_SONOTMOD
), path
, NULL
, NULL
, NULL
);
1801 * Note that the init function will be passing us an
1802 * elfedit[32|64]_module_t pointer, which we cast to the
1803 * generic module pointer type in order to be able to manage
1804 * either type with one set of code.
1806 if (!(mod
= (elfeditGC_module_t
*)(* init_func
)(ELFEDIT_VER_CURRENT
)))
1807 load_module_err(moddef
, hdl
, path
,
1808 MSG_INTL(MSG_ERR_BADMODLOAD
), path
, NULL
, NULL
, NULL
);
1811 * Enforce some rules, to help module developers:
1812 * - The primary name of a command must not be
1813 * the empty string ("").
1814 * - Options must start with a '-' followed by at least
1816 * - Arguments and options must be well formed.
1818 for (cmd
= mod
->mod_cmds
; cmd
->cmd_func
!= NULL
; cmd
++) {
1819 if (**cmd
->cmd_name
== '\0')
1820 load_module_err(moddef
, hdl
, path
,
1821 MSG_INTL(MSG_ERR_NULLPRICMDNAM
), mod
->mod_name
,
1824 if (cmd
->cmd_args
!= NULL
)
1825 validate_optarg(cmd
->cmd_args
, 0, moddef
, mod
->mod_name
,
1826 cmd
->cmd_name
[0], hdl
, path
);
1827 if (cmd
->cmd_opt
!= NULL
)
1828 validate_optarg(cmd
->cmd_opt
, 1, moddef
, mod
->mod_name
,
1829 cmd
->cmd_name
[0], hdl
, path
);
1833 * Check the name the module provides. How we handle this depends
1834 * on whether the path is absolute or the result of a path search.
1837 MODLIST_T
*old_moddef
= module_loaded(mod
->mod_name
, &insdef
);
1839 if (old_moddef
!= NULL
) { /* Replace existing */
1840 free(moddef
); /* Rare case: Don't need it */
1842 * Be sure we don't unload builtin modules!
1843 * These have a NULL dl_hdl field.
1845 if (old_moddef
->ml_dl_hdl
== NULL
)
1846 load_module_err(NULL
, hdl
, path
,
1847 MSG_INTL(MSG_ERR_CNTULSMOD
),
1848 old_moddef
->ml_mod
->mod_name
, NULL
,
1851 /* Unload existing */
1852 if (dlclose(old_moddef
->ml_dl_hdl
) != 0)
1853 elfedit_msg(ELFEDIT_MSG_ERR
,
1854 MSG_INTL(MSG_ERR_CNTDLCLOSE
),
1855 old_moddef
->ml_path
, dlerror());
1856 elfedit_msg(ELFEDIT_MSG_DEBUG
,
1857 MSG_INTL(MSG_DEBUG_MODUNLOAD
),
1858 old_moddef
->ml_mod
->mod_name
, old_moddef
->ml_path
);
1859 old_moddef
->ml_mod
= mod
;
1860 old_moddef
->ml_dl_hdl
= hdl
;
1861 (void) strlcpy((char *)old_moddef
->ml_path
, path
,
1863 elfedit_msg(ELFEDIT_MSG_DEBUG
,
1864 MSG_INTL(MSG_DEBUG_MODLOAD
),
1865 old_moddef
->ml_mod
->mod_name
, path
);
1866 return (old_moddef
->ml_mod
);
1869 * insdef now contains the insertion point for the absolute
1873 /* If the names don't match, then error */
1874 if (strcasecmp(name
, mod
->mod_name
) != 0)
1875 load_module_err(moddef
, hdl
, path
,
1876 MSG_INTL(MSG_ERR_BADMODNAME
),
1877 mod
->mod_name
, name
, path
, NULL
);
1881 * Link module into the module list. If insdef is NULL,
1882 * it goes at the head. If insdef is non-NULL, it goes immediately
1885 if (insdef
== NULL
) {
1886 moddef
->ml_next
= state
.modlist
;
1887 state
.modlist
= moddef
;
1889 moddef
->ml_next
= insdef
->ml_next
;
1890 insdef
->ml_next
= moddef
;
1892 moddef
->ml_mod
= mod
;
1893 moddef
->ml_dl_hdl
= hdl
;
1894 (void) strlcpy((char *)moddef
->ml_path
, path
, PATH_MAX
+ 1);
1896 elfedit_msg(ELFEDIT_MSG_DEBUG
, MSG_INTL(MSG_DEBUG_MODLOAD
),
1897 moddef
->ml_mod
->mod_name
, path
);
1899 return (moddef
->ml_mod
);
1904 * Unload the specified module
1907 elfedit_unload_module(const char *name
)
1909 MODLIST_T
*moddef
, *insdef
;
1911 moddef
= module_loaded(name
, &insdef
);
1915 /* Built in modules cannot be unloaded. They have a NULL dl_hdl field */
1916 if (moddef
->ml_dl_hdl
== NULL
)
1917 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTULSMOD
),
1918 moddef
->ml_mod
->mod_name
);
1921 * When we unload it, the name string goes with it. So
1922 * announce it while we still can without having to make a copy.
1924 elfedit_msg(ELFEDIT_MSG_DEBUG
, MSG_INTL(MSG_DEBUG_MODUNLOAD
),
1925 moddef
->ml_mod
->mod_name
, moddef
->ml_path
);
1928 * Close it before going further. On failure, we'll jump, and the
1929 * record will remain in the module list. On success,
1930 * we'll retain control, and can safely remove it.
1932 if (dlclose(moddef
->ml_dl_hdl
) != 0)
1933 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTDLCLOSE
),
1934 moddef
->ml_path
, dlerror());
1936 /* Unlink the record from the module list */
1938 state
.modlist
= moddef
->ml_next
;
1940 insdef
->ml_next
= moddef
->ml_next
;
1942 /* Release the memory */
1948 * Load all sharable objects found in the specified directory.
1951 * dirpath - Path of directory to process.
1952 * must_exist - If True, it is an error if diropen() fails to open
1953 * the given directory. Of False, we quietly ignore it and return.
1954 * abs_path - If True, files are loaded using their literal paths.
1955 * If False, their module name is extracted from the dirpath
1956 * and a path based search is used to locate it.
1959 elfedit_load_moddir(const char *dirpath
, int must_exist
, int abs_path
)
1961 char path
[PATH_MAX
+ 1];
1966 dir
= opendir(dirpath
);
1970 if (!must_exist
&& (err
== ENOENT
))
1972 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTOPNDIR
),
1973 dirpath
, strerror(err
));
1977 while (dp
= readdir(dir
)) {
1978 if ((tail
= path_is_so(dp
->d_name
)) != NULL
) {
1980 (void) snprintf(path
, sizeof (path
),
1981 MSG_ORIG(MSG_FMT_BLDPATH
), dirpath
,
1984 (void) elfedit_basename(dp
->d_name
, tail
,
1985 path
, sizeof (path
));
1987 (void) elfedit_load_module(path
, must_exist
, 1);
1990 (void) closedir(dir
);
1995 * Follow the module load path, and load the first module found for each
1999 elfedit_load_modpath(void)
2003 for (i
= 0; i
< state
.modpath
.n
; i
++)
2004 elfedit_load_moddir(state
.modpath
.seg
[i
], 0, 0);
2008 * Given a module definition, look for the specified command.
2009 * Returns the command if found, and NULL otherwise.
2011 static elfeditGC_cmd_t
*
2012 find_cmd(elfeditGC_module_t
*mod
, const char *name
)
2014 elfeditGC_cmd_t
*cmd
;
2015 const char **cmd_name
;
2017 for (cmd
= mod
->mod_cmds
; cmd
->cmd_func
!= NULL
; cmd
++)
2018 for (cmd_name
= cmd
->cmd_name
; *cmd_name
; cmd_name
++)
2019 if (strcasecmp(name
, *cmd_name
) == 0) {
2020 if (cmd_name
!= cmd
->cmd_name
)
2021 elfedit_msg(ELFEDIT_MSG_DEBUG
,
2022 MSG_INTL(MSG_DEBUG_CMDALIAS
),
2023 mod
->mod_name
, *cmd_name
,
2024 mod
->mod_name
, *cmd
->cmd_name
);
2033 * Given a command name, return its command definition.
2036 * name - Command to be looked up
2037 * must_exist - If True, we consider it to be an error if the command
2038 * does not exist. If False, NULL is returned quietly in
2040 * mod_ret - NULL, or address of a variable to receive the
2041 * module definition block of the module containing
2045 * On success, returns a pointer to the command definition, and
2046 * if mod_ret is non-NULL, *mod_ret receives a pointer to the
2047 * module definition. On failure, must_exist determines the
2048 * action taken: If must_exist is True, an error is issued and
2049 * control does not return to the caller. If must_exist is False,
2050 * NULL is quietly returned.
2053 * A ':' in name is used to delimit the module and command names.
2054 * If it is omitted, or if it is the first non-whitespace character
2055 * in the name, then the built in sys: module is implied.
2058 elfedit_find_command(const char *name
, int must_exist
,
2059 elfeditGC_module_t
**mod_ret
)
2061 elfeditGC_module_t
*mod
;
2062 const char *mod_str
;
2063 const char *cmd_str
;
2064 char mod_buf
[ELFEDIT_MAXMODNAM
+ 1];
2066 elfeditGC_cmd_t
*cmd
;
2069 cmd_str
= strstr(name
, MSG_ORIG(MSG_STR_COLON
));
2070 if (cmd_str
== NULL
) { /* No module name -> sys: */
2071 mod_str
= MSG_ORIG(MSG_MOD_SYS
);
2073 } else if (cmd_str
== name
) { /* Empty module name -> sys: */
2074 mod_str
= MSG_ORIG(MSG_MOD_SYS
);
2075 cmd_str
++; /* Skip the colon */
2076 } else { /* Have both module and command */
2078 if (n
>= sizeof (mod_buf
)) {
2080 elfedit_msg(ELFEDIT_MSG_ERR
,
2081 MSG_INTL(MSG_ERR_MODNAMTOOLONG
), name
);
2084 (void) strlcpy(mod_buf
, name
, n
+ 1);
2089 /* Lookup/load module. Won't return on error */
2090 mod
= elfedit_load_module(mod_str
, must_exist
, 0);
2094 /* Locate the command */
2095 cmd
= find_cmd(mod
, cmd_str
);
2099 * Catch empty command in order to provide
2100 * a better error message.
2102 if (*cmd_str
== '\0') {
2103 elfedit_msg(ELFEDIT_MSG_ERR
,
2104 MSG_INTL(MSG_ERR_MODNOCMD
), mod_str
);
2106 elfedit_msg(ELFEDIT_MSG_ERR
,
2107 MSG_INTL(MSG_ERR_UNRECCMD
),
2112 if (mod_ret
!= NULL
)
2120 * Release all user command blocks found on state.ucmd
2123 free_user_cmds(void)
2127 while (state
.ucmd
.list
) {
2128 next
= state
.ucmd
.list
->ucmd_next
;
2129 free(state
.ucmd
.list
);
2130 state
.ucmd
.list
= next
;
2132 state
.ucmd
.tail
= NULL
;
2134 state
.cur_cmd
= NULL
;
2139 * Process all user command blocks found on state.ucmd, and then
2140 * remove them from the list.
2143 dispatch_user_cmds()
2146 elfedit_cmdret_t cmd_ret
;
2148 ucmd
= state
.ucmd
.list
;
2150 /* Do them, in order */
2151 for (; ucmd
; ucmd
= ucmd
->ucmd_next
) {
2152 state
.cur_cmd
= ucmd
;
2153 if (!state
.msg_jbuf
.active
)
2154 elfedit_msg(ELFEDIT_MSG_DEBUG
,
2155 MSG_INTL(MSG_DEBUG_EXECCMD
),
2156 ucmd
->ucmd_orig_str
);
2158 * The cmd_func field is the generic definition.
2159 * We need to cast it to the type that matches
2160 * the proper ELFCLASS before calling it.
2162 if (state
.elf
.elfclass
== ELFCLASS32
) {
2163 elfedit32_cmd_func_t
*cmd_func
=
2164 (elfedit32_cmd_func_t
*)
2165 ucmd
->ucmd_cmd
->cmd_func
;
2167 cmd_ret
= (* cmd_func
)(state
.elf
.obj_state
.s32
,
2168 ucmd
->ucmd_argc
, ucmd
->ucmd_argv
);
2170 elfedit64_cmd_func_t
*cmd_func
=
2171 (elfedit64_cmd_func_t
*)
2172 ucmd
->ucmd_cmd
->cmd_func
;
2174 cmd_ret
= (* cmd_func
)(state
.elf
.obj_state
.s64
,
2175 ucmd
->ucmd_argc
, ucmd
->ucmd_argv
);
2177 state
.cur_cmd
= NULL
;
2178 /* If a pager was started, wrap it up */
2179 elfedit_pager_cleanup();
2182 case ELFEDIT_CMDRET_MOD_OS_MACH
:
2184 * Inform the elfconst module that the machine
2185 * or osabi has has changed. It may be necessary
2186 * to fetch new strings from libconv.
2188 state
.elf
.elfconst_ehdr_change
= 1;
2190 case ELFEDIT_CMDRET_MOD
:
2192 * Command modified the output ELF image,
2193 * mark the file as needing a flush to disk.
2195 state
.file
.dirty
= 1;
2197 case ELFEDIT_CMDRET_FLUSH
:
2199 * Command flushed the output file,
2200 * clear the dirty bit.
2202 state
.file
.dirty
= 0;
2211 * Prepare a GETTOK_STATE struct for gettok().
2214 * gettok_state - gettok state block to use
2215 * str - Writable buffer to tokenize. Note that gettok()
2216 * is allowed to change the contents of this buffer.
2217 * inc_null_final - If the line ends in whitespace instead of
2218 * immediately hitting a NULL, and inc_null_final is TRUE,
2219 * then a null final token is generated. Otherwise trailing
2220 * whitespace is ignored.
2223 gettok_init(GETTOK_STATE
*gettok_state
, char *buf
, int inc_null_final
)
2225 gettok_state
->gtok_buf
= gettok_state
->gtok_cur_buf
= buf
;
2226 gettok_state
->gtok_inc_null_final
= inc_null_final
;
2227 gettok_state
->gtok_null_seen
= 0;
2232 * Locate the next token from the buffer.
2235 * gettok_state - State of gettok() operation. Initialized
2236 * by gettok_init(), and passed to gettok().
2239 * If a token is found, gettok_state->gtok_last_token is filled in
2240 * with the details and True (1) is returned. If no token is found,
2241 * False (1) is returned, and the contents of
2242 * gettok_state->gtok_last_token are undefined.
2245 * - The token returned references the memory in gettok_state->gtok_buf.
2246 * The caller should not modify the buffer until all such
2247 * pointers have been discarded.
2248 * - This routine will modify the contents of gettok_state->gtok_buf
2249 * as necessary to remove quotes and eliminate escape
2253 gettok(GETTOK_STATE
*gettok_state
)
2255 char *str
= gettok_state
->gtok_cur_buf
;
2257 int quote_ch
= '\0';
2259 /* Skip leading whitespace */
2260 while (isspace(*str
))
2265 * If user requested it, and there was whitespace at the
2266 * end, then generate one last null token.
2268 if (gettok_state
->gtok_inc_null_final
&&
2269 !gettok_state
->gtok_null_seen
) {
2270 gettok_state
->gtok_inc_null_final
= 0;
2271 gettok_state
->gtok_null_seen
= 1;
2272 gettok_state
->gtok_last_token
.tok_str
= str
;
2273 gettok_state
->gtok_last_token
.tok_len
= 0;
2274 gettok_state
->gtok_last_token
.tok_line_off
=
2275 str
- gettok_state
->gtok_buf
;
2278 gettok_state
->gtok_null_seen
= 1;
2283 * Read token: The standard delimiter is whitespace, but
2284 * we honor either single or double quotes. Also, we honor
2285 * backslash escapes.
2287 gettok_state
->gtok_last_token
.tok_str
= look
= str
;
2288 gettok_state
->gtok_last_token
.tok_line_off
=
2289 look
- gettok_state
->gtok_buf
;
2290 for (; *look
; look
++) {
2291 if (*look
== quote_ch
) { /* Terminates active quote */
2296 if (quote_ch
== '\0') { /* No quote currently active */
2297 if ((*look
== '\'') || (*look
== '"')) {
2298 quote_ch
= *look
; /* New active quote */
2306 * The semantics of the backslash character depends on
2307 * the quote style in use:
2308 * - Within single quotes, backslash is not
2309 * an escape character, and is taken literally.
2310 * - If outside of quotes, the backslash is an escape
2311 * character. The backslash is ignored and the
2312 * following character is taken literally, losing
2313 * any special properties it normally has.
2314 * - Within double quotes, backslash works like a
2315 * backslash escape within a C literal. Certain
2316 * escapes are recognized and replaced with their
2317 * special character. Any others are an error.
2319 if (*look
== '\\') {
2320 if (quote_ch
== '\'') {
2326 if (*look
== '\0') { /* Esc applied to NULL term? */
2327 elfedit_msg(ELFEDIT_MSG_ERR
,
2328 MSG_INTL(MSG_ERR_ESCEOL
));
2332 if (quote_ch
== '"') {
2333 int ch
= conv_translate_c_esc(&look
);
2336 elfedit_msg(ELFEDIT_MSG_ERR
,
2337 MSG_INTL(MSG_ERR_BADCESC
), *look
);
2339 look
--; /* for() will advance by 1 */
2349 /* Don't allow unterminated quoted tokens */
2350 if (quote_ch
!= '\0')
2351 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_UNTERMQUOTE
),
2354 gettok_state
->gtok_last_token
.tok_len
= str
-
2355 gettok_state
->gtok_last_token
.tok_str
;
2356 gettok_state
->gtok_null_seen
= *look
== '\0';
2357 if (!gettok_state
->gtok_null_seen
)
2360 gettok_state
->gtok_cur_buf
= look
;
2364 elfedit_str_to_c_literal(gettok_state
->gtok_last_token
.tok_str
,
2366 printf("< \tlen(%d) offset(%d)\n",
2367 gettok_state
->gtok_last_token
.tok_len
,
2368 gettok_state
->gtok_last_token
.tok_line_off
);
2376 * Tokenize the user command string, and return a pointer to the
2377 * TOK_STATE buffer maintained by this function. That buffer contains
2378 * the tokenized strings.
2381 * user_cmd_str - String to tokenize
2382 * len - # of characters in user_cmd_str to examine. If
2383 * (len < 0), then the complete string is processed
2384 * stopping with the NULL termination. Otherwise,
2385 * processing stops after len characters, and any
2386 * remaining characters are ignored.
2387 * inc_null_final - If True, and if user_cmd_str has whitespace
2388 * at the end following the last non-null token, then
2389 * a final null token will be included. If False, null
2390 * tokens are ignored.
2393 * This routine returns pointers to internally allocated memory.
2394 * The caller must not alter anything contained in the TOK_STATE
2395 * buffer returned. Furthermore, the the contents of TOK_STATE
2396 * are only valid until the next call to tokenize_user_cmd().
2399 tokenize_user_cmd(const char *user_cmd_str
, size_t len
, int inc_null_final
)
2401 #define INITIAL_TOK_ALLOC 5
2404 * As we parse the user command, we need temporary space to
2405 * hold the tokens. We do this by dynamically allocating a string
2406 * buffer and a token array, and doubling them as necessary. This
2407 * is a single threaded application, so static variables suffice.
2410 static TOK_STATE tokst
;
2412 GETTOK_STATE gettok_state
;
2416 * Make a copy we can modify. If (len == 0), take the entire
2417 * string. Otherwise limit it to the specified length.
2419 tokst
.tokst_cmd_len
= strlen(user_cmd_str
);
2420 if ((len
> 0) && (len
< tokst
.tokst_cmd_len
))
2421 tokst
.tokst_cmd_len
= len
;
2422 tokst
.tokst_cmd_len
++; /* Room for NULL termination */
2423 strbuf_ensure_size(&str
, tokst
.tokst_cmd_len
);
2424 (void) strlcpy(str
.buf
, user_cmd_str
, tokst
.tokst_cmd_len
);
2426 /* Trim off any newline character that might be present */
2427 if ((tokst
.tokst_cmd_len
> 1) &&
2428 (str
.buf
[tokst
.tokst_cmd_len
- 2] == '\n')) {
2429 tokst
.tokst_cmd_len
--;
2430 str
.buf
[tokst
.tokst_cmd_len
- 1] = '\0';
2433 /* Tokenize the user command string into tok struct */
2434 gettok_init(&gettok_state
, str
.buf
, inc_null_final
);
2435 tokst
.tokst_str_size
= 0; /* Space needed for token strings */
2436 for (tokst
.tokst_cnt
= 0; gettok(&gettok_state
) != 0;
2437 tokst
.tokst_cnt
++) {
2438 /* If we need more room, expand the token buffer */
2439 if (tokst
.tokst_cnt
>= tokst
.tokst_bufsize
) {
2440 n
= (tokst
.tokst_bufsize
== 0) ?
2441 INITIAL_TOK_ALLOC
: (tokst
.tokst_bufsize
* 2);
2442 tokst
.tokst_buf
= elfedit_realloc(
2443 MSG_INTL(MSG_ALLOC_TOKBUF
), tokst
.tokst_buf
,
2444 n
* sizeof (*tokst
.tokst_buf
));
2445 tokst
.tokst_bufsize
= n
;
2447 tokst
.tokst_str_size
+=
2448 gettok_state
.gtok_last_token
.tok_len
+ 1;
2449 tokst
.tokst_buf
[tokst
.tokst_cnt
] = gettok_state
.gtok_last_token
;
2451 /* fold the command token to lowercase */
2452 if (tokst
.tokst_cnt
> 0) {
2455 for (s
= tokst
.tokst_buf
[0].tok_str
; *s
; s
++)
2462 #undef INITIAL_TOK_ALLOC
2467 * Parse the user command string, and put an entry for it at the end
2471 parse_user_cmd(const char *user_cmd_str
)
2478 elfeditGC_module_t
*mod
;
2479 elfeditGC_cmd_t
*cmd
;
2482 * Break it into tokens. If there are none, then it is
2483 * an empty command and is ignored.
2485 tokst
= tokenize_user_cmd(user_cmd_str
, -1, 0);
2486 if (tokst
->tokst_cnt
== 0)
2489 /* Find the command. Won't return on error */
2490 cmd
= elfedit_find_command(tokst
->tokst_buf
[0].tok_str
, 1, &mod
);
2493 * If there is no ELF file being edited, then only commands
2494 * from the sys: module are allowed.
2496 if ((state
.file
.present
== 0) &&
2497 (strcmp(mod
->mod_name
, MSG_ORIG(MSG_MOD_SYS
)) != 0))
2498 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_NOFILSYSONLY
),
2499 mod
->mod_name
, cmd
->cmd_name
[0]);
2502 /* Allocate, fill in, and insert a USER_CMD_T block */
2503 n
= S_DROUND(sizeof (USER_CMD_T
));
2504 ucmd
= elfedit_malloc(MSG_INTL(MSG_ALLOC_UCMD
),
2505 n
+ (sizeof (char *) * (tokst
->tokst_cnt
- 1)) +
2506 tokst
->tokst_cmd_len
+ tokst
->tokst_str_size
);
2507 ucmd
->ucmd_next
= NULL
;
2508 ucmd
->ucmd_argc
= tokst
->tokst_cnt
- 1;
2509 /*LINTED E_BAD_PTR_CAST_ALIGN*/
2510 ucmd
->ucmd_argv
= (const char **)(n
+ (char *)ucmd
);
2511 ucmd
->ucmd_orig_str
= (char *)(ucmd
->ucmd_argv
+ ucmd
->ucmd_argc
);
2512 (void) strncpy(ucmd
->ucmd_orig_str
, user_cmd_str
, tokst
->tokst_cmd_len
);
2513 ucmd
->ucmd_mod
= mod
;
2514 ucmd
->ucmd_cmd
= cmd
;
2515 ucmd
->ucmd_ostyle_set
= 0;
2516 s
= ucmd
->ucmd_orig_str
+ tokst
->tokst_cmd_len
;
2517 for (n
= 1; n
< tokst
->tokst_cnt
; n
++) {
2518 len
= tokst
->tokst_buf
[n
].tok_len
+ 1;
2519 ucmd
->ucmd_argv
[n
- 1] = s
;
2520 (void) strncpy(s
, tokst
->tokst_buf
[n
].tok_str
, len
);
2523 if (state
.ucmd
.list
== NULL
) {
2524 state
.ucmd
.list
= state
.ucmd
.tail
= ucmd
;
2526 state
.ucmd
.tail
->ucmd_next
= ucmd
;
2527 state
.ucmd
.tail
= ucmd
;
2534 * Copy infile to a new file with the name given by outfile.
2537 create_outfile(const char *infile
, const char *outfile
)
2541 struct stat statbuf
;
2546 case -1: /* Unable to create process */
2549 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTFORK
),
2556 (void) execl(MSG_ORIG(MSG_STR_BINCP
),
2557 MSG_ORIG(MSG_STR_BINCP
), infile
, outfile
, NULL
);
2559 * exec() only returns on error. This is the child process,
2560 * so we want to stay away from the usual error mechanism
2561 * and handle things directly.
2565 (void) fprintf(stderr
, MSG_INTL(MSG_ERR_CNTEXEC
),
2566 MSG_ORIG(MSG_STR_ELFEDIT
),
2567 MSG_ORIG(MSG_STR_BINCP
), strerror(err
));
2573 /* This is the parent: Wait for the child to terminate */
2574 if (waitpid(pid
, &statloc
, 0) != pid
) {
2576 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTWAIT
),
2580 * If the child failed, then terminate the process. There is no
2581 * need for an error message, because the child will have taken
2584 if (!WIFEXITED(statloc
) || (WEXITSTATUS(statloc
) != 0))
2587 /* Make sure the copy allows user write access */
2588 if (stat(outfile
, &statbuf
) == -1) {
2590 (void) unlink(outfile
);
2591 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTSTAT
),
2592 outfile
, strerror(err
));
2594 if ((statbuf
.st_mode
& S_IWUSR
) == 0) {
2595 /* Only keep permission bits, and add user write */
2596 statbuf
.st_mode
|= S_IWUSR
;
2597 statbuf
.st_mode
&= 07777; /* Only keep the permission bits */
2598 if (chmod(outfile
, statbuf
.st_mode
) == -1) {
2600 (void) unlink(outfile
);
2601 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTCHMOD
),
2602 outfile
, strerror(err
));
2608 * Given a module path string, determine how long the resulting path will
2609 * be when all % tokens have been expanded.
2612 * path - Path for which expanded length is desired
2613 * origin_root - Root of $ORIGIN tree containing running elfedit program
2616 * Returns the value strlen() will give for the expanded path.
2619 modpath_strlen(const char *path
, const char *origin_root
)
2626 for (s
= path
; *s
!= '\0'; s
++) {
2630 case 'i': /* ISA of running elfedit */
2631 len
+= strlen(isa_i_str
);
2633 case 'I': /* "" for 32-bit, same as %i for 64 */
2634 len
+= strlen(isa_I_str
);
2636 case 'o': /* Insert default path */
2638 modpath_strlen(MSG_ORIG(MSG_STR_MODPATH
),
2641 case 'r': /* root of tree with running elfedit */
2642 len
+= strlen(origin_root
);
2645 case '%': /* %% is reduced to just '%' */
2648 default: /* All other % codes are reserved */
2649 elfedit_msg(ELFEDIT_MSG_ERR
,
2650 MSG_INTL(MSG_ERR_BADPATHCODE
), *s
);
2654 } else { /* Non-% character passes straight through */
2664 * Given a module path string, and a buffer large enough to hold the results,
2665 * fill the buffer with the expanded path.
2668 * path - Path for which expanded length is desired
2669 * origin_root - Root of tree containing running elfedit program
2670 * buf - Buffer to receive the result. buf must as large or larger
2671 * than the value given by modpath_strlen().
2674 * Returns pointer to location following the last character
2675 * written to buf. A NULL byte is written to that address.
2678 modpath_expand(const char *path
, const char *origin_root
, char *buf
)
2683 for (; *path
!= '\0'; path
++) {
2688 case 'i': /* ISA of running elfedit */
2691 case 'I': /* "" for 32-bit, same as %i for 64 */
2694 case 'o': /* Insert default path */
2695 buf
= modpath_expand(MSG_ORIG(MSG_STR_MODPATH
),
2699 cp_str
= origin_root
;
2701 case '%': /* %% is reduced to just '%' */
2704 default: /* All other % codes are reserved */
2705 elfedit_msg(ELFEDIT_MSG_ERR
,
2706 MSG_INTL(MSG_ERR_BADPATHCODE
), *path
);
2710 if ((cp_str
!= NULL
) && ((len
= strlen(cp_str
)) > 0)) {
2711 bcopy(cp_str
, buf
, len
);
2714 } else { /* Non-% character passes straight through */
2725 * Establish the module search path: state.modpath
2727 * The path used comes from the following sources, taking the first
2728 * one that has a value, and ignoring any others:
2730 * - ELFEDIT_PATH environment variable
2731 * - -L command line argument
2735 * path - NULL, or the value of the -L command line argument
2738 * state.modpath has been filled in
2741 establish_modpath(const char *cmdline_path
)
2743 char origin_root
[PATH_MAX
+ 1]; /* Where elfedit binary is */
2744 const char *path
; /* Initial path */
2745 char *expath
; /* Expanded path */
2749 path
= getenv(MSG_ORIG(MSG_STR_ENVVAR
));
2751 path
= cmdline_path
;
2753 path
= MSG_ORIG(MSG_STR_MODPATH
);
2757 * Root of tree containing running for running program. 32-bit elfedit
2758 * is installed in /usr/bin, and 64-bit elfedit is one level lower
2759 * in an ISA-specific subdirectory. So, we find the root by
2760 * getting the $ORGIN of the current running program, and trimming
2761 * off the last 2 (32-bit) or 3 (64-bit) directories.
2763 * On a standard system, this will simply yield '/'. However,
2764 * doing it this way allows us to run elfedit from a proto area,
2765 * and pick up modules from the same proto area instead of those
2766 * installed on the system.
2768 if (dlinfo(RTLD_SELF
, RTLD_DI_ORIGIN
, &origin_root
) == -1)
2769 elfedit_msg(ELFEDIT_MSG_ERR
, MSG_INTL(MSG_ERR_CNTGETORIGIN
));
2770 len
= (sizeof (char *) == 8) ? 3 : 2;
2771 src
= origin_root
+ strlen(origin_root
);
2772 while ((src
> origin_root
) && (len
> 0)) {
2773 if (*(src
- 1) == '/')
2781 * Calculate space needed to hold expanded path. Note that
2782 * this assumes that MSG_STR_MODPATH will never contain a '%o'
2783 * code, and so, the expansion is not recursive. The codes allowed
2785 * %i - ISA of running elfedit (sparc, sparcv9, etc)
2786 * %I - 64-bit ISA: Same as %i for 64-bit versions of elfedit,
2787 * but yields empty string for 32-bit ISAs.
2788 * %o - The original (default) path.
2789 * %r - Root of tree holding elfedit program.
2792 * A % followed by anything else is an error. This allows us to
2793 * add new codes in the future without backward compatability issues.
2795 len
= modpath_strlen(path
, origin_root
);
2797 expath
= elfedit_malloc(MSG_INTL(MSG_ALLOC_EXPATH
), len
+ 1);
2798 (void) modpath_expand(path
, origin_root
, expath
);
2801 * Count path segments, eliminate extra '/', and replace ':'
2804 state
.modpath
.n
= 1;
2805 for (src
= dst
= expath
; *src
; src
++) {
2807 switch (*(src
+ 1)) {
2817 } else if (src
!= dst
) {
2825 state
.modpath
.seg
= elfedit_malloc(MSG_INTL(MSG_ALLOC_PATHARR
),
2826 sizeof (state
.modpath
.seg
[0]) * state
.modpath
.n
);
2829 for (len
= 0; len
< state
.modpath
.n
; len
++) {
2831 state
.modpath
.seg
[len
] = MSG_ORIG(MSG_STR_DOT
);
2834 state
.modpath
.seg
[len
] = src
;
2835 src
+= strlen(src
) + 1;
2841 * When interactive (reading commands from a tty), we catch
2842 * SIGINT in order to restart the outer command loop.
2846 sigint_handler(int sig
, siginfo_t
*sip
, void *ucp
)
2848 /* Jump to the outer loop to resume */
2849 if (state
.msg_jbuf
.active
) {
2850 state
.msg_jbuf
.active
= 0;
2851 siglongjmp(state
.msg_jbuf
.env
, 1);
2859 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_BRIEF
));
2861 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL1
));
2862 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL2
));
2863 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL3
));
2864 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL4
));
2865 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL5
));
2866 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL6
));
2867 elfedit_msg(ELFEDIT_MSG_USAGE
, MSG_INTL(MSG_USAGE_DETAIL_LAST
));
2874 * In order to complete commands, we need to know about them,
2875 * which means that we need to force all the modules to be
2876 * loaded. This is a relatively expensive operation, so we use
2877 * this function, which avoids doing it more than once in a session.
2880 elfedit_cpl_load_modules(void)
2885 elfedit_load_modpath();
2886 loaded
= 1; /* Don't do it again */
2891 * Compare the token to the given string, and if they share a common
2892 * initial sequence, add the tail of string to the tecla command completion
2896 * cpldata - Current completion state
2897 * str - String to match against token
2898 * casefold - True to allow case insensitive completion, False
2899 * if case must match exactly.
2902 elfedit_cpl_match(void *cpldata
, const char *str
, int casefold
)
2904 ELFEDIT_CPL_STATE
*cstate
= (ELFEDIT_CPL_STATE
*) cpldata
;
2905 const char *cont_suffix
;
2906 const char *type_suffix
;
2909 * Reasons to return immediately:
2910 * - NULL strings have no completion value
2911 * - The string is shorter than the existing item being completed
2913 if ((str
== NULL
) || (*str
== '\0') ||
2914 ((cstate
->ecpl_token_len
!= 0) &&
2915 ((strlen(str
) < cstate
->ecpl_token_len
))))
2918 /* If the string does not share the existing prefix, don't use it */
2920 if (strncasecmp(cstate
->ecpl_token_str
, str
,
2921 cstate
->ecpl_token_len
) != 0)
2924 if (strncmp(cstate
->ecpl_token_str
, str
,
2925 cstate
->ecpl_token_len
) != 0)
2929 if (cstate
->ecpl_add_mod_colon
) {
2930 cont_suffix
= type_suffix
= MSG_ORIG(MSG_STR_COLON
);
2932 cont_suffix
= MSG_ORIG(MSG_STR_SPACE
);
2935 (void) cpl_add_completion(cstate
->ecpl_cpl
, cstate
->ecpl_line
,
2936 cstate
->ecpl_word_start
, cstate
->ecpl_word_end
,
2937 str
+ cstate
->ecpl_token_len
, type_suffix
, cont_suffix
);
2943 * Convenience wrapper on elfedit_cpl_match(): Format an unsigned
2944 * 32-bit integer as a string and enter the result for command completion.
2947 elfedit_cpl_ndx(void *cpldata
, uint_t ndx
)
2951 (void) snprintf(buf
.buf
, sizeof (buf
.buf
),
2952 MSG_ORIG(MSG_FMT_WORDVAL
), ndx
);
2953 elfedit_cpl_match(cpldata
, buf
.buf
, 0);
2958 * Compare the token to the names of the commands from the given module,
2959 * and if they share a common initial sequence, add the tail of string
2960 * to the tecla command completion buffer:
2963 * tok_buf - Token user has entered
2964 * tok_len - strlen(tok_buf)
2965 * mod - Module definition from which commands should be matched
2966 * cpl, line, word_start, word_end, cont_suffix - As documented
2967 * for gl_get_line() and cpl_add_completion.
2970 match_module_cmds(ELFEDIT_CPL_STATE
*cstate
, elfeditGC_module_t
*mod
)
2972 elfeditGC_cmd_t
*cmd
;
2973 const char **cmd_name
;
2975 for (cmd
= mod
->mod_cmds
; cmd
->cmd_func
!= NULL
; cmd
++)
2976 for (cmd_name
= cmd
->cmd_name
; *cmd_name
; cmd_name
++)
2977 elfedit_cpl_match(cstate
, *cmd_name
, 1);
2982 * Compare the token to the known module names, and add those that
2983 * match to the list of alternatives via elfedit_cpl_match().
2986 * load_all_modules - If True, causes all modules to be loaded
2987 * before processing is done. If False, only the modules
2988 * currently seen will be used.
2991 elfedit_cpl_module(void *cpldata
, int load_all_modules
)
2993 ELFEDIT_CPL_STATE
*cstate
= (ELFEDIT_CPL_STATE
*) cpldata
;
2996 if (load_all_modules
)
2997 elfedit_cpl_load_modules();
2999 for (modlist
= state
.modlist
; modlist
!= NULL
;
3000 modlist
= modlist
->ml_next
) {
3001 elfedit_cpl_match(cstate
, modlist
->ml_mod
->mod_name
, 1);
3007 * Compare the token to all the known commands, and add those that
3008 * match to the list of alternatives.
3011 * This routine will force modules to be loaded as necessary to
3012 * obtain the names it needs to match.
3015 elfedit_cpl_command(void *cpldata
)
3017 ELFEDIT_CPL_STATE
*cstate
= (ELFEDIT_CPL_STATE
*) cpldata
;
3018 ELFEDIT_CPL_STATE colon_state
;
3019 const char *colon_pos
;
3025 * Is there a colon in the command? If so, locate its offset within
3026 * the raw input line.
3028 for (colon_pos
= cstate
->ecpl_token_str
;
3029 *colon_pos
&& (*colon_pos
!= ':'); colon_pos
++)
3033 * If no colon was seen, then we are completing a module name,
3034 * or one of the commands from 'sys:'
3036 if (*colon_pos
== '\0') {
3038 * Setting cstate->add_mod_colon tells elfedit_cpl_match()
3039 * to add an implicit ':' to the names it matches. We use it
3040 * here so the user doesn't have to enter the ':' manually.
3041 * Hiding this in the opaque state instead of making it
3042 * an argument to that function gives us the ability to
3043 * change it later without breaking the published interface.
3045 cstate
->ecpl_add_mod_colon
= 1;
3046 elfedit_cpl_module(cpldata
, 1);
3047 cstate
->ecpl_add_mod_colon
= 0;
3049 /* Add bare (no sys: prefix) commands from the sys: module */
3050 match_module_cmds(cstate
,
3051 elfedit_load_module(MSG_ORIG(MSG_MOD_SYS
), 1, 0));
3057 * A colon was seen, so we have a module name. Extract the name,
3058 * substituting 'sys' for the case where the given name is empty.
3061 (void) strlcpy(buf
, MSG_ORIG(MSG_MOD_SYS
), sizeof (buf
));
3063 elfedit_strnbcpy(buf
, cstate
->ecpl_token_str
,
3064 colon_pos
- cstate
->ecpl_token_str
, sizeof (buf
));
3067 * Locate the module. If it isn't already loaded, make an explicit
3068 * attempt to load it and try again. If a module definition is
3069 * obtained, process the commands it supplies.
3071 modlist
= module_loaded(buf
, &insdef
);
3072 if (modlist
== NULL
) {
3073 (void) elfedit_load_module(buf
, 0, 0);
3074 modlist
= module_loaded(buf
, &insdef
);
3076 if (modlist
!= NULL
) {
3078 * Make a copy of the cstate, and adjust the line and
3079 * token so that the new one starts just past the colon
3080 * character. We know that the colon exists because
3081 * of the preceeding test that found it. Therefore, we do
3082 * not need to test against running off the end of the
3085 colon_state
= *cstate
;
3086 while (colon_state
.ecpl_line
[colon_state
.ecpl_word_start
] !=
3088 colon_state
.ecpl_word_start
++;
3089 while (*colon_state
.ecpl_token_str
!= ':') {
3090 colon_state
.ecpl_token_str
++;
3091 colon_state
.ecpl_token_len
--;
3093 /* Skip past the ':' character */
3094 colon_state
.ecpl_word_start
++;
3095 colon_state
.ecpl_token_str
++;
3096 colon_state
.ecpl_token_len
--;
3098 match_module_cmds(&colon_state
, modlist
->ml_mod
);
3104 * Command completion function for use with libtacla.
3108 cmd_match_fcn(WordCompletion
*cpl
, void *data
, const char *line
, int word_end
)
3110 const char *argv
[ELFEDIT_MAXCPLARGS
];
3111 ELFEDIT_CPL_STATE cstate
;
3115 elfeditGC_module_t
*mod
;
3116 elfeditGC_cmd_t
*cmd
;
3120 elfedit_cmd_optarg_t
*optarg
;
3121 elfedit_optarg_item_t item
;
3122 int ostyle_ndx
= -1;
3125 * For debugging, enable the following block. It tells the tecla
3126 * library that the program using is going to write to stdout.
3127 * It will put the tty back into normal mode, and it will cause
3128 * tecla to redraw the current input line when it gets control back.
3130 #ifdef DEBUG_CMD_MATCH
3131 gl_normal_io(state
.input
.gl
);
3135 * Tokenize the line up through word_end. The last token in
3136 * the list is the one requiring completion.
3138 tokst
= tokenize_user_cmd(line
, word_end
, 1);
3139 if (tokst
->tokst_cnt
== 0)
3142 /* Set up the cstate block, containing the completion state */
3143 ndx
= tokst
->tokst_cnt
- 1; /* Index of token to complete */
3144 cstate
.ecpl_cpl
= cpl
;
3145 cstate
.ecpl_line
= line
;
3146 cstate
.ecpl_word_start
= tokst
->tokst_buf
[ndx
].tok_line_off
;
3147 cstate
.ecpl_word_end
= word_end
;
3148 cstate
.ecpl_add_mod_colon
= 0;
3149 cstate
.ecpl_token_str
= tokst
->tokst_buf
[ndx
].tok_str
;
3150 cstate
.ecpl_token_len
= tokst
->tokst_buf
[ndx
].tok_len
;
3153 * If there is only one token, then we are completing the
3157 elfedit_cpl_command(&cstate
);
3162 * There is more than one token. Use the first one to
3163 * locate the definition for the command. If we don't have
3164 * a definition for the command, then there's nothing more
3167 cmd
= elfedit_find_command(tokst
->tokst_buf
[0].tok_str
, 0, &mod
);
3172 * Since we know the command, give them a quick usage message.
3173 * It may be that they just need a quick reminder about the form
3174 * of the command and the options.
3176 (void) gl_normal_io(state
.input
.gl
);
3177 elfedit_printf(MSG_INTL(MSG_USAGE_CMD
),
3178 elfedit_format_command_usage(mod
, cmd
, NULL
, 0));
3182 * We have a generous setting for ELFEDIT_MAXCPLARGS, so there
3183 * should always be plenty of room. If there's not room, we
3186 if (ndx
>= ELFEDIT_MAXCPLARGS
)
3190 * Put pointers to the tokens into argv, and determine how
3191 * many of the tokens are optional arguments.
3193 * We consider the final optional argument to be the rightmost
3194 * argument that starts with a '-'. If a '--' is seen, then
3195 * we stop there, and any argument that follows is a plain argument
3196 * (even if it starts with '-').
3198 * We look for an inherited '-o' option, because we are willing
3199 * to supply command completion for these values.
3204 for (i
= 0; i
< ndx
; i
++) {
3205 argv
[i
] = tokst
->tokst_buf
[i
+ 1].tok_str
;
3206 if (opt_term_seen
|| skip_one
) {
3212 if ((strcmp(argv
[i
], MSG_ORIG(MSG_STR_MINUS_MINUS
)) == 0) ||
3213 (*argv
[i
] != '-')) {
3219 * If it is a recognised ELFEDIT_CMDOA_F_VALUE option,
3220 * then the item following it is the associated value.
3221 * Check for this and skip the value.
3223 * At the same time, look for STDOA_OPT_O inherited
3224 * options. We want to identify the index of any such
3225 * item. Although the option is simply "-o", we are willing
3226 * to treat any option that starts with "-o" as a potential
3227 * STDOA_OPT_O. This lets us to command completion for things
3228 * like "-onum", and is otherwise harmless, the only cost
3229 * being a few additional strcmps by the cpl code.
3231 if ((optarg
= cmd
->cmd_opt
) == NULL
)
3233 while (optarg
->oa_name
!= NULL
) {
3234 int is_ostyle_optarg
=
3235 (optarg
->oa_flags
& ELFEDIT_CMDOA_F_INHERIT
) &&
3236 (optarg
->oa_name
== ELFEDIT_STDOA_OPT_O
);
3238 elfedit_next_optarg(&optarg
, &item
);
3239 if (item
.oai_flags
& ELFEDIT_CMDOA_F_VALUE
) {
3240 if (is_ostyle_optarg
&& (strncmp(argv
[i
],
3241 MSG_ORIG(MSG_STR_MINUS_O
), 2) == 0))
3244 if (strcmp(item
.oai_name
, argv
[i
]) == 0) {
3250 * If it didn't match "-o" exactly, but it is
3251 * ostyle_ndx, then it is a potential combined
3252 * STDOA_OPT_O, as discussed above. It counts
3253 * as a single argument.
3255 if (ostyle_ndx
== ndx
)
3261 #ifdef DEBUG_CMD_MATCH
3262 (void) printf("NDX(%d) NUM_OPT(%d) ostyle_ndx(%d)\n", ndx
, num_opt
,
3266 if (ostyle_ndx
!= -1) {
3268 * If ostyle_ndx is one less than ndx, and ndx is
3269 * the same as num_opt, then we have a definitive
3270 * STDOA_OPT_O inherited outstyle option. We supply
3271 * the value strings, and are done.
3273 if ((ostyle_ndx
== (ndx
- 1)) && (ndx
== num_opt
)) {
3274 elfedit_cpl_atoconst(&cstate
, ELFEDIT_CONST_OUTSTYLE
);
3279 * If ostyle is the same as ndx, then we have an option
3280 * staring with "-o" that may end up being a STDOA_OPT_O,
3281 * and we are still inside that token. In this case, we
3282 * supply completion strings that include the leading
3283 * "-o" followed by the values, without a space
3284 * (i.e. "-onum"). We then fall through, allowing any
3285 * other options starting with "-o" to be added
3286 * below. elfedit_cpl_match() will throw out the incorrect
3287 * options, so it is harmless to add these extra items in
3288 * the worst case, and useful otherwise.
3290 if (ostyle_ndx
== ndx
)
3291 elfedit_cpl_atoconst(&cstate
,
3292 ELFEDIT_CONST_OUTSTYLE_MO
);
3296 * If (ndx <= num_opt), then the token needing completion
3297 * is an option. If the leading '-' is there, then we should fill
3298 * in all of the option alternatives. If anything follows the '-'
3299 * though, we assume that the user has already figured out what
3300 * option to use, and we leave well enough alone.
3302 * Note that we are intentionally ignoring a related case
3303 * where supplying option strings would be legal: In the case
3304 * where we are one past the last option (ndx == (num_opt + 1)),
3305 * and the current option is an empty string, the argument can
3306 * be either a plain argument or an option --- the user needs to
3307 * enter the next character before we can tell. It would be
3308 * OK to enter the option strings in this case. However, consider
3309 * what happens when the first plain argument to the command does
3310 * not provide any command completion (e.g. it is a plain integer).
3311 * In this case, tecla will see that all the alternatives start
3312 * with '-', and will insert a '-' into the input. If the user
3313 * intends the next argument to be plain, they will have to delete
3314 * this '-', which is annoying. Worse than that, they may be confused
3315 * by it, and think that the plain argument is not allowed there.
3316 * The best solution is to not supply option strings unless the
3317 * user first enters the '-'.
3319 if ((ndx
<= num_opt
) && (argv
[ndx
- 1][0] == '-')) {
3320 if ((optarg
= cmd
->cmd_opt
) != NULL
) {
3321 while (optarg
->oa_name
!= NULL
) {
3322 elfedit_next_optarg(&optarg
, &item
);
3323 elfedit_cpl_match(&cstate
, item
.oai_name
, 1);
3330 * At this point we know that ndx and num_opt are not equal.
3331 * If num_opt is larger than ndx, then we have an ELFEDIT_CMDOA_F_VALUE
3332 * argument at the end, and the following value has not been entered.
3334 * If ndx is greater than num_opt, it means that we are looking
3335 * at a plain argument (or in the case where (ndx == (num_opt + 1)),
3336 * a *potential* plain argument.
3338 * If the command has a completion function registered, then we
3339 * hand off the remaining work to it. The cmd_cplfunc field is
3340 * the generic definition. We need to cast it to the type that matches
3341 * the proper ELFCLASS before calling it.
3343 if (state
.elf
.elfclass
== ELFCLASS32
) {
3344 elfedit32_cmdcpl_func_t
*cmdcpl_func
=
3345 (elfedit32_cmdcpl_func_t
*)cmd
->cmd_cplfunc
;
3347 if (cmdcpl_func
!= NULL
)
3348 (* cmdcpl_func
)(state
.elf
.obj_state
.s32
,
3349 &cstate
, ndx
, argv
, num_opt
);
3351 elfedit64_cmdcpl_func_t
*cmdcpl_func
=
3352 (elfedit64_cmdcpl_func_t
*)cmd
->cmd_cplfunc
;
3354 if (cmdcpl_func
!= NULL
)
3355 (* cmdcpl_func
)(state
.elf
.obj_state
.s64
,
3356 &cstate
, ndx
, argv
, num_opt
);
3364 * Read a line of input from stdin, and return pointer to it.
3366 * This routine uses a private buffer, so the contents of the returned
3367 * string are only good until the next call.
3374 if (state
.input
.full_tty
) {
3375 state
.input
.in_tecla
= TRUE
;
3376 s
= gl_get_line(state
.input
.gl
,
3377 MSG_ORIG(MSG_STR_PROMPT
), NULL
, -1);
3378 state
.input
.in_tecla
= FALSE
;
3380 * gl_get_line() returns NULL for EOF or for error. EOF is fine,
3381 * but we need to catch and report anything else. Since
3382 * reading from stdin is critical to our operation, an
3383 * error implies that we cannot recover and must exit.
3386 (gl_return_status(state
.input
.gl
) == GLR_ERROR
)) {
3387 elfedit_msg(ELFEDIT_MSG_FATAL
, MSG_INTL(MSG_ERR_GLREAD
),
3388 gl_error_message(state
.input
.gl
, NULL
, 0));
3392 * This should be a dynamically sized buffer, but for now,
3393 * I'm going to take a simpler path.
3395 static char cmd_buf
[ELFEDIT_MAXCMD
+ 1];
3397 s
= fgets(cmd_buf
, sizeof (cmd_buf
), stdin
);
3400 /* Return user string, or 'quit' on EOF */
3401 return (s
? s
: MSG_ORIG(MSG_SYS_CMD_QUIT
));
3405 main(int argc
, char **argv
, char **envp
)
3408 * Note: This function can use setjmp()/longjmp() which does
3409 * not preserve the values of auto/register variables. Hence,
3410 * variables that need their values preserved across a jump must
3411 * be marked volatile, or must not be auto/register.
3413 * Volatile can be messy, because it requires explictly casting
3414 * away the attribute when passing it to functions, or declaring
3415 * those functions with the attribute as well. In a single threaded
3416 * program like this one, an easier approach is to make things
3417 * static. That can be done here, or by putting things in the
3418 * 'state' structure.
3423 char **batch_list
= NULL
;
3424 const char *modpath
= NULL
;
3427 * Always have liblddb display unclipped section names.
3428 * This global is exported by liblddb, and declared in debug.h.
3430 dbg_desc
->d_extra
|= DBG_E_LONG
;
3433 while ((c
= getopt(argc
, argv
, MSG_ORIG(MSG_STR_OPTIONS
))) != EOF
) {
3436 state
.flags
|= ELFEDIT_F_AUTOPRINT
;
3440 state
.flags
|= ELFEDIT_F_DEBUG
;
3445 * Delay parsing the -e options until after the call to
3446 * conv_check_native() so that we won't bother loading
3447 * modules of the wrong class.
3449 if (batch_list
== NULL
)
3450 batch_list
= elfedit_malloc(
3451 MSG_INTL(MSG_ALLOC_BATCHLST
),
3452 sizeof (*batch_list
) * (argc
- 1));
3453 batch_list
[num_batch
++] = optarg
;
3461 if (elfedit_atooutstyle(optarg
, &state
.outstyle
) == 0)
3466 state
.flags
|= ELFEDIT_F_READONLY
;
3475 * We allow 0, 1, or 2 files:
3477 * The no-file case is an extremely limited mode, in which the
3478 * only commands allowed to execute come from the sys: module.
3479 * This mode exists primarily to allow easy access to the help
3482 * To get full access to elfedit's capablities, there must
3483 * be an input file. If this is not a readonly
3484 * session, then an optional second output file is allowed.
3486 * In the case where two files are given and the session is
3487 * readonly, use a full usage message, because the simple
3488 * one isn't enough for the user to understand their error.
3489 * Otherwise, the simple usage message suffices.
3491 argc
= argc
- optind
;
3492 if ((argc
== 2) && (state
.flags
& ELFEDIT_F_READONLY
))
3497 state
.file
.present
= (argc
!= 0);
3500 * If we have a file to edit, and unless told otherwise by the
3501 * caller, we try to run the 64-bit version of this program
3502 * when the system is capable of it. If that fails, then we
3503 * continue on with the currently running version.
3505 * To force 32-bit execution on a 64-bit host, set the
3506 * LD_NOEXEC_64 environment variable to a non-empty value.
3508 * There is no reason to bother with this if in "no file" mode.
3510 if (state
.file
.present
!= 0)
3511 (void) conv_check_native(argv
, envp
);
3513 elfedit_msg(ELFEDIT_MSG_DEBUG
, MSG_INTL(MSG_DEBUG_VERSION
),
3514 (sizeof (char *) == 8) ? 64 : 32);
3517 * Put a module definition for the builtin system module on the
3518 * module list. We know it starts out empty, so we do not have
3519 * to go through a more general insertion process than this.
3521 state
.modlist
= elfedit_sys_init(ELFEDIT_VER_CURRENT
);
3523 /* Establish the search path for loadable modules */
3524 establish_modpath(modpath
);
3527 * Now that we are running the final version of this program,
3528 * deal with the input/output file(s).
3530 if (state
.file
.present
== 0) {
3532 * This is arbitrary --- we simply need to be able to
3533 * load modules so that we can access their help strings
3534 * and command completion functions. Without a file, we
3535 * will refuse to call commands from any module other
3536 * than sys. Those commands have been written to be aware
3537 * of the case where there is no input file, and are
3538 * therefore safe to run.
3540 state
.elf
.elfclass
= ELFCLASS32
;
3541 elfedit_msg(ELFEDIT_MSG_DEBUG
, MSG_INTL(MSG_DEBUG_NOFILE
));
3544 state
.file
.infile
= argv
[optind
];
3546 state
.file
.outfile
= state
.file
.infile
;
3547 if (state
.flags
& ELFEDIT_F_READONLY
)
3548 elfedit_msg(ELFEDIT_MSG_DEBUG
,
3549 MSG_INTL(MSG_DEBUG_READONLY
));
3551 elfedit_msg(ELFEDIT_MSG_DEBUG
,
3552 MSG_INTL(MSG_DEBUG_INPLACEWARN
),
3555 state
.file
.outfile
= argv
[optind
+ 1];
3556 create_outfile(state
.file
.infile
, state
.file
.outfile
);
3557 elfedit_msg(ELFEDIT_MSG_DEBUG
,
3558 MSG_INTL(MSG_DEBUG_CPFILE
),
3559 state
.file
.infile
, state
.file
.outfile
);
3561 * We are editing a copy of the original file that we
3562 * just created. If we should exit before the edits are
3563 * updated, then we want to unlink this copy so that we
3564 * don't leave junk lying around. Once an update
3565 * succeeds however, we'll leave it in place even
3566 * if an error occurs afterwards.
3568 state
.file
.unlink_on_exit
= 1;
3569 optind
++; /* Edit copy instead of the original */
3572 init_obj_state(state
.file
.outfile
);
3579 * If any -e options were used, then do them and
3580 * immediately exit. On error, exit immediately without
3581 * updating the target ELF file. On success, the 'write'
3582 * and 'quit' commands are implicit in this mode.
3584 * If no -e options are used, read commands from stdin.
3585 * quit must be explicitly used. Exit is implicit on EOF.
3586 * If stdin is a tty, then errors do not cause the editor
3587 * to terminate. Rather, the error message is printed, and the
3588 * user prompted to continue.
3590 if (batch_list
!= NULL
) { /* -e was used */
3591 /* Compile the commands */
3592 for (i
= 0; i
< num_batch
; i
++)
3593 parse_user_cmd(batch_list
[i
]);
3597 * 'write' and 'quit' are implicit in this mode.
3600 if ((state
.flags
& ELFEDIT_F_READONLY
) == 0)
3601 parse_user_cmd(MSG_ORIG(MSG_SYS_CMD_WRITE
));
3602 parse_user_cmd(MSG_ORIG(MSG_SYS_CMD_QUIT
));
3604 /* And run them. This won't return, thanks to the 'quit' */
3605 dispatch_user_cmds();
3607 state
.input
.is_tty
= isatty(fileno(stdin
));
3608 state
.input
.full_tty
= state
.input
.is_tty
&&
3609 isatty(fileno(stdout
));
3611 if (state
.input
.full_tty
) {
3612 struct sigaction act
;
3614 act
.sa_sigaction
= sigint_handler
;
3615 (void) sigemptyset(&act
.sa_mask
);
3617 if (sigaction(SIGINT
, &act
, NULL
) == -1) {
3619 elfedit_msg(ELFEDIT_MSG_ERR
,
3620 MSG_INTL(MSG_ERR_SIGACTION
), strerror(err
));
3623 * If pager process exits before we are done
3624 * writing, we can see SIGPIPE. Prevent it
3625 * from killing the process.
3627 (void) sigignore(SIGPIPE
);
3629 /* Open tecla handle for command line editing */
3630 state
.input
.gl
= new_GetLine(ELFEDIT_MAXCMD
,
3632 /* Register our command completion function */
3633 (void) gl_customize_completion(state
.input
.gl
,
3634 NULL
, cmd_match_fcn
);
3637 * Make autoprint the default for interactive
3640 state
.flags
|= ELFEDIT_F_AUTOPRINT
;
3644 * If this is an interactive session, then use
3645 * sigsetjmp()/siglongjmp() to recover from bad
3646 * commands and keep going. A non-0 return from
3647 * sigsetjmp() means that an error just occurred.
3648 * In that case, we simply restart this loop.
3650 if (state
.input
.is_tty
) {
3651 if (sigsetjmp(state
.msg_jbuf
.env
, 1) != 0) {
3652 if (state
.input
.full_tty
)
3653 gl_abandon_line(state
.input
.gl
);
3656 state
.msg_jbuf
.active
= TRUE
;
3660 * Force all output out before each command.
3661 * This is a no-OP when a tty is in use, but
3662 * in a pipeline, it ensures that the block
3663 * mode buffering doesn't delay output past
3664 * the completion of each command.
3666 * If we didn't do this, the output would eventually
3667 * arrive at its destination, but the lag can be
3668 * annoying when you pipe the output into a tool
3669 * that displays the results in real time.
3671 (void) fflush(stdout
);
3672 (void) fflush(stderr
);
3674 parse_user_cmd(read_cmd());
3675 dispatch_user_cmds();
3676 state
.msg_jbuf
.active
= FALSE
;