4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 1988 AT&T
26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
30 * Copyright (c) 2014 by Delphix. All rights reserved.
34 * Utility routines for run-time linker. some are duplicated here from libc
35 * (with different names) to avoid name space collisions.
37 #include <sys/systeminfo.h>
40 #include <sys/types.h>
43 #include <sys/debug.h>
60 * Null function used as place where a debugger can set a breakpoint.
63 rtld_db_dlactivity(Lm_list
*lml
)
65 DBG_CALL(Dbg_util_dbnotify(lml
, r_debug
.rtd_rdebug
.r_rdevent
,
66 r_debug
.rtd_rdebug
.r_state
));
70 * Null function used as place where debugger can set a pre .init
71 * processing breakpoint.
74 rtld_db_preinit(Lm_list
*lml
)
76 DBG_CALL(Dbg_util_dbnotify(lml
, r_debug
.rtd_rdebug
.r_rdevent
,
77 r_debug
.rtd_rdebug
.r_state
));
81 * Null function used as place where debugger can set a post .init
82 * processing breakpoint.
85 rtld_db_postinit(Lm_list
*lml
)
87 DBG_CALL(Dbg_util_dbnotify(lml
, r_debug
.rtd_rdebug
.r_rdevent
,
88 r_debug
.rtd_rdebug
.r_state
));
92 * Debugger Event Notification
94 * This function centralizes all debugger event notification (ala rtld_db).
96 * There's a simple intent, focused on insuring the primary link-map control
97 * list (or each link-map list) is consistent, and the indication that objects
98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE
99 * event are posted for each of these, most debuggers don't care, as their
100 * view is that these events simply convey an "inconsistent" state.
102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
105 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
106 * required later (RT_FL_DBNOTIF):
108 * i. the first time we add or delete an object to the primary link-map
110 * ii. the first time we move a secondary link-map control list to the primary
111 * link-map control list (effectively, this is like adding a group of
112 * objects to the primary link-map control list).
114 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set):
116 * i. each time we leave the runtime linker.
119 rd_event(Lm_list
*lml
, rd_event_e event
, r_state_e state
)
121 void (*fptr
)(Lm_list
*);
125 fptr
= rtld_db_preinit
;
128 fptr
= rtld_db_postinit
;
134 * Do we need to send a notification?
136 if ((rtld_flags
& RT_FL_DBNOTIF
) == 0)
138 rtld_flags
&= ~RT_FL_DBNOTIF
;
143 * If we are already in an inconsistent state, no
144 * notification is required.
146 if (rtld_flags
& RT_FL_DBNOTIF
)
148 rtld_flags
|= RT_FL_DBNOTIF
;
151 fptr
= rtld_db_dlactivity
;
155 * RD_NONE - do nothing
161 * Set event state and call 'notification' function.
163 * The debugging clients have previously been told about these
164 * notification functions and have set breakpoints on them if they
165 * are interested in the notification.
167 r_debug
.rtd_rdebug
.r_state
= state
;
168 r_debug
.rtd_rdebug
.r_rdevent
= event
;
170 r_debug
.rtd_rdebug
.r_rdevent
= RD_NONE
;
173 #if defined(__sparc) || defined(__x86)
177 * This function is invoked to 'remove' arguments that were passed in on the
178 * stack. This is most likely if ld.so.1 was invoked directly. In that case
179 * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
180 * Which means we then need to slide everything above it on the stack down
183 * While the stack layout is platform specific - it just so happens that __x86,
184 * and __sparc platforms share the following initial stack layout.
186 * !_______________________! high addresses
191 * !_______________________!
193 * !_______________________!
198 * !_______________________!
200 * !_______________________!
204 * ! (one word each) !
205 * !_______________________!
207 * !_______________________!
208 * ! Argument ! low addresses
211 * !_______________________!
214 * !_______________________!
219 stack_cleanup(char **argv
, char ***envp
, auxv_t
**auxv
, int rmcnt
)
223 char **oargv
, **nargv
;
224 char **oenvp
, **nenvp
;
225 auxv_t
*oauxv
, *nauxv
;
228 * Slide ARGV[] and update argc. The argv pointer remains the same,
229 * however slide the applications arguments over the arguments to
233 oargv
= &argv
[rmcnt
];
235 for (ndx
= 0; oargv
[ndx
]; ndx
++)
236 nargv
[ndx
] = oargv
[ndx
];
237 nargv
[ndx
] = oargv
[ndx
];
239 argc
= (long *)((uintptr_t)argv
- sizeof (long *));
243 * Slide ENVP[], and update the environment array pointer.
250 for (ndx
= 0; oenvp
[ndx
]; ndx
++)
251 nenvp
[ndx
] = oenvp
[ndx
];
252 nenvp
[ndx
] = oenvp
[ndx
];
255 * Slide AUXV[], and update the aux vector pointer.
258 nauxv
= (auxv_t
*)&nenvp
[ndx
];
259 oauxv
= (auxv_t
*)&oenvp
[ndx
];
262 for (ndx
= 0; (oauxv
[ndx
].a_type
!= AT_NULL
); ndx
++)
263 nauxv
[ndx
] = oauxv
[ndx
];
264 nauxv
[ndx
] = oauxv
[ndx
];
268 * Verify that the above routine is appropriate for any new platforms.
270 #error unsupported architecture!
274 * Compare function for PathNode AVL tree.
277 pnavl_compare(const void *n1
, const void *n2
)
280 const char *st1
, *st2
;
283 hash1
= ((PathNode
*)n1
)->pn_hash
;
284 hash2
= ((PathNode
*)n2
)->pn_hash
;
291 st1
= ((PathNode
*)n1
)->pn_name
;
292 st2
= ((PathNode
*)n2
)->pn_name
;
294 rc
= strcmp(st1
, st2
);
303 * Create an AVL tree.
306 pnavl_create(size_t size
)
310 if ((avlt
= malloc(sizeof (avl_tree_t
))) == NULL
)
312 avl_create(avlt
, pnavl_compare
, size
, SGSOFFSETOF(PathNode
, pn_avl
));
317 * Determine whether a PathNode is recorded.
320 pnavl_recorded(avl_tree_t
**pnavl
, const char *name
, uint_t hash
,
326 * Create the avl tree if required.
328 if ((*pnavl
== NULL
) &&
329 ((*pnavl
= pnavl_create(sizeof (PathNode
))) == NULL
))
333 if ((pn
.pn_hash
= hash
) == 0)
334 pn
.pn_hash
= sgs_str_hash(name
);
336 if (avl_find(*pnavl
, &pn
, where
) == NULL
)
343 * Determine if a pathname has already been recorded on the full path name
344 * AVL tree. This tree maintains a node for each path name that ld.so.1 has
345 * successfully loaded. If the path name does not exist in this AVL tree, then
346 * the next insertion point is deposited in "where". This value can be used by
347 * fpavl_insert() to expedite the insertion.
350 fpavl_recorded(Lm_list
*lml
, const char *name
, uint_t hash
, avl_index_t
*where
)
352 FullPathNode fpn
, *fpnp
;
355 * Create the avl tree if required.
357 if ((lml
->lm_fpavl
== NULL
) &&
358 ((lml
->lm_fpavl
= pnavl_create(sizeof (FullPathNode
))) == NULL
))
361 fpn
.fpn_node
.pn_name
= name
;
362 if ((fpn
.fpn_node
.pn_hash
= hash
) == 0)
363 fpn
.fpn_node
.pn_hash
= sgs_str_hash(name
);
365 if ((fpnp
= avl_find(lml
->lm_fpavl
, &fpn
, where
)) == NULL
)
368 return (fpnp
->fpn_lmp
);
372 * Insert a name into the FullPathNode AVL tree for the link-map list. The
373 * objects NAME() is the path that would have originally been searched for, and
374 * is therefore the name to associate with any "where" value. If the object has
375 * a different PATHNAME(), perhaps because it has resolved to a different file
376 * (see fullpath()), then this name will be recorded as a separate FullPathNode
380 fpavl_insert(Lm_list
*lml
, Rt_map
*lmp
, const char *name
, avl_index_t where
)
383 uint_t hash
= sgs_str_hash(name
);
387 Rt_map
*_lmp
= fpavl_recorded(lml
, name
, hash
, &where
);
390 * We better not get a hit now, we do not want duplicates in
393 ASSERT(_lmp
== NULL
);
397 * Insert new node in tree.
399 if ((fpnp
= calloc(sizeof (FullPathNode
), 1)) == NULL
)
402 fpnp
->fpn_node
.pn_name
= name
;
403 fpnp
->fpn_node
.pn_hash
= hash
;
406 if (aplist_append(&FPNODE(lmp
), fpnp
, AL_CNT_FPNODE
) == NULL
) {
411 ASSERT(lml
->lm_fpavl
!= NULL
);
412 avl_insert(lml
->lm_fpavl
, fpnp
, where
);
417 * Remove an object from the FullPathNode AVL tree.
420 fpavl_remove(Rt_map
*lmp
)
425 for (APLIST_TRAVERSE(FPNODE(lmp
), idx
, fpnp
)) {
426 avl_remove(LIST(lmp
)->lm_fpavl
, fpnp
);
434 * Insert a path name into the not-found AVL tree.
436 * This tree maintains a node for each path name that ld.so.1 has explicitly
437 * inspected, but has failed to load during a single ld.so.1 operation. If the
438 * path name does not exist in this AVL tree, then the next insertion point is
439 * deposited in "where". This value can be used by nfavl_insert() to expedite
443 nfavl_insert(const char *name
, avl_index_t where
)
446 uint_t hash
= sgs_str_hash(name
);
450 int in_nfavl
= pnavl_recorded(&nfavl
, name
, hash
, &where
);
453 * We better not get a hit now, we do not want duplicates in
456 ASSERT(in_nfavl
== 0);
460 * Insert new node in tree.
462 if ((pnp
= calloc(sizeof (PathNode
), 1)) != NULL
) {
465 avl_insert(nfavl
, pnp
, where
);
470 * Insert the directory name, of a full path name, into the secure path AVL
473 * This tree is used to maintain a list of directories in which the dependencies
474 * of a secure process have been found. This list provides a fall-back in the
475 * case that a $ORIGIN expansion is deemed insecure, when the expansion results
476 * in a path name that has already provided dependencies.
479 spavl_insert(const char *name
)
481 char buffer
[PATH_MAX
], *str
;
488 * Separate the directory name from the path name.
490 if ((str
= strrchr(name
, '/')) == name
)
495 (void) strncpy(buffer
, name
, size
);
497 hash
= sgs_str_hash(buffer
);
500 * Determine whether this directory name is already recorded, or if
501 * not, 'where" will provide the insertion point for the new string.
503 if (pnavl_recorded(&spavl
, buffer
, hash
, &where
))
507 * Insert new node in tree.
509 if ((pnp
= calloc(sizeof (PathNode
), 1)) != NULL
) {
510 pnp
->pn_name
= strdup(buffer
);
512 avl_insert(spavl
, pnp
, where
);
517 * Inspect the generic string AVL tree for the given string. If the string is
518 * not present, duplicate it, and insert the string in the AVL tree. Return the
519 * duplicated string to the caller.
521 * These strings are maintained for the life of ld.so.1 and represent path
522 * names, file names, and search paths. All other AVL trees that maintain
523 * FullPathNode and not-found path names use the same string pointer
524 * established for this string.
526 static avl_tree_t
*stravl
= NULL
;
527 static char *strbuf
= NULL
;
528 static PathNode
*pnbuf
= NULL
;
529 static size_t strsize
= 0, pnsize
= 0;
532 stravl_insert(const char *name
, uint_t hash
, size_t nsize
, int substr
)
539 * Create the avl tree if required.
541 if ((stravl
== NULL
) &&
542 ((stravl
= pnavl_create(sizeof (PathNode
))) == NULL
))
546 * Determine the string size if not provided by the caller.
549 nsize
= strlen(name
) + 1;
552 * The string passed to us may be a multiple path string for
553 * which we only need the first component. Using the provided
554 * size, strip out the required string.
556 (void) strncpy(str
, name
, nsize
);
557 str
[nsize
- 1] = '\0';
562 * Allocate a PathNode buffer if one doesn't exist, or any existing
563 * buffer has been used up.
565 if ((pnbuf
== NULL
) || (sizeof (PathNode
) > pnsize
)) {
567 if ((pnbuf
= dz_map(0, 0, pnsize
, (PROT_READ
| PROT_WRITE
),
568 MAP_PRIVATE
)) == MAP_FAILED
)
572 * Determine whether this string already exists.
574 pnbuf
->pn_name
= name
;
575 if ((pnbuf
->pn_hash
= hash
) == 0)
576 pnbuf
->pn_hash
= sgs_str_hash(name
);
578 if ((pnp
= avl_find(stravl
, pnbuf
, &where
)) != NULL
)
579 return (pnp
->pn_name
);
582 * Allocate a string buffer if one does not exist, or if there is
583 * insufficient space for the new string in any existing buffer.
585 if ((strbuf
== NULL
) || (nsize
> strsize
)) {
586 strsize
= S_ROUND(nsize
, syspagsz
);
588 if ((strbuf
= dz_map(0, 0, strsize
, (PROT_READ
| PROT_WRITE
),
589 MAP_PRIVATE
)) == MAP_FAILED
)
593 (void) memcpy(strbuf
, name
, nsize
);
595 pnp
->pn_name
= strbuf
;
596 avl_insert(stravl
, pnp
, where
);
601 pnsize
-= sizeof (PathNode
);
602 return (pnp
->pn_name
);
606 * Prior to calling an object, either via a .plt or through dlsym(), make sure
607 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire
608 * init's in the correct order, however, this order is typically based on needed
609 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can
610 * still occur and result in bindings that were not captured during topological
611 * sorting. This routine compensates for this lack of binding information, and
612 * provides for dynamic .init firing.
615 is_dep_init(Rt_map
*dlmp
, Rt_map
*clmp
)
620 * If the caller is an auditor, and the destination isn't, then don't
621 * run any .inits (see comments in load_completion()).
623 if ((LIST(clmp
)->lm_tflags
& LML_TFLG_NOAUDIT
) &&
624 ((LIST(dlmp
)->lm_tflags
& LML_TFLG_NOAUDIT
) == 0))
627 if ((dlmp
== clmp
) || (rtld_flags
& RT_FL_INITFIRST
))
630 (void) rt_mutex_lock(&dlmp
->rt_lock
);
631 while (dlmp
->rt_init_thread
!= rt_thr_self() && (FLAGS(dlmp
) &
632 (FLG_RT_RELOCED
| FLG_RT_INITCALL
| FLG_RT_INITDONE
)) ==
633 (FLG_RT_RELOCED
| FLG_RT_INITCALL
)) {
634 leave(LIST(dlmp
), 0);
635 (void) _lwp_cond_wait(&dlmp
->rt_cv
, (mutex_t
*)&dlmp
->rt_lock
);
636 (void) rt_mutex_unlock(&dlmp
->rt_lock
);
638 (void) rt_mutex_lock(&dlmp
->rt_lock
);
640 (void) rt_mutex_unlock(&dlmp
->rt_lock
);
642 if ((FLAGS(dlmp
) & (FLG_RT_RELOCED
| FLG_RT_INITDONE
)) ==
643 (FLG_RT_RELOCED
| FLG_RT_INITDONE
))
646 if ((tobj
= calloc(2, sizeof (Rt_map
*))) != NULL
) {
648 call_init(tobj
, DBG_INIT_DYN
);
653 * Execute .{preinit|init|fini}array sections
656 call_array(Addr
*array
, uint_t arraysz
, Rt_map
*lmp
, Word shtype
)
658 int start
, stop
, incr
, ndx
;
659 uint_t arraycnt
= (uint_t
)(arraysz
/ sizeof (Addr
));
665 * initarray & preinitarray are walked from beginning to end - while
666 * finiarray is walked from end to beginning.
668 if (shtype
== SHT_FINI_ARRAY
) {
669 start
= arraycnt
- 1;
678 * Call the .*array[] entries
680 for (ndx
= start
; ndx
!= stop
; ndx
+= incr
) {
682 void (*fptr
)(void) = (void(*)())array
[ndx
];
684 DBG_CALL(Dbg_util_call_array(lmp
, (void *)fptr
, ndx
, shtype
));
686 APPLICATION_ENTER(rtldflags
);
690 APPLICATION_RETURN(rtldflags
);
695 * Execute any .init sections. These are passed to us in an lmp array which
696 * (by default) will have been sorted.
699 call_init(Rt_map
**tobj
, int flag
)
701 Rt_map
**_tobj
, **_nobj
;
702 static APlist
*pending
= NULL
;
705 * If we're in the middle of an INITFIRST, this must complete before
706 * any new init's are fired. In this case add the object list to the
707 * pending queue and return. We'll pick up the queue after any
708 * INITFIRST objects have their init's fired.
710 if (rtld_flags
& RT_FL_INITFIRST
) {
711 (void) aplist_append(&pending
, tobj
, AL_CNT_PENDING
);
716 * Traverse the tobj array firing each objects init.
718 for (_tobj
= _nobj
= tobj
, _nobj
++; *_tobj
!= NULL
; _tobj
++, _nobj
++) {
719 Rt_map
*lmp
= *_tobj
;
720 void (*iptr
)() = INIT(lmp
);
722 if (FLAGS(lmp
) & FLG_RT_INITCALL
)
725 FLAGS(lmp
) |= FLG_RT_INITCALL
;
726 lmp
->rt_init_thread
= rt_thr_self();
729 * Establish an initfirst state if necessary - no other inits
730 * will be fired (because of additional relocation bindings)
731 * when in this state.
733 if (FLAGS(lmp
) & FLG_RT_INITFRST
)
734 rtld_flags
|= RT_FL_INITFIRST
;
736 if (INITARRAY(lmp
) || iptr
)
737 DBG_CALL(Dbg_util_call_init(lmp
, flag
));
742 APPLICATION_ENTER(rtldflags
);
746 APPLICATION_RETURN(rtldflags
);
749 call_array(INITARRAY(lmp
), INITARRAYSZ(lmp
), lmp
,
752 if (INITARRAY(lmp
) || iptr
)
753 DBG_CALL(Dbg_util_call_init(lmp
, DBG_INIT_DONE
));
756 * Set the initdone flag regardless of whether this object
757 * actually contains an .init section. This flag prevents us
758 * from processing this section again for an .init and also
759 * signifies that a .fini must be called should it exist.
760 * Clear the sort field for use in later .fini processing.
762 (void) rt_mutex_lock(&lmp
->rt_lock
);
763 FLAGS(lmp
) |= FLG_RT_INITDONE
;
764 lmp
->rt_init_thread
= (thread_t
)0;
765 (void) _lwp_cond_broadcast(&lmp
->rt_cv
);
766 (void) rt_mutex_unlock(&lmp
->rt_lock
);
770 * If we're firing an INITFIRST object, and other objects must
771 * be fired which are not INITFIRST, make sure we grab any
772 * pending objects that might have been delayed as this
773 * INITFIRST was processed.
775 if ((rtld_flags
& RT_FL_INITFIRST
) &&
776 ((*_nobj
== NULL
) || !(FLAGS(*_nobj
) & FLG_RT_INITFRST
))) {
780 rtld_flags
&= ~RT_FL_INITFIRST
;
782 for (APLIST_TRAVERSE(pending
, idx
, pobj
)) {
783 aplist_delete(pending
, &idx
);
784 call_init(pobj
, DBG_INIT_PEND
);
792 * Call .fini sections for the topologically sorted list of objects. This
793 * routine is called from remove_hdl() for any objects being torn down as part
794 * of a dlclose() operation, and from atexit() processing for all the remaining
795 * objects within the process.
798 call_fini(Lm_list
*lml
, Rt_map
**tobj
, Rt_map
*clmp
)
802 for (_tobj
= tobj
; *_tobj
!= NULL
; _tobj
++) {
803 Rt_map
*lmp
= *_tobj
;
806 * Only fire a .fini if the objects corresponding .init has
807 * completed. We collect all .fini sections of objects that
808 * had their .init collected, but that doesn't mean that at
809 * the time of collection, that the .init had completed.
811 if (FLAGS(lmp
) & FLG_RT_INITDONE
) {
812 void (*fptr
)(void) = FINI(lmp
);
814 if (FINIARRAY(lmp
) || fptr
)
815 DBG_CALL(Dbg_util_call_fini(lmp
));
817 call_array(FINIARRAY(lmp
), FINIARRAYSZ(lmp
), lmp
,
823 APPLICATION_ENTER(rtldflags
);
827 APPLICATION_RETURN(rtldflags
);
832 * Skip main, this is explicitly called last in atexit_fini().
834 if (FLAGS(lmp
) & FLG_RT_ISMAIN
)
838 * This object has exercised its last instructions (regardless
839 * of whether it will be unmapped or not). Audit this closure.
841 if ((lml
->lm_tflags
& LML_TFLG_NOAUDIT
) == 0)
842 audit_objclose(lmp
, clmp
);
845 DBG_CALL(Dbg_bind_plt_summary(lml
, M_MACH
, pltcnt21d
, pltcnt24d
,
846 pltcntu32
, pltcntu44
, pltcntfull
, pltcntfar
));
852 * Function called by atexit(3C). Calls all .fini sections within the objects
853 * that make up the process. As .fini processing is the last opportunity for
854 * any new bindings to be established, this is also a convenient location to
855 * check for unused objects.
866 rtld_flags
|= RT_FL_ATEXIT
;
869 lml
->lm_flags
|= LML_FLG_ATEXIT
;
870 lml
->lm_flags
&= ~LML_FLG_INTRPOSETSORT
;
871 lmp
= (Rt_map
*)lml
->lm_head
;
874 * Reverse topologically sort the main link-map for .fini execution.
876 if (((tobj
= tsort(lmp
, lml
->lm_obj
, RT_SORT_FWD
)) != NULL
) &&
877 (tobj
!= (Rt_map
**)S_ERROR
))
878 call_fini(lml
, tobj
, NULL
);
881 * Now that all .fini code has been run, see what unreferenced objects
887 * Traverse any alternative link-map lists, looking for non-auditors.
889 for (APLIST_TRAVERSE(dynlm_list
, idx
, lml
)) {
891 * Ignore the base-link-map list, which has already been
892 * processed, the runtime linkers link-map list, which is
893 * processed last, and any auditors.
895 if ((lml
->lm_flags
& (LML_FLG_BASELM
| LML_FLG_RTLDLM
)) ||
896 (lml
->lm_tflags
& LML_TFLG_AUD_MASK
) ||
897 ((lmp
= (Rt_map
*)lml
->lm_head
) == NULL
))
900 lml
->lm_flags
|= LML_FLG_ATEXIT
;
901 lml
->lm_flags
&= ~LML_FLG_INTRPOSETSORT
;
904 * Reverse topologically sort the link-map for .fini execution.
906 if (((tobj
= tsort(lmp
, lml
->lm_obj
, RT_SORT_FWD
)) != NULL
) &&
907 (tobj
!= (Rt_map
**)S_ERROR
))
908 call_fini(lml
, tobj
, NULL
);
914 * Add an explicit close to main and ld.so.1. Although main's .fini is
915 * collected in call_fini() to provide for FINITARRAY processing, its
916 * audit_objclose is explicitly skipped. This provides for it to be
917 * called last, here. This is the reverse of the explicit calls to
918 * audit_objopen() made in setup().
921 lmp
= (Rt_map
*)lml
->lm_head
;
923 if ((lml
->lm_tflags
| AFLAGS(lmp
)) & LML_TFLG_AUD_MASK
) {
924 audit_objclose((Rt_map
*)lml_rtld
.lm_head
, lmp
);
925 audit_objclose(lmp
, lmp
);
929 * Traverse any alternative link-map lists, looking for non-auditors.
931 for (APLIST_TRAVERSE(dynlm_list
, idx
, lml
)) {
933 * Ignore the base-link-map list, which has already been
934 * processed, the runtime linkers link-map list, which is
935 * processed last, and any non-auditors.
937 if ((lml
->lm_flags
& (LML_FLG_BASELM
| LML_FLG_RTLDLM
)) ||
938 ((lml
->lm_tflags
& LML_TFLG_AUD_MASK
) == 0) ||
939 ((lmp
= (Rt_map
*)lml
->lm_head
) == NULL
))
942 lml
->lm_flags
|= LML_FLG_ATEXIT
;
943 lml
->lm_flags
&= ~LML_FLG_INTRPOSETSORT
;
946 * Reverse topologically sort the link-map for .fini execution.
948 if (((tobj
= tsort(lmp
, lml
->lm_obj
, RT_SORT_FWD
)) != NULL
) &&
949 (tobj
!= (Rt_map
**)S_ERROR
))
950 call_fini(lml
, tobj
, NULL
);
956 * Finally reverse topologically sort the runtime linkers link-map for
960 lml
->lm_flags
|= LML_FLG_ATEXIT
;
961 lml
->lm_flags
&= ~LML_FLG_INTRPOSETSORT
;
962 lmp
= (Rt_map
*)lml
->lm_head
;
964 if (((tobj
= tsort(lmp
, lml
->lm_obj
, RT_SORT_FWD
)) != NULL
) &&
965 (tobj
!= (Rt_map
**)S_ERROR
))
966 call_fini(lml
, tobj
, NULL
);
972 * This routine is called to complete any runtime linker activity which may have
973 * resulted in objects being loaded. This is called from all user entry points
974 * and from any internal dl*() requests.
977 load_completion(Rt_map
*nlmp
)
979 Rt_map
**tobj
= NULL
;
983 * Establish any .init processing. Note, in a world of lazy loading,
984 * objects may have been loaded regardless of whether the users request
985 * was fulfilled (i.e., a dlsym() request may have failed to find a
986 * symbol but objects might have been loaded during its search). Thus,
987 * any tsorting starts from the nlmp (new link-maps) pointer and not
988 * necessarily from the link-map that may have satisfied the request.
990 * Note, the primary link-map has an initialization phase where dynamic
991 * .init firing is suppressed. This provides for a simple and clean
992 * handshake with the primary link-maps libc, which is important for
993 * establishing uberdata. In addition, auditors often obtain handles
994 * to primary link-map objects as the objects are loaded, so as to
995 * inspect the link-map for symbols. This inspection is allowed without
996 * running any code on the primary link-map, as running this code may
997 * reenter the auditor, who may not yet have finished its own
1003 if (nlmp
&& nlml
->lm_init
&& ((nlml
!= &lml_main
) ||
1004 (rtld_flags2
& (RT_FL2_PLMSETUP
| RT_FL2_NOPLM
)))) {
1005 if ((tobj
= tsort(nlmp
, nlml
->lm_init
,
1006 RT_SORT_REV
)) == (Rt_map
**)S_ERROR
)
1011 * Make sure any alternative link-map retrieves any external interfaces
1012 * and initializes threads.
1014 if (nlmp
&& (nlml
!= &lml_main
)) {
1015 (void) rt_get_extern(nlml
, nlmp
);
1020 * Traverse the list of new link-maps and register any dynamic TLS.
1021 * This storage is established for any objects not on the primary
1022 * link-map, and for any objects added to the primary link-map after
1023 * static TLS has been registered.
1025 if (nlmp
&& nlml
->lm_tls
&& ((nlml
!= &lml_main
) ||
1026 (rtld_flags2
& (RT_FL2_PLMSETUP
| RT_FL2_NOPLM
)))) {
1029 for (lmp
= nlmp
; lmp
; lmp
= NEXT_RT_MAP(lmp
)) {
1030 if (PTTLS(lmp
) && PTTLS(lmp
)->p_memsz
)
1031 tls_modaddrem(lmp
, TM_FLG_MODADD
);
1040 call_init(tobj
, DBG_INIT_SORT
);
1044 * Append an item to the specified link map control list.
1047 lm_append(Lm_list
*lml
, Aliste lmco
, Rt_map
*lmp
)
1053 * Indicate that this link-map list has a new object.
1058 * If we're about to add a new object to the main link-map control
1059 * list, alert the debuggers. Additions of individual objects to the
1060 * main link-map control list occur during initial setup as the
1061 * applications immediate dependencies are loaded. Additional objects
1062 * are loaded on the main link-map control list after they have been
1063 * fully initialized on an alternative link-map control list. See
1066 if (lmco
== ALIST_OFF_DATA
)
1067 rd_event(lml
, RD_DLACTIVITY
, RT_ADD
);
1070 lmc
= (Lm_cntl
*)alist_item_by_offset(lml
->lm_lists
, lmco
);
1073 * A link-map list header points to one of more link-map control lists
1074 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is
1075 * the list of relocated objects. Other lists maintain objects that
1076 * are still being analyzed or relocated. This list provides the core
1077 * link-map list information used by all ld.so.1 routines.
1079 if (lmc
->lc_head
== NULL
) {
1081 * If this is the first link-map for the given control list,
1082 * initialize the list.
1084 lmc
->lc_head
= lmc
->lc_tail
= lmp
;
1087 } else if (FLAGS(lmp
) & FLG_RT_OBJINTPO
) {
1091 * If this is an interposer then append the link-map following
1092 * any other interposers (these are objects that have been
1093 * previously preloaded, or were identified with -z interpose).
1094 * Interposers can only be inserted on the first link-map
1095 * control list, as once relocation has started, interposition
1096 * from new interposers can't be guaranteed.
1098 * NOTE: We do not interpose on the head of a list. This model
1099 * evolved because dynamic executables have already been fully
1100 * relocated within themselves and thus can't be interposed on.
1101 * Nowadays it's possible to have shared objects at the head of
1102 * a list, which conceptually means they could be interposed on.
1103 * But, shared objects can be created via dldump() and may only
1104 * be partially relocated (just relatives), in which case they
1105 * are interposable, but are marked as fixed (ET_EXEC).
1107 * Thus we really don't have a clear method of deciding when the
1108 * head of a link-map is interposable. So, to be consistent,
1109 * for now only add interposers after the link-map lists head
1112 for (tlmp
= NEXT_RT_MAP(lmc
->lc_head
); tlmp
;
1113 tlmp
= NEXT_RT_MAP(tlmp
)) {
1115 if (FLAGS(tlmp
) & FLG_RT_OBJINTPO
)
1119 * Insert the new link-map before this non-interposer,
1120 * and indicate an interposer is found.
1122 NEXT(PREV_RT_MAP(tlmp
)) = (Link_map
*)lmp
;
1123 PREV(lmp
) = PREV(tlmp
);
1125 NEXT(lmp
) = (Link_map
*)tlmp
;
1126 PREV(tlmp
) = (Link_map
*)lmp
;
1128 lmc
->lc_flags
|= LMC_FLG_REANALYZE
;
1135 * Fall through to appending the new link map to the tail of the list.
1136 * If we're processing the initial objects of this link-map list, add
1137 * them to the backward compatibility list.
1140 NEXT(lmc
->lc_tail
) = (Link_map
*)lmp
;
1141 PREV(lmp
) = (Link_map
*)lmc
->lc_tail
;
1146 * Having added this link-map to a control list, indicate which control
1147 * list the link-map belongs to. Note, control list information is
1148 * always maintained as an offset, as the Alist can be reallocated.
1153 * Indicate if an interposer is found. Note that the first object on a
1154 * link-map can be explicitly defined as an interposer so that it can
1155 * provide interposition over direct binding requests.
1157 if (FLAGS(lmp
) & MSK_RT_INTPOSE
)
1158 lml
->lm_flags
|= LML_FLG_INTRPOSE
;
1161 * For backward compatibility with debuggers, the link-map list contains
1162 * pointers to the main control list.
1164 if (lmco
== ALIST_OFF_DATA
) {
1165 lml
->lm_head
= lmc
->lc_head
;
1166 lml
->lm_tail
= lmc
->lc_tail
;
1171 * Delete an item from the specified link map control list.
1174 lm_delete(Lm_list
*lml
, Rt_map
*lmp
, Rt_map
*clmp
)
1179 * If the control list pointer hasn't been initialized, this object
1180 * never got added to a link-map list.
1186 * If we're about to delete an object from the main link-map control
1187 * list, alert the debuggers.
1189 if (CNTL(lmp
) == ALIST_OFF_DATA
)
1190 rd_event(lml
, RD_DLACTIVITY
, RT_DELETE
);
1193 * If we're being audited tell the audit library that we're
1194 * about to go deleting dependencies.
1196 if (clmp
&& (aud_activity
||
1197 ((LIST(clmp
)->lm_tflags
| AFLAGS(clmp
)) & LML_TFLG_AUD_ACTIVITY
)))
1198 audit_activity(clmp
, LA_ACT_DELETE
);
1201 lmc
= (Lm_cntl
*)alist_item_by_offset(lml
->lm_lists
, CNTL(lmp
));
1203 if (lmc
->lc_head
== lmp
)
1204 lmc
->lc_head
= NEXT_RT_MAP(lmp
);
1206 NEXT(PREV_RT_MAP(lmp
)) = (void *)NEXT(lmp
);
1208 if (lmc
->lc_tail
== lmp
)
1209 lmc
->lc_tail
= PREV_RT_MAP(lmp
);
1211 PREV(NEXT_RT_MAP(lmp
)) = PREV(lmp
);
1214 * For backward compatibility with debuggers, the link-map list contains
1215 * pointers to the main control list.
1217 if (lmc
== (Lm_cntl
*)&lml
->lm_lists
->al_data
) {
1218 lml
->lm_head
= lmc
->lc_head
;
1219 lml
->lm_tail
= lmc
->lc_tail
;
1223 * Indicate we have one less object on this control list.
1229 * Move a link-map control list to another. Objects that are being relocated
1230 * are maintained on secondary control lists. Once their relocation is
1231 * complete, the entire list is appended to the previous control list, as this
1232 * list must have been the trigger for generating the new control list.
1235 lm_move(Lm_list
*lml
, Aliste nlmco
, Aliste plmco
, Lm_cntl
*nlmc
, Lm_cntl
*plmc
)
1240 * If we're about to add a new family of objects to the main link-map
1241 * control list, alert the debuggers. Additions of object families to
1242 * the main link-map control list occur during lazy loading, filtering
1245 if (plmco
== ALIST_OFF_DATA
)
1246 rd_event(lml
, RD_DLACTIVITY
, RT_ADD
);
1248 DBG_CALL(Dbg_file_cntl(lml
, nlmco
, plmco
));
1251 * Indicate each new link-map has been moved to the previous link-map
1254 for (lmp
= nlmc
->lc_head
; lmp
; lmp
= NEXT_RT_MAP(lmp
)) {
1258 * If these objects are being added to the main link-map
1259 * control list, indicate that there are init's available
1262 if (plmco
== ALIST_OFF_DATA
) {
1264 lml
->lm_flags
|= LML_FLG_OBJADDED
;
1269 * Move the new link-map control list, to the callers link-map control
1272 if (plmc
->lc_head
== NULL
) {
1273 plmc
->lc_head
= nlmc
->lc_head
;
1274 PREV(nlmc
->lc_head
) = NULL
;
1276 NEXT(plmc
->lc_tail
) = (Link_map
*)nlmc
->lc_head
;
1277 PREV(nlmc
->lc_head
) = (Link_map
*)plmc
->lc_tail
;
1280 plmc
->lc_tail
= nlmc
->lc_tail
;
1281 nlmc
->lc_head
= nlmc
->lc_tail
= NULL
;
1284 * For backward compatibility with debuggers, the link-map list contains
1285 * pointers to the main control list.
1287 if (plmco
== ALIST_OFF_DATA
) {
1288 lml
->lm_head
= plmc
->lc_head
;
1289 lml
->lm_tail
= plmc
->lc_tail
;
1294 * Create, or assign a link-map control list. Each link-map list contains a
1295 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the
1296 * description in include/rtld.h). During the initial construction of a
1297 * process, objects are added to this main control list. This control list is
1298 * never deleted, unless an alternate link-map list has been requested (say for
1299 * auditors), and the associated objects could not be loaded or relocated.
1301 * Once relocation has started, any lazy loadable objects, or filtees, are
1302 * processed on a new, temporary control list. Only when these objects have
1303 * been fully relocated, are they moved to the main link-map control list.
1304 * Once the objects are moved, this temporary control list is deleted (see
1307 * A dlopen() always requires a new temporary link-map control list.
1308 * Typically, a dlopen() occurs on a link-map list that had already started
1309 * relocation, however, auditors can dlopen() objects on the main link-map
1310 * list while under initial construction, before any relocation has begun.
1311 * Hence, dlopen() requests are explicitly flagged.
1314 create_cntl(Lm_list
*lml
, int dlopen
)
1317 * If the head link-map object has already been relocated, create a
1318 * new, temporary, control list.
1320 if (dlopen
|| (lml
->lm_head
== NULL
) ||
1321 (FLAGS(lml
->lm_head
) & FLG_RT_RELOCED
)) {
1324 if ((lmc
= alist_append(&lml
->lm_lists
, NULL
, sizeof (Lm_cntl
),
1325 AL_CNT_LMLISTS
)) == NULL
)
1328 return ((Aliste
)((char *)lmc
- (char *)lml
->lm_lists
));
1331 return (ALIST_OFF_DATA
);
1335 * Environment variables can have a variety of defined permutations, and thus
1336 * the following infrastructure exists to allow this variety and to select the
1337 * required definition.
1339 * Environment variables can be defined as 32- or 64-bit specific, and if so
1340 * they will take precedence over any instruction set neutral form. Typically
1341 * this is only useful when the environment value is an informational string.
1343 * Environment variables may be obtained from the standard user environment or
1344 * from a configuration file. The latter provides a fallback if no user
1345 * environment setting is found, and can take two forms:
1347 * - a replaceable definition - this will be used if no user environment
1348 * setting has been seen, or
1350 * - an permanent definition - this will be used no matter what user
1351 * environment setting is seen. In the case of list variables it will be
1352 * appended to any process environment setting seen.
1354 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1355 * override any replaceable environment variables from a configuration file.
1357 static u_longlong_t rplgen
= 0; /* replaceable generic */
1359 static u_longlong_t rplisa
= 0; /* replaceable ISA specific */
1361 static u_longlong_t prmgen
= 0; /* permanent generic */
1363 static u_longlong_t prmisa
= 0; /* permanent ISA specific */
1365 static u_longlong_t cmdgen
= 0; /* command line (-e) generic */
1367 static u_longlong_t cmdisa
= 0; /* command line (-e) ISA */
1368 /* specific variables */
1371 * Classify an environment variables type.
1373 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */
1375 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */
1376 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */
1378 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */
1379 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */
1380 #define ENV_TYP_NULL 0x20 /* variable is null */
1383 * Identify all environment variables.
1385 #define ENV_FLG_AUDIT 0x0000000000001ULL
1386 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL
1387 #define ENV_FLG_BIND_NOW 0x0000000000004ULL
1388 #define ENV_FLG_BIND_NOT 0x0000000000008ULL
1389 #define ENV_FLG_BINDINGS 0x0000000000010ULL
1390 #define ENV_FLG_CONFGEN 0x0000000000020ULL
1391 #define ENV_FLG_CONFIG 0x0000000000040ULL
1392 #define ENV_FLG_DEBUG 0x0000000000080ULL
1393 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL
1394 #define ENV_FLG_DEMANGLE 0x0000000000200ULL
1395 #define ENV_FLG_FLAGS 0x0000000000400ULL
1396 #define ENV_FLG_INIT 0x0000000000800ULL
1397 #define ENV_FLG_LIBPATH 0x0000000001000ULL
1398 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL
1399 #define ENV_FLG_LOADFLTR 0x0000000004000ULL
1400 #define ENV_FLG_NOAUDIT 0x0000000008000ULL
1401 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL
1402 #define ENV_FLG_NOBAPLT 0x0000000020000ULL
1403 #define ENV_FLG_NOCONFIG 0x0000000040000ULL
1404 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL
1405 #define ENV_FLG_NODIRECT 0x0000000100000ULL
1406 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL
1407 #define ENV_FLG_NOLAZY 0x0000000400000ULL
1408 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL
1409 #define ENV_FLG_NOVERSION 0x0000001000000ULL
1410 #define ENV_FLG_PRELOAD 0x0000002000000ULL
1411 #define ENV_FLG_PROFILE 0x0000004000000ULL
1412 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL
1413 #define ENV_FLG_SIGNAL 0x0000010000000ULL
1414 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL
1415 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL
1416 #define ENV_FLG_UNREF 0x0000080000000ULL
1417 #define ENV_FLG_UNUSED 0x0000100000000ULL
1418 #define ENV_FLG_VERBOSE 0x0000200000000ULL
1419 #define ENV_FLG_WARN 0x0000400000000ULL
1420 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL
1421 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL
1422 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL
1423 #define ENV_FLG_NOPAREXT 0x0004000000000ULL
1424 #define ENV_FLG_HWCAP 0x0008000000000ULL
1425 #define ENV_FLG_SFCAP 0x0010000000000ULL
1426 #define ENV_FLG_MACHCAP 0x0020000000000ULL
1427 #define ENV_FLG_PLATCAP 0x0040000000000ULL
1428 #define ENV_FLG_CAP_FILES 0x0080000000000ULL
1429 #define ENV_FLG_DEFERRED 0x0100000000000ULL
1430 #define ENV_FLG_NOENVIRON 0x0200000000000ULL
1432 #define SEL_REPLACE 0x0001
1433 #define SEL_PERMANT 0x0002
1434 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */
1435 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */
1436 #define SEL_ACT_STR 0x0400 /* setting string value */
1437 #define SEL_ACT_LML 0x0800 /* setting lml_flags */
1438 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */
1439 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */
1440 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */
1443 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part
1444 * and len specifies its length (comparing a strings length before the string
1445 * itself speed things up). s2 points to the token itself which has already
1446 * had any leading white-space removed.
1449 ld_generic_env(const char *s1
, size_t len
, const char *s2
, Word
*lmflags
,
1450 Word
*lmtflags
, uint_t env_flags
, int aout
)
1452 u_longlong_t variable
= 0;
1453 ushort_t select
= 0;
1458 * Determine whether we're dealing with a replaceable or permanent
1461 if (env_flags
& ENV_TYP_PERMANT
) {
1463 * If the string is from a configuration file and defined as
1464 * permanent, assign it as permanent.
1466 select
|= SEL_PERMANT
;
1468 select
|= SEL_REPLACE
;
1471 * Parse the variable given.
1473 * The LD_AUDIT family.
1476 if ((len
== MSG_LD_AUDIT_SIZE
) && (strncmp(s1
,
1477 MSG_ORIG(MSG_LD_AUDIT
), MSG_LD_AUDIT_SIZE
) == 0)) {
1479 * Replaceable and permanent audit objects can exist.
1481 select
|= SEL_ACT_STR
;
1482 str
= (select
& SEL_REPLACE
) ? &rpl_audit
: &prm_audit
;
1483 variable
= ENV_FLG_AUDIT
;
1484 } else if ((len
== MSG_LD_AUDIT_ARGS_SIZE
) &&
1485 (strncmp(s1
, MSG_ORIG(MSG_LD_AUDIT_ARGS
),
1486 MSG_LD_AUDIT_ARGS_SIZE
) == 0)) {
1488 * A specialized variable for plt_exit() use, not
1489 * documented for general use.
1491 select
|= SEL_ACT_SPEC_2
;
1492 variable
= ENV_FLG_AUDIT_ARGS
;
1496 * The LD_BIND family.
1498 else if (*s1
== 'B') {
1499 if ((len
== MSG_LD_BIND_LAZY_SIZE
) && (strncmp(s1
,
1500 MSG_ORIG(MSG_LD_BIND_LAZY
),
1501 MSG_LD_BIND_LAZY_SIZE
) == 0)) {
1502 select
|= SEL_ACT_RT2
;
1503 val
= RT_FL2_BINDLAZY
;
1504 variable
= ENV_FLG_BIND_LAZY
;
1505 } else if ((len
== MSG_LD_BIND_NOW_SIZE
) && (strncmp(s1
,
1506 MSG_ORIG(MSG_LD_BIND_NOW
), MSG_LD_BIND_NOW_SIZE
) == 0)) {
1507 select
|= SEL_ACT_RT2
;
1508 val
= RT_FL2_BINDNOW
;
1509 variable
= ENV_FLG_BIND_NOW
;
1510 } else if ((len
== MSG_LD_BIND_NOT_SIZE
) && (strncmp(s1
,
1511 MSG_ORIG(MSG_LD_BIND_NOT
), MSG_LD_BIND_NOT_SIZE
) == 0)) {
1513 * Another trick, enabled to help debug AOUT
1514 * applications under BCP, but not documented for
1517 select
|= SEL_ACT_RT
;
1519 variable
= ENV_FLG_BIND_NOT
;
1520 } else if ((len
== MSG_LD_BINDINGS_SIZE
) && (strncmp(s1
,
1521 MSG_ORIG(MSG_LD_BINDINGS
), MSG_LD_BINDINGS_SIZE
) == 0)) {
1523 * This variable is simply for backward compatibility.
1524 * If this and LD_DEBUG are both specified, only one of
1525 * the strings is going to get processed.
1527 select
|= SEL_ACT_SPEC_2
;
1528 variable
= ENV_FLG_BINDINGS
;
1532 * LD_CAP_FILES and LD_CONFIG family.
1534 else if (*s1
== 'C') {
1535 if ((len
== MSG_LD_CAP_FILES_SIZE
) && (strncmp(s1
,
1536 MSG_ORIG(MSG_LD_CAP_FILES
), MSG_LD_CAP_FILES_SIZE
) == 0)) {
1537 select
|= SEL_ACT_STR
;
1538 str
= (select
& SEL_REPLACE
) ?
1539 &rpl_cap_files
: &prm_cap_files
;
1540 variable
= ENV_FLG_CAP_FILES
;
1541 } else if ((len
== MSG_LD_CONFGEN_SIZE
) && (strncmp(s1
,
1542 MSG_ORIG(MSG_LD_CONFGEN
), MSG_LD_CONFGEN_SIZE
) == 0)) {
1544 * This variable is not documented for general use.
1545 * Although originaly designed for internal use with
1546 * crle(1), this variable is in use by the Studio
1547 * auditing tools. Hence, it can't be removed.
1549 select
|= SEL_ACT_SPEC_2
;
1550 variable
= ENV_FLG_CONFGEN
;
1551 } else if ((len
== MSG_LD_CONFIG_SIZE
) && (strncmp(s1
,
1552 MSG_ORIG(MSG_LD_CONFIG
), MSG_LD_CONFIG_SIZE
) == 0)) {
1554 * Secure applications must use a default configuration
1555 * file. A setting from a configuration file doesn't
1556 * make sense (given we must be reading a configuration
1557 * file to have gotten this).
1559 if ((rtld_flags
& RT_FL_SECURE
) ||
1560 (env_flags
& ENV_TYP_CONFIG
))
1562 select
|= SEL_ACT_STR
;
1563 str
= &config
->c_name
;
1564 variable
= ENV_FLG_CONFIG
;
1568 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and
1571 else if (*s1
== 'D') {
1572 if ((len
== MSG_LD_DEBUG_SIZE
) && (strncmp(s1
,
1573 MSG_ORIG(MSG_LD_DEBUG
), MSG_LD_DEBUG_SIZE
) == 0)) {
1574 select
|= SEL_ACT_STR
;
1575 str
= (select
& SEL_REPLACE
) ? &rpl_debug
: &prm_debug
;
1576 variable
= ENV_FLG_DEBUG
;
1577 } else if ((len
== MSG_LD_DEBUG_OUTPUT_SIZE
) && (strncmp(s1
,
1578 MSG_ORIG(MSG_LD_DEBUG_OUTPUT
),
1579 MSG_LD_DEBUG_OUTPUT_SIZE
) == 0)) {
1580 select
|= SEL_ACT_STR
;
1582 variable
= ENV_FLG_DEBUG_OUTPUT
;
1583 } else if ((len
== MSG_LD_DEFERRED_SIZE
) && (strncmp(s1
,
1584 MSG_ORIG(MSG_LD_DEFERRED
), MSG_LD_DEFERRED_SIZE
) == 0)) {
1585 select
|= SEL_ACT_RT
;
1586 val
= RT_FL_DEFERRED
;
1587 variable
= ENV_FLG_DEFERRED
;
1588 } else if ((len
== MSG_LD_DEMANGLE_SIZE
) && (strncmp(s1
,
1589 MSG_ORIG(MSG_LD_DEMANGLE
), MSG_LD_DEMANGLE_SIZE
) == 0)) {
1590 select
|= SEL_ACT_RT
;
1591 val
= RT_FL_DEMANGLE
;
1592 variable
= ENV_FLG_DEMANGLE
;
1596 * LD_FLAGS - collect the best variable definition. On completion of
1597 * environment variable processing pass the result to ld_flags_env()
1598 * where they'll be decomposed and passed back to this routine.
1600 else if (*s1
== 'F') {
1601 if ((len
== MSG_LD_FLAGS_SIZE
) && (strncmp(s1
,
1602 MSG_ORIG(MSG_LD_FLAGS
), MSG_LD_FLAGS_SIZE
) == 0)) {
1603 select
|= SEL_ACT_SPEC_1
;
1604 str
= (select
& SEL_REPLACE
) ? &rpl_ldflags
:
1606 variable
= ENV_FLG_FLAGS
;
1612 else if (*s1
== 'H') {
1613 if ((len
== MSG_LD_HWCAP_SIZE
) && (strncmp(s1
,
1614 MSG_ORIG(MSG_LD_HWCAP
), MSG_LD_HWCAP_SIZE
) == 0)) {
1615 select
|= SEL_ACT_STR
;
1616 str
= (select
& SEL_REPLACE
) ?
1617 &rpl_hwcap
: &prm_hwcap
;
1618 variable
= ENV_FLG_HWCAP
;
1622 * LD_INIT (internal, used by ldd(1)).
1624 else if (*s1
== 'I') {
1625 if ((len
== MSG_LD_INIT_SIZE
) && (strncmp(s1
,
1626 MSG_ORIG(MSG_LD_INIT
), MSG_LD_INIT_SIZE
) == 0)) {
1627 select
|= SEL_ACT_LML
;
1628 val
= LML_FLG_TRC_INIT
;
1629 variable
= ENV_FLG_INIT
;
1633 * The LD_LIBRARY_PATH and LD_LOAD families.
1635 else if (*s1
== 'L') {
1636 if ((len
== MSG_LD_LIBPATH_SIZE
) && (strncmp(s1
,
1637 MSG_ORIG(MSG_LD_LIBPATH
), MSG_LD_LIBPATH_SIZE
) == 0)) {
1638 select
|= SEL_ACT_SPEC_1
;
1639 str
= (select
& SEL_REPLACE
) ? &rpl_libpath
:
1641 variable
= ENV_FLG_LIBPATH
;
1642 } else if ((len
== MSG_LD_LOADAVAIL_SIZE
) && (strncmp(s1
,
1643 MSG_ORIG(MSG_LD_LOADAVAIL
), MSG_LD_LOADAVAIL_SIZE
) == 0)) {
1645 * This variable is not documented for general use.
1646 * Although originaly designed for internal use with
1647 * crle(1), this variable is in use by the Studio
1648 * auditing tools. Hence, it can't be removed.
1650 select
|= SEL_ACT_LML
;
1651 val
= LML_FLG_LOADAVAIL
;
1652 variable
= ENV_FLG_LOADAVAIL
;
1653 } else if ((len
== MSG_LD_LOADFLTR_SIZE
) && (strncmp(s1
,
1654 MSG_ORIG(MSG_LD_LOADFLTR
), MSG_LD_LOADFLTR_SIZE
) == 0)) {
1655 select
|= SEL_ACT_SPEC_2
;
1656 variable
= ENV_FLG_LOADFLTR
;
1662 else if (*s1
== 'M') {
1663 if ((len
== MSG_LD_MACHCAP_SIZE
) && (strncmp(s1
,
1664 MSG_ORIG(MSG_LD_MACHCAP
), MSG_LD_MACHCAP_SIZE
) == 0)) {
1665 select
|= SEL_ACT_STR
;
1666 str
= (select
& SEL_REPLACE
) ?
1667 &rpl_machcap
: &prm_machcap
;
1668 variable
= ENV_FLG_MACHCAP
;
1674 else if (*s1
== 'N') {
1675 if ((len
== MSG_LD_NOAUDIT_SIZE
) && (strncmp(s1
,
1676 MSG_ORIG(MSG_LD_NOAUDIT
), MSG_LD_NOAUDIT_SIZE
) == 0)) {
1677 select
|= SEL_ACT_RT
;
1678 val
= RT_FL_NOAUDIT
;
1679 variable
= ENV_FLG_NOAUDIT
;
1680 } else if ((len
== MSG_LD_NOAUXFLTR_SIZE
) && (strncmp(s1
,
1681 MSG_ORIG(MSG_LD_NOAUXFLTR
), MSG_LD_NOAUXFLTR_SIZE
) == 0)) {
1682 select
|= SEL_ACT_RT
;
1683 val
= RT_FL_NOAUXFLTR
;
1684 variable
= ENV_FLG_NOAUXFLTR
;
1685 } else if ((len
== MSG_LD_NOBAPLT_SIZE
) && (strncmp(s1
,
1686 MSG_ORIG(MSG_LD_NOBAPLT
), MSG_LD_NOBAPLT_SIZE
) == 0)) {
1687 select
|= SEL_ACT_RT
;
1688 val
= RT_FL_NOBAPLT
;
1689 variable
= ENV_FLG_NOBAPLT
;
1690 } else if ((len
== MSG_LD_NOCONFIG_SIZE
) && (strncmp(s1
,
1691 MSG_ORIG(MSG_LD_NOCONFIG
), MSG_LD_NOCONFIG_SIZE
) == 0)) {
1692 select
|= SEL_ACT_RT
;
1694 variable
= ENV_FLG_NOCONFIG
;
1695 } else if ((len
== MSG_LD_NODIRCONFIG_SIZE
) && (strncmp(s1
,
1696 MSG_ORIG(MSG_LD_NODIRCONFIG
),
1697 MSG_LD_NODIRCONFIG_SIZE
) == 0)) {
1698 select
|= SEL_ACT_RT
;
1699 val
= RT_FL_NODIRCFG
;
1700 variable
= ENV_FLG_NODIRCONFIG
;
1701 } else if ((len
== MSG_LD_NODIRECT_SIZE
) && (strncmp(s1
,
1702 MSG_ORIG(MSG_LD_NODIRECT
), MSG_LD_NODIRECT_SIZE
) == 0)) {
1703 select
|= SEL_ACT_LMLT
;
1704 val
= LML_TFLG_NODIRECT
;
1705 variable
= ENV_FLG_NODIRECT
;
1706 } else if ((len
== MSG_LD_NOENVCONFIG_SIZE
) && (strncmp(s1
,
1707 MSG_ORIG(MSG_LD_NOENVCONFIG
),
1708 MSG_LD_NOENVCONFIG_SIZE
) == 0)) {
1709 select
|= SEL_ACT_RT
;
1710 val
= RT_FL_NOENVCFG
;
1711 variable
= ENV_FLG_NOENVCONFIG
;
1712 } else if ((len
== MSG_LD_NOFLTCONFIG_SIZE
) && (strncmp(s1
,
1713 MSG_ORIG(MSG_LD_NOFLTCONFIG
),
1714 MSG_LD_NOFLTCONFIG_SIZE
) == 0)) {
1715 select
|= SEL_ACT_RT2
;
1716 val
= RT_FL2_NOFLTCFG
;
1717 variable
= ENV_FLG_NOFLTCONFIG
;
1718 } else if ((len
== MSG_LD_NOLAZY_SIZE
) && (strncmp(s1
,
1719 MSG_ORIG(MSG_LD_NOLAZY
), MSG_LD_NOLAZY_SIZE
) == 0)) {
1720 select
|= SEL_ACT_LMLT
;
1721 val
= LML_TFLG_NOLAZYLD
;
1722 variable
= ENV_FLG_NOLAZY
;
1723 } else if ((len
== MSG_LD_NOOBJALTER_SIZE
) && (strncmp(s1
,
1724 MSG_ORIG(MSG_LD_NOOBJALTER
),
1725 MSG_LD_NOOBJALTER_SIZE
) == 0)) {
1726 select
|= SEL_ACT_RT
;
1727 val
= RT_FL_NOOBJALT
;
1728 variable
= ENV_FLG_NOOBJALTER
;
1729 } else if ((len
== MSG_LD_NOVERSION_SIZE
) && (strncmp(s1
,
1730 MSG_ORIG(MSG_LD_NOVERSION
), MSG_LD_NOVERSION_SIZE
) == 0)) {
1731 select
|= SEL_ACT_RT
;
1732 val
= RT_FL_NOVERSION
;
1733 variable
= ENV_FLG_NOVERSION
;
1734 } else if ((len
== MSG_LD_NOUNRESWEAK_SIZE
) && (strncmp(s1
,
1735 MSG_ORIG(MSG_LD_NOUNRESWEAK
),
1736 MSG_LD_NOUNRESWEAK_SIZE
) == 0)) {
1738 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1740 select
|= SEL_ACT_LML
;
1741 val
= LML_FLG_TRC_NOUNRESWEAK
;
1742 variable
= ENV_FLG_NOUNRESWEAK
;
1743 } else if ((len
== MSG_LD_NOPAREXT_SIZE
) && (strncmp(s1
,
1744 MSG_ORIG(MSG_LD_NOPAREXT
), MSG_LD_NOPAREXT_SIZE
) == 0)) {
1745 select
|= SEL_ACT_LML
;
1746 val
= LML_FLG_TRC_NOPAREXT
;
1747 variable
= ENV_FLG_NOPAREXT
;
1748 } else if ((len
== MSG_LD_NOENVIRON_SIZE
) && (strncmp(s1
,
1749 MSG_ORIG(MSG_LD_NOENVIRON
), MSG_LD_NOENVIRON_SIZE
) == 0)) {
1751 * LD_NOENVIRON can only be set with ld.so.1 -e.
1753 select
|= SEL_ACT_RT
;
1754 val
= RT_FL_NOENVIRON
;
1755 variable
= ENV_FLG_NOENVIRON
;
1759 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family.
1761 else if (*s1
== 'P') {
1762 if ((len
== MSG_LD_PLATCAP_SIZE
) && (strncmp(s1
,
1763 MSG_ORIG(MSG_LD_PLATCAP
), MSG_LD_PLATCAP_SIZE
) == 0)) {
1764 select
|= SEL_ACT_STR
;
1765 str
= (select
& SEL_REPLACE
) ?
1766 &rpl_platcap
: &prm_platcap
;
1767 variable
= ENV_FLG_PLATCAP
;
1768 } else if ((len
== MSG_LD_PRELOAD_SIZE
) && (strncmp(s1
,
1769 MSG_ORIG(MSG_LD_PRELOAD
), MSG_LD_PRELOAD_SIZE
) == 0)) {
1770 select
|= SEL_ACT_STR
;
1771 str
= (select
& SEL_REPLACE
) ? &rpl_preload
:
1773 variable
= ENV_FLG_PRELOAD
;
1774 } else if ((len
== MSG_LD_PROFILE_SIZE
) && (strncmp(s1
,
1775 MSG_ORIG(MSG_LD_PROFILE
), MSG_LD_PROFILE_SIZE
) == 0)) {
1777 * Only one user library can be profiled at a time.
1779 select
|= SEL_ACT_SPEC_2
;
1780 variable
= ENV_FLG_PROFILE
;
1781 } else if ((len
== MSG_LD_PROFILE_OUTPUT_SIZE
) && (strncmp(s1
,
1782 MSG_ORIG(MSG_LD_PROFILE_OUTPUT
),
1783 MSG_LD_PROFILE_OUTPUT_SIZE
) == 0)) {
1785 * Only one user library can be profiled at a time.
1787 select
|= SEL_ACT_STR
;
1789 variable
= ENV_FLG_PROFILE_OUTPUT
;
1793 * LD_SFCAP and LD_SIGNAL.
1795 else if (*s1
== 'S') {
1796 if ((len
== MSG_LD_SFCAP_SIZE
) && (strncmp(s1
,
1797 MSG_ORIG(MSG_LD_SFCAP
), MSG_LD_SFCAP_SIZE
) == 0)) {
1798 select
|= SEL_ACT_STR
;
1799 str
= (select
& SEL_REPLACE
) ?
1800 &rpl_sfcap
: &prm_sfcap
;
1801 variable
= ENV_FLG_SFCAP
;
1802 } else if ((len
== MSG_LD_SIGNAL_SIZE
) &&
1803 (strncmp(s1
, MSG_ORIG(MSG_LD_SIGNAL
),
1804 MSG_LD_SIGNAL_SIZE
) == 0) &&
1805 ((rtld_flags
& RT_FL_SECURE
) == 0)) {
1806 select
|= SEL_ACT_SPEC_2
;
1807 variable
= ENV_FLG_SIGNAL
;
1811 * The LD_TRACE family (internal, used by ldd(1)). This definition is
1812 * the key to enabling all other ldd(1) specific environment variables.
1813 * In case an auditor is called, which in turn might exec(2) a
1814 * subprocess, this variable is disabled, so that any subprocess
1815 * escapes ldd(1) processing.
1817 else if (*s1
== 'T') {
1818 if (((len
== MSG_LD_TRACE_OBJS_SIZE
) &&
1819 (strncmp(s1
, MSG_ORIG(MSG_LD_TRACE_OBJS
),
1820 MSG_LD_TRACE_OBJS_SIZE
) == 0)) ||
1821 ((len
== MSG_LD_TRACE_OBJS_E_SIZE
) &&
1822 (((strncmp(s1
, MSG_ORIG(MSG_LD_TRACE_OBJS_E
),
1823 MSG_LD_TRACE_OBJS_E_SIZE
) == 0) && !aout
) ||
1824 ((strncmp(s1
, MSG_ORIG(MSG_LD_TRACE_OBJS_A
),
1825 MSG_LD_TRACE_OBJS_A_SIZE
) == 0) && aout
)))) {
1826 char *s0
= (char *)s1
;
1828 select
|= SEL_ACT_SPEC_2
;
1829 variable
= ENV_FLG_TRACE_OBJS
;
1831 #if defined(__sparc) || defined(__x86)
1833 * The simplest way to "disable" this variable is to
1834 * truncate this string to "LD_'\0'". This string is
1835 * ignored by any ld.so.1 environment processing.
1836 * Use of such interfaces as unsetenv(3c) are overkill,
1837 * and would drag too much libc implementation detail
1843 * Verify that the above write is appropriate for any new platforms.
1845 #error unsupported architecture!
1847 } else if ((len
== MSG_LD_TRACE_PTHS_SIZE
) && (strncmp(s1
,
1848 MSG_ORIG(MSG_LD_TRACE_PTHS
),
1849 MSG_LD_TRACE_PTHS_SIZE
) == 0)) {
1850 select
|= SEL_ACT_LML
;
1851 val
= LML_FLG_TRC_SEARCH
;
1852 variable
= ENV_FLG_TRACE_PTHS
;
1856 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1858 else if (*s1
== 'U') {
1859 if ((len
== MSG_LD_UNREF_SIZE
) && (strncmp(s1
,
1860 MSG_ORIG(MSG_LD_UNREF
), MSG_LD_UNREF_SIZE
) == 0)) {
1861 select
|= SEL_ACT_LML
;
1862 val
= LML_FLG_TRC_UNREF
;
1863 variable
= ENV_FLG_UNREF
;
1864 } else if ((len
== MSG_LD_UNUSED_SIZE
) && (strncmp(s1
,
1865 MSG_ORIG(MSG_LD_UNUSED
), MSG_LD_UNUSED_SIZE
) == 0)) {
1866 select
|= SEL_ACT_LML
;
1867 val
= LML_FLG_TRC_UNUSED
;
1868 variable
= ENV_FLG_UNUSED
;
1872 * LD_VERBOSE (internal, used by ldd(1)).
1874 else if (*s1
== 'V') {
1875 if ((len
== MSG_LD_VERBOSE_SIZE
) && (strncmp(s1
,
1876 MSG_ORIG(MSG_LD_VERBOSE
), MSG_LD_VERBOSE_SIZE
) == 0)) {
1877 select
|= SEL_ACT_LML
;
1878 val
= LML_FLG_TRC_VERBOSE
;
1879 variable
= ENV_FLG_VERBOSE
;
1883 * LD_WARN (internal, used by ldd(1)).
1885 else if (*s1
== 'W') {
1886 if ((len
== MSG_LD_WARN_SIZE
) && (strncmp(s1
,
1887 MSG_ORIG(MSG_LD_WARN
), MSG_LD_WARN_SIZE
) == 0)) {
1888 select
|= SEL_ACT_LML
;
1889 val
= LML_FLG_TRC_WARN
;
1890 variable
= ENV_FLG_WARN
;
1898 * If the variable is already processed with and ISA specific variable,
1899 * no further processing is needed.
1901 if (((select
& SEL_REPLACE
) && (rplisa
& variable
)) ||
1902 ((select
& SEL_PERMANT
) && (prmisa
& variable
)))
1906 * If this variable has already been set via the command line, then
1907 * ignore this variable. The command line, -e, takes precedence.
1909 if (env_flags
& ENV_TYP_ISA
) {
1910 if (cmdisa
& variable
)
1912 if (env_flags
& ENV_TYP_CMDLINE
)
1915 if (cmdgen
& variable
)
1917 if (env_flags
& ENV_TYP_CMDLINE
)
1922 * Mark the appropriate variables.
1924 if (env_flags
& ENV_TYP_ISA
) {
1926 * This is an ISA setting.
1928 if (select
& SEL_REPLACE
) {
1929 if (rplisa
& variable
)
1937 * This is a non-ISA setting.
1939 if (select
& SEL_REPLACE
) {
1940 if (rplgen
& variable
)
1948 * Now perform the setting.
1950 if (select
& SEL_ACT_RT
) {
1955 } else if (select
& SEL_ACT_RT2
) {
1959 rtld_flags2
&= ~val
;
1960 } else if (select
& SEL_ACT_STR
) {
1961 if (env_flags
& ENV_TYP_NULL
)
1965 } else if (select
& SEL_ACT_LML
) {
1970 } else if (select
& SEL_ACT_LMLT
) {
1975 } else if (select
& SEL_ACT_SPEC_1
) {
1977 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1979 if (env_flags
& ENV_TYP_NULL
)
1983 if ((select
& SEL_REPLACE
) && (env_flags
& ENV_TYP_CONFIG
)) {
1985 if (variable
== ENV_FLG_FLAGS
)
1986 env_info
|= ENV_INF_FLAGCFG
;
1988 env_info
|= ENV_INF_PATHCFG
;
1990 if (variable
== ENV_FLG_FLAGS
)
1991 env_info
&= ~ENV_INF_FLAGCFG
;
1993 env_info
&= ~ENV_INF_PATHCFG
;
1996 } else if (select
& SEL_ACT_SPEC_2
) {
1998 * variables can be: ENV_FLG_
1999 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE,
2000 * SIGNAL, TRACE_OBJS
2003 case ENV_FLG_AUDIT_ARGS
:
2005 audit_argcnt
= atoi(s2
);
2006 audit_argcnt
+= audit_argcnt
% 2;
2010 case ENV_FLG_BINDINGS
:
2012 rpl_debug
= MSG_ORIG(MSG_TKN_BINDINGS
);
2016 case ENV_FLG_CONFGEN
:
2018 rtld_flags
|= RT_FL_CONFGEN
;
2019 *lmflags
|= LML_FLG_IGNRELERR
;
2021 rtld_flags
&= ~RT_FL_CONFGEN
;
2022 *lmflags
&= ~LML_FLG_IGNRELERR
;
2025 case ENV_FLG_LOADFLTR
:
2027 *lmtflags
|= LML_TFLG_LOADFLTR
;
2029 rtld_flags
|= RT_FL_WARNFLTR
;
2031 *lmtflags
&= ~LML_TFLG_LOADFLTR
;
2032 rtld_flags
&= ~RT_FL_WARNFLTR
;
2035 case ENV_FLG_PROFILE
:
2038 if (strcmp(s2
, MSG_ORIG(MSG_FIL_RTLD
)) == 0) {
2042 if (rtld_flags
& RT_FL_SECURE
) {
2045 MSG_ORIG(MSG_PTH_LDPROFSE_64
);
2047 MSG_ORIG(MSG_PTH_LDPROFSE
);
2052 MSG_ORIG(MSG_PTH_LDPROF_64
);
2054 MSG_ORIG(MSG_PTH_LDPROF
);
2061 case ENV_FLG_SIGNAL
:
2062 killsig
= s2
? atoi(s2
) : SIGKILL
;
2064 case ENV_FLG_TRACE_OBJS
:
2066 *lmflags
|= LML_FLG_TRC_ENABLE
;
2068 *lmflags
|= LML_FLG_TRC_LDDSTUB
;
2071 ~(LML_FLG_TRC_ENABLE
| LML_FLG_TRC_LDDSTUB
);
2078 * Determine whether we have an architecture specific environment variable.
2079 * If we do, and we're the wrong architecture, it'll just get ignored.
2080 * Otherwise the variable is processed in it's architecture neutral form.
2083 ld_arch_env(const char *s1
, size_t *len
)
2085 size_t _len
= *len
- 3;
2087 if (s1
[_len
++] == '_') {
2088 if ((s1
[_len
] == '3') && (s1
[_len
+ 1] == '2')) {
2090 return (ENV_TYP_IGNORE
);
2093 return (ENV_TYP_ISA
);
2096 if ((s1
[_len
] == '6') && (s1
[_len
+ 1] == '4')) {
2099 return (ENV_TYP_ISA
);
2101 return (ENV_TYP_IGNORE
);
2109 * Process an LD_FLAGS environment variable. The value can be a comma
2110 * separated set of tokens, which are sent (in upper case) into the generic
2111 * LD_XXXX environment variable engine. For example:
2113 * LD_FLAGS=bind_now= -> LD_BIND_NOW=
2114 * LD_FLAGS=bind_now -> LD_BIND_NOW=1
2115 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH=
2116 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:.
2117 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail
2119 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2122 ld_flags_env(const char *str
, Word
*lmflags
, Word
*lmtflags
,
2123 uint_t env_flags
, int aout
)
2125 char *nstr
, *sstr
, *estr
= NULL
;
2132 * Create a new string as we're going to transform the token(s) into
2133 * uppercase and separate tokens with nulls.
2136 if ((nstr
= malloc(len
+ 1)) == NULL
)
2138 (void) strcpy(nstr
, str
);
2140 for (sstr
= nstr
; sstr
; sstr
++, len
--) {
2143 if ((*sstr
!= '\0') && (*sstr
!= ',')) {
2149 * Translate token to uppercase. Don't
2150 * use toupper(3C) as including this
2151 * code doubles the size of ld.so.1.
2153 if ((*sstr
>= 'a') && (*sstr
<= 'z'))
2154 *sstr
= *sstr
- ('a' - 'A');
2163 * Have we discovered an "=" string.
2169 * If this is an unqualified "=", then this variable
2170 * is intended to ensure a feature is disabled.
2172 if ((*++estr
== '\0') || (*estr
== ','))
2178 * If there is no "=" found, fabricate a boolean
2179 * definition for any unqualified variable. Thus,
2180 * LD_FLAGS=bind_now is represented as BIND_NOW=1.
2181 * The value "1" is sufficient to assert any boolean
2182 * variables. Setting of ENV_TYP_NULL ensures any
2183 * string usage is reset to a NULL string, thus
2184 * LD_FLAGS=library_path is equivalent to
2185 * LIBRARY_PATH='\0'.
2187 flags
|= ENV_TYP_NULL
;
2188 estr
= (char *)MSG_ORIG(MSG_STR_ONE
);
2192 * Determine whether the environment variable is 32- or 64-bit
2193 * specific. The length, len, will reflect the architecture
2194 * neutral portion of the string.
2196 if ((flags
|= ld_arch_env(nstr
, &nlen
)) != ENV_TYP_IGNORE
) {
2197 ld_generic_env(nstr
, nlen
, estr
, lmflags
,
2198 lmtflags
, (env_flags
| flags
), aout
);
2211 * Variant of getopt(), intended for use when ld.so.1 is invoked directly
2212 * from the command line. The only command line option allowed is -e followed
2213 * by a runtime linker environment variable.
2216 rtld_getopt(char **argv
, char ***envp
, auxv_t
**auxv
, Word
*lmflags
,
2217 Word
*lmtflags
, int aout
)
2221 for (ndx
= 1; argv
[ndx
]; ndx
++) {
2224 if (argv
[ndx
][0] != '-')
2227 if (argv
[ndx
][1] == '\0') {
2232 if (argv
[ndx
][1] != 'e')
2235 if (argv
[ndx
][2] == '\0') {
2237 if (argv
[ndx
] == NULL
)
2241 str
= &argv
[ndx
][2];
2244 * If the environment variable starts with LD_, strip the LD_.
2245 * Otherwise, take things as is. Indicate that this variable
2246 * originates from the command line, as these variables take
2247 * precedence over any environment variables, or configuration
2250 if ((str
[0] == 'L') && (str
[1] == 'D') && (str
[2] == '_') &&
2253 if (ld_flags_env(str
, lmflags
, lmtflags
,
2254 ENV_TYP_CMDLINE
, aout
) == 1)
2259 * Make sure an object file has been specified.
2261 if (argv
[ndx
] == NULL
)
2265 * Having gotten the arguments, clean ourselves off of the stack.
2266 * This results in a process that looks as if it was executed directly
2267 * from the application.
2269 stack_cleanup(argv
, envp
, auxv
, ndx
);
2274 * Process a single LD_XXXX string.
2277 ld_str_env(const char *s1
, Word
*lmflags
, Word
*lmtflags
, uint_t env_flags
,
2285 * In a branded process we must ignore all LD_XXXX variables because
2286 * they are intended for the brand's linker. To affect the native
2287 * linker, use LD_BRAND_XXXX instead.
2289 if (rtld_flags2
& RT_FL2_BRANDED
) {
2290 if (strncmp(s1
, MSG_ORIG(MSG_LD_BRAND_PREFIX
),
2291 MSG_LD_BRAND_PREFIX_SIZE
) != 0)
2293 s1
+= MSG_LD_BRAND_PREFIX_SIZE
;
2297 * Variables with no value (ie. LD_XXXX=) turn a capability off.
2299 if ((s2
= strchr(s1
, '=')) == NULL
) {
2302 } else if (*++s2
== '\0') {
2303 len
= strlen(s1
) - 1;
2307 while (conv_strproc_isspace(*s2
))
2312 * Determine whether the environment variable is 32-bit or 64-bit
2313 * specific. The length, len, will reflect the architecture neutral
2314 * portion of the string.
2316 if ((flags
= ld_arch_env(s1
, &len
)) == ENV_TYP_IGNORE
)
2320 ld_generic_env(s1
, len
, s2
, lmflags
, lmtflags
, env_flags
, aout
);
2324 * Internal getenv routine. Called immediately after ld.so.1 initializes
2325 * itself to process any locale specific environment variables, and collect
2326 * any LD_XXXX variables for later processing.
2333 readenv_user(const char **envp
, APlist
**ealpp
)
2339 for (s1
= *envp
; s1
; envp
++, s1
= *envp
) {
2346 * See if we have any locale environment settings. These
2347 * environment variables have a precedence, LC_ALL is higher
2348 * than LC_MESSAGES which is higher than LANG.
2351 if ((*s2
++ == 'C') && (*s2
++ == '_') && (*s2
!= '\0')) {
2352 if (strncmp(s2
, MSG_ORIG(MSG_LC_ALL
),
2353 MSG_LC_ALL_SIZE
) == 0) {
2354 s2
+= MSG_LC_ALL_SIZE
;
2355 if ((*s2
!= '\0') && (loc
< LOC_ALL
)) {
2356 glcs
[CI_LCMESSAGES
].lc_un
.lc_ptr
=
2360 } else if (strncmp(s2
, MSG_ORIG(MSG_LC_MESSAGES
),
2361 MSG_LC_MESSAGES_SIZE
) == 0) {
2362 s2
+= MSG_LC_MESSAGES_SIZE
;
2363 if ((*s2
!= '\0') && (loc
< LOC_MESG
)) {
2364 glcs
[CI_LCMESSAGES
].lc_un
.lc_ptr
=
2373 if ((*s2
++ == 'A') && (*s2
++ == 'N') && (*s2
++ == 'G') &&
2374 (*s2
++ == '=') && (*s2
!= '\0') && (loc
< LOC_LANG
)) {
2375 glcs
[CI_LCMESSAGES
].lc_un
.lc_ptr
= (char *)s2
;
2381 * Pick off any LD_XXXX environment variables.
2383 if ((*s1
++ == 'D') && (*s1
++ == '_') && (*s1
!= '\0')) {
2384 if (aplist_append(ealpp
, s1
, AL_CNT_ENVIRON
) == NULL
)
2390 * If we have a locale setting make sure it's worth processing further.
2391 * C and POSIX locales don't need any processing. In addition, to
2392 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2393 * the locale to contain a segment that leads upward in the file system
2394 * hierarchy (i.e. no '..' segments). Given that we'll be confined to
2395 * the /usr/lib/locale hierarchy, there is no need to extensively
2396 * validate the mode or ownership of any message file (as libc's
2397 * generic handling of message files does), or be concerned with
2398 * symbolic links that might otherwise send us elsewhere. Duplicate
2399 * the string so that new locale setting can generically cleanup any
2402 if ((locale
= glcs
[CI_LCMESSAGES
].lc_un
.lc_ptr
) != NULL
) {
2403 if (((*locale
== 'C') && (*(locale
+ 1) == '\0')) ||
2404 (strcmp(locale
, MSG_ORIG(MSG_TKN_POSIX
)) == 0) ||
2405 (strstr(locale
, MSG_ORIG(MSG_TKN_DOTDOT
)) != NULL
))
2406 glcs
[CI_LCMESSAGES
].lc_un
.lc_ptr
= NULL
;
2408 glcs
[CI_LCMESSAGES
].lc_un
.lc_ptr
= strdup(locale
);
2414 * Process any LD_XXXX environment variables collected by readenv_user().
2417 procenv_user(APlist
*ealp
, Word
*lmflags
, Word
*lmtflags
, int aout
)
2422 for (APLIST_TRAVERSE(ealp
, idx
, s1
))
2423 ld_str_env(s1
, lmflags
, lmtflags
, 0, aout
);
2426 * Having collected the best representation of any LD_FLAGS, process
2430 if (ld_flags_env(rpl_ldflags
, lmflags
, lmtflags
, 0, aout
) == 1)
2436 * Don't allow environment controlled auditing when tracing or if
2437 * explicitly disabled. Trigger all tracing modes from
2438 * LML_FLG_TRC_ENABLE.
2440 if ((*lmflags
& LML_FLG_TRC_ENABLE
) || (rtld_flags
& RT_FL_NOAUDIT
))
2441 rpl_audit
= profile_lib
= profile_name
= NULL
;
2442 if ((*lmflags
& LML_FLG_TRC_ENABLE
) == 0)
2443 *lmflags
&= ~LML_MSK_TRC
;
2446 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2448 if ((rtld_flags2
& (RT_FL2_BINDNOW
| RT_FL2_BINDLAZY
)) ==
2449 (RT_FL2_BINDNOW
| RT_FL2_BINDLAZY
))
2450 rtld_flags2
&= ~RT_FL2_BINDLAZY
;
2453 * When using ldd(1) -r or -d against an executable, assert -p.
2456 (LML_FLG_TRC_WARN
| LML_FLG_TRC_LDDSTUB
)) == LML_FLG_TRC_WARN
)
2457 *lmflags
|= LML_FLG_TRC_NOPAREXT
;
2463 * Configuration environment processing. Called after the a.out has been
2464 * processed (as the a.out can specify its own configuration file).
2467 readenv_config(Rtc_env
* envtbl
, Addr addr
, int aout
)
2469 Word
*lmflags
= &(lml_main
.lm_flags
);
2470 Word
*lmtflags
= &(lml_main
.lm_tflags
);
2475 while (envtbl
->env_str
) {
2476 uint_t env_flags
= ENV_TYP_CONFIG
;
2477 const char *s1
= (const char *)(envtbl
->env_str
+ addr
);
2479 if (envtbl
->env_flags
& RTC_ENV_PERMANT
)
2480 env_flags
|= ENV_TYP_PERMANT
;
2482 if ((*s1
++ == 'L') && (*s1
++ == 'D') &&
2483 (*s1
++ == '_') && (*s1
!= '\0'))
2484 ld_str_env(s1
, lmflags
, lmtflags
, env_flags
, 0);
2490 * Having collected the best representation of any LD_FLAGS, process
2493 if (ld_flags_env(rpl_ldflags
, lmflags
, lmtflags
, 0, aout
) == 1)
2495 if (ld_flags_env(prm_ldflags
, lmflags
, lmtflags
, ENV_TYP_CONFIG
,
2500 * Don't allow environment controlled auditing when tracing or if
2501 * explicitly disabled. Trigger all tracing modes from
2502 * LML_FLG_TRC_ENABLE.
2504 if ((*lmflags
& LML_FLG_TRC_ENABLE
) || (rtld_flags
& RT_FL_NOAUDIT
))
2505 prm_audit
= profile_lib
= profile_name
= NULL
;
2506 if ((*lmflags
& LML_FLG_TRC_ENABLE
) == 0)
2507 *lmflags
&= ~LML_MSK_TRC
;
2513 dowrite(Prfbuf
* prf
)
2516 * We do not have a valid file descriptor, so we are unable
2517 * to flush the buffer.
2519 if (prf
->pr_fd
== -1)
2521 (void) write(prf
->pr_fd
, prf
->pr_buf
, prf
->pr_cur
- prf
->pr_buf
);
2522 prf
->pr_cur
= prf
->pr_buf
;
2527 * Simplified printing. The following conversion specifications are supported:
2529 * % [#] [-] [min field width] [. precision] s|d|x|c
2532 * dorprf takes the output buffer in the form of Prfbuf which permits
2533 * the verification of the output buffer size and the concatenation
2534 * of data to an already existing output buffer. The Prfbuf
2535 * structure contains the following:
2537 * pr_buf pointer to the beginning of the output buffer.
2538 * pr_cur pointer to the next available byte in the output buffer. By
2539 * setting pr_cur ahead of pr_buf you can append to an already
2541 * pr_len the size of the output buffer. By setting pr_len to '0' you
2542 * disable protection from overflows in the output buffer.
2543 * pr_fd a pointer to the file-descriptor the buffer will eventually be
2544 * output to. If pr_fd is set to '-1' then it's assumed there is
2545 * no output buffer, and doprf() will return with an error to
2546 * indicate an output buffer overflow. If pr_fd is > -1 then when
2547 * the output buffer is filled it will be flushed to pr_fd and will
2548 * then be available for additional data.
2550 #define FLG_UT_MINUS 0x0001 /* - */
2551 #define FLG_UT_SHARP 0x0002 /* # */
2552 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */
2555 * This macro is for use from within doprf only. It is to be used for checking
2556 * the output buffer size and placing characters into the buffer.
2563 if (bufsiz && (bp >= bufend)) { \
2565 if (dowrite(prf) == 0) \
2573 * Define a local buffer size for building a numeric value - large enough to
2574 * hold a 64-bit value.
2579 doprf(const char *format
, va_list args
, Prfbuf
*prf
)
2582 char *bp
= prf
->pr_cur
;
2583 char *bufend
= prf
->pr_buf
+ prf
->pr_len
;
2584 size_t bufsiz
= prf
->pr_len
;
2586 while ((c
= *format
++) != '\0') {
2590 int base
= 0, flag
= 0, width
= 0, prec
= 0;
2599 flag
|= FLG_UT_MINUS
;
2602 flag
|= FLG_UT_SHARP
;
2605 flag
|= FLG_UT_DOTSEEN
;
2617 if (flag
& FLG_UT_DOTSEEN
)
2618 prec
= (prec
* 10) + c
- '0';
2620 width
= (width
* 10) + c
- '0';
2630 flag
&= ~FLG_UT_SHARP
;
2634 ls
++; /* number of l's (long or long long) */
2635 if ((*format
== 'l') ||
2636 (*format
== 'd') || (*format
== 'D') ||
2637 (*format
== 'x') || (*format
== 'X') ||
2638 (*format
== 'o') || (*format
== 'O') ||
2639 (*format
== 'u') || (*format
== 'U'))
2647 _c
= va_arg(args
, int);
2649 for (_i
= 24; _i
> 0; _i
-= 8) {
2650 if ((c
= ((_c
>> _i
) & 0x7f)) != 0) {
2654 if ((c
= ((_c
>> _i
) & 0x7f)) != 0) {
2659 _s
= va_arg(args
, char *);
2662 _n
= (int)(width
- _i
);
2667 if (width
&& !(flag
& FLG_UT_MINUS
)) {
2671 while (((c
= *_s
++) != 0) && prec
--) {
2674 if (width
&& (flag
& FLG_UT_MINUS
)) {
2687 * Numeric processing
2690 char local
[NUM_SIZE
];
2691 size_t ssize
= 0, psize
= 0;
2692 const char *string
=
2693 MSG_ORIG(MSG_STR_HEXNUM
);
2694 const char *prefix
=
2695 MSG_ORIG(MSG_STR_EMPTY
);
2700 num
= (u_longlong_t
)
2701 va_arg(args
, uint_t
);
2704 num
= (u_longlong_t
)
2705 va_arg(args
, ulong_t
);
2707 case 2: /* long long */
2708 num
= va_arg(args
, u_longlong_t
);
2712 if (flag
& FLG_UT_SHARP
) {
2714 prefix
= MSG_ORIG(MSG_STR_HEX
);
2717 prefix
= MSG_ORIG(MSG_STR_ZERO
);
2721 if ((base
== 10) && (long)num
< 0) {
2722 prefix
= MSG_ORIG(MSG_STR_NEGATE
);
2723 psize
= MSG_STR_NEGATE_SIZE
;
2724 num
= (u_longlong_t
)(-(longlong_t
)num
);
2728 * Convert the numeric value into a local
2729 * string (stored in reverse order).
2733 *_s
++ = string
[num
% base
];
2738 ASSERT(ssize
< sizeof (local
));
2741 * Provide any precision or width padding.
2745 _n
= (int)(prec
- ssize
);
2746 while ((_n
-- > 0) &&
2747 (ssize
< sizeof (local
))) {
2752 if (width
&& !(flag
& FLG_UT_MINUS
)) {
2754 _n
= (int)(width
- ssize
- psize
);
2761 * Print any prefix and the numeric string
2767 } while (_s
> local
);
2770 * Provide any width padding.
2772 if (width
&& (flag
& FLG_UT_MINUS
)) {
2774 _n
= (int)(width
- ssize
- psize
);
2788 doprintf(const char *format
, va_list args
, Prfbuf
*prf
)
2790 char *ocur
= prf
->pr_cur
;
2792 if (doprf(format
, args
, prf
) == 0)
2795 return ((int)(prf
->pr_cur
- ocur
));
2800 sprintf(char *buf
, const char *format
, ...)
2806 va_start(args
, format
);
2807 prf
.pr_buf
= prf
.pr_cur
= buf
;
2810 len
= doprintf(format
, args
, &prf
);
2814 * sprintf() return value excludes the terminating null byte.
2821 snprintf(char *buf
, size_t n
, const char *format
, ...)
2827 va_start(args
, format
);
2828 prf
.pr_buf
= prf
.pr_cur
= buf
;
2831 len
= doprintf(format
, args
, &prf
);
2839 bufprint(Prfbuf
*prf
, const char *format
, ...)
2844 va_start(args
, format
);
2845 len
= doprintf(format
, args
, prf
);
2853 printf(const char *format
, ...)
2856 char buffer
[ERRSIZE
];
2859 va_start(args
, format
);
2860 prf
.pr_buf
= prf
.pr_cur
= buffer
;
2861 prf
.pr_len
= ERRSIZE
;
2863 (void) doprf(format
, args
, &prf
);
2866 * Trim trailing '\0' form buffer
2869 return (dowrite(&prf
));
2872 static char errbuf
[ERRSIZE
], *nextptr
= errbuf
, *prevptr
= NULL
;
2875 * All error messages go through eprintf(). During process initialization,
2876 * these messages are directed to the standard error, however once control has
2877 * been passed to the applications code these messages are stored in an internal
2878 * buffer for use with dlerror(). Note, fatal error conditions that may occur
2879 * while running the application will still cause a standard error message, see
2880 * rtldexit() in this file for details.
2881 * The RT_FL_APPLIC flag serves to indicate the transition between process
2882 * initialization and when the applications code is running.
2885 veprintf(Lm_list
*lml
, Error error
, const char *format
, va_list args
)
2888 static int lock
= 0;
2891 if (lock
|| (nextptr
== (errbuf
+ ERRSIZE
)))
2895 * Note: this lock is here to prevent the same thread from recursively
2896 * entering itself during a eprintf. ie: during eprintf malloc() fails
2897 * and we try and call eprintf ... and then malloc() fails ....
2902 * If we have completed startup initialization, all error messages
2903 * must be saved. These are reported through dlerror(). If we're
2904 * still in the initialization stage, output the error directly and
2907 prf
.pr_buf
= prf
.pr_cur
= nextptr
;
2908 prf
.pr_len
= ERRSIZE
- (nextptr
- errbuf
);
2910 if ((rtld_flags
& RT_FL_APPLIC
) == 0)
2915 if (error
> ERR_NONE
) {
2916 if ((error
== ERR_FATAL
) && (rtld_flags2
& RT_FL2_FTL2WARN
))
2917 error
= ERR_WARNING
;
2919 case ERR_WARNING_NF
:
2920 if (err_strs
[ERR_WARNING_NF
] == NULL
)
2921 err_strs
[ERR_WARNING_NF
] =
2922 MSG_INTL(MSG_ERR_WARNING
);
2925 if (err_strs
[ERR_WARNING
] == NULL
)
2926 err_strs
[ERR_WARNING
] =
2927 MSG_INTL(MSG_ERR_WARNING
);
2930 if (err_strs
[ERR_GUIDANCE
] == NULL
)
2931 err_strs
[ERR_GUIDANCE
] =
2932 MSG_INTL(MSG_ERR_GUIDANCE
);
2935 if (err_strs
[ERR_FATAL
] == NULL
)
2936 err_strs
[ERR_FATAL
] = MSG_INTL(MSG_ERR_FATAL
);
2939 if (err_strs
[ERR_ELF
] == NULL
)
2940 err_strs
[ERR_ELF
] = MSG_INTL(MSG_ERR_ELF
);
2944 if (bufprint(&prf
, MSG_ORIG(MSG_STR_EMSGFOR1
),
2945 rtldname
, procname
, err_strs
[error
]) == 0)
2948 if (bufprint(&prf
, MSG_ORIG(MSG_STR_EMSGFOR2
),
2949 rtldname
, err_strs
[error
]) == 0)
2952 if (overflow
== 0) {
2954 * Remove the terminating '\0'.
2960 if ((overflow
== 0) && doprf(format
, args
, &prf
) == 0)
2964 * If this is an ELF error, it will have been generated by a support
2965 * object that has a dependency on libelf. ld.so.1 doesn't generate any
2966 * ELF error messages as it doesn't interact with libelf. Determine the
2969 if ((overflow
== 0) && (error
== ERR_ELF
)) {
2970 static int (*elfeno
)() = 0;
2971 static const char *(*elfemg
)();
2973 Rt_map
*dlmp
, *lmp
= lml_rtld
.lm_head
;
2975 if (NEXT(lmp
) && (elfeno
== 0)) {
2976 if (((elfemg
= (const char *(*)())dlsym_intn(RTLD_NEXT
,
2977 MSG_ORIG(MSG_SYM_ELFERRMSG
),
2978 lmp
, &dlmp
)) == NULL
) ||
2979 ((elfeno
= (int (*)())dlsym_intn(RTLD_NEXT
,
2980 MSG_ORIG(MSG_SYM_ELFERRNO
), lmp
, &dlmp
)) == NULL
))
2985 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2987 if (elfeno
&& ((emsg
= (* elfemg
)((* elfeno
)())) != NULL
)) {
2989 if (bufprint(&prf
, MSG_ORIG(MSG_STR_EMSGFOR2
),
2996 * Push out any message that's been built. Note, in the case of an
2997 * overflow condition, this message may be incomplete, in which case
2998 * make sure any partial string is null terminated.
3000 if ((rtld_flags
& (RT_FL_APPLIC
| RT_FL_SILENCERR
)) == 0) {
3001 *(prf
.pr_cur
- 1) = '\n';
3002 (void) dowrite(&prf
);
3005 *(prf
.pr_cur
- 1) = '\0';
3007 DBG_CALL(Dbg_util_str(lml
, nextptr
));
3010 * Determine if there was insufficient space left in the buffer to
3011 * complete the message. If so, we'll have printed out as much as had
3012 * been processed if we're not yet executing the application.
3013 * Otherwise, there will be some debugging diagnostic indicating
3014 * as much of the error message as possible. Write out a final buffer
3015 * overflow diagnostic - unlocalized, so we don't chance more errors.
3018 char *str
= (char *)MSG_INTL(MSG_EMG_BUFOVRFLW
);
3020 if ((rtld_flags
& RT_FL_SILENCERR
) == 0) {
3023 if ((rtld_flags
& RT_FL_APPLIC
) == 0) {
3024 (void) write(2, str
, strlen(str
));
3025 (void) write(2, MSG_ORIG(MSG_STR_NL
),
3029 DBG_CALL(Dbg_util_str(lml
, str
));
3032 nextptr
= errbuf
+ ERRSIZE
;
3037 * If the application has started, then error messages are being saved
3038 * for retrieval by dlerror(), or possible flushing from rtldexit() in
3039 * the case of a fatal error. In this case, establish the next error
3040 * pointer. If we haven't started the application, the whole message
3041 * buffer can be reused.
3043 if ((rtld_flags
& RT_FL_SILENCERR
) == 0) {
3047 * Note, should we encounter an error such as ENOMEM, there may
3048 * be a number of the same error messages (ie. an operation
3049 * fails with ENOMEM, and then the attempts to construct the
3050 * error message itself, which incurs additional ENOMEM errors).
3051 * Compare any previous error message with the one we've just
3052 * created to prevent any duplication clutter.
3054 if ((rtld_flags
& RT_FL_APPLIC
) &&
3055 ((prevptr
== NULL
) || (strcmp(prevptr
, nextptr
) != 0))) {
3057 nextptr
= prf
.pr_cur
;
3066 eprintf(Lm_list
*lml
, Error error
, const char *format
, ...)
3070 va_start(args
, format
);
3071 veprintf(lml
, error
, format
, args
);
3076 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further
3080 assfail(const char *a
, const char *f
, int l
)
3082 (void) printf("assertion failed: %s, file: %s, line: %d\n", a
, f
, l
);
3083 (void) _lwp_kill(_lwp_self(), SIGABRT
);
3088 assfail3(const char *msg
, uintmax_t a
, const char *op
, uintmax_t b
,
3089 const char *f
, int l
)
3091 (void) printf("assertion failed: %s (0x%llx %s 0x%llx), "
3092 "file: %s, line: %d\n", msg
, (unsigned long long)a
, op
,
3093 (unsigned long long)b
, f
, l
);
3094 (void) _lwp_kill(_lwp_self(), SIGABRT
);
3098 * Exit. If we arrive here with a non zero status it's because of a fatal
3099 * error condition (most commonly a relocation error). If the application has
3100 * already had control, then the actual fatal error message will have been
3101 * recorded in the dlerror() message buffer. Print the message before really
3105 rtldexit(Lm_list
* lml
, int status
)
3108 if (rtld_flags
& RT_FL_APPLIC
) {
3110 * If the error buffer has been used, write out all
3111 * pending messages - lasterr is simply a pointer to
3112 * the last message in this buffer. However, if the
3113 * buffer couldn't be created at all, lasterr points
3114 * to a constant error message string.
3117 char *errptr
= errbuf
;
3118 char *errend
= errbuf
+ ERRSIZE
;
3120 while ((errptr
< errend
) && *errptr
) {
3121 size_t size
= strlen(errptr
);
3122 (void) write(2, errptr
, size
);
3123 (void) write(2, MSG_ORIG(MSG_STR_NL
),
3125 errptr
+= (size
+ 1);
3128 if (lasterr
&& ((lasterr
< errbuf
) ||
3129 (lasterr
> (errbuf
+ ERRSIZE
)))) {
3130 (void) write(2, lasterr
, strlen(lasterr
));
3131 (void) write(2, MSG_ORIG(MSG_STR_NL
),
3136 (void) _lwp_kill(_lwp_self(), killsig
);
3142 * Map anonymous memory via MAP_ANON (added in Solaris 8).
3145 dz_map(Lm_list
*lml
, caddr_t addr
, size_t len
, int prot
, int flags
)
3149 if ((va
= (caddr_t
)mmap(addr
, len
, prot
,
3150 (flags
| MAP_ANON
), -1, 0)) == MAP_FAILED
) {
3152 eprintf(lml
, ERR_FATAL
, MSG_INTL(MSG_SYS_MMAPANON
),
3154 return (MAP_FAILED
);
3159 static int nu_fd
= FD_UNAVAIL
;
3162 nu_map(Lm_list
*lml
, caddr_t addr
, size_t len
, int prot
, int flags
)
3167 if (nu_fd
== FD_UNAVAIL
) {
3168 if ((nu_fd
= open(MSG_ORIG(MSG_PTH_DEVNULL
),
3169 O_RDONLY
)) == FD_UNAVAIL
) {
3171 eprintf(lml
, ERR_FATAL
, MSG_INTL(MSG_SYS_OPEN
),
3172 MSG_ORIG(MSG_PTH_DEVNULL
), strerror(err
));
3173 return (MAP_FAILED
);
3177 if ((va
= (caddr_t
)mmap(addr
, len
, prot
, flags
, nu_fd
, 0)) ==
3180 eprintf(lml
, ERR_FATAL
, MSG_INTL(MSG_SYS_MMAP
),
3181 MSG_ORIG(MSG_PTH_DEVNULL
), strerror(err
));
3187 * Generic entry point from user code - simply grabs a lock, and bumps the
3193 if (rt_bind_guard(THR_FLG_RTLD
| thr_flg_nolock
| flags
)) {
3194 if (!thr_flg_nolock
)
3195 (void) rt_mutex_lock(&rtldlock
);
3196 if (rtld_flags
& RT_FL_OPERATION
) {
3200 * Reset the diagnostic time information for each new
3201 * "operation". Thus timing diagnostics are relative
3202 * to entering ld.so.1.
3205 (gettimeofday(&DBG_TOTALTIME
, NULL
) == 0)) {
3206 DBG_DELTATIME
= DBG_TOTALTIME
;
3216 * Determine whether a search path has been used.
3219 is_path_used(Lm_list
*lml
, Word unref
, int *nl
, Alist
*alp
, const char *obj
)
3224 for (ALIST_TRAVERSE(alp
, idx
, pdp
)) {
3225 const char *fmt
, *name
;
3227 if ((pdp
->pd_plen
== 0) || (pdp
->pd_flags
& PD_FLG_USED
))
3231 * If this pathname originated from an expanded token, use the
3232 * original for any diagnostic output.
3234 if ((name
= pdp
->pd_oname
) == NULL
)
3235 name
= pdp
->pd_pname
;
3239 DBG_CALL(Dbg_util_nl(lml
, DBG_NL_STD
));
3240 DBG_CALL(Dbg_unused_path(lml
, name
, pdp
->pd_flags
,
3241 (pdp
->pd_flags
& PD_FLG_DUPLICAT
), obj
));
3245 if (pdp
->pd_flags
& LA_SER_LIBPATH
) {
3246 if (pdp
->pd_flags
& LA_SER_CONFIG
) {
3247 if (pdp
->pd_flags
& PD_FLG_DUPLICAT
)
3248 fmt
= MSG_INTL(MSG_DUP_LDLIBPATHC
);
3250 fmt
= MSG_INTL(MSG_USD_LDLIBPATHC
);
3252 if (pdp
->pd_flags
& PD_FLG_DUPLICAT
)
3253 fmt
= MSG_INTL(MSG_DUP_LDLIBPATH
);
3255 fmt
= MSG_INTL(MSG_USD_LDLIBPATH
);
3257 } else if (pdp
->pd_flags
& LA_SER_RUNPATH
) {
3258 fmt
= MSG_INTL(MSG_USD_RUNPATH
);
3263 (void) printf(MSG_ORIG(MSG_STR_NL
));
3264 (void) printf(fmt
, name
, obj
);
3269 * Generate diagnostics as to whether an object has been used. A symbolic
3270 * reference that gets bound to an object marks it as used. Dependencies that
3271 * are unused when RTLD_NOW is in effect should be removed from future builds
3272 * of an object. Dependencies that are unused without RTLD_NOW in effect are
3273 * candidates for lazy-loading.
3275 * Unreferenced objects identify objects that are defined as dependencies but
3276 * are unreferenced by the caller. These unreferenced objects may however be
3277 * referenced by other objects within the process, and therefore don't qualify
3278 * as completely unused. They are still an unnecessary overhead.
3280 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
3284 unused(Lm_list
*lml
)
3291 * If we're not tracing unused references or dependencies, or debugging
3292 * there's nothing to do.
3294 unref
= lml
->lm_flags
& LML_FLG_TRC_UNREF
;
3295 unuse
= lml
->lm_flags
& LML_FLG_TRC_UNUSED
;
3297 if ((unref
== 0) && (unuse
== 0) && (DBG_ENABLED
== 0))
3301 * Detect unused global search paths.
3304 is_path_used(lml
, unref
, &nl
, rpl_libdirs
, config
->c_name
);
3306 is_path_used(lml
, unref
, &nl
, prm_libdirs
, config
->c_name
);
3311 is_path_used(lml
, unref
, &nl
, RLIST(lmp
), NAME(lmp
));
3314 * Traverse the link-maps looking for unreferenced or unused
3315 * dependencies. Ignore the first object on a link-map list, as this
3319 for (lmp
= NEXT_RT_MAP(lmp
); lmp
; lmp
= NEXT_RT_MAP(lmp
)) {
3321 * Determine if this object contains any runpaths that have
3325 is_path_used(lml
, unref
, &nl
, RLIST(lmp
), NAME(lmp
));
3328 * If tracing unreferenced objects, or under debugging,
3329 * determine whether any of this objects callers haven't
3332 if (unref
|| DBG_ENABLED
) {
3336 for (APLIST_TRAVERSE(CALLERS(lmp
), idx
, bdp
)) {
3339 if (bdp
->b_flags
& BND_REFER
)
3342 clmp
= bdp
->b_caller
;
3343 if (FLAGS1(clmp
) & FL1_RT_LDDSTUB
)
3349 (void) printf(MSG_ORIG(MSG_STR_NL
));
3351 DBG_CALL(Dbg_util_nl(lml
,
3356 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT
),
3357 NAME(lmp
), NAME(clmp
));
3359 DBG_CALL(Dbg_unused_unref(lmp
, NAME(clmp
)));
3365 * If tracing unused objects simply display those objects that
3366 * haven't been referenced by anyone.
3368 if (FLAGS1(lmp
) & FL1_RT_USED
)
3373 (void) printf(MSG_ORIG(MSG_STR_NL
));
3375 DBG_CALL(Dbg_util_nl(lml
, DBG_NL_STD
));
3377 if (CYCGROUP(lmp
)) {
3379 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT
),
3380 NAME(lmp
), CYCGROUP(lmp
));
3382 DBG_CALL(Dbg_unused_file(lml
, NAME(lmp
), 0,
3386 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT
),
3389 DBG_CALL(Dbg_unused_file(lml
, NAME(lmp
), 0, 0));
3393 DBG_CALL(Dbg_util_nl(lml
, DBG_NL_STD
));
3397 * Generic cleanup routine called prior to returning control to the user.
3398 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are
3399 * released, and any locks dropped.
3402 leave(Lm_list
*lml
, int flags
)
3405 * Alert the debuggers that the link-maps are consistent.
3407 rd_event(lml
, RD_DLACTIVITY
, RT_CONSISTENT
);
3410 * Alert any auditors that the link-maps are consistent.
3412 if (lml
->lm_flags
& LML_FLG_ACTAUDIT
) {
3413 audit_activity(lml
->lm_head
, LA_ACT_CONSISTENT
);
3414 lml
->lm_flags
&= ~LML_FLG_ACTAUDIT
;
3417 if (nu_fd
!= FD_UNAVAIL
) {
3418 (void) close(nu_fd
);
3423 * Reinitialize error message pointer, and any overflow indication.
3429 * Defragment any freed memory.
3431 if (aplist_nitems(free_alp
))
3435 * Don't drop our lock if we are running on our link-map list as
3436 * there's little point in doing so since we are single-threaded.
3438 * LML_FLG_HOLDLOCK is set for:
3439 * - The ld.so.1's link-map list.
3440 * - The auditor's link-map if the environment is pre-UPM.
3442 if (lml
->lm_flags
& LML_FLG_HOLDLOCK
)
3445 if (rt_bind_clear(0) & THR_FLG_RTLD
) {
3446 if (!thr_flg_nolock
)
3447 (void) rt_mutex_unlock(&rtldlock
);
3448 (void) rt_bind_clear(THR_FLG_RTLD
| thr_flg_nolock
| flags
);
3453 callable(Rt_map
*clmp
, Rt_map
*dlmp
, Grp_hdl
*ghp
, uint_t slflags
)
3455 APlist
*calp
, *dalp
;
3457 Grp_hdl
*ghp1
, *ghp2
;
3460 * An object can always find symbols within itself.
3466 * The search for a singleton must look in every loaded object.
3468 if (slflags
& LKUP_SINGLETON
)
3472 * Don't allow an object to bind to an object that is being deleted
3473 * unless the binder is also being deleted.
3475 if ((FLAGS(dlmp
) & FLG_RT_DELETE
) &&
3476 ((FLAGS(clmp
) & FLG_RT_DELETE
) == 0))
3480 * An object with world access can always bind to an object with global
3483 if (((MODE(clmp
) & RTLD_WORLD
) || (slflags
& LKUP_WORLD
)) &&
3484 (MODE(dlmp
) & RTLD_GLOBAL
))
3488 * An object with local access can only bind to an object that is a
3489 * member of the same group.
3491 if (((MODE(clmp
) & RTLD_GROUP
) == 0) ||
3492 ((calp
= GROUPS(clmp
)) == NULL
) || ((dalp
= GROUPS(dlmp
)) == NULL
))
3496 * Traverse the list of groups the caller is a part of.
3498 for (APLIST_TRAVERSE(calp
, idx1
, ghp1
)) {
3500 * If we're testing for the ability of two objects to bind to
3501 * each other regardless of a specific group, ignore that group.
3503 if (ghp
&& (ghp1
== ghp
))
3507 * Traverse the list of groups the destination is a part of.
3509 for (APLIST_TRAVERSE(dalp
, idx2
, ghp2
)) {
3517 * Make sure the relationship between the destination
3518 * and the caller provide symbols for relocation.
3519 * Parents are maintained as callers, but unless the
3520 * destination object was opened with RTLD_PARENT, the
3521 * parent doesn't provide symbols for the destination
3522 * to relocate against.
3524 for (ALIST_TRAVERSE(ghp2
->gh_depends
, idx3
, gdp
)) {
3525 if (dlmp
!= gdp
->gd_depend
)
3528 if (gdp
->gd_flags
& GPD_RELOC
)
3537 * Initialize the environ symbol. Traditionally this is carried out by the crt
3538 * code prior to jumping to main. However, init sections get fired before this
3539 * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3540 * information. In addition, a process may have multiple link-maps (ld.so.1's
3541 * debugging and preloading objects), and link auditing, and each may need an
3542 * environ variable set.
3544 * This routine is called after a relocation() pass, and thus provides for:
3546 * - setting environ on the main link-map after the initial application and
3547 * its dependencies have been established. Typically environ lives in the
3548 * application (provided by its crt), but in older applications it might
3549 * be in libc. Who knows what's expected of applications not built on
3552 * - after loading a new shared object. We can add shared objects to various
3553 * link-maps, and any link-map dependencies requiring getopt() require
3554 * their own environ. In addition, lazy loading might bring in the
3555 * supplier of environ (libc used to be a lazy loading candidate) after
3556 * the link-map has been established and other objects are present.
3558 * This routine handles all these scenarios, without adding unnecessary overhead
3562 set_environ(Lm_list
*lml
)
3569 * Initialize the symbol lookup, and symbol result, data structures.
3571 SLOOKUP_INIT(sl
, MSG_ORIG(MSG_SYM_ENVIRON
), lml
->lm_head
, lml
->lm_head
,
3572 ld_entry_cnt
, 0, 0, 0, 0, LKUP_WEAK
);
3573 SRESULT_INIT(sr
, MSG_ORIG(MSG_SYM_ENVIRON
));
3575 if (LM_LOOKUP_SYM(lml
->lm_head
)(&sl
, &sr
, &binfo
, 0)) {
3576 Rt_map
*dlmp
= sr
.sr_dmap
;
3578 lml
->lm_environ
= (char ***)sr
.sr_sym
->st_value
;
3580 if (!(FLAGS(dlmp
) & FLG_RT_FIXED
))
3582 (char ***)((uintptr_t)lml
->lm_environ
+
3583 (uintptr_t)ADDR(dlmp
));
3584 *(lml
->lm_environ
) = (char **)environ
;
3585 lml
->lm_flags
|= LML_FLG_ENVIRON
;
3590 * Determine whether we have a secure executable. Uid and gid information
3591 * can be passed to us via the aux vector, however if these values are -1
3592 * then use the appropriate system call to obtain them.
3594 * - If the user is the root they can do anything
3596 * - If the real and effective uid's don't match, or the real and
3597 * effective gid's don't match then this is determined to be a `secure'
3600 * This function is called prior to any dependency processing (see _setup.c).
3601 * Any secure setting will remain in effect for the life of the process.
3604 security(uid_t uid
, uid_t euid
, gid_t gid
, gid_t egid
, int auxflags
)
3606 if (auxflags
!= -1) {
3607 if ((auxflags
& AF_SUN_SETUGID
) != 0)
3608 rtld_flags
|= RT_FL_SECURE
;
3612 if (uid
== (uid_t
)-1)
3615 if (euid
== (uid_t
)-1)
3618 rtld_flags
|= RT_FL_SECURE
;
3620 if (gid
== (gid_t
)-1)
3622 if (egid
== (gid_t
)-1)
3625 rtld_flags
|= RT_FL_SECURE
;
3631 * Determine whether ld.so.1 itself is owned by root and has its mode setuid.
3639 if (rtld_flags2
& RT_FL2_SETUID
)
3642 if (interp
&& interp
->i_name
)
3643 name
= interp
->i_name
;
3645 name
= NAME(lml_rtld
.lm_head
);
3647 if (((rtld_stat(name
, &status
) == 0) &&
3648 (status
.st_uid
== 0) && (status
.st_mode
& S_ISUID
))) {
3649 rtld_flags2
|= RT_FL2_SETUID
;
3656 * Determine that systems platform name. Normally, this name is provided from
3657 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a
3661 platform_name(Syscapset
*scapset
)
3663 char info
[SYS_NMLN
];
3666 if ((scapset
->sc_platsz
= size
=
3667 sysinfo(SI_PLATFORM
, info
, SYS_NMLN
)) == (size_t)-1)
3670 if ((scapset
->sc_plat
= malloc(size
)) == NULL
) {
3671 scapset
->sc_platsz
= (size_t)-1;
3674 (void) strcpy(scapset
->sc_plat
, info
);
3678 * Determine that systems machine name. Normally, this name is provided from
3679 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a
3683 machine_name(Syscapset
*scapset
)
3685 char info
[SYS_NMLN
];
3688 if ((scapset
->sc_machsz
= size
=
3689 sysinfo(SI_MACHINE
, info
, SYS_NMLN
)) == (size_t)-1)
3692 if ((scapset
->sc_mach
= malloc(size
)) == NULL
) {
3693 scapset
->sc_machsz
= (size_t)-1;
3696 (void) strcpy(scapset
->sc_mach
, info
);
3700 * errno gets redefined to a function so provide for return of the thread
3701 * errno if applicable. This has no meaning in ld.so.1 which is basically
3702 * singled threaded. Provide the interface for our dependencies.
3714 * Determine whether a symbol name should be demangled.
3717 demangle(const char *name
)
3719 if (rtld_flags
& RT_FL_DEMANGLE
)
3720 return (conv_demangle_name(name
));
3727 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64()
3728 * underneath while preserving the object size limits of a non-largefile
3729 * enabled 32-bit process. The purpose of this is to prevent large inode
3730 * values from causing stat() to fail.
3733 rtld_stat_process(int r
, struct stat64
*lbuf
, rtld_stat_t
*restrict buf
)
3738 * Although we used a 64-bit capable stat(), the 32-bit rtld
3739 * can only handle objects < 2GB in size. If this object is
3740 * too big, turn the success into an overflow error.
3742 if ((lbuf
->st_size
& 0xffffffff80000000) != 0) {
3748 * Transfer the information needed by rtld into a rtld_stat_t
3749 * structure that preserves the non-largile types for everything
3752 buf
->st_dev
= lbuf
->st_dev
;
3753 buf
->st_ino
= lbuf
->st_ino
;
3754 buf
->st_mode
= lbuf
->st_mode
;
3755 buf
->st_uid
= lbuf
->st_uid
;
3756 buf
->st_size
= (off_t
)lbuf
->st_size
;
3757 buf
->st_mtim
= lbuf
->st_mtim
;
3759 buf
->st_blksize
= lbuf
->st_blksize
;
3766 rtld_stat(const char *restrict path
, rtld_stat_t
*restrict buf
)
3771 r
= stat64(path
, &lbuf
);
3773 r
= rtld_stat_process(r
, &lbuf
, buf
);
3778 rtld_fstat(int fildes
, rtld_stat_t
*restrict buf
)
3783 r
= fstat64(fildes
, &lbuf
);
3785 r
= rtld_stat_process(r
, &lbuf
, buf
);