4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
30 * The objective of this program is to provide a DMU/ZAP/SPA stress test
31 * that runs entirely in userland, is easy to use, and easy to extend.
33 * The overall design of the ztest program is as follows:
35 * (1) For each major functional area (e.g. adding vdevs to a pool,
36 * creating and destroying datasets, reading and writing objects, etc)
37 * we have a simple routine to test that functionality. These
38 * individual routines do not have to do anything "stressful".
40 * (2) We turn these simple functionality tests into a stress test by
41 * running them all in parallel, with as many threads as desired,
42 * and spread across as many datasets, objects, and vdevs as desired.
44 * (3) While all this is happening, we inject faults into the pool to
45 * verify that self-healing data really works.
47 * (4) Every time we open a dataset, we change its checksum and compression
48 * functions. Thus even individual objects vary from block to block
49 * in which checksum they use and whether they're compressed.
51 * (5) To verify that we never lose on-disk consistency after a crash,
52 * we run the entire test in a child of the main process.
53 * At random times, the child self-immolates with a SIGKILL.
54 * This is the software equivalent of pulling the power cord.
55 * The parent then runs the test again, using the existing
56 * storage pool, as many times as desired. If backwards compatibility
57 * testing is enabled ztest will sometimes run the "older" version
58 * of ztest after a SIGKILL.
60 * (6) To verify that we don't have future leaks or temporal incursions,
61 * many of the functional tests record the transaction group number
62 * as part of their data. When reading old data, they verify that
63 * the transaction group number is less than the current, open txg.
64 * If you add a new test, please do this if applicable.
66 * When run with no arguments, ztest runs for about five minutes and
67 * produces no output if successful. To get a little bit of information,
68 * specify -V. To get more information, specify -VV, and so on.
70 * To turn this into an overnight stress test, use -T to specify run time.
72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
73 * to increase the pool capacity, fanout, and overall stress level.
75 * Use the -k option to set the desired frequency of kills.
77 * When ztest invokes itself it passes all relevant information through a
78 * temporary file which is mmap-ed in the child process. This allows shared
79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
80 * stored at offset 0 of this file and contains information on the size and
81 * number of shared structures in the file. The information stored in this file
82 * must remain backwards compatible with older versions of ztest so that
83 * ztest can invoke them during backwards compatibility testing (-B).
86 #include <sys/zfs_context.h>
92 #include <sys/dmu_objset.h>
98 #include <sys/resource.h>
101 #include <sys/zil_impl.h>
102 #include <sys/vdev_impl.h>
103 #include <sys/vdev_file.h>
104 #include <sys/spa_impl.h>
105 #include <sys/metaslab_impl.h>
106 #include <sys/dsl_prop.h>
107 #include <sys/dsl_dataset.h>
108 #include <sys/dsl_destroy.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <sys/dsl_userhold.h>
116 #include <stdio_ext.h>
124 #include <sys/fs/zfs.h>
125 #include <libnvpair.h>
127 static int ztest_fd_data
= -1;
128 static int ztest_fd_rand
= -1;
130 typedef struct ztest_shared_hdr
{
131 uint64_t zh_hdr_size
;
132 uint64_t zh_opts_size
;
134 uint64_t zh_stats_size
;
135 uint64_t zh_stats_count
;
137 uint64_t zh_ds_count
;
138 } ztest_shared_hdr_t
;
140 static ztest_shared_hdr_t
*ztest_shared_hdr
;
142 typedef struct ztest_shared_opts
{
143 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
144 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
145 char zo_alt_ztest
[MAXNAMELEN
];
146 char zo_alt_libpath
[MAXNAMELEN
];
148 uint64_t zo_vdevtime
;
156 uint64_t zo_passtime
;
157 uint64_t zo_killrate
;
161 uint64_t zo_maxloops
;
162 uint64_t zo_metaslab_gang_bang
;
163 } ztest_shared_opts_t
;
165 static const ztest_shared_opts_t ztest_opts_defaults
= {
166 .zo_pool
= { 'z', 't', 'e', 's', 't', '\0' },
167 .zo_dir
= { '/', 't', 'm', 'p', '\0' },
168 .zo_alt_ztest
= { '\0' },
169 .zo_alt_libpath
= { '\0' },
171 .zo_ashift
= SPA_MINBLOCKSHIFT
,
174 .zo_raidz_parity
= 1,
175 .zo_vdev_size
= SPA_MINDEVSIZE
* 4, /* 256m default size */
178 .zo_passtime
= 60, /* 60 seconds */
179 .zo_killrate
= 70, /* 70% kill rate */
182 .zo_time
= 300, /* 5 minutes */
183 .zo_maxloops
= 50, /* max loops during spa_freeze() */
184 .zo_metaslab_gang_bang
= 32 << 10
187 extern uint64_t metaslab_gang_bang
;
188 extern uint64_t metaslab_df_alloc_threshold
;
189 extern uint64_t zfs_deadman_synctime_ms
;
190 extern int metaslab_preload_limit
;
191 extern boolean_t zfs_compressed_arc_enabled
;
192 extern boolean_t zfs_abd_scatter_enabled
;
194 static ztest_shared_opts_t
*ztest_shared_opts
;
195 static ztest_shared_opts_t ztest_opts
;
197 typedef struct ztest_shared_ds
{
201 static ztest_shared_ds_t
*ztest_shared_ds
;
202 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
204 #define BT_MAGIC 0x123456789abcdefULL
205 #define MAXFAULTS() \
206 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
210 ZTEST_IO_WRITE_PATTERN
,
211 ZTEST_IO_WRITE_ZEROES
,
218 typedef struct ztest_block_tag
{
228 typedef struct bufwad
{
235 * XXX -- fix zfs range locks to be generic so we can use them here.
257 #define ZTEST_RANGE_LOCKS 64
258 #define ZTEST_OBJECT_LOCKS 64
261 * Object descriptor. Used as a template for object lookup/create/remove.
263 typedef struct ztest_od
{
266 dmu_object_type_t od_type
;
267 dmu_object_type_t od_crtype
;
268 uint64_t od_blocksize
;
269 uint64_t od_crblocksize
;
272 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
278 typedef struct ztest_ds
{
279 ztest_shared_ds_t
*zd_shared
;
281 rwlock_t zd_zilog_lock
;
283 ztest_od_t
*zd_od
; /* debugging aid */
284 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
285 mutex_t zd_dirobj_lock
;
286 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
287 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
291 * Per-iteration state.
293 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
295 typedef struct ztest_info
{
296 ztest_func_t
*zi_func
; /* test function */
297 uint64_t zi_iters
; /* iterations per execution */
298 uint64_t *zi_interval
; /* execute every <interval> seconds */
301 typedef struct ztest_shared_callstate
{
302 uint64_t zc_count
; /* per-pass count */
303 uint64_t zc_time
; /* per-pass time */
304 uint64_t zc_next
; /* next time to call this function */
305 } ztest_shared_callstate_t
;
307 static ztest_shared_callstate_t
*ztest_shared_callstate
;
308 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
311 * Note: these aren't static because we want dladdr() to work.
313 ztest_func_t ztest_dmu_read_write
;
314 ztest_func_t ztest_dmu_write_parallel
;
315 ztest_func_t ztest_dmu_object_alloc_free
;
316 ztest_func_t ztest_dmu_commit_callbacks
;
317 ztest_func_t ztest_zap
;
318 ztest_func_t ztest_zap_parallel
;
319 ztest_func_t ztest_zil_commit
;
320 ztest_func_t ztest_zil_remount
;
321 ztest_func_t ztest_dmu_read_write_zcopy
;
322 ztest_func_t ztest_dmu_objset_create_destroy
;
323 ztest_func_t ztest_dmu_prealloc
;
324 ztest_func_t ztest_fzap
;
325 ztest_func_t ztest_dmu_snapshot_create_destroy
;
326 ztest_func_t ztest_dsl_prop_get_set
;
327 ztest_func_t ztest_spa_prop_get_set
;
328 ztest_func_t ztest_spa_create_destroy
;
329 ztest_func_t ztest_fault_inject
;
330 ztest_func_t ztest_ddt_repair
;
331 ztest_func_t ztest_dmu_snapshot_hold
;
332 ztest_func_t ztest_spa_rename
;
333 ztest_func_t ztest_scrub
;
334 ztest_func_t ztest_dsl_dataset_promote_busy
;
335 ztest_func_t ztest_vdev_attach_detach
;
336 ztest_func_t ztest_vdev_LUN_growth
;
337 ztest_func_t ztest_vdev_add_remove
;
338 ztest_func_t ztest_vdev_aux_add_remove
;
339 ztest_func_t ztest_split_pool
;
340 ztest_func_t ztest_reguid
;
341 ztest_func_t ztest_spa_upgrade
;
343 uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
344 uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
345 uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
346 uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
347 uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
349 ztest_info_t ztest_info
[] = {
350 { ztest_dmu_read_write
, 1, &zopt_always
},
351 { ztest_dmu_write_parallel
, 10, &zopt_always
},
352 { ztest_dmu_object_alloc_free
, 1, &zopt_always
},
353 { ztest_dmu_commit_callbacks
, 1, &zopt_always
},
354 { ztest_zap
, 30, &zopt_always
},
355 { ztest_zap_parallel
, 100, &zopt_always
},
356 { ztest_split_pool
, 1, &zopt_always
},
357 { ztest_zil_commit
, 1, &zopt_incessant
},
358 { ztest_zil_remount
, 1, &zopt_sometimes
},
359 { ztest_dmu_read_write_zcopy
, 1, &zopt_often
},
360 { ztest_dmu_objset_create_destroy
, 1, &zopt_often
},
361 { ztest_dsl_prop_get_set
, 1, &zopt_often
},
362 { ztest_spa_prop_get_set
, 1, &zopt_sometimes
},
364 { ztest_dmu_prealloc
, 1, &zopt_sometimes
},
366 { ztest_fzap
, 1, &zopt_sometimes
},
367 { ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
},
368 { ztest_spa_create_destroy
, 1, &zopt_sometimes
},
369 { ztest_fault_inject
, 1, &zopt_sometimes
},
370 { ztest_ddt_repair
, 1, &zopt_sometimes
},
371 { ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
},
372 { ztest_reguid
, 1, &zopt_rarely
},
373 { ztest_spa_rename
, 1, &zopt_rarely
},
374 { ztest_scrub
, 1, &zopt_rarely
},
375 { ztest_spa_upgrade
, 1, &zopt_rarely
},
376 { ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
},
377 { ztest_vdev_attach_detach
, 1, &zopt_sometimes
},
378 { ztest_vdev_LUN_growth
, 1, &zopt_rarely
},
379 { ztest_vdev_add_remove
, 1,
380 &ztest_opts
.zo_vdevtime
},
381 { ztest_vdev_aux_add_remove
, 1,
382 &ztest_opts
.zo_vdevtime
},
385 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
388 * The following struct is used to hold a list of uncalled commit callbacks.
389 * The callbacks are ordered by txg number.
391 typedef struct ztest_cb_list
{
392 mutex_t zcl_callbacks_lock
;
393 list_t zcl_callbacks
;
397 * Stuff we need to share writably between parent and child.
399 typedef struct ztest_shared
{
400 boolean_t zs_do_init
;
401 hrtime_t zs_proc_start
;
402 hrtime_t zs_proc_stop
;
403 hrtime_t zs_thread_start
;
404 hrtime_t zs_thread_stop
;
405 hrtime_t zs_thread_kill
;
406 uint64_t zs_enospc_count
;
407 uint64_t zs_vdev_next_leaf
;
408 uint64_t zs_vdev_aux
;
413 uint64_t zs_metaslab_sz
;
414 uint64_t zs_metaslab_df_alloc_threshold
;
418 #define ID_PARALLEL -1ULL
420 static char ztest_dev_template
[] = "%s/%s.%llua";
421 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
422 ztest_shared_t
*ztest_shared
;
424 static spa_t
*ztest_spa
= NULL
;
425 static ztest_ds_t
*ztest_ds
;
427 static mutex_t ztest_vdev_lock
;
430 * The ztest_name_lock protects the pool and dataset namespace used by
431 * the individual tests. To modify the namespace, consumers must grab
432 * this lock as writer. Grabbing the lock as reader will ensure that the
433 * namespace does not change while the lock is held.
435 static rwlock_t ztest_name_lock
;
437 static boolean_t ztest_dump_core
= B_TRUE
;
438 static boolean_t ztest_exiting
;
440 /* Global commit callback list */
441 static ztest_cb_list_t zcl
;
444 ZTEST_META_DNODE
= 0,
449 static void usage(boolean_t
) __NORETURN
;
452 * These libumem hooks provide a reasonable set of defaults for the allocator's
453 * debugging facilities.
458 return ("default,verbose"); /* $UMEM_DEBUG setting */
462 _umem_logging_init(void)
464 return ("fail,contents"); /* $UMEM_LOGGING setting */
467 #define FATAL_MSG_SZ 1024
472 fatal(int do_perror
, char *message
, ...)
475 int save_errno
= errno
;
476 char buf
[FATAL_MSG_SZ
];
478 (void) fflush(stdout
);
480 va_start(args
, message
);
481 (void) sprintf(buf
, "ztest: ");
483 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
486 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
487 ": %s", strerror(save_errno
));
489 (void) fprintf(stderr
, "%s\n", buf
);
490 fatal_msg
= buf
; /* to ease debugging */
497 str2shift(const char *buf
)
499 const char *ends
= "BKMGTPEZ";
504 for (i
= 0; i
< strlen(ends
); i
++) {
505 if (toupper(buf
[0]) == ends
[i
])
508 if (i
== strlen(ends
)) {
509 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
513 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
516 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
522 nicenumtoull(const char *buf
)
527 val
= strtoull(buf
, &end
, 0);
529 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
531 } else if (end
[0] == '.') {
532 double fval
= strtod(buf
, &end
);
533 fval
*= pow(2, str2shift(end
));
534 if (fval
> UINT64_MAX
) {
535 (void) fprintf(stderr
, "ztest: value too large: %s\n",
539 val
= (uint64_t)fval
;
541 int shift
= str2shift(end
);
542 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
543 (void) fprintf(stderr
, "ztest: value too large: %s\n",
553 usage(boolean_t requested
)
555 const ztest_shared_opts_t
*zo
= &ztest_opts_defaults
;
557 char nice_vdev_size
[10];
558 char nice_gang_bang
[10];
559 FILE *fp
= requested
? stdout
: stderr
;
561 nicenum(zo
->zo_vdev_size
, nice_vdev_size
);
562 nicenum(zo
->zo_metaslab_gang_bang
, nice_gang_bang
);
564 (void) fprintf(fp
, "Usage: %s\n"
565 "\t[-v vdevs (default: %llu)]\n"
566 "\t[-s size_of_each_vdev (default: %s)]\n"
567 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
568 "\t[-m mirror_copies (default: %d)]\n"
569 "\t[-r raidz_disks (default: %d)]\n"
570 "\t[-R raidz_parity (default: %d)]\n"
571 "\t[-d datasets (default: %d)]\n"
572 "\t[-t threads (default: %d)]\n"
573 "\t[-g gang_block_threshold (default: %s)]\n"
574 "\t[-i init_count (default: %d)] initialize pool i times\n"
575 "\t[-k kill_percentage (default: %llu%%)]\n"
576 "\t[-p pool_name (default: %s)]\n"
577 "\t[-f dir (default: %s)] file directory for vdev files\n"
578 "\t[-V] verbose (use multiple times for ever more blather)\n"
579 "\t[-E] use existing pool instead of creating new one\n"
580 "\t[-T time (default: %llu sec)] total run time\n"
581 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
582 "\t[-P passtime (default: %llu sec)] time per pass\n"
583 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
584 "\t[-o variable=value] ... set global variable to an unsigned\n"
585 "\t 32-bit integer value\n"
586 "\t[-h] (print help)\n"
589 (u_longlong_t
)zo
->zo_vdevs
, /* -v */
590 nice_vdev_size
, /* -s */
591 zo
->zo_ashift
, /* -a */
592 zo
->zo_mirrors
, /* -m */
593 zo
->zo_raidz
, /* -r */
594 zo
->zo_raidz_parity
, /* -R */
595 zo
->zo_datasets
, /* -d */
596 zo
->zo_threads
, /* -t */
597 nice_gang_bang
, /* -g */
598 zo
->zo_init
, /* -i */
599 (u_longlong_t
)zo
->zo_killrate
, /* -k */
600 zo
->zo_pool
, /* -p */
602 (u_longlong_t
)zo
->zo_time
, /* -T */
603 (u_longlong_t
)zo
->zo_maxloops
, /* -F */
604 (u_longlong_t
)zo
->zo_passtime
);
605 exit(requested
? 0 : 1);
609 process_options(int argc
, char **argv
)
612 ztest_shared_opts_t
*zo
= &ztest_opts
;
616 char altdir
[MAXNAMELEN
] = { 0 };
618 bcopy(&ztest_opts_defaults
, zo
, sizeof (*zo
));
620 while ((opt
= getopt(argc
, argv
,
621 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF
) {
638 value
= nicenumtoull(optarg
);
642 zo
->zo_vdevs
= value
;
645 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
648 zo
->zo_ashift
= value
;
651 zo
->zo_mirrors
= value
;
654 zo
->zo_raidz
= MAX(1, value
);
657 zo
->zo_raidz_parity
= MIN(MAX(value
, 1), 3);
660 zo
->zo_datasets
= MAX(1, value
);
663 zo
->zo_threads
= MAX(1, value
);
666 zo
->zo_metaslab_gang_bang
= MAX(SPA_MINBLOCKSIZE
<< 1,
673 zo
->zo_killrate
= value
;
676 (void) strlcpy(zo
->zo_pool
, optarg
,
677 sizeof (zo
->zo_pool
));
680 path
= realpath(optarg
, NULL
);
682 (void) fprintf(stderr
, "error: %s: %s\n",
683 optarg
, strerror(errno
));
686 (void) strlcpy(zo
->zo_dir
, path
,
687 sizeof (zo
->zo_dir
));
700 zo
->zo_passtime
= MAX(1, value
);
703 zo
->zo_maxloops
= MAX(1, value
);
706 (void) strlcpy(altdir
, optarg
, sizeof (altdir
));
709 if (set_global_var(optarg
) != 0)
722 zo
->zo_raidz_parity
= MIN(zo
->zo_raidz_parity
, zo
->zo_raidz
- 1);
725 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
728 if (strlen(altdir
) > 0) {
736 cmd
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
737 realaltdir
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
739 VERIFY(NULL
!= realpath(getexecname(), cmd
));
740 if (0 != access(altdir
, F_OK
)) {
741 ztest_dump_core
= B_FALSE
;
742 fatal(B_TRUE
, "invalid alternate ztest path: %s",
745 VERIFY(NULL
!= realpath(altdir
, realaltdir
));
748 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
749 * We want to extract <isa> to determine if we should use
750 * 32 or 64 bit binaries.
752 bin
= strstr(cmd
, "/usr/bin/");
753 ztest
= strstr(bin
, "/ztest");
755 isalen
= ztest
- isa
;
756 (void) snprintf(zo
->zo_alt_ztest
, sizeof (zo
->zo_alt_ztest
),
757 "%s/usr/bin/%.*s/ztest", realaltdir
, isalen
, isa
);
758 (void) snprintf(zo
->zo_alt_libpath
, sizeof (zo
->zo_alt_libpath
),
759 "%s/usr/lib/%.*s", realaltdir
, isalen
, isa
);
761 if (0 != access(zo
->zo_alt_ztest
, X_OK
)) {
762 ztest_dump_core
= B_FALSE
;
763 fatal(B_TRUE
, "invalid alternate ztest: %s",
765 } else if (0 != access(zo
->zo_alt_libpath
, X_OK
)) {
766 ztest_dump_core
= B_FALSE
;
767 fatal(B_TRUE
, "invalid alternate lib directory %s",
771 umem_free(cmd
, MAXPATHLEN
);
772 umem_free(realaltdir
, MAXPATHLEN
);
777 ztest_kill(ztest_shared_t
*zs
)
779 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
780 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
783 * Before we kill off ztest, make sure that the config is updated.
784 * See comment above spa_config_sync().
786 mutex_enter(&spa_namespace_lock
);
787 spa_config_sync(ztest_spa
, B_FALSE
, B_FALSE
);
788 mutex_exit(&spa_namespace_lock
);
790 zfs_dbgmsg_print(FTAG
);
791 (void) kill(getpid(), SIGKILL
);
795 ztest_random(uint64_t range
)
799 ASSERT3S(ztest_fd_rand
, >=, 0);
804 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
805 fatal(1, "short read from /dev/urandom");
812 ztest_record_enospc(const char *s
)
814 ztest_shared
->zs_enospc_count
++;
818 ztest_get_ashift(void)
820 if (ztest_opts
.zo_ashift
== 0)
821 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
822 return (ztest_opts
.zo_ashift
);
826 make_vdev_file(char *path
, char *aux
, char *pool
, size_t size
, uint64_t ashift
)
828 char pathbuf
[MAXPATHLEN
];
833 ashift
= ztest_get_ashift();
839 vdev
= ztest_shared
->zs_vdev_aux
;
840 (void) snprintf(path
, sizeof (pathbuf
),
841 ztest_aux_template
, ztest_opts
.zo_dir
,
842 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
845 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
846 (void) snprintf(path
, sizeof (pathbuf
),
847 ztest_dev_template
, ztest_opts
.zo_dir
,
848 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
853 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
855 fatal(1, "can't open %s", path
);
856 if (ftruncate(fd
, size
) != 0)
857 fatal(1, "can't ftruncate %s", path
);
861 VERIFY(nvlist_alloc(&file
, NV_UNIQUE_NAME
, 0) == 0);
862 VERIFY(nvlist_add_string(file
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_FILE
) == 0);
863 VERIFY(nvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
) == 0);
864 VERIFY(nvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
) == 0);
870 make_vdev_raidz(char *path
, char *aux
, char *pool
, size_t size
,
871 uint64_t ashift
, int r
)
873 nvlist_t
*raidz
, **child
;
877 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
878 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
880 for (c
= 0; c
< r
; c
++)
881 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
883 VERIFY(nvlist_alloc(&raidz
, NV_UNIQUE_NAME
, 0) == 0);
884 VERIFY(nvlist_add_string(raidz
, ZPOOL_CONFIG_TYPE
,
885 VDEV_TYPE_RAIDZ
) == 0);
886 VERIFY(nvlist_add_uint64(raidz
, ZPOOL_CONFIG_NPARITY
,
887 ztest_opts
.zo_raidz_parity
) == 0);
888 VERIFY(nvlist_add_nvlist_array(raidz
, ZPOOL_CONFIG_CHILDREN
,
891 for (c
= 0; c
< r
; c
++)
892 nvlist_free(child
[c
]);
894 umem_free(child
, r
* sizeof (nvlist_t
*));
900 make_vdev_mirror(char *path
, char *aux
, char *pool
, size_t size
,
901 uint64_t ashift
, int r
, int m
)
903 nvlist_t
*mirror
, **child
;
907 return (make_vdev_raidz(path
, aux
, pool
, size
, ashift
, r
));
909 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
911 for (c
= 0; c
< m
; c
++)
912 child
[c
] = make_vdev_raidz(path
, aux
, pool
, size
, ashift
, r
);
914 VERIFY(nvlist_alloc(&mirror
, NV_UNIQUE_NAME
, 0) == 0);
915 VERIFY(nvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
,
916 VDEV_TYPE_MIRROR
) == 0);
917 VERIFY(nvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
920 for (c
= 0; c
< m
; c
++)
921 nvlist_free(child
[c
]);
923 umem_free(child
, m
* sizeof (nvlist_t
*));
929 make_vdev_root(char *path
, char *aux
, char *pool
, size_t size
, uint64_t ashift
,
930 int log
, int r
, int m
, int t
)
932 nvlist_t
*root
, **child
;
937 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
939 for (c
= 0; c
< t
; c
++) {
940 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
942 VERIFY(nvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
,
946 VERIFY(nvlist_alloc(&root
, NV_UNIQUE_NAME
, 0) == 0);
947 VERIFY(nvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
) == 0);
948 VERIFY(nvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
951 for (c
= 0; c
< t
; c
++)
952 nvlist_free(child
[c
]);
954 umem_free(child
, t
* sizeof (nvlist_t
*));
960 * Find a random spa version. Returns back a random spa version in the
961 * range [initial_version, SPA_VERSION_FEATURES].
964 ztest_random_spa_version(uint64_t initial_version
)
966 uint64_t version
= initial_version
;
968 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
970 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
973 if (version
> SPA_VERSION_BEFORE_FEATURES
)
974 version
= SPA_VERSION_FEATURES
;
976 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
981 ztest_random_blocksize(void)
983 uint64_t block_shift
;
985 * Choose a block size >= the ashift.
986 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
988 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
989 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
991 block_shift
= ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
992 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
996 ztest_random_ibshift(void)
998 return (DN_MIN_INDBLKSHIFT
+
999 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1003 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1006 vdev_t
*rvd
= spa
->spa_root_vdev
;
1009 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
1012 top
= ztest_random(rvd
->vdev_children
);
1013 tvd
= rvd
->vdev_child
[top
];
1014 } while (tvd
->vdev_ishole
|| (tvd
->vdev_islog
&& !log_ok
) ||
1015 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1021 ztest_random_dsl_prop(zfs_prop_t prop
)
1026 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1027 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1033 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1036 const char *propname
= zfs_prop_to_name(prop
);
1037 const char *valname
;
1038 char setpoint
[MAXPATHLEN
];
1042 error
= dsl_prop_set_int(osname
, propname
,
1043 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1045 if (error
== ENOSPC
) {
1046 ztest_record_enospc(FTAG
);
1051 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1053 if (ztest_opts
.zo_verbose
>= 6) {
1054 VERIFY(zfs_prop_index_to_string(prop
, curval
, &valname
) == 0);
1055 (void) printf("%s %s = %s at '%s'\n",
1056 osname
, propname
, valname
, setpoint
);
1063 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1065 spa_t
*spa
= ztest_spa
;
1066 nvlist_t
*props
= NULL
;
1069 VERIFY(nvlist_alloc(&props
, NV_UNIQUE_NAME
, 0) == 0);
1070 VERIFY(nvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
) == 0);
1072 error
= spa_prop_set(spa
, props
);
1076 if (error
== ENOSPC
) {
1077 ztest_record_enospc(FTAG
);
1086 ztest_rll_init(rll_t
*rll
)
1088 rll
->rll_writer
= NULL
;
1089 rll
->rll_readers
= 0;
1090 VERIFY(_mutex_init(&rll
->rll_lock
, USYNC_THREAD
, NULL
) == 0);
1091 VERIFY(cond_init(&rll
->rll_cv
, USYNC_THREAD
, NULL
) == 0);
1095 ztest_rll_destroy(rll_t
*rll
)
1097 ASSERT(rll
->rll_writer
== NULL
);
1098 ASSERT(rll
->rll_readers
== 0);
1099 VERIFY(_mutex_destroy(&rll
->rll_lock
) == 0);
1100 VERIFY(cond_destroy(&rll
->rll_cv
) == 0);
1104 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1106 VERIFY(mutex_lock(&rll
->rll_lock
) == 0);
1108 if (type
== RL_READER
) {
1109 while (rll
->rll_writer
!= NULL
)
1110 (void) cond_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1113 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1114 (void) cond_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1115 rll
->rll_writer
= curthread
;
1118 VERIFY(mutex_unlock(&rll
->rll_lock
) == 0);
1122 ztest_rll_unlock(rll_t
*rll
)
1124 VERIFY(mutex_lock(&rll
->rll_lock
) == 0);
1126 if (rll
->rll_writer
) {
1127 ASSERT(rll
->rll_readers
== 0);
1128 rll
->rll_writer
= NULL
;
1130 ASSERT(rll
->rll_readers
!= 0);
1131 ASSERT(rll
->rll_writer
== NULL
);
1135 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1136 VERIFY(cond_broadcast(&rll
->rll_cv
) == 0);
1138 VERIFY(mutex_unlock(&rll
->rll_lock
) == 0);
1142 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1144 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1146 ztest_rll_lock(rll
, type
);
1150 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1152 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1154 ztest_rll_unlock(rll
);
1158 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1159 uint64_t size
, rl_type_t type
)
1161 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1162 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1165 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1166 rl
->rl_object
= object
;
1167 rl
->rl_offset
= offset
;
1171 ztest_rll_lock(rll
, type
);
1177 ztest_range_unlock(rl_t
*rl
)
1179 rll_t
*rll
= rl
->rl_lock
;
1181 ztest_rll_unlock(rll
);
1183 umem_free(rl
, sizeof (*rl
));
1187 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1190 zd
->zd_zilog
= dmu_objset_zil(os
);
1191 zd
->zd_shared
= szd
;
1192 dmu_objset_name(os
, zd
->zd_name
);
1194 if (zd
->zd_shared
!= NULL
)
1195 zd
->zd_shared
->zd_seq
= 0;
1197 VERIFY(rwlock_init(&zd
->zd_zilog_lock
, USYNC_THREAD
, NULL
) == 0);
1198 VERIFY(_mutex_init(&zd
->zd_dirobj_lock
, USYNC_THREAD
, NULL
) == 0);
1200 for (int l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1201 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1203 for (int l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1204 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1208 ztest_zd_fini(ztest_ds_t
*zd
)
1210 VERIFY(_mutex_destroy(&zd
->zd_dirobj_lock
) == 0);
1212 for (int l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1213 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1215 for (int l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1216 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1219 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1222 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1228 * Attempt to assign tx to some transaction group.
1230 error
= dmu_tx_assign(tx
, txg_how
);
1232 if (error
== ERESTART
) {
1233 ASSERT(txg_how
== TXG_NOWAIT
);
1236 ASSERT3U(error
, ==, ENOSPC
);
1237 ztest_record_enospc(tag
);
1242 txg
= dmu_tx_get_txg(tx
);
1248 ztest_pattern_set(void *buf
, uint64_t size
, uint64_t value
)
1251 uint64_t *ip_end
= (uint64_t *)((uintptr_t)buf
+ (uintptr_t)size
);
1258 ztest_pattern_match(void *buf
, uint64_t size
, uint64_t value
)
1261 uint64_t *ip_end
= (uint64_t *)((uintptr_t)buf
+ (uintptr_t)size
);
1265 diff
|= (value
- *ip
++);
1271 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1272 uint64_t offset
, uint64_t gen
, uint64_t txg
, uint64_t crtxg
)
1274 bt
->bt_magic
= BT_MAGIC
;
1275 bt
->bt_objset
= dmu_objset_id(os
);
1276 bt
->bt_object
= object
;
1277 bt
->bt_offset
= offset
;
1280 bt
->bt_crtxg
= crtxg
;
1284 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1285 uint64_t offset
, uint64_t gen
, uint64_t txg
, uint64_t crtxg
)
1287 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1288 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1289 ASSERT3U(bt
->bt_object
, ==, object
);
1290 ASSERT3U(bt
->bt_offset
, ==, offset
);
1291 ASSERT3U(bt
->bt_gen
, <=, gen
);
1292 ASSERT3U(bt
->bt_txg
, <=, txg
);
1293 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1296 static ztest_block_tag_t
*
1297 ztest_bt_bonus(dmu_buf_t
*db
)
1299 dmu_object_info_t doi
;
1300 ztest_block_tag_t
*bt
;
1302 dmu_object_info_from_db(db
, &doi
);
1303 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1304 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1305 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1314 #define lrz_type lr_mode
1315 #define lrz_blocksize lr_uid
1316 #define lrz_ibshift lr_gid
1317 #define lrz_bonustype lr_rdev
1318 #define lrz_bonuslen lr_crtime[1]
1321 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1323 char *name
= (void *)(lr
+ 1); /* name follows lr */
1324 size_t namesize
= strlen(name
) + 1;
1327 if (zil_replaying(zd
->zd_zilog
, tx
))
1330 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1331 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1332 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1334 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1338 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1340 char *name
= (void *)(lr
+ 1); /* name follows lr */
1341 size_t namesize
= strlen(name
) + 1;
1344 if (zil_replaying(zd
->zd_zilog
, tx
))
1347 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1348 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1349 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1351 itx
->itx_oid
= object
;
1352 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1356 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1359 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1361 if (zil_replaying(zd
->zd_zilog
, tx
))
1364 if (lr
->lr_length
> ZIL_MAX_LOG_DATA
)
1365 write_state
= WR_INDIRECT
;
1367 itx
= zil_itx_create(TX_WRITE
,
1368 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1370 if (write_state
== WR_COPIED
&&
1371 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1372 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1373 zil_itx_destroy(itx
);
1374 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1375 write_state
= WR_NEED_COPY
;
1377 itx
->itx_private
= zd
;
1378 itx
->itx_wr_state
= write_state
;
1379 itx
->itx_sync
= (ztest_random(8) == 0);
1381 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1382 sizeof (*lr
) - sizeof (lr_t
));
1384 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1388 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
1392 if (zil_replaying(zd
->zd_zilog
, tx
))
1395 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
1396 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1397 sizeof (*lr
) - sizeof (lr_t
));
1399 itx
->itx_sync
= B_FALSE
;
1400 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1404 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
1408 if (zil_replaying(zd
->zd_zilog
, tx
))
1411 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
1412 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1413 sizeof (*lr
) - sizeof (lr_t
));
1415 itx
->itx_sync
= B_FALSE
;
1416 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1423 ztest_replay_create(ztest_ds_t
*zd
, lr_create_t
*lr
, boolean_t byteswap
)
1425 char *name
= (void *)(lr
+ 1); /* name follows lr */
1426 objset_t
*os
= zd
->zd_os
;
1427 ztest_block_tag_t
*bbt
;
1434 byteswap_uint64_array(lr
, sizeof (*lr
));
1436 ASSERT(lr
->lr_doid
== ZTEST_DIROBJ
);
1437 ASSERT(name
[0] != '\0');
1439 tx
= dmu_tx_create(os
);
1441 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
1443 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1444 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1446 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
1449 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1453 ASSERT(dmu_objset_zil(os
)->zl_replay
== !!lr
->lr_foid
);
1455 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1456 if (lr
->lr_foid
== 0) {
1457 lr
->lr_foid
= zap_create(os
,
1458 lr
->lrz_type
, lr
->lrz_bonustype
,
1459 lr
->lrz_bonuslen
, tx
);
1461 error
= zap_create_claim(os
, lr
->lr_foid
,
1462 lr
->lrz_type
, lr
->lrz_bonustype
,
1463 lr
->lrz_bonuslen
, tx
);
1466 if (lr
->lr_foid
== 0) {
1467 lr
->lr_foid
= dmu_object_alloc(os
,
1468 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
1469 lr
->lrz_bonuslen
, tx
);
1471 error
= dmu_object_claim(os
, lr
->lr_foid
,
1472 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
1473 lr
->lrz_bonuslen
, tx
);
1478 ASSERT3U(error
, ==, EEXIST
);
1479 ASSERT(zd
->zd_zilog
->zl_replay
);
1484 ASSERT(lr
->lr_foid
!= 0);
1486 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
1487 VERIFY3U(0, ==, dmu_object_set_blocksize(os
, lr
->lr_foid
,
1488 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
1490 VERIFY3U(0, ==, dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
1491 bbt
= ztest_bt_bonus(db
);
1492 dmu_buf_will_dirty(db
, tx
);
1493 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, -1ULL, lr
->lr_gen
, txg
, txg
);
1494 dmu_buf_rele(db
, FTAG
);
1496 VERIFY3U(0, ==, zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
1499 (void) ztest_log_create(zd
, tx
, lr
);
1507 ztest_replay_remove(ztest_ds_t
*zd
, lr_remove_t
*lr
, boolean_t byteswap
)
1509 char *name
= (void *)(lr
+ 1); /* name follows lr */
1510 objset_t
*os
= zd
->zd_os
;
1511 dmu_object_info_t doi
;
1513 uint64_t object
, txg
;
1516 byteswap_uint64_array(lr
, sizeof (*lr
));
1518 ASSERT(lr
->lr_doid
== ZTEST_DIROBJ
);
1519 ASSERT(name
[0] != '\0');
1522 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
1523 ASSERT(object
!= 0);
1525 ztest_object_lock(zd
, object
, RL_WRITER
);
1527 VERIFY3U(0, ==, dmu_object_info(os
, object
, &doi
));
1529 tx
= dmu_tx_create(os
);
1531 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
1532 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
1534 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1536 ztest_object_unlock(zd
, object
);
1540 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
1541 VERIFY3U(0, ==, zap_destroy(os
, object
, tx
));
1543 VERIFY3U(0, ==, dmu_object_free(os
, object
, tx
));
1546 VERIFY3U(0, ==, zap_remove(os
, lr
->lr_doid
, name
, tx
));
1548 (void) ztest_log_remove(zd
, tx
, lr
, object
);
1552 ztest_object_unlock(zd
, object
);
1558 ztest_replay_write(ztest_ds_t
*zd
, lr_write_t
*lr
, boolean_t byteswap
)
1560 objset_t
*os
= zd
->zd_os
;
1561 void *data
= lr
+ 1; /* data follows lr */
1562 uint64_t offset
, length
;
1563 ztest_block_tag_t
*bt
= data
;
1564 ztest_block_tag_t
*bbt
;
1565 uint64_t gen
, txg
, lrtxg
, crtxg
;
1566 dmu_object_info_t doi
;
1569 arc_buf_t
*abuf
= NULL
;
1573 byteswap_uint64_array(lr
, sizeof (*lr
));
1575 offset
= lr
->lr_offset
;
1576 length
= lr
->lr_length
;
1578 /* If it's a dmu_sync() block, write the whole block */
1579 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
1580 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
1581 if (length
< blocksize
) {
1582 offset
-= offset
% blocksize
;
1587 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
1588 byteswap_uint64_array(bt
, sizeof (*bt
));
1590 if (bt
->bt_magic
!= BT_MAGIC
)
1593 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
1594 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, RL_WRITER
);
1596 VERIFY3U(0, ==, dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
1598 dmu_object_info_from_db(db
, &doi
);
1600 bbt
= ztest_bt_bonus(db
);
1601 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
1603 crtxg
= bbt
->bt_crtxg
;
1604 lrtxg
= lr
->lr_common
.lrc_txg
;
1606 tx
= dmu_tx_create(os
);
1608 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
1610 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
1611 P2PHASE(offset
, length
) == 0)
1612 abuf
= dmu_request_arcbuf(db
, length
);
1614 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1617 dmu_return_arcbuf(abuf
);
1618 dmu_buf_rele(db
, FTAG
);
1619 ztest_range_unlock(rl
);
1620 ztest_object_unlock(zd
, lr
->lr_foid
);
1626 * Usually, verify the old data before writing new data --
1627 * but not always, because we also want to verify correct
1628 * behavior when the data was not recently read into cache.
1630 ASSERT(offset
% doi
.doi_data_block_size
== 0);
1631 if (ztest_random(4) != 0) {
1632 int prefetch
= ztest_random(2) ?
1633 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
1634 ztest_block_tag_t rbt
;
1636 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
1637 sizeof (rbt
), &rbt
, prefetch
) == 0);
1638 if (rbt
.bt_magic
== BT_MAGIC
) {
1639 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
,
1640 offset
, gen
, txg
, crtxg
);
1645 * Writes can appear to be newer than the bonus buffer because
1646 * the ztest_get_data() callback does a dmu_read() of the
1647 * open-context data, which may be different than the data
1648 * as it was when the write was generated.
1650 if (zd
->zd_zilog
->zl_replay
) {
1651 ztest_bt_verify(bt
, os
, lr
->lr_foid
, offset
,
1652 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
1657 * Set the bt's gen/txg to the bonus buffer's gen/txg
1658 * so that all of the usual ASSERTs will work.
1660 ztest_bt_generate(bt
, os
, lr
->lr_foid
, offset
, gen
, txg
, crtxg
);
1664 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
1666 bcopy(data
, abuf
->b_data
, length
);
1667 dmu_assign_arcbuf(db
, offset
, abuf
, tx
);
1670 (void) ztest_log_write(zd
, tx
, lr
);
1672 dmu_buf_rele(db
, FTAG
);
1676 ztest_range_unlock(rl
);
1677 ztest_object_unlock(zd
, lr
->lr_foid
);
1683 ztest_replay_truncate(ztest_ds_t
*zd
, lr_truncate_t
*lr
, boolean_t byteswap
)
1685 objset_t
*os
= zd
->zd_os
;
1691 byteswap_uint64_array(lr
, sizeof (*lr
));
1693 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
1694 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1697 tx
= dmu_tx_create(os
);
1699 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
1701 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1703 ztest_range_unlock(rl
);
1704 ztest_object_unlock(zd
, lr
->lr_foid
);
1708 VERIFY(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
1709 lr
->lr_length
, tx
) == 0);
1711 (void) ztest_log_truncate(zd
, tx
, lr
);
1715 ztest_range_unlock(rl
);
1716 ztest_object_unlock(zd
, lr
->lr_foid
);
1722 ztest_replay_setattr(ztest_ds_t
*zd
, lr_setattr_t
*lr
, boolean_t byteswap
)
1724 objset_t
*os
= zd
->zd_os
;
1727 ztest_block_tag_t
*bbt
;
1728 uint64_t txg
, lrtxg
, crtxg
;
1731 byteswap_uint64_array(lr
, sizeof (*lr
));
1733 ztest_object_lock(zd
, lr
->lr_foid
, RL_WRITER
);
1735 VERIFY3U(0, ==, dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
1737 tx
= dmu_tx_create(os
);
1738 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
1740 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1742 dmu_buf_rele(db
, FTAG
);
1743 ztest_object_unlock(zd
, lr
->lr_foid
);
1747 bbt
= ztest_bt_bonus(db
);
1748 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
1749 crtxg
= bbt
->bt_crtxg
;
1750 lrtxg
= lr
->lr_common
.lrc_txg
;
1752 if (zd
->zd_zilog
->zl_replay
) {
1753 ASSERT(lr
->lr_size
!= 0);
1754 ASSERT(lr
->lr_mode
!= 0);
1758 * Randomly change the size and increment the generation.
1760 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
1762 lr
->lr_mode
= bbt
->bt_gen
+ 1;
1767 * Verify that the current bonus buffer is not newer than our txg.
1769 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, -1ULL, lr
->lr_mode
,
1770 MAX(txg
, lrtxg
), crtxg
);
1772 dmu_buf_will_dirty(db
, tx
);
1774 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
1775 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
1776 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
1777 bbt
= ztest_bt_bonus(db
);
1779 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, -1ULL, lr
->lr_mode
, txg
, crtxg
);
1781 dmu_buf_rele(db
, FTAG
);
1783 (void) ztest_log_setattr(zd
, tx
, lr
);
1787 ztest_object_unlock(zd
, lr
->lr_foid
);
1792 zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
1793 NULL
, /* 0 no such transaction type */
1794 ztest_replay_create
, /* TX_CREATE */
1795 NULL
, /* TX_MKDIR */
1796 NULL
, /* TX_MKXATTR */
1797 NULL
, /* TX_SYMLINK */
1798 ztest_replay_remove
, /* TX_REMOVE */
1799 NULL
, /* TX_RMDIR */
1801 NULL
, /* TX_RENAME */
1802 ztest_replay_write
, /* TX_WRITE */
1803 ztest_replay_truncate
, /* TX_TRUNCATE */
1804 ztest_replay_setattr
, /* TX_SETATTR */
1806 NULL
, /* TX_CREATE_ACL */
1807 NULL
, /* TX_CREATE_ATTR */
1808 NULL
, /* TX_CREATE_ACL_ATTR */
1809 NULL
, /* TX_MKDIR_ACL */
1810 NULL
, /* TX_MKDIR_ATTR */
1811 NULL
, /* TX_MKDIR_ACL_ATTR */
1812 NULL
, /* TX_WRITE2 */
1816 * ZIL get_data callbacks
1820 ztest_get_done(zgd_t
*zgd
, int error
)
1822 ztest_ds_t
*zd
= zgd
->zgd_private
;
1823 uint64_t object
= zgd
->zgd_rl
->rl_object
;
1826 dmu_buf_rele(zgd
->zgd_db
, zgd
);
1828 ztest_range_unlock(zgd
->zgd_rl
);
1829 ztest_object_unlock(zd
, object
);
1831 if (error
== 0 && zgd
->zgd_bp
)
1832 zil_add_block(zgd
->zgd_zilog
, zgd
->zgd_bp
);
1834 umem_free(zgd
, sizeof (*zgd
));
1838 ztest_get_data(void *arg
, lr_write_t
*lr
, char *buf
, zio_t
*zio
)
1840 ztest_ds_t
*zd
= arg
;
1841 objset_t
*os
= zd
->zd_os
;
1842 uint64_t object
= lr
->lr_foid
;
1843 uint64_t offset
= lr
->lr_offset
;
1844 uint64_t size
= lr
->lr_length
;
1845 uint64_t txg
= lr
->lr_common
.lrc_txg
;
1847 dmu_object_info_t doi
;
1852 ztest_object_lock(zd
, object
, RL_READER
);
1853 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
1855 ztest_object_unlock(zd
, object
);
1859 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
1861 if (crtxg
== 0 || crtxg
> txg
) {
1862 dmu_buf_rele(db
, FTAG
);
1863 ztest_object_unlock(zd
, object
);
1867 dmu_object_info_from_db(db
, &doi
);
1868 dmu_buf_rele(db
, FTAG
);
1871 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
1872 zgd
->zgd_zilog
= zd
->zd_zilog
;
1873 zgd
->zgd_private
= zd
;
1875 if (buf
!= NULL
) { /* immediate write */
1876 zgd
->zgd_rl
= ztest_range_lock(zd
, object
, offset
, size
,
1879 error
= dmu_read(os
, object
, offset
, size
, buf
,
1880 DMU_READ_NO_PREFETCH
);
1883 size
= doi
.doi_data_block_size
;
1885 offset
= P2ALIGN(offset
, size
);
1887 ASSERT(offset
< size
);
1891 zgd
->zgd_rl
= ztest_range_lock(zd
, object
, offset
, size
,
1894 error
= dmu_buf_hold(os
, object
, offset
, zgd
, &db
,
1895 DMU_READ_NO_PREFETCH
);
1898 blkptr_t
*bp
= &lr
->lr_blkptr
;
1903 ASSERT(db
->db_offset
== offset
);
1904 ASSERT(db
->db_size
== size
);
1906 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
1907 ztest_get_done
, zgd
);
1914 ztest_get_done(zgd
, error
);
1920 ztest_lr_alloc(size_t lrsize
, char *name
)
1923 size_t namesize
= name
? strlen(name
) + 1 : 0;
1925 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
1928 bcopy(name
, lr
+ lrsize
, namesize
);
1934 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
1936 size_t namesize
= name
? strlen(name
) + 1 : 0;
1938 umem_free(lr
, lrsize
+ namesize
);
1942 * Lookup a bunch of objects. Returns the number of objects not found.
1945 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
1950 ASSERT(_mutex_held(&zd
->zd_dirobj_lock
));
1952 for (int i
= 0; i
< count
; i
++, od
++) {
1954 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
1955 sizeof (uint64_t), 1, &od
->od_object
);
1957 ASSERT(error
== ENOENT
);
1958 ASSERT(od
->od_object
== 0);
1962 ztest_block_tag_t
*bbt
;
1963 dmu_object_info_t doi
;
1965 ASSERT(od
->od_object
!= 0);
1966 ASSERT(missing
== 0); /* there should be no gaps */
1968 ztest_object_lock(zd
, od
->od_object
, RL_READER
);
1969 VERIFY3U(0, ==, dmu_bonus_hold(zd
->zd_os
,
1970 od
->od_object
, FTAG
, &db
));
1971 dmu_object_info_from_db(db
, &doi
);
1972 bbt
= ztest_bt_bonus(db
);
1973 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
1974 od
->od_type
= doi
.doi_type
;
1975 od
->od_blocksize
= doi
.doi_data_block_size
;
1976 od
->od_gen
= bbt
->bt_gen
;
1977 dmu_buf_rele(db
, FTAG
);
1978 ztest_object_unlock(zd
, od
->od_object
);
1986 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
1990 ASSERT(_mutex_held(&zd
->zd_dirobj_lock
));
1992 for (int i
= 0; i
< count
; i
++, od
++) {
1999 lr_create_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2001 lr
->lr_doid
= od
->od_dir
;
2002 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2003 lr
->lrz_type
= od
->od_crtype
;
2004 lr
->lrz_blocksize
= od
->od_crblocksize
;
2005 lr
->lrz_ibshift
= ztest_random_ibshift();
2006 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2007 lr
->lrz_bonuslen
= dmu_bonus_max();
2008 lr
->lr_gen
= od
->od_crgen
;
2009 lr
->lr_crtime
[0] = time(NULL
);
2011 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2012 ASSERT(missing
== 0);
2016 od
->od_object
= lr
->lr_foid
;
2017 od
->od_type
= od
->od_crtype
;
2018 od
->od_blocksize
= od
->od_crblocksize
;
2019 od
->od_gen
= od
->od_crgen
;
2020 ASSERT(od
->od_object
!= 0);
2023 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2030 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2035 ASSERT(_mutex_held(&zd
->zd_dirobj_lock
));
2039 for (int i
= count
- 1; i
>= 0; i
--, od
--) {
2046 * No object was found.
2048 if (od
->od_object
== 0)
2051 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2053 lr
->lr_doid
= od
->od_dir
;
2055 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2056 ASSERT3U(error
, ==, ENOSPC
);
2061 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2068 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2074 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2076 lr
->lr_foid
= object
;
2077 lr
->lr_offset
= offset
;
2078 lr
->lr_length
= size
;
2080 BP_ZERO(&lr
->lr_blkptr
);
2082 bcopy(data
, lr
+ 1, size
);
2084 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2086 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2092 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2097 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2099 lr
->lr_foid
= object
;
2100 lr
->lr_offset
= offset
;
2101 lr
->lr_length
= size
;
2103 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2105 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2111 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2116 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2118 lr
->lr_foid
= object
;
2122 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2124 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2130 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2132 objset_t
*os
= zd
->zd_os
;
2137 txg_wait_synced(dmu_objset_pool(os
), 0);
2139 ztest_object_lock(zd
, object
, RL_READER
);
2140 rl
= ztest_range_lock(zd
, object
, offset
, size
, RL_WRITER
);
2142 tx
= dmu_tx_create(os
);
2144 dmu_tx_hold_write(tx
, object
, offset
, size
);
2146 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2149 dmu_prealloc(os
, object
, offset
, size
, tx
);
2151 txg_wait_synced(dmu_objset_pool(os
), txg
);
2153 (void) dmu_free_long_range(os
, object
, offset
, size
);
2156 ztest_range_unlock(rl
);
2157 ztest_object_unlock(zd
, object
);
2161 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2164 ztest_block_tag_t wbt
;
2165 dmu_object_info_t doi
;
2166 enum ztest_io_type io_type
;
2170 VERIFY(dmu_object_info(zd
->zd_os
, object
, &doi
) == 0);
2171 blocksize
= doi
.doi_data_block_size
;
2172 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2175 * Pick an i/o type at random, biased toward writing block tags.
2177 io_type
= ztest_random(ZTEST_IO_TYPES
);
2178 if (ztest_random(2) == 0)
2179 io_type
= ZTEST_IO_WRITE_TAG
;
2181 (void) rw_rdlock(&zd
->zd_zilog_lock
);
2185 case ZTEST_IO_WRITE_TAG
:
2186 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, offset
, 0, 0, 0);
2187 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2190 case ZTEST_IO_WRITE_PATTERN
:
2191 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2192 if (ztest_random(2) == 0) {
2194 * Induce fletcher2 collisions to ensure that
2195 * zio_ddt_collision() detects and resolves them
2196 * when using fletcher2-verify for deduplication.
2198 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2199 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2201 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2204 case ZTEST_IO_WRITE_ZEROES
:
2205 bzero(data
, blocksize
);
2206 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2209 case ZTEST_IO_TRUNCATE
:
2210 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2213 case ZTEST_IO_SETATTR
:
2214 (void) ztest_setattr(zd
, object
);
2217 case ZTEST_IO_REWRITE
:
2218 (void) rw_rdlock(&ztest_name_lock
);
2219 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2220 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2222 VERIFY(err
== 0 || err
== ENOSPC
);
2223 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2224 ZFS_PROP_COMPRESSION
,
2225 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2227 VERIFY(err
== 0 || err
== ENOSPC
);
2228 (void) rw_unlock(&ztest_name_lock
);
2230 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2231 DMU_READ_NO_PREFETCH
));
2233 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2237 (void) rw_unlock(&zd
->zd_zilog_lock
);
2239 umem_free(data
, blocksize
);
2243 * Initialize an object description template.
2246 ztest_od_init(ztest_od_t
*od
, uint64_t id
, char *tag
, uint64_t index
,
2247 dmu_object_type_t type
, uint64_t blocksize
, uint64_t gen
)
2249 od
->od_dir
= ZTEST_DIROBJ
;
2252 od
->od_crtype
= type
;
2253 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2256 od
->od_type
= DMU_OT_NONE
;
2257 od
->od_blocksize
= 0;
2260 (void) snprintf(od
->od_name
, sizeof (od
->od_name
), "%s(%lld)[%llu]",
2261 tag
, (int64_t)id
, index
);
2265 * Lookup or create the objects for a test using the od template.
2266 * If the objects do not all exist, or if 'remove' is specified,
2267 * remove any existing objects and create new ones. Otherwise,
2268 * use the existing objects.
2271 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2273 int count
= size
/ sizeof (*od
);
2276 VERIFY(mutex_lock(&zd
->zd_dirobj_lock
) == 0);
2277 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2278 (ztest_remove(zd
, od
, count
) != 0 ||
2279 ztest_create(zd
, od
, count
) != 0))
2282 VERIFY(mutex_unlock(&zd
->zd_dirobj_lock
) == 0);
2289 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2291 zilog_t
*zilog
= zd
->zd_zilog
;
2293 (void) rw_rdlock(&zd
->zd_zilog_lock
);
2295 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2298 * Remember the committed values in zd, which is in parent/child
2299 * shared memory. If we die, the next iteration of ztest_run()
2300 * will verify that the log really does contain this record.
2302 mutex_enter(&zilog
->zl_lock
);
2303 ASSERT(zd
->zd_shared
!= NULL
);
2304 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2305 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2306 mutex_exit(&zilog
->zl_lock
);
2308 (void) rw_unlock(&zd
->zd_zilog_lock
);
2312 * This function is designed to simulate the operations that occur during a
2313 * mount/unmount operation. We hold the dataset across these operations in an
2314 * attempt to expose any implicit assumptions about ZIL management.
2318 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2320 objset_t
*os
= zd
->zd_os
;
2323 * We grab the zd_dirobj_lock to ensure that no other thread is
2324 * updating the zil (i.e. adding in-memory log records) and the
2325 * zd_zilog_lock to block any I/O.
2327 VERIFY0(mutex_lock(&zd
->zd_dirobj_lock
));
2328 (void) rw_wrlock(&zd
->zd_zilog_lock
);
2330 /* zfsvfs_teardown() */
2331 zil_close(zd
->zd_zilog
);
2333 /* zfsvfs_setup() */
2334 VERIFY(zil_open(os
, ztest_get_data
) == zd
->zd_zilog
);
2335 zil_replay(os
, zd
, ztest_replay_vector
);
2337 (void) rw_unlock(&zd
->zd_zilog_lock
);
2338 VERIFY(mutex_unlock(&zd
->zd_dirobj_lock
) == 0);
2342 * Verify that we can't destroy an active pool, create an existing pool,
2343 * or create a pool with a bad vdev spec.
2347 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
2349 ztest_shared_opts_t
*zo
= &ztest_opts
;
2354 * Attempt to create using a bad file.
2356 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, 0, 0, 0, 1);
2357 VERIFY3U(ENOENT
, ==,
2358 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
));
2359 nvlist_free(nvroot
);
2362 * Attempt to create using a bad mirror.
2364 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, 0, 0, 2, 1);
2365 VERIFY3U(ENOENT
, ==,
2366 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
));
2367 nvlist_free(nvroot
);
2370 * Attempt to create an existing pool. It shouldn't matter
2371 * what's in the nvroot; we should fail with EEXIST.
2373 (void) rw_rdlock(&ztest_name_lock
);
2374 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, 0, 0, 0, 1);
2375 VERIFY3U(EEXIST
, ==, spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
));
2376 nvlist_free(nvroot
);
2377 VERIFY3U(0, ==, spa_open(zo
->zo_pool
, &spa
, FTAG
));
2378 VERIFY3U(EBUSY
, ==, spa_destroy(zo
->zo_pool
));
2379 spa_close(spa
, FTAG
);
2381 (void) rw_unlock(&ztest_name_lock
);
2386 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
2389 uint64_t initial_version
= SPA_VERSION_INITIAL
;
2390 uint64_t version
, newversion
;
2391 nvlist_t
*nvroot
, *props
;
2394 VERIFY0(mutex_lock(&ztest_vdev_lock
));
2395 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
2398 * Clean up from previous runs.
2400 (void) spa_destroy(name
);
2402 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
2403 0, ztest_opts
.zo_raidz
, ztest_opts
.zo_mirrors
, 1);
2406 * If we're configuring a RAIDZ device then make sure that the
2407 * the initial version is capable of supporting that feature.
2409 switch (ztest_opts
.zo_raidz_parity
) {
2412 initial_version
= SPA_VERSION_INITIAL
;
2415 initial_version
= SPA_VERSION_RAIDZ2
;
2418 initial_version
= SPA_VERSION_RAIDZ3
;
2423 * Create a pool with a spa version that can be upgraded. Pick
2424 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2427 version
= ztest_random_spa_version(initial_version
);
2428 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
2430 props
= fnvlist_alloc();
2431 fnvlist_add_uint64(props
,
2432 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
2433 VERIFY0(spa_create(name
, nvroot
, props
, NULL
));
2434 fnvlist_free(nvroot
);
2435 fnvlist_free(props
);
2437 VERIFY0(spa_open(name
, &spa
, FTAG
));
2438 VERIFY3U(spa_version(spa
), ==, version
);
2439 newversion
= ztest_random_spa_version(version
+ 1);
2441 if (ztest_opts
.zo_verbose
>= 4) {
2442 (void) printf("upgrading spa version from %llu to %llu\n",
2443 (u_longlong_t
)version
, (u_longlong_t
)newversion
);
2446 spa_upgrade(spa
, newversion
);
2447 VERIFY3U(spa_version(spa
), >, version
);
2448 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
2449 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
2450 spa_close(spa
, FTAG
);
2453 VERIFY0(mutex_unlock(&ztest_vdev_lock
));
2457 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
2461 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
2464 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2465 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
2473 * Find the first available hole which can be used as a top-level.
2476 find_vdev_hole(spa_t
*spa
)
2478 vdev_t
*rvd
= spa
->spa_root_vdev
;
2481 ASSERT(spa_config_held(spa
, SCL_VDEV
, RW_READER
) == SCL_VDEV
);
2483 for (c
= 0; c
< rvd
->vdev_children
; c
++) {
2484 vdev_t
*cvd
= rvd
->vdev_child
[c
];
2486 if (cvd
->vdev_ishole
)
2493 * Verify that vdev_add() works as expected.
2497 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
2499 ztest_shared_t
*zs
= ztest_shared
;
2500 spa_t
*spa
= ztest_spa
;
2506 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2507 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * ztest_opts
.zo_raidz
;
2509 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2511 ztest_shared
->zs_vdev_next_leaf
= find_vdev_hole(spa
) * leaves
;
2514 * If we have slogs then remove them 1/4 of the time.
2516 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
2518 * Grab the guid from the head of the log class rotor.
2520 guid
= spa_log_class(spa
)->mc_rotor
->mg_vd
->vdev_guid
;
2522 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2525 * We have to grab the zs_name_lock as writer to
2526 * prevent a race between removing a slog (dmu_objset_find)
2527 * and destroying a dataset. Removing the slog will
2528 * grab a reference on the dataset which may cause
2529 * dmu_objset_destroy() to fail with EBUSY thus
2530 * leaving the dataset in an inconsistent state.
2532 VERIFY(rw_wrlock(&ztest_name_lock
) == 0);
2533 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
2534 VERIFY(rw_unlock(&ztest_name_lock
) == 0);
2536 if (error
&& error
!= EEXIST
)
2537 fatal(0, "spa_vdev_remove() = %d", error
);
2539 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2542 * Make 1/4 of the devices be log devices.
2544 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
2545 ztest_opts
.zo_vdev_size
, 0,
2546 ztest_random(4) == 0, ztest_opts
.zo_raidz
,
2549 error
= spa_vdev_add(spa
, nvroot
);
2550 nvlist_free(nvroot
);
2552 if (error
== ENOSPC
)
2553 ztest_record_enospc("spa_vdev_add");
2554 else if (error
!= 0)
2555 fatal(0, "spa_vdev_add() = %d", error
);
2558 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2562 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2566 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
2568 ztest_shared_t
*zs
= ztest_shared
;
2569 spa_t
*spa
= ztest_spa
;
2570 vdev_t
*rvd
= spa
->spa_root_vdev
;
2571 spa_aux_vdev_t
*sav
;
2576 if (ztest_random(2) == 0) {
2577 sav
= &spa
->spa_spares
;
2578 aux
= ZPOOL_CONFIG_SPARES
;
2580 sav
= &spa
->spa_l2cache
;
2581 aux
= ZPOOL_CONFIG_L2CACHE
;
2584 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2586 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2588 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
2590 * Pick a random device to remove.
2592 guid
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)]->vdev_guid
;
2595 * Find an unused device we can add.
2597 zs
->zs_vdev_aux
= 0;
2599 char path
[MAXPATHLEN
];
2601 (void) snprintf(path
, sizeof (path
), ztest_aux_template
,
2602 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
2604 for (c
= 0; c
< sav
->sav_count
; c
++)
2605 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
2608 if (c
== sav
->sav_count
&&
2609 vdev_lookup_by_path(rvd
, path
) == NULL
)
2615 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2621 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
2622 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, 0, 0, 0, 1);
2623 error
= spa_vdev_add(spa
, nvroot
);
2625 fatal(0, "spa_vdev_add(%p) = %d", nvroot
, error
);
2626 nvlist_free(nvroot
);
2629 * Remove an existing device. Sometimes, dirty its
2630 * vdev state first to make sure we handle removal
2631 * of devices that have pending state changes.
2633 if (ztest_random(2) == 0)
2634 (void) vdev_online(spa
, guid
, 0, NULL
);
2636 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
2637 if (error
!= 0 && error
!= EBUSY
)
2638 fatal(0, "spa_vdev_remove(%llu) = %d", guid
, error
);
2641 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2645 * split a pool if it has mirror tlvdevs
2649 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
2651 ztest_shared_t
*zs
= ztest_shared
;
2652 spa_t
*spa
= ztest_spa
;
2653 vdev_t
*rvd
= spa
->spa_root_vdev
;
2654 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
2655 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
2658 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2660 /* ensure we have a useable config; mirrors of raidz aren't supported */
2661 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raidz
> 1) {
2662 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2666 /* clean up the old pool, if any */
2667 (void) spa_destroy("splitp");
2669 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2671 /* generate a config from the existing config */
2672 mutex_enter(&spa
->spa_props_lock
);
2673 VERIFY(nvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
,
2675 mutex_exit(&spa
->spa_props_lock
);
2677 VERIFY(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
, &child
,
2680 schild
= malloc(rvd
->vdev_children
* sizeof (nvlist_t
*));
2681 for (c
= 0; c
< children
; c
++) {
2682 vdev_t
*tvd
= rvd
->vdev_child
[c
];
2686 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
2687 VERIFY(nvlist_alloc(&schild
[schildren
], NV_UNIQUE_NAME
,
2689 VERIFY(nvlist_add_string(schild
[schildren
],
2690 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
) == 0);
2691 VERIFY(nvlist_add_uint64(schild
[schildren
],
2692 ZPOOL_CONFIG_IS_HOLE
, 1) == 0);
2694 lastlogid
= schildren
;
2699 VERIFY(nvlist_lookup_nvlist_array(child
[c
],
2700 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
) == 0);
2701 VERIFY(nvlist_dup(mchild
[0], &schild
[schildren
++], 0) == 0);
2704 /* OK, create a config that can be used to split */
2705 VERIFY(nvlist_alloc(&split
, NV_UNIQUE_NAME
, 0) == 0);
2706 VERIFY(nvlist_add_string(split
, ZPOOL_CONFIG_TYPE
,
2707 VDEV_TYPE_ROOT
) == 0);
2708 VERIFY(nvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
, schild
,
2709 lastlogid
!= 0 ? lastlogid
: schildren
) == 0);
2711 VERIFY(nvlist_alloc(&config
, NV_UNIQUE_NAME
, 0) == 0);
2712 VERIFY(nvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
) == 0);
2714 for (c
= 0; c
< schildren
; c
++)
2715 nvlist_free(schild
[c
]);
2719 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2721 (void) rw_wrlock(&ztest_name_lock
);
2722 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
2723 (void) rw_unlock(&ztest_name_lock
);
2725 nvlist_free(config
);
2728 (void) printf("successful split - results:\n");
2729 mutex_enter(&spa_namespace_lock
);
2730 show_pool_stats(spa
);
2731 show_pool_stats(spa_lookup("splitp"));
2732 mutex_exit(&spa_namespace_lock
);
2736 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2741 * Verify that we can attach and detach devices.
2745 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
2747 ztest_shared_t
*zs
= ztest_shared
;
2748 spa_t
*spa
= ztest_spa
;
2749 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
2750 vdev_t
*rvd
= spa
->spa_root_vdev
;
2751 vdev_t
*oldvd
, *newvd
, *pvd
;
2755 uint64_t ashift
= ztest_get_ashift();
2756 uint64_t oldguid
, pguid
;
2757 uint64_t oldsize
, newsize
;
2758 char oldpath
[MAXPATHLEN
], newpath
[MAXPATHLEN
];
2760 int oldvd_has_siblings
= B_FALSE
;
2761 int newvd_is_spare
= B_FALSE
;
2763 int error
, expected_error
;
2765 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2766 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raidz
;
2768 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2771 * Decide whether to do an attach or a replace.
2773 replacing
= ztest_random(2);
2776 * Pick a random top-level vdev.
2778 top
= ztest_random_vdev_top(spa
, B_TRUE
);
2781 * Pick a random leaf within it.
2783 leaf
= ztest_random(leaves
);
2788 oldvd
= rvd
->vdev_child
[top
];
2789 if (zs
->zs_mirrors
>= 1) {
2790 ASSERT(oldvd
->vdev_ops
== &vdev_mirror_ops
);
2791 ASSERT(oldvd
->vdev_children
>= zs
->zs_mirrors
);
2792 oldvd
= oldvd
->vdev_child
[leaf
/ ztest_opts
.zo_raidz
];
2794 if (ztest_opts
.zo_raidz
> 1) {
2795 ASSERT(oldvd
->vdev_ops
== &vdev_raidz_ops
);
2796 ASSERT(oldvd
->vdev_children
== ztest_opts
.zo_raidz
);
2797 oldvd
= oldvd
->vdev_child
[leaf
% ztest_opts
.zo_raidz
];
2801 * If we're already doing an attach or replace, oldvd may be a
2802 * mirror vdev -- in which case, pick a random child.
2804 while (oldvd
->vdev_children
!= 0) {
2805 oldvd_has_siblings
= B_TRUE
;
2806 ASSERT(oldvd
->vdev_children
>= 2);
2807 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
2810 oldguid
= oldvd
->vdev_guid
;
2811 oldsize
= vdev_get_min_asize(oldvd
);
2812 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
2813 (void) strcpy(oldpath
, oldvd
->vdev_path
);
2814 pvd
= oldvd
->vdev_parent
;
2815 pguid
= pvd
->vdev_guid
;
2818 * If oldvd has siblings, then half of the time, detach it.
2820 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
2821 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2822 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
2823 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
2825 fatal(0, "detach (%s) returned %d", oldpath
, error
);
2826 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2831 * For the new vdev, choose with equal probability between the two
2832 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2834 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
2835 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
2836 newvd_is_spare
= B_TRUE
;
2837 (void) strcpy(newpath
, newvd
->vdev_path
);
2839 (void) snprintf(newpath
, sizeof (newpath
), ztest_dev_template
,
2840 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
2841 top
* leaves
+ leaf
);
2842 if (ztest_random(2) == 0)
2843 newpath
[strlen(newpath
) - 1] = 'b';
2844 newvd
= vdev_lookup_by_path(rvd
, newpath
);
2848 newsize
= vdev_get_min_asize(newvd
);
2851 * Make newsize a little bigger or smaller than oldsize.
2852 * If it's smaller, the attach should fail.
2853 * If it's larger, and we're doing a replace,
2854 * we should get dynamic LUN growth when we're done.
2856 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
2860 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2861 * unless it's a replace; in that case any non-replacing parent is OK.
2863 * If newvd is already part of the pool, it should fail with EBUSY.
2865 * If newvd is too small, it should fail with EOVERFLOW.
2867 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
2868 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
2869 pvd
->vdev_ops
== &vdev_replacing_ops
||
2870 pvd
->vdev_ops
== &vdev_spare_ops
))
2871 expected_error
= ENOTSUP
;
2872 else if (newvd_is_spare
&& (!replacing
|| oldvd_is_log
))
2873 expected_error
= ENOTSUP
;
2874 else if (newvd
== oldvd
)
2875 expected_error
= replacing
? 0 : EBUSY
;
2876 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
2877 expected_error
= EBUSY
;
2878 else if (newsize
< oldsize
)
2879 expected_error
= EOVERFLOW
;
2880 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
2881 expected_error
= EDOM
;
2885 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2888 * Build the nvlist describing newpath.
2890 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
2891 ashift
, 0, 0, 0, 1);
2893 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
);
2898 * If our parent was the replacing vdev, but the replace completed,
2899 * then instead of failing with ENOTSUP we may either succeed,
2900 * fail with ENODEV, or fail with EOVERFLOW.
2902 if (expected_error
== ENOTSUP
&&
2903 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
2904 expected_error
= error
;
2907 * If someone grew the LUN, the replacement may be too small.
2909 if (error
== EOVERFLOW
|| error
== EBUSY
)
2910 expected_error
= error
;
2912 /* XXX workaround 6690467 */
2913 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
2914 fatal(0, "attach (%s %llu, %s %llu, %d) "
2915 "returned %d, expected %d",
2916 oldpath
, oldsize
, newpath
,
2917 newsize
, replacing
, error
, expected_error
);
2920 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2924 * Callback function which expands the physical size of the vdev.
2927 grow_vdev(vdev_t
*vd
, void *arg
)
2929 spa_t
*spa
= vd
->vdev_spa
;
2930 size_t *newsize
= arg
;
2934 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_READER
) == SCL_STATE
);
2935 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
2937 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
2940 fsize
= lseek(fd
, 0, SEEK_END
);
2941 (void) ftruncate(fd
, *newsize
);
2943 if (ztest_opts
.zo_verbose
>= 6) {
2944 (void) printf("%s grew from %lu to %lu bytes\n",
2945 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
2952 * Callback function which expands a given vdev by calling vdev_online().
2956 online_vdev(vdev_t
*vd
, void *arg
)
2958 spa_t
*spa
= vd
->vdev_spa
;
2959 vdev_t
*tvd
= vd
->vdev_top
;
2960 uint64_t guid
= vd
->vdev_guid
;
2961 uint64_t generation
= spa
->spa_config_generation
+ 1;
2962 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
2965 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_READER
) == SCL_STATE
);
2966 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
2968 /* Calling vdev_online will initialize the new metaslabs */
2969 spa_config_exit(spa
, SCL_STATE
, spa
);
2970 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
2971 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
2974 * If vdev_online returned an error or the underlying vdev_open
2975 * failed then we abort the expand. The only way to know that
2976 * vdev_open fails is by checking the returned newstate.
2978 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
2979 if (ztest_opts
.zo_verbose
>= 5) {
2980 (void) printf("Unable to expand vdev, state %llu, "
2981 "error %d\n", (u_longlong_t
)newstate
, error
);
2985 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
2988 * Since we dropped the lock we need to ensure that we're
2989 * still talking to the original vdev. It's possible this
2990 * vdev may have been detached/replaced while we were
2991 * trying to online it.
2993 if (generation
!= spa
->spa_config_generation
) {
2994 if (ztest_opts
.zo_verbose
>= 5) {
2995 (void) printf("vdev configuration has changed, "
2996 "guid %llu, state %llu, expected gen %llu, "
2999 (u_longlong_t
)tvd
->vdev_state
,
3000 (u_longlong_t
)generation
,
3001 (u_longlong_t
)spa
->spa_config_generation
);
3009 * Traverse the vdev tree calling the supplied function.
3010 * We continue to walk the tree until we either have walked all
3011 * children or we receive a non-NULL return from the callback.
3012 * If a NULL callback is passed, then we just return back the first
3013 * leaf vdev we encounter.
3016 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
3018 if (vd
->vdev_ops
->vdev_op_leaf
) {
3022 return (func(vd
, arg
));
3025 for (uint_t c
= 0; c
< vd
->vdev_children
; c
++) {
3026 vdev_t
*cvd
= vd
->vdev_child
[c
];
3027 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
3034 * Verify that dynamic LUN growth works as expected.
3038 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
3040 spa_t
*spa
= ztest_spa
;
3042 metaslab_class_t
*mc
;
3043 metaslab_group_t
*mg
;
3044 size_t psize
, newsize
;
3046 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
3048 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
3049 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3051 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3053 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
3056 old_ms_count
= tvd
->vdev_ms_count
;
3057 old_class_space
= metaslab_class_get_space(mc
);
3060 * Determine the size of the first leaf vdev associated with
3061 * our top-level device.
3063 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
3064 ASSERT3P(vd
, !=, NULL
);
3065 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3067 psize
= vd
->vdev_psize
;
3070 * We only try to expand the vdev if it's healthy, less than 4x its
3071 * original size, and it has a valid psize.
3073 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
3074 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
3075 spa_config_exit(spa
, SCL_STATE
, spa
);
3076 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3080 newsize
= psize
+ psize
/ 8;
3081 ASSERT3U(newsize
, >, psize
);
3083 if (ztest_opts
.zo_verbose
>= 6) {
3084 (void) printf("Expanding LUN %s from %lu to %lu\n",
3085 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
3089 * Growing the vdev is a two step process:
3090 * 1). expand the physical size (i.e. relabel)
3091 * 2). online the vdev to create the new metaslabs
3093 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
3094 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
3095 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
3096 if (ztest_opts
.zo_verbose
>= 5) {
3097 (void) printf("Could not expand LUN because "
3098 "the vdev configuration changed.\n");
3100 spa_config_exit(spa
, SCL_STATE
, spa
);
3101 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3105 spa_config_exit(spa
, SCL_STATE
, spa
);
3108 * Expanding the LUN will update the config asynchronously,
3109 * thus we must wait for the async thread to complete any
3110 * pending tasks before proceeding.
3114 mutex_enter(&spa
->spa_async_lock
);
3115 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
3116 mutex_exit(&spa
->spa_async_lock
);
3119 txg_wait_synced(spa_get_dsl(spa
), 0);
3120 (void) poll(NULL
, 0, 100);
3123 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3125 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
3126 new_ms_count
= tvd
->vdev_ms_count
;
3127 new_class_space
= metaslab_class_get_space(mc
);
3129 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
3130 if (ztest_opts
.zo_verbose
>= 5) {
3131 (void) printf("Could not verify LUN expansion due to "
3132 "intervening vdev offline or remove.\n");
3134 spa_config_exit(spa
, SCL_STATE
, spa
);
3135 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3140 * Make sure we were able to grow the vdev.
3142 if (new_ms_count
<= old_ms_count
)
3143 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3144 old_ms_count
, new_ms_count
);
3147 * Make sure we were able to grow the pool.
3149 if (new_class_space
<= old_class_space
)
3150 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3151 old_class_space
, new_class_space
);
3153 if (ztest_opts
.zo_verbose
>= 5) {
3154 char oldnumbuf
[6], newnumbuf
[6];
3156 nicenum(old_class_space
, oldnumbuf
);
3157 nicenum(new_class_space
, newnumbuf
);
3158 (void) printf("%s grew from %s to %s\n",
3159 spa
->spa_name
, oldnumbuf
, newnumbuf
);
3162 spa_config_exit(spa
, SCL_STATE
, spa
);
3163 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3167 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3171 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
3174 * Create the objects common to all ztest datasets.
3176 VERIFY(zap_create_claim(os
, ZTEST_DIROBJ
,
3177 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
) == 0);
3181 ztest_dataset_create(char *dsname
)
3183 uint64_t zilset
= ztest_random(100);
3184 int err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0,
3185 ztest_objset_create_cb
, NULL
);
3187 if (err
|| zilset
< 80)
3190 if (ztest_opts
.zo_verbose
>= 6)
3191 (void) printf("Setting dataset %s to sync always\n", dsname
);
3192 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
3193 ZFS_SYNC_ALWAYS
, B_FALSE
));
3198 ztest_objset_destroy_cb(const char *name
, void *arg
)
3201 dmu_object_info_t doi
;
3205 * Verify that the dataset contains a directory object.
3207 VERIFY0(dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
, FTAG
, &os
));
3208 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
3209 if (error
!= ENOENT
) {
3210 /* We could have crashed in the middle of destroying it */
3212 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
3213 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
3215 dmu_objset_disown(os
, FTAG
);
3218 * Destroy the dataset.
3220 if (strchr(name
, '@') != NULL
) {
3221 VERIFY0(dsl_destroy_snapshot(name
, B_TRUE
));
3223 error
= dsl_destroy_head(name
);
3224 /* There could be a hold on this dataset */
3232 ztest_snapshot_create(char *osname
, uint64_t id
)
3234 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
3237 (void) snprintf(snapname
, sizeof (snapname
), "%llu", (u_longlong_t
)id
);
3239 error
= dmu_objset_snapshot_one(osname
, snapname
);
3240 if (error
== ENOSPC
) {
3241 ztest_record_enospc(FTAG
);
3244 if (error
!= 0 && error
!= EEXIST
) {
3245 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname
,
3252 ztest_snapshot_destroy(char *osname
, uint64_t id
)
3254 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
3257 (void) snprintf(snapname
, sizeof (snapname
), "%s@%llu", osname
,
3260 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
3261 if (error
!= 0 && error
!= ENOENT
)
3262 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname
, error
);
3268 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3274 char name
[ZFS_MAX_DATASET_NAME_LEN
];
3277 (void) rw_rdlock(&ztest_name_lock
);
3279 (void) snprintf(name
, sizeof (name
), "%s/temp_%llu",
3280 ztest_opts
.zo_pool
, (u_longlong_t
)id
);
3283 * If this dataset exists from a previous run, process its replay log
3284 * half of the time. If we don't replay it, then dmu_objset_destroy()
3285 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3287 if (ztest_random(2) == 0 &&
3288 dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, FTAG
, &os
) == 0) {
3289 ztest_zd_init(&zdtmp
, NULL
, os
);
3290 zil_replay(os
, &zdtmp
, ztest_replay_vector
);
3291 ztest_zd_fini(&zdtmp
);
3292 dmu_objset_disown(os
, FTAG
);
3296 * There may be an old instance of the dataset we're about to
3297 * create lying around from a previous run. If so, destroy it
3298 * and all of its snapshots.
3300 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
3301 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
3304 * Verify that the destroyed dataset is no longer in the namespace.
3306 VERIFY3U(ENOENT
, ==, dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
3310 * Verify that we can create a new dataset.
3312 error
= ztest_dataset_create(name
);
3314 if (error
== ENOSPC
) {
3315 ztest_record_enospc(FTAG
);
3316 (void) rw_unlock(&ztest_name_lock
);
3319 fatal(0, "dmu_objset_create(%s) = %d", name
, error
);
3322 VERIFY0(dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, FTAG
, &os
));
3324 ztest_zd_init(&zdtmp
, NULL
, os
);
3327 * Open the intent log for it.
3329 zilog
= zil_open(os
, ztest_get_data
);
3332 * Put some objects in there, do a little I/O to them,
3333 * and randomly take a couple of snapshots along the way.
3335 iters
= ztest_random(5);
3336 for (int i
= 0; i
< iters
; i
++) {
3337 ztest_dmu_object_alloc_free(&zdtmp
, id
);
3338 if (ztest_random(iters
) == 0)
3339 (void) ztest_snapshot_create(name
, i
);
3343 * Verify that we cannot create an existing dataset.
3345 VERIFY3U(EEXIST
, ==,
3346 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
));
3349 * Verify that we can hold an objset that is also owned.
3351 VERIFY3U(0, ==, dmu_objset_hold(name
, FTAG
, &os2
));
3352 dmu_objset_rele(os2
, FTAG
);
3355 * Verify that we cannot own an objset that is already owned.
3358 dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, FTAG
, &os2
));
3361 dmu_objset_disown(os
, FTAG
);
3362 ztest_zd_fini(&zdtmp
);
3364 (void) rw_unlock(&ztest_name_lock
);
3368 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3371 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3373 (void) rw_rdlock(&ztest_name_lock
);
3374 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
3375 (void) ztest_snapshot_create(zd
->zd_name
, id
);
3376 (void) rw_unlock(&ztest_name_lock
);
3380 * Cleanup non-standard snapshots and clones.
3383 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
3385 char snap1name
[ZFS_MAX_DATASET_NAME_LEN
];
3386 char clone1name
[ZFS_MAX_DATASET_NAME_LEN
];
3387 char snap2name
[ZFS_MAX_DATASET_NAME_LEN
];
3388 char clone2name
[ZFS_MAX_DATASET_NAME_LEN
];
3389 char snap3name
[ZFS_MAX_DATASET_NAME_LEN
];
3392 (void) snprintf(snap1name
, sizeof (snap1name
),
3393 "%s@s1_%llu", osname
, id
);
3394 (void) snprintf(clone1name
, sizeof (clone1name
),
3395 "%s/c1_%llu", osname
, id
);
3396 (void) snprintf(snap2name
, sizeof (snap2name
),
3397 "%s@s2_%llu", clone1name
, id
);
3398 (void) snprintf(clone2name
, sizeof (clone2name
),
3399 "%s/c2_%llu", osname
, id
);
3400 (void) snprintf(snap3name
, sizeof (snap3name
),
3401 "%s@s3_%llu", clone1name
, id
);
3403 error
= dsl_destroy_head(clone2name
);
3404 if (error
&& error
!= ENOENT
)
3405 fatal(0, "dsl_destroy_head(%s) = %d", clone2name
, error
);
3406 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
3407 if (error
&& error
!= ENOENT
)
3408 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name
, error
);
3409 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
3410 if (error
&& error
!= ENOENT
)
3411 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name
, error
);
3412 error
= dsl_destroy_head(clone1name
);
3413 if (error
&& error
!= ENOENT
)
3414 fatal(0, "dsl_destroy_head(%s) = %d", clone1name
, error
);
3415 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
3416 if (error
&& error
!= ENOENT
)
3417 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name
, error
);
3421 * Verify dsl_dataset_promote handles EBUSY
3424 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
3427 char snap1name
[ZFS_MAX_DATASET_NAME_LEN
];
3428 char clone1name
[ZFS_MAX_DATASET_NAME_LEN
];
3429 char snap2name
[ZFS_MAX_DATASET_NAME_LEN
];
3430 char clone2name
[ZFS_MAX_DATASET_NAME_LEN
];
3431 char snap3name
[ZFS_MAX_DATASET_NAME_LEN
];
3432 char *osname
= zd
->zd_name
;
3435 (void) rw_rdlock(&ztest_name_lock
);
3437 ztest_dsl_dataset_cleanup(osname
, id
);
3439 (void) snprintf(snap1name
, sizeof (snap1name
),
3440 "%s@s1_%llu", osname
, id
);
3441 (void) snprintf(clone1name
, sizeof (clone1name
),
3442 "%s/c1_%llu", osname
, id
);
3443 (void) snprintf(snap2name
, sizeof (snap2name
),
3444 "%s@s2_%llu", clone1name
, id
);
3445 (void) snprintf(clone2name
, sizeof (clone2name
),
3446 "%s/c2_%llu", osname
, id
);
3447 (void) snprintf(snap3name
, sizeof (snap3name
),
3448 "%s@s3_%llu", clone1name
, id
);
3450 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
3451 if (error
&& error
!= EEXIST
) {
3452 if (error
== ENOSPC
) {
3453 ztest_record_enospc(FTAG
);
3456 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
3459 error
= dmu_objset_clone(clone1name
, snap1name
);
3461 if (error
== ENOSPC
) {
3462 ztest_record_enospc(FTAG
);
3465 fatal(0, "dmu_objset_create(%s) = %d", clone1name
, error
);
3468 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
3469 if (error
&& error
!= EEXIST
) {
3470 if (error
== ENOSPC
) {
3471 ztest_record_enospc(FTAG
);
3474 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
3477 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
3478 if (error
&& error
!= EEXIST
) {
3479 if (error
== ENOSPC
) {
3480 ztest_record_enospc(FTAG
);
3483 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
3486 error
= dmu_objset_clone(clone2name
, snap3name
);
3488 if (error
== ENOSPC
) {
3489 ztest_record_enospc(FTAG
);
3492 fatal(0, "dmu_objset_create(%s) = %d", clone2name
, error
);
3495 error
= dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, FTAG
, &os
);
3497 fatal(0, "dmu_objset_own(%s) = %d", snap2name
, error
);
3498 error
= dsl_dataset_promote(clone2name
, NULL
);
3499 if (error
== ENOSPC
) {
3500 dmu_objset_disown(os
, FTAG
);
3501 ztest_record_enospc(FTAG
);
3505 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name
,
3507 dmu_objset_disown(os
, FTAG
);
3510 ztest_dsl_dataset_cleanup(osname
, id
);
3512 (void) rw_unlock(&ztest_name_lock
);
3516 * Verify that dmu_object_{alloc,free} work as expected.
3519 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
3522 int batchsize
= sizeof (od
) / sizeof (od
[0]);
3524 for (int b
= 0; b
< batchsize
; b
++)
3525 ztest_od_init(&od
[b
], id
, FTAG
, b
, DMU_OT_UINT64_OTHER
, 0, 0);
3528 * Destroy the previous batch of objects, create a new batch,
3529 * and do some I/O on the new objects.
3531 if (ztest_object_init(zd
, od
, sizeof (od
), B_TRUE
) != 0)
3534 while (ztest_random(4 * batchsize
) != 0)
3535 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
3536 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
3540 * Verify that dmu_{read,write} work as expected.
3543 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
3545 objset_t
*os
= zd
->zd_os
;
3548 int i
, freeit
, error
;
3550 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
3551 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
3552 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
3553 uint64_t regions
= 997;
3554 uint64_t stride
= 123456789ULL;
3555 uint64_t width
= 40;
3556 int free_percent
= 5;
3559 * This test uses two objects, packobj and bigobj, that are always
3560 * updated together (i.e. in the same tx) so that their contents are
3561 * in sync and can be compared. Their contents relate to each other
3562 * in a simple way: packobj is a dense array of 'bufwad' structures,
3563 * while bigobj is a sparse array of the same bufwads. Specifically,
3564 * for any index n, there are three bufwads that should be identical:
3566 * packobj, at offset n * sizeof (bufwad_t)
3567 * bigobj, at the head of the nth chunk
3568 * bigobj, at the tail of the nth chunk
3570 * The chunk size is arbitrary. It doesn't have to be a power of two,
3571 * and it doesn't have any relation to the object blocksize.
3572 * The only requirement is that it can hold at least two bufwads.
3574 * Normally, we write the bufwad to each of these locations.
3575 * However, free_percent of the time we instead write zeroes to
3576 * packobj and perform a dmu_free_range() on bigobj. By comparing
3577 * bigobj to packobj, we can verify that the DMU is correctly
3578 * tracking which parts of an object are allocated and free,
3579 * and that the contents of the allocated blocks are correct.
3583 * Read the directory info. If it's the first time, set things up.
3585 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, chunksize
);
3586 ztest_od_init(&od
[1], id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, chunksize
);
3588 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
3591 bigobj
= od
[0].od_object
;
3592 packobj
= od
[1].od_object
;
3593 chunksize
= od
[0].od_gen
;
3594 ASSERT(chunksize
== od
[1].od_gen
);
3597 * Prefetch a random chunk of the big object.
3598 * Our aim here is to get some async reads in flight
3599 * for blocks that we may free below; the DMU should
3600 * handle this race correctly.
3602 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
3603 s
= 1 + ztest_random(2 * width
- 1);
3604 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
3605 ZIO_PRIORITY_SYNC_READ
);
3608 * Pick a random index and compute the offsets into packobj and bigobj.
3610 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
3611 s
= 1 + ztest_random(width
- 1);
3613 packoff
= n
* sizeof (bufwad_t
);
3614 packsize
= s
* sizeof (bufwad_t
);
3616 bigoff
= n
* chunksize
;
3617 bigsize
= s
* chunksize
;
3619 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
3620 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
3623 * free_percent of the time, free a range of bigobj rather than
3626 freeit
= (ztest_random(100) < free_percent
);
3629 * Read the current contents of our objects.
3631 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
3634 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
3639 * Get a tx for the mods to both packobj and bigobj.
3641 tx
= dmu_tx_create(os
);
3643 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
3646 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
3648 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
3650 /* This accounts for setting the checksum/compression. */
3651 dmu_tx_hold_bonus(tx
, bigobj
);
3653 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
3655 umem_free(packbuf
, packsize
);
3656 umem_free(bigbuf
, bigsize
);
3660 enum zio_checksum cksum
;
3662 cksum
= (enum zio_checksum
)
3663 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
3664 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
3665 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
3667 enum zio_compress comp
;
3669 comp
= (enum zio_compress
)
3670 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
3671 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
3672 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
3675 * For each index from n to n + s, verify that the existing bufwad
3676 * in packobj matches the bufwads at the head and tail of the
3677 * corresponding chunk in bigobj. Then update all three bufwads
3678 * with the new values we want to write out.
3680 for (i
= 0; i
< s
; i
++) {
3682 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
3684 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
3686 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
3688 ASSERT((uintptr_t)bigH
- (uintptr_t)bigbuf
< bigsize
);
3689 ASSERT((uintptr_t)bigT
- (uintptr_t)bigbuf
< bigsize
);
3691 if (pack
->bw_txg
> txg
)
3692 fatal(0, "future leak: got %llx, open txg is %llx",
3695 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
3696 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3697 pack
->bw_index
, n
, i
);
3699 if (bcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
3700 fatal(0, "pack/bigH mismatch in %p/%p", pack
, bigH
);
3702 if (bcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
3703 fatal(0, "pack/bigT mismatch in %p/%p", pack
, bigT
);
3706 bzero(pack
, sizeof (bufwad_t
));
3708 pack
->bw_index
= n
+ i
;
3710 pack
->bw_data
= 1 + ztest_random(-2ULL);
3717 * We've verified all the old bufwads, and made new ones.
3718 * Now write them out.
3720 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
3723 if (ztest_opts
.zo_verbose
>= 7) {
3724 (void) printf("freeing offset %llx size %llx"
3726 (u_longlong_t
)bigoff
,
3727 (u_longlong_t
)bigsize
,
3730 VERIFY(0 == dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
3732 if (ztest_opts
.zo_verbose
>= 7) {
3733 (void) printf("writing offset %llx size %llx"
3735 (u_longlong_t
)bigoff
,
3736 (u_longlong_t
)bigsize
,
3739 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
3745 * Sanity check the stuff we just wrote.
3748 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
3749 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
3751 VERIFY(0 == dmu_read(os
, packobj
, packoff
,
3752 packsize
, packcheck
, DMU_READ_PREFETCH
));
3753 VERIFY(0 == dmu_read(os
, bigobj
, bigoff
,
3754 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
3756 ASSERT(bcmp(packbuf
, packcheck
, packsize
) == 0);
3757 ASSERT(bcmp(bigbuf
, bigcheck
, bigsize
) == 0);
3759 umem_free(packcheck
, packsize
);
3760 umem_free(bigcheck
, bigsize
);
3763 umem_free(packbuf
, packsize
);
3764 umem_free(bigbuf
, bigsize
);
3768 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
3769 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
3777 * For each index from n to n + s, verify that the existing bufwad
3778 * in packobj matches the bufwads at the head and tail of the
3779 * corresponding chunk in bigobj. Then update all three bufwads
3780 * with the new values we want to write out.
3782 for (i
= 0; i
< s
; i
++) {
3784 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
3786 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
3788 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
3790 ASSERT((uintptr_t)bigH
- (uintptr_t)bigbuf
< bigsize
);
3791 ASSERT((uintptr_t)bigT
- (uintptr_t)bigbuf
< bigsize
);
3793 if (pack
->bw_txg
> txg
)
3794 fatal(0, "future leak: got %llx, open txg is %llx",
3797 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
3798 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3799 pack
->bw_index
, n
, i
);
3801 if (bcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
3802 fatal(0, "pack/bigH mismatch in %p/%p", pack
, bigH
);
3804 if (bcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
3805 fatal(0, "pack/bigT mismatch in %p/%p", pack
, bigT
);
3807 pack
->bw_index
= n
+ i
;
3809 pack
->bw_data
= 1 + ztest_random(-2ULL);
3817 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
3819 objset_t
*os
= zd
->zd_os
;
3825 bufwad_t
*packbuf
, *bigbuf
;
3826 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
3827 uint64_t blocksize
= ztest_random_blocksize();
3828 uint64_t chunksize
= blocksize
;
3829 uint64_t regions
= 997;
3830 uint64_t stride
= 123456789ULL;
3832 dmu_buf_t
*bonus_db
;
3833 arc_buf_t
**bigbuf_arcbufs
;
3834 dmu_object_info_t doi
;
3837 * This test uses two objects, packobj and bigobj, that are always
3838 * updated together (i.e. in the same tx) so that their contents are
3839 * in sync and can be compared. Their contents relate to each other
3840 * in a simple way: packobj is a dense array of 'bufwad' structures,
3841 * while bigobj is a sparse array of the same bufwads. Specifically,
3842 * for any index n, there are three bufwads that should be identical:
3844 * packobj, at offset n * sizeof (bufwad_t)
3845 * bigobj, at the head of the nth chunk
3846 * bigobj, at the tail of the nth chunk
3848 * The chunk size is set equal to bigobj block size so that
3849 * dmu_assign_arcbuf() can be tested for object updates.
3853 * Read the directory info. If it's the first time, set things up.
3855 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0);
3856 ztest_od_init(&od
[1], id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, chunksize
);
3858 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
3861 bigobj
= od
[0].od_object
;
3862 packobj
= od
[1].od_object
;
3863 blocksize
= od
[0].od_blocksize
;
3864 chunksize
= blocksize
;
3865 ASSERT(chunksize
== od
[1].od_gen
);
3867 VERIFY(dmu_object_info(os
, bigobj
, &doi
) == 0);
3868 VERIFY(ISP2(doi
.doi_data_block_size
));
3869 VERIFY(chunksize
== doi
.doi_data_block_size
);
3870 VERIFY(chunksize
>= 2 * sizeof (bufwad_t
));
3873 * Pick a random index and compute the offsets into packobj and bigobj.
3875 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
3876 s
= 1 + ztest_random(width
- 1);
3878 packoff
= n
* sizeof (bufwad_t
);
3879 packsize
= s
* sizeof (bufwad_t
);
3881 bigoff
= n
* chunksize
;
3882 bigsize
= s
* chunksize
;
3884 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
3885 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
3887 VERIFY3U(0, ==, dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
3889 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
3892 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3893 * Iteration 1 test zcopy to already referenced dbufs.
3894 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3895 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3896 * Iteration 4 test zcopy when dbuf is no longer dirty.
3897 * Iteration 5 test zcopy when it can't be done.
3898 * Iteration 6 one more zcopy write.
3900 for (i
= 0; i
< 7; i
++) {
3905 * In iteration 5 (i == 5) use arcbufs
3906 * that don't match bigobj blksz to test
3907 * dmu_assign_arcbuf() when it can't directly
3908 * assign an arcbuf to a dbuf.
3910 for (j
= 0; j
< s
; j
++) {
3911 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3913 dmu_request_arcbuf(bonus_db
, chunksize
);
3915 bigbuf_arcbufs
[2 * j
] =
3916 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
3917 bigbuf_arcbufs
[2 * j
+ 1] =
3918 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
3923 * Get a tx for the mods to both packobj and bigobj.
3925 tx
= dmu_tx_create(os
);
3927 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
3928 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
3930 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
3932 umem_free(packbuf
, packsize
);
3933 umem_free(bigbuf
, bigsize
);
3934 for (j
= 0; j
< s
; j
++) {
3936 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3937 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
3940 bigbuf_arcbufs
[2 * j
]);
3942 bigbuf_arcbufs
[2 * j
+ 1]);
3945 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
3946 dmu_buf_rele(bonus_db
, FTAG
);
3951 * 50% of the time don't read objects in the 1st iteration to
3952 * test dmu_assign_arcbuf() for the case when there're no
3953 * existing dbufs for the specified offsets.
3955 if (i
!= 0 || ztest_random(2) != 0) {
3956 error
= dmu_read(os
, packobj
, packoff
,
3957 packsize
, packbuf
, DMU_READ_PREFETCH
);
3959 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
3960 bigbuf
, DMU_READ_PREFETCH
);
3963 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
3967 * We've verified all the old bufwads, and made new ones.
3968 * Now write them out.
3970 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
3971 if (ztest_opts
.zo_verbose
>= 7) {
3972 (void) printf("writing offset %llx size %llx"
3974 (u_longlong_t
)bigoff
,
3975 (u_longlong_t
)bigsize
,
3978 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
3980 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3981 bcopy((caddr_t
)bigbuf
+ (off
- bigoff
),
3982 bigbuf_arcbufs
[j
]->b_data
, chunksize
);
3984 bcopy((caddr_t
)bigbuf
+ (off
- bigoff
),
3985 bigbuf_arcbufs
[2 * j
]->b_data
,
3987 bcopy((caddr_t
)bigbuf
+ (off
- bigoff
) +
3989 bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
3994 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
3995 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
3997 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3998 dmu_assign_arcbuf(bonus_db
, off
,
3999 bigbuf_arcbufs
[j
], tx
);
4001 dmu_assign_arcbuf(bonus_db
, off
,
4002 bigbuf_arcbufs
[2 * j
], tx
);
4003 dmu_assign_arcbuf(bonus_db
,
4004 off
+ chunksize
/ 2,
4005 bigbuf_arcbufs
[2 * j
+ 1], tx
);
4008 dmu_buf_rele(dbt
, FTAG
);
4014 * Sanity check the stuff we just wrote.
4017 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
4018 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4020 VERIFY(0 == dmu_read(os
, packobj
, packoff
,
4021 packsize
, packcheck
, DMU_READ_PREFETCH
));
4022 VERIFY(0 == dmu_read(os
, bigobj
, bigoff
,
4023 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
4025 ASSERT(bcmp(packbuf
, packcheck
, packsize
) == 0);
4026 ASSERT(bcmp(bigbuf
, bigcheck
, bigsize
) == 0);
4028 umem_free(packcheck
, packsize
);
4029 umem_free(bigcheck
, bigsize
);
4032 txg_wait_open(dmu_objset_pool(os
), 0);
4033 } else if (i
== 3) {
4034 txg_wait_synced(dmu_objset_pool(os
), 0);
4038 dmu_buf_rele(bonus_db
, FTAG
);
4039 umem_free(packbuf
, packsize
);
4040 umem_free(bigbuf
, bigsize
);
4041 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
4046 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
4049 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
4050 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4053 * Have multiple threads write to large offsets in an object
4054 * to verify that parallel writes to an object -- even to the
4055 * same blocks within the object -- doesn't cause any trouble.
4057 ztest_od_init(&od
[0], ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0);
4059 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
4062 while (ztest_random(10) != 0)
4063 ztest_io(zd
, od
[0].od_object
, offset
);
4067 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
4070 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
4071 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4072 uint64_t count
= ztest_random(20) + 1;
4073 uint64_t blocksize
= ztest_random_blocksize();
4076 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0);
4078 if (ztest_object_init(zd
, od
, sizeof (od
), !ztest_random(2)) != 0)
4081 if (ztest_truncate(zd
, od
[0].od_object
, offset
, count
* blocksize
) != 0)
4084 ztest_prealloc(zd
, od
[0].od_object
, offset
, count
* blocksize
);
4086 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
4088 while (ztest_random(count
) != 0) {
4089 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
4090 if (ztest_write(zd
, od
[0].od_object
, randoff
, blocksize
,
4093 while (ztest_random(4) != 0)
4094 ztest_io(zd
, od
[0].od_object
, randoff
);
4097 umem_free(data
, blocksize
);
4101 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4103 #define ZTEST_ZAP_MIN_INTS 1
4104 #define ZTEST_ZAP_MAX_INTS 4
4105 #define ZTEST_ZAP_MAX_PROPS 1000
4108 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
4110 objset_t
*os
= zd
->zd_os
;
4113 uint64_t txg
, last_txg
;
4114 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
4115 uint64_t zl_ints
, zl_intsize
, prop
;
4118 char propname
[100], txgname
[100];
4120 char *hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4122 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0);
4124 if (ztest_object_init(zd
, od
, sizeof (od
), !ztest_random(2)) != 0)
4127 object
= od
[0].od_object
;
4130 * Generate a known hash collision, and verify that
4131 * we can lookup and remove both entries.
4133 tx
= dmu_tx_create(os
);
4134 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4135 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4138 for (i
= 0; i
< 2; i
++) {
4140 VERIFY3U(0, ==, zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
4143 for (i
= 0; i
< 2; i
++) {
4144 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
4145 sizeof (uint64_t), 1, &value
[i
], tx
));
4147 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
4148 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
4149 ASSERT3U(zl_ints
, ==, 1);
4151 for (i
= 0; i
< 2; i
++) {
4152 VERIFY3U(0, ==, zap_remove(os
, object
, hc
[i
], tx
));
4157 * Generate a buch of random entries.
4159 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
4161 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
4162 (void) sprintf(propname
, "prop_%llu", (u_longlong_t
)prop
);
4163 (void) sprintf(txgname
, "txg_%llu", (u_longlong_t
)prop
);
4164 bzero(value
, sizeof (value
));
4168 * If these zap entries already exist, validate their contents.
4170 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
4172 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
4173 ASSERT3U(zl_ints
, ==, 1);
4175 VERIFY(zap_lookup(os
, object
, txgname
, zl_intsize
,
4176 zl_ints
, &last_txg
) == 0);
4178 VERIFY(zap_length(os
, object
, propname
, &zl_intsize
,
4181 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
4182 ASSERT3U(zl_ints
, ==, ints
);
4184 VERIFY(zap_lookup(os
, object
, propname
, zl_intsize
,
4185 zl_ints
, value
) == 0);
4187 for (i
= 0; i
< ints
; i
++) {
4188 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
4191 ASSERT3U(error
, ==, ENOENT
);
4195 * Atomically update two entries in our zap object.
4196 * The first is named txg_%llu, and contains the txg
4197 * in which the property was last updated. The second
4198 * is named prop_%llu, and the nth element of its value
4199 * should be txg + object + n.
4201 tx
= dmu_tx_create(os
);
4202 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4203 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4208 fatal(0, "zap future leak: old %llu new %llu", last_txg
, txg
);
4210 for (i
= 0; i
< ints
; i
++)
4211 value
[i
] = txg
+ object
+ i
;
4213 VERIFY3U(0, ==, zap_update(os
, object
, txgname
, sizeof (uint64_t),
4215 VERIFY3U(0, ==, zap_update(os
, object
, propname
, sizeof (uint64_t),
4221 * Remove a random pair of entries.
4223 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
4224 (void) sprintf(propname
, "prop_%llu", (u_longlong_t
)prop
);
4225 (void) sprintf(txgname
, "txg_%llu", (u_longlong_t
)prop
);
4227 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
4229 if (error
== ENOENT
)
4234 tx
= dmu_tx_create(os
);
4235 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4236 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4239 VERIFY3U(0, ==, zap_remove(os
, object
, txgname
, tx
));
4240 VERIFY3U(0, ==, zap_remove(os
, object
, propname
, tx
));
4245 * Testcase to test the upgrading of a microzap to fatzap.
4248 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
4250 objset_t
*os
= zd
->zd_os
;
4252 uint64_t object
, txg
;
4254 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0);
4256 if (ztest_object_init(zd
, od
, sizeof (od
), !ztest_random(2)) != 0)
4259 object
= od
[0].od_object
;
4262 * Add entries to this ZAP and make sure it spills over
4263 * and gets upgraded to a fatzap. Also, since we are adding
4264 * 2050 entries we should see ptrtbl growth and leaf-block split.
4266 for (int i
= 0; i
< 2050; i
++) {
4267 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4272 (void) snprintf(name
, sizeof (name
), "fzap-%llu-%llu",
4275 tx
= dmu_tx_create(os
);
4276 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
4277 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4280 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
4282 ASSERT(error
== 0 || error
== EEXIST
);
4289 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
4291 objset_t
*os
= zd
->zd_os
;
4293 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
4295 int i
, namelen
, error
;
4296 int micro
= ztest_random(2);
4297 char name
[20], string_value
[20];
4300 ztest_od_init(&od
[0], ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0);
4302 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
4305 object
= od
[0].od_object
;
4308 * Generate a random name of the form 'xxx.....' where each
4309 * x is a random printable character and the dots are dots.
4310 * There are 94 such characters, and the name length goes from
4311 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4313 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
4315 for (i
= 0; i
< 3; i
++)
4316 name
[i
] = '!' + ztest_random('~' - '!' + 1);
4317 for (; i
< namelen
- 1; i
++)
4321 if ((namelen
& 1) || micro
) {
4322 wsize
= sizeof (txg
);
4328 data
= string_value
;
4332 VERIFY0(zap_count(os
, object
, &count
));
4333 ASSERT(count
!= -1ULL);
4336 * Select an operation: length, lookup, add, update, remove.
4338 i
= ztest_random(5);
4341 tx
= dmu_tx_create(os
);
4342 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4343 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4346 bcopy(name
, string_value
, namelen
);
4350 bzero(string_value
, namelen
);
4356 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
4358 ASSERT3U(wsize
, ==, zl_wsize
);
4359 ASSERT3U(wc
, ==, zl_wc
);
4361 ASSERT3U(error
, ==, ENOENT
);
4366 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
4368 if (data
== string_value
&&
4369 bcmp(name
, data
, namelen
) != 0)
4370 fatal(0, "name '%s' != val '%s' len %d",
4371 name
, data
, namelen
);
4373 ASSERT3U(error
, ==, ENOENT
);
4378 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
4379 ASSERT(error
== 0 || error
== EEXIST
);
4383 VERIFY(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
) == 0);
4387 error
= zap_remove(os
, object
, name
, tx
);
4388 ASSERT(error
== 0 || error
== ENOENT
);
4397 * Commit callback data.
4399 typedef struct ztest_cb_data
{
4400 list_node_t zcd_node
;
4402 int zcd_expected_err
;
4403 boolean_t zcd_added
;
4404 boolean_t zcd_called
;
4408 /* This is the actual commit callback function */
4410 ztest_commit_callback(void *arg
, int error
)
4412 ztest_cb_data_t
*data
= arg
;
4413 uint64_t synced_txg
;
4415 VERIFY(data
!= NULL
);
4416 VERIFY3S(data
->zcd_expected_err
, ==, error
);
4417 VERIFY(!data
->zcd_called
);
4419 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
4420 if (data
->zcd_txg
> synced_txg
)
4421 fatal(0, "commit callback of txg %" PRIu64
" called prematurely"
4422 ", last synced txg = %" PRIu64
"\n", data
->zcd_txg
,
4425 data
->zcd_called
= B_TRUE
;
4427 if (error
== ECANCELED
) {
4428 ASSERT0(data
->zcd_txg
);
4429 ASSERT(!data
->zcd_added
);
4432 * The private callback data should be destroyed here, but
4433 * since we are going to check the zcd_called field after
4434 * dmu_tx_abort(), we will destroy it there.
4439 /* Was this callback added to the global callback list? */
4440 if (!data
->zcd_added
)
4443 ASSERT3U(data
->zcd_txg
, !=, 0);
4445 /* Remove our callback from the list */
4446 (void) mutex_lock(&zcl
.zcl_callbacks_lock
);
4447 list_remove(&zcl
.zcl_callbacks
, data
);
4448 (void) mutex_unlock(&zcl
.zcl_callbacks_lock
);
4451 umem_free(data
, sizeof (ztest_cb_data_t
));
4454 /* Allocate and initialize callback data structure */
4455 static ztest_cb_data_t
*
4456 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
4458 ztest_cb_data_t
*cb_data
;
4460 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
4462 cb_data
->zcd_txg
= txg
;
4463 cb_data
->zcd_spa
= dmu_objset_spa(os
);
4469 * If a number of txgs equal to this threshold have been created after a commit
4470 * callback has been registered but not called, then we assume there is an
4471 * implementation bug.
4473 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4476 * Commit callback test.
4479 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
4481 objset_t
*os
= zd
->zd_os
;
4484 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
4485 uint64_t old_txg
, txg
;
4488 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0);
4490 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
4493 tx
= dmu_tx_create(os
);
4495 cb_data
[0] = ztest_create_cb_data(os
, 0);
4496 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
4498 dmu_tx_hold_write(tx
, od
[0].od_object
, 0, sizeof (uint64_t));
4500 /* Every once in a while, abort the transaction on purpose */
4501 if (ztest_random(100) == 0)
4505 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
4507 txg
= error
? 0 : dmu_tx_get_txg(tx
);
4509 cb_data
[0]->zcd_txg
= txg
;
4510 cb_data
[1] = ztest_create_cb_data(os
, txg
);
4511 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
4515 * It's not a strict requirement to call the registered
4516 * callbacks from inside dmu_tx_abort(), but that's what
4517 * it's supposed to happen in the current implementation
4518 * so we will check for that.
4520 for (i
= 0; i
< 2; i
++) {
4521 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
4522 VERIFY(!cb_data
[i
]->zcd_called
);
4527 for (i
= 0; i
< 2; i
++) {
4528 VERIFY(cb_data
[i
]->zcd_called
);
4529 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
4535 cb_data
[2] = ztest_create_cb_data(os
, txg
);
4536 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
4539 * Read existing data to make sure there isn't a future leak.
4541 VERIFY(0 == dmu_read(os
, od
[0].od_object
, 0, sizeof (uint64_t),
4542 &old_txg
, DMU_READ_PREFETCH
));
4545 fatal(0, "future leak: got %" PRIu64
", open txg is %" PRIu64
,
4548 dmu_write(os
, od
[0].od_object
, 0, sizeof (uint64_t), &txg
, tx
);
4550 (void) mutex_lock(&zcl
.zcl_callbacks_lock
);
4553 * Since commit callbacks don't have any ordering requirement and since
4554 * it is theoretically possible for a commit callback to be called
4555 * after an arbitrary amount of time has elapsed since its txg has been
4556 * synced, it is difficult to reliably determine whether a commit
4557 * callback hasn't been called due to high load or due to a flawed
4560 * In practice, we will assume that if after a certain number of txgs a
4561 * commit callback hasn't been called, then most likely there's an
4562 * implementation bug..
4564 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
4565 if (tmp_cb
!= NULL
&&
4566 (txg
- ZTEST_COMMIT_CALLBACK_THRESH
) > tmp_cb
->zcd_txg
) {
4567 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4568 PRIu64
", open txg: %" PRIu64
"\n", tmp_cb
->zcd_txg
, txg
);
4572 * Let's find the place to insert our callbacks.
4574 * Even though the list is ordered by txg, it is possible for the
4575 * insertion point to not be the end because our txg may already be
4576 * quiescing at this point and other callbacks in the open txg
4577 * (from other objsets) may have sneaked in.
4579 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
4580 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
4581 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
4583 /* Add the 3 callbacks to the list */
4584 for (i
= 0; i
< 3; i
++) {
4586 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
4588 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
4591 cb_data
[i
]->zcd_added
= B_TRUE
;
4592 VERIFY(!cb_data
[i
]->zcd_called
);
4594 tmp_cb
= cb_data
[i
];
4597 (void) mutex_unlock(&zcl
.zcl_callbacks_lock
);
4604 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
4606 zfs_prop_t proplist
[] = {
4608 ZFS_PROP_COMPRESSION
,
4613 (void) rw_rdlock(&ztest_name_lock
);
4615 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++)
4616 (void) ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
4617 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
4619 (void) rw_unlock(&ztest_name_lock
);
4624 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
4626 nvlist_t
*props
= NULL
;
4628 (void) rw_rdlock(&ztest_name_lock
);
4630 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO
,
4631 ZIO_DEDUPDITTO_MIN
+ ztest_random(ZIO_DEDUPDITTO_MIN
));
4633 VERIFY0(spa_prop_get(ztest_spa
, &props
));
4635 if (ztest_opts
.zo_verbose
>= 6)
4636 dump_nvlist(props
, 4);
4640 (void) rw_unlock(&ztest_name_lock
);
4644 user_release_one(const char *snapname
, const char *holdname
)
4646 nvlist_t
*snaps
, *holds
;
4649 snaps
= fnvlist_alloc();
4650 holds
= fnvlist_alloc();
4651 fnvlist_add_boolean(holds
, holdname
);
4652 fnvlist_add_nvlist(snaps
, snapname
, holds
);
4653 fnvlist_free(holds
);
4654 error
= dsl_dataset_user_release(snaps
, NULL
);
4655 fnvlist_free(snaps
);
4660 * Test snapshot hold/release and deferred destroy.
4663 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
4666 objset_t
*os
= zd
->zd_os
;
4670 char clonename
[100];
4672 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
4675 (void) rw_rdlock(&ztest_name_lock
);
4677 dmu_objset_name(os
, osname
);
4679 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%llu", id
);
4680 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
4681 (void) snprintf(clonename
, sizeof (clonename
),
4682 "%s/ch1_%llu", osname
, id
);
4683 (void) snprintf(tag
, sizeof (tag
), "tag_%llu", id
);
4686 * Clean up from any previous run.
4688 error
= dsl_destroy_head(clonename
);
4689 if (error
!= ENOENT
)
4691 error
= user_release_one(fullname
, tag
);
4692 if (error
!= ESRCH
&& error
!= ENOENT
)
4694 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
4695 if (error
!= ENOENT
)
4699 * Create snapshot, clone it, mark snap for deferred destroy,
4700 * destroy clone, verify snap was also destroyed.
4702 error
= dmu_objset_snapshot_one(osname
, snapname
);
4704 if (error
== ENOSPC
) {
4705 ztest_record_enospc("dmu_objset_snapshot");
4708 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
4711 error
= dmu_objset_clone(clonename
, fullname
);
4713 if (error
== ENOSPC
) {
4714 ztest_record_enospc("dmu_objset_clone");
4717 fatal(0, "dmu_objset_clone(%s) = %d", clonename
, error
);
4720 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
4722 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4726 error
= dsl_destroy_head(clonename
);
4728 fatal(0, "dsl_destroy_head(%s) = %d", clonename
, error
);
4730 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
4731 if (error
!= ENOENT
)
4732 fatal(0, "dmu_objset_hold(%s) = %d", fullname
, error
);
4735 * Create snapshot, add temporary hold, verify that we can't
4736 * destroy a held snapshot, mark for deferred destroy,
4737 * release hold, verify snapshot was destroyed.
4739 error
= dmu_objset_snapshot_one(osname
, snapname
);
4741 if (error
== ENOSPC
) {
4742 ztest_record_enospc("dmu_objset_snapshot");
4745 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
4748 holds
= fnvlist_alloc();
4749 fnvlist_add_string(holds
, fullname
, tag
);
4750 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
4751 fnvlist_free(holds
);
4753 if (error
== ENOSPC
) {
4754 ztest_record_enospc("dsl_dataset_user_hold");
4757 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4758 fullname
, tag
, error
);
4761 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
4762 if (error
!= EBUSY
) {
4763 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4767 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
4769 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4773 error
= user_release_one(fullname
, tag
);
4775 fatal(0, "user_release_one(%s, %s) = %d", fullname
, tag
, error
);
4777 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
4780 (void) rw_unlock(&ztest_name_lock
);
4784 * Inject random faults into the on-disk data.
4788 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
4790 ztest_shared_t
*zs
= ztest_shared
;
4791 spa_t
*spa
= ztest_spa
;
4795 uint64_t bad
= 0x1990c0ffeedecade;
4797 char path0
[MAXPATHLEN
];
4798 char pathrand
[MAXPATHLEN
];
4800 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
4806 boolean_t islog
= B_FALSE
;
4808 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
4809 maxfaults
= MAXFAULTS();
4810 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raidz
;
4811 mirror_save
= zs
->zs_mirrors
;
4812 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
4814 ASSERT(leaves
>= 1);
4817 * Grab the name lock as reader. There are some operations
4818 * which don't like to have their vdevs changed while
4819 * they are in progress (i.e. spa_change_guid). Those
4820 * operations will have grabbed the name lock as writer.
4822 (void) rw_rdlock(&ztest_name_lock
);
4825 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4827 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
4829 if (ztest_random(2) == 0) {
4831 * Inject errors on a normal data device or slog device.
4833 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4834 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
4837 * Generate paths to the first leaf in this top-level vdev,
4838 * and to the random leaf we selected. We'll induce transient
4839 * write failures and random online/offline activity on leaf 0,
4840 * and we'll write random garbage to the randomly chosen leaf.
4842 (void) snprintf(path0
, sizeof (path0
), ztest_dev_template
,
4843 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
4844 top
* leaves
+ zs
->zs_splits
);
4845 (void) snprintf(pathrand
, sizeof (pathrand
), ztest_dev_template
,
4846 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
4847 top
* leaves
+ leaf
);
4849 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
4850 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
4854 * If the top-level vdev needs to be resilvered
4855 * then we only allow faults on the device that is
4858 if (vd0
!= NULL
&& maxfaults
!= 1 &&
4859 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
4860 vd0
->vdev_resilver_txg
!= 0)) {
4862 * Make vd0 explicitly claim to be unreadable,
4863 * or unwriteable, or reach behind its back
4864 * and close the underlying fd. We can do this if
4865 * maxfaults == 0 because we'll fail and reexecute,
4866 * and we can do it if maxfaults >= 2 because we'll
4867 * have enough redundancy. If maxfaults == 1, the
4868 * combination of this with injection of random data
4869 * corruption below exceeds the pool's fault tolerance.
4871 vdev_file_t
*vf
= vd0
->vdev_tsd
;
4873 if (vf
!= NULL
&& ztest_random(3) == 0) {
4874 (void) close(vf
->vf_vnode
->v_fd
);
4875 vf
->vf_vnode
->v_fd
= -1;
4876 } else if (ztest_random(2) == 0) {
4877 vd0
->vdev_cant_read
= B_TRUE
;
4879 vd0
->vdev_cant_write
= B_TRUE
;
4881 guid0
= vd0
->vdev_guid
;
4885 * Inject errors on an l2cache device.
4887 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
4889 if (sav
->sav_count
== 0) {
4890 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4891 (void) rw_unlock(&ztest_name_lock
);
4894 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
4895 guid0
= vd0
->vdev_guid
;
4896 (void) strcpy(path0
, vd0
->vdev_path
);
4897 (void) strcpy(pathrand
, vd0
->vdev_path
);
4901 maxfaults
= INT_MAX
; /* no limit on cache devices */
4904 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4905 (void) rw_unlock(&ztest_name_lock
);
4908 * If we can tolerate two or more faults, or we're dealing
4909 * with a slog, randomly online/offline vd0.
4911 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
4912 if (ztest_random(10) < 6) {
4913 int flags
= (ztest_random(2) == 0 ?
4914 ZFS_OFFLINE_TEMPORARY
: 0);
4917 * We have to grab the zs_name_lock as writer to
4918 * prevent a race between offlining a slog and
4919 * destroying a dataset. Offlining the slog will
4920 * grab a reference on the dataset which may cause
4921 * dmu_objset_destroy() to fail with EBUSY thus
4922 * leaving the dataset in an inconsistent state.
4925 (void) rw_wrlock(&ztest_name_lock
);
4927 VERIFY(vdev_offline(spa
, guid0
, flags
) != EBUSY
);
4930 (void) rw_unlock(&ztest_name_lock
);
4933 * Ideally we would like to be able to randomly
4934 * call vdev_[on|off]line without holding locks
4935 * to force unpredictable failures but the side
4936 * effects of vdev_[on|off]line prevent us from
4937 * doing so. We grab the ztest_vdev_lock here to
4938 * prevent a race between injection testing and
4941 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
4942 (void) vdev_online(spa
, guid0
, 0, NULL
);
4943 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
4951 * We have at least single-fault tolerance, so inject data corruption.
4953 fd
= open(pathrand
, O_RDWR
);
4955 if (fd
== -1) /* we hit a gap in the device namespace */
4958 fsize
= lseek(fd
, 0, SEEK_END
);
4960 while (--iters
!= 0) {
4962 * The offset must be chosen carefully to ensure that
4963 * we do not inject a given logical block with errors
4964 * on two different leaf devices, because ZFS can not
4965 * tolerate that (if maxfaults==1).
4967 * We divide each leaf into chunks of size
4968 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
4969 * there is a series of ranges to which we can inject errors.
4970 * Each range can accept errors on only a single leaf vdev.
4971 * The error injection ranges are separated by ranges
4972 * which we will not inject errors on any device (DMZs).
4973 * Each DMZ must be large enough such that a single block
4974 * can not straddle it, so that a single block can not be
4975 * a target in two different injection ranges (on different
4978 * For example, with 3 leaves, each chunk looks like:
4979 * 0 to 32M: injection range for leaf 0
4980 * 32M to 64M: DMZ - no injection allowed
4981 * 64M to 96M: injection range for leaf 1
4982 * 96M to 128M: DMZ - no injection allowed
4983 * 128M to 160M: injection range for leaf 2
4984 * 160M to 192M: DMZ - no injection allowed
4986 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
4987 (leaves
<< bshift
) + (leaf
<< bshift
) +
4988 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
4991 * Only allow damage to the labels at one end of the vdev.
4993 * If all labels are damaged, the device will be totally
4994 * inaccessible, which will result in loss of data,
4995 * because we also damage (parts of) the other side of
4998 * Additionally, we will always have both an even and an
4999 * odd label, so that we can handle crashes in the
5000 * middle of vdev_config_sync().
5002 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
5006 * The two end labels are stored at the "end" of the disk, but
5007 * the end of the disk (vdev_psize) is aligned to
5008 * sizeof (vdev_label_t).
5010 uint64_t psize
= P2ALIGN(fsize
, sizeof (vdev_label_t
));
5011 if ((leaf
& 1) == 1 &&
5012 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
5015 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
5016 if (mirror_save
!= zs
->zs_mirrors
) {
5017 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
5022 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
5023 fatal(1, "can't inject bad word at 0x%llx in %s",
5026 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
5028 if (ztest_opts
.zo_verbose
>= 7)
5029 (void) printf("injected bad word into %s,"
5030 " offset 0x%llx\n", pathrand
, (u_longlong_t
)offset
);
5037 * Verify that DDT repair works as expected.
5040 ztest_ddt_repair(ztest_ds_t
*zd
, uint64_t id
)
5042 ztest_shared_t
*zs
= ztest_shared
;
5043 spa_t
*spa
= ztest_spa
;
5044 objset_t
*os
= zd
->zd_os
;
5046 uint64_t object
, blocksize
, txg
, pattern
, psize
;
5047 enum zio_checksum checksum
= spa_dedup_checksum(spa
);
5052 int copies
= 2 * ZIO_DEDUPDITTO_MIN
;
5054 blocksize
= ztest_random_blocksize();
5055 blocksize
= MIN(blocksize
, 2048); /* because we write so many */
5057 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0);
5059 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
5063 * Take the name lock as writer to prevent anyone else from changing
5064 * the pool and dataset properies we need to maintain during this test.
5066 (void) rw_wrlock(&ztest_name_lock
);
5068 if (ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_DEDUP
, checksum
,
5070 ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_COPIES
, 1,
5072 (void) rw_unlock(&ztest_name_lock
);
5076 dmu_objset_stats_t dds
;
5077 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
5078 dmu_objset_fast_stat(os
, &dds
);
5079 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
5081 object
= od
[0].od_object
;
5082 blocksize
= od
[0].od_blocksize
;
5083 pattern
= zs
->zs_guid
^ dds
.dds_guid
;
5085 ASSERT(object
!= 0);
5087 tx
= dmu_tx_create(os
);
5088 dmu_tx_hold_write(tx
, object
, 0, copies
* blocksize
);
5089 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
5091 (void) rw_unlock(&ztest_name_lock
);
5096 * Write all the copies of our block.
5098 for (int i
= 0; i
< copies
; i
++) {
5099 uint64_t offset
= i
* blocksize
;
5100 int error
= dmu_buf_hold(os
, object
, offset
, FTAG
, &db
,
5101 DMU_READ_NO_PREFETCH
);
5103 fatal(B_FALSE
, "dmu_buf_hold(%p, %llu, %llu) = %u",
5104 os
, (long long)object
, (long long) offset
, error
);
5106 ASSERT(db
->db_offset
== offset
);
5107 ASSERT(db
->db_size
== blocksize
);
5108 ASSERT(ztest_pattern_match(db
->db_data
, db
->db_size
, pattern
) ||
5109 ztest_pattern_match(db
->db_data
, db
->db_size
, 0ULL));
5110 dmu_buf_will_fill(db
, tx
);
5111 ztest_pattern_set(db
->db_data
, db
->db_size
, pattern
);
5112 dmu_buf_rele(db
, FTAG
);
5116 txg_wait_synced(spa_get_dsl(spa
), txg
);
5119 * Find out what block we got.
5121 VERIFY0(dmu_buf_hold(os
, object
, 0, FTAG
, &db
,
5122 DMU_READ_NO_PREFETCH
));
5123 blk
= *((dmu_buf_impl_t
*)db
)->db_blkptr
;
5124 dmu_buf_rele(db
, FTAG
);
5127 * Damage the block. Dedup-ditto will save us when we read it later.
5129 psize
= BP_GET_PSIZE(&blk
);
5130 abd
= abd_alloc_linear(psize
, B_TRUE
);
5131 ztest_pattern_set(abd_to_buf(abd
), psize
, ~pattern
);
5133 (void) zio_wait(zio_rewrite(NULL
, spa
, 0, &blk
,
5134 abd
, psize
, NULL
, NULL
, ZIO_PRIORITY_SYNC_WRITE
,
5135 ZIO_FLAG_CANFAIL
| ZIO_FLAG_INDUCE_DAMAGE
, NULL
));
5139 (void) rw_unlock(&ztest_name_lock
);
5147 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
5149 spa_t
*spa
= ztest_spa
;
5151 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
5152 (void) poll(NULL
, 0, 100); /* wait a moment, then force a restart */
5153 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
5157 * Change the guid for the pool.
5161 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
5163 spa_t
*spa
= ztest_spa
;
5164 uint64_t orig
, load
;
5167 orig
= spa_guid(spa
);
5168 load
= spa_load_guid(spa
);
5170 (void) rw_wrlock(&ztest_name_lock
);
5171 error
= spa_change_guid(spa
);
5172 (void) rw_unlock(&ztest_name_lock
);
5177 if (ztest_opts
.zo_verbose
>= 4) {
5178 (void) printf("Changed guid old %llu -> %llu\n",
5179 (u_longlong_t
)orig
, (u_longlong_t
)spa_guid(spa
));
5182 VERIFY3U(orig
, !=, spa_guid(spa
));
5183 VERIFY3U(load
, ==, spa_load_guid(spa
));
5187 * Rename the pool to a different name and then rename it back.
5191 ztest_spa_rename(ztest_ds_t
*zd
, uint64_t id
)
5193 char *oldname
, *newname
;
5196 (void) rw_wrlock(&ztest_name_lock
);
5198 oldname
= ztest_opts
.zo_pool
;
5199 newname
= umem_alloc(strlen(oldname
) + 5, UMEM_NOFAIL
);
5200 (void) strcpy(newname
, oldname
);
5201 (void) strcat(newname
, "_tmp");
5206 VERIFY3U(0, ==, spa_rename(oldname
, newname
));
5209 * Try to open it under the old name, which shouldn't exist
5211 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
5214 * Open it under the new name and make sure it's still the same spa_t.
5216 VERIFY3U(0, ==, spa_open(newname
, &spa
, FTAG
));
5218 ASSERT(spa
== ztest_spa
);
5219 spa_close(spa
, FTAG
);
5222 * Rename it back to the original
5224 VERIFY3U(0, ==, spa_rename(newname
, oldname
));
5227 * Make sure it can still be opened
5229 VERIFY3U(0, ==, spa_open(oldname
, &spa
, FTAG
));
5231 ASSERT(spa
== ztest_spa
);
5232 spa_close(spa
, FTAG
);
5234 umem_free(newname
, strlen(newname
) + 1);
5236 (void) rw_unlock(&ztest_name_lock
);
5240 * Verify pool integrity by running zdb.
5243 ztest_run_zdb(char *pool
)
5246 char zdb
[MAXPATHLEN
+ MAXNAMELEN
+ 20];
5254 (void) realpath(getexecname(), zdb
);
5256 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5257 bin
= strstr(zdb
, "/usr/bin/");
5258 ztest
= strstr(bin
, "/ztest");
5260 isalen
= ztest
- isa
;
5264 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5267 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
5268 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
5273 if (ztest_opts
.zo_verbose
>= 5)
5274 (void) printf("Executing %s\n", strstr(zdb
, "zdb "));
5276 fp
= popen(zdb
, "r");
5278 while (fgets(zbuf
, sizeof (zbuf
), fp
) != NULL
)
5279 if (ztest_opts
.zo_verbose
>= 3)
5280 (void) printf("%s", zbuf
);
5282 status
= pclose(fp
);
5287 ztest_dump_core
= 0;
5288 if (WIFEXITED(status
))
5289 fatal(0, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
5291 fatal(0, "'%s' died with signal %d", zdb
, WTERMSIG(status
));
5295 ztest_walk_pool_directory(char *header
)
5299 if (ztest_opts
.zo_verbose
>= 6)
5300 (void) printf("%s\n", header
);
5302 mutex_enter(&spa_namespace_lock
);
5303 while ((spa
= spa_next(spa
)) != NULL
)
5304 if (ztest_opts
.zo_verbose
>= 6)
5305 (void) printf("\t%s\n", spa_name(spa
));
5306 mutex_exit(&spa_namespace_lock
);
5310 ztest_spa_import_export(char *oldname
, char *newname
)
5312 nvlist_t
*config
, *newconfig
;
5317 if (ztest_opts
.zo_verbose
>= 4) {
5318 (void) printf("import/export: old = %s, new = %s\n",
5323 * Clean up from previous runs.
5325 (void) spa_destroy(newname
);
5328 * Get the pool's configuration and guid.
5330 VERIFY3U(0, ==, spa_open(oldname
, &spa
, FTAG
));
5333 * Kick off a scrub to tickle scrub/export races.
5335 if (ztest_random(2) == 0)
5336 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
5338 pool_guid
= spa_guid(spa
);
5339 spa_close(spa
, FTAG
);
5341 ztest_walk_pool_directory("pools before export");
5346 VERIFY3U(0, ==, spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
5348 ztest_walk_pool_directory("pools after export");
5353 newconfig
= spa_tryimport(config
);
5354 ASSERT(newconfig
!= NULL
);
5355 nvlist_free(newconfig
);
5358 * Import it under the new name.
5360 error
= spa_import(newname
, config
, NULL
, 0);
5362 dump_nvlist(config
, 0);
5363 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
5364 oldname
, newname
, error
);
5367 ztest_walk_pool_directory("pools after import");
5370 * Try to import it again -- should fail with EEXIST.
5372 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
5375 * Try to import it under a different name -- should fail with EEXIST.
5377 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
5380 * Verify that the pool is no longer visible under the old name.
5382 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
5385 * Verify that we can open and close the pool using the new name.
5387 VERIFY3U(0, ==, spa_open(newname
, &spa
, FTAG
));
5388 ASSERT(pool_guid
== spa_guid(spa
));
5389 spa_close(spa
, FTAG
);
5391 nvlist_free(config
);
5395 ztest_resume(spa_t
*spa
)
5397 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
5398 (void) printf("resuming from suspended state\n");
5399 spa_vdev_state_enter(spa
, SCL_NONE
);
5400 vdev_clear(spa
, NULL
);
5401 (void) spa_vdev_state_exit(spa
, NULL
, 0);
5402 (void) zio_resume(spa
);
5406 ztest_resume_thread(void *arg
)
5410 while (!ztest_exiting
) {
5411 if (spa_suspended(spa
))
5413 (void) poll(NULL
, 0, 100);
5416 * Periodically change the zfs_compressed_arc_enabled setting.
5418 if (ztest_random(10) == 0)
5419 zfs_compressed_arc_enabled
= ztest_random(2);
5422 * Periodically change the zfs_abd_scatter_enabled setting.
5424 if (ztest_random(10) == 0)
5425 zfs_abd_scatter_enabled
= ztest_random(2);
5431 ztest_deadman_thread(void *arg
)
5433 ztest_shared_t
*zs
= arg
;
5434 spa_t
*spa
= ztest_spa
;
5435 hrtime_t delta
, total
= 0;
5438 delta
= zs
->zs_thread_stop
- zs
->zs_thread_start
+
5439 MSEC2NSEC(zfs_deadman_synctime_ms
);
5441 (void) poll(NULL
, 0, (int)NSEC2MSEC(delta
));
5444 * If the pool is suspended then fail immediately. Otherwise,
5445 * check to see if the pool is making any progress. If
5446 * vdev_deadman() discovers that there hasn't been any recent
5447 * I/Os then it will end up aborting the tests.
5449 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
5450 fatal(0, "aborting test after %llu seconds because "
5451 "pool has transitioned to a suspended state.",
5452 zfs_deadman_synctime_ms
/ 1000);
5455 vdev_deadman(spa
->spa_root_vdev
);
5457 total
+= zfs_deadman_synctime_ms
/1000;
5458 (void) printf("ztest has been running for %lld seconds\n",
5464 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
5466 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
5467 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
5468 hrtime_t functime
= gethrtime();
5470 for (int i
= 0; i
< zi
->zi_iters
; i
++)
5471 zi
->zi_func(zd
, id
);
5473 functime
= gethrtime() - functime
;
5475 atomic_add_64(&zc
->zc_count
, 1);
5476 atomic_add_64(&zc
->zc_time
, functime
);
5478 if (ztest_opts
.zo_verbose
>= 4) {
5480 (void) dladdr((void *)zi
->zi_func
, &dli
);
5481 (void) printf("%6.2f sec in %s\n",
5482 (double)functime
/ NANOSEC
, dli
.dli_sname
);
5487 ztest_thread(void *arg
)
5490 uint64_t id
= (uintptr_t)arg
;
5491 ztest_shared_t
*zs
= ztest_shared
;
5495 ztest_shared_callstate_t
*zc
;
5497 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
5499 * See if it's time to force a crash.
5501 if (now
> zs
->zs_thread_kill
)
5505 * If we're getting ENOSPC with some regularity, stop.
5507 if (zs
->zs_enospc_count
> 10)
5511 * Pick a random function to execute.
5513 rand
= ztest_random(ZTEST_FUNCS
);
5514 zi
= &ztest_info
[rand
];
5515 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
5516 call_next
= zc
->zc_next
;
5518 if (now
>= call_next
&&
5519 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
5520 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
5521 ztest_execute(rand
, zi
, id
);
5529 ztest_dataset_name(char *dsname
, char *pool
, int d
)
5531 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
5535 ztest_dataset_destroy(int d
)
5537 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5539 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
5541 if (ztest_opts
.zo_verbose
>= 3)
5542 (void) printf("Destroying %s to free up space\n", name
);
5545 * Cleanup any non-standard clones and snapshots. In general,
5546 * ztest thread t operates on dataset (t % zopt_datasets),
5547 * so there may be more than one thing to clean up.
5549 for (int t
= d
; t
< ztest_opts
.zo_threads
;
5550 t
+= ztest_opts
.zo_datasets
) {
5551 ztest_dsl_dataset_cleanup(name
, t
);
5554 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
5555 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
5559 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
5561 uint64_t usedobjs
, dirobjs
, scratch
;
5564 * ZTEST_DIROBJ is the object directory for the entire dataset.
5565 * Therefore, the number of objects in use should equal the
5566 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5567 * If not, we have an object leak.
5569 * Note that we can only check this in ztest_dataset_open(),
5570 * when the open-context and syncing-context values agree.
5571 * That's because zap_count() returns the open-context value,
5572 * while dmu_objset_space() returns the rootbp fill count.
5574 VERIFY3U(0, ==, zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
5575 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
5576 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
5580 ztest_dataset_open(int d
)
5582 ztest_ds_t
*zd
= &ztest_ds
[d
];
5583 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
5586 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5589 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
5591 (void) rw_rdlock(&ztest_name_lock
);
5593 error
= ztest_dataset_create(name
);
5594 if (error
== ENOSPC
) {
5595 (void) rw_unlock(&ztest_name_lock
);
5596 ztest_record_enospc(FTAG
);
5599 ASSERT(error
== 0 || error
== EEXIST
);
5601 VERIFY0(dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, zd
, &os
));
5602 (void) rw_unlock(&ztest_name_lock
);
5604 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
5606 zilog
= zd
->zd_zilog
;
5608 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
5609 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
5610 fatal(0, "missing log records: claimed %llu < committed %llu",
5611 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
5613 ztest_dataset_dirobj_verify(zd
);
5615 zil_replay(os
, zd
, ztest_replay_vector
);
5617 ztest_dataset_dirobj_verify(zd
);
5619 if (ztest_opts
.zo_verbose
>= 6)
5620 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5622 (u_longlong_t
)zilog
->zl_parse_blk_count
,
5623 (u_longlong_t
)zilog
->zl_parse_lr_count
,
5624 (u_longlong_t
)zilog
->zl_replaying_seq
);
5626 zilog
= zil_open(os
, ztest_get_data
);
5628 if (zilog
->zl_replaying_seq
!= 0 &&
5629 zilog
->zl_replaying_seq
< committed_seq
)
5630 fatal(0, "missing log records: replayed %llu < committed %llu",
5631 zilog
->zl_replaying_seq
, committed_seq
);
5637 ztest_dataset_close(int d
)
5639 ztest_ds_t
*zd
= &ztest_ds
[d
];
5641 zil_close(zd
->zd_zilog
);
5642 dmu_objset_disown(zd
->zd_os
, zd
);
5648 * Kick off threads to run tests on all datasets in parallel.
5651 ztest_run(ztest_shared_t
*zs
)
5656 thread_t resume_tid
;
5659 ztest_exiting
= B_FALSE
;
5662 * Initialize parent/child shared state.
5664 VERIFY(_mutex_init(&ztest_vdev_lock
, USYNC_THREAD
, NULL
) == 0);
5665 VERIFY(rwlock_init(&ztest_name_lock
, USYNC_THREAD
, NULL
) == 0);
5667 zs
->zs_thread_start
= gethrtime();
5668 zs
->zs_thread_stop
=
5669 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
5670 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
5671 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
5672 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
5673 zs
->zs_thread_kill
-=
5674 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
5677 (void) _mutex_init(&zcl
.zcl_callbacks_lock
, USYNC_THREAD
, NULL
);
5679 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
5680 offsetof(ztest_cb_data_t
, zcd_node
));
5685 kernel_init(FREAD
| FWRITE
);
5686 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5687 spa
->spa_debug
= B_TRUE
;
5688 metaslab_preload_limit
= ztest_random(20) + 1;
5691 dmu_objset_stats_t dds
;
5692 VERIFY0(dmu_objset_own(ztest_opts
.zo_pool
,
5693 DMU_OST_ANY
, B_TRUE
, FTAG
, &os
));
5694 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
5695 dmu_objset_fast_stat(os
, &dds
);
5696 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
5697 zs
->zs_guid
= dds
.dds_guid
;
5698 dmu_objset_disown(os
, FTAG
);
5700 spa
->spa_dedup_ditto
= 2 * ZIO_DEDUPDITTO_MIN
;
5703 * We don't expect the pool to suspend unless maxfaults == 0,
5704 * in which case ztest_fault_inject() temporarily takes away
5705 * the only valid replica.
5707 if (MAXFAULTS() == 0)
5708 spa
->spa_failmode
= ZIO_FAILURE_MODE_WAIT
;
5710 spa
->spa_failmode
= ZIO_FAILURE_MODE_PANIC
;
5713 * Create a thread to periodically resume suspended I/O.
5715 VERIFY(thr_create(0, 0, ztest_resume_thread
, spa
, THR_BOUND
,
5719 * Create a deadman thread to abort() if we hang.
5721 VERIFY(thr_create(0, 0, ztest_deadman_thread
, zs
, THR_BOUND
,
5725 * Verify that we can safely inquire about about any object,
5726 * whether it's allocated or not. To make it interesting,
5727 * we probe a 5-wide window around each power of two.
5728 * This hits all edge cases, including zero and the max.
5730 for (int t
= 0; t
< 64; t
++) {
5731 for (int d
= -5; d
<= 5; d
++) {
5732 error
= dmu_object_info(spa
->spa_meta_objset
,
5733 (1ULL << t
) + d
, NULL
);
5734 ASSERT(error
== 0 || error
== ENOENT
||
5740 * If we got any ENOSPC errors on the previous run, destroy something.
5742 if (zs
->zs_enospc_count
!= 0) {
5743 int d
= ztest_random(ztest_opts
.zo_datasets
);
5744 ztest_dataset_destroy(d
);
5746 zs
->zs_enospc_count
= 0;
5748 tid
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (thread_t
),
5751 if (ztest_opts
.zo_verbose
>= 4)
5752 (void) printf("starting main threads...\n");
5755 * Kick off all the tests that run in parallel.
5757 for (int t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
5758 if (t
< ztest_opts
.zo_datasets
&&
5759 ztest_dataset_open(t
) != 0)
5761 VERIFY(thr_create(0, 0, ztest_thread
, (void *)(uintptr_t)t
,
5762 THR_BOUND
, &tid
[t
]) == 0);
5766 * Wait for all of the tests to complete. We go in reverse order
5767 * so we don't close datasets while threads are still using them.
5769 for (int t
= ztest_opts
.zo_threads
- 1; t
>= 0; t
--) {
5770 VERIFY(thr_join(tid
[t
], NULL
, NULL
) == 0);
5771 if (t
< ztest_opts
.zo_datasets
)
5772 ztest_dataset_close(t
);
5775 txg_wait_synced(spa_get_dsl(spa
), 0);
5777 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
5778 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
5779 zfs_dbgmsg_print(FTAG
);
5781 umem_free(tid
, ztest_opts
.zo_threads
* sizeof (thread_t
));
5783 /* Kill the resume thread */
5784 ztest_exiting
= B_TRUE
;
5785 VERIFY(thr_join(resume_tid
, NULL
, NULL
) == 0);
5789 * Right before closing the pool, kick off a bunch of async I/O;
5790 * spa_close() should wait for it to complete.
5792 for (uint64_t object
= 1; object
< 50; object
++) {
5793 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
5794 ZIO_PRIORITY_SYNC_READ
);
5797 spa_close(spa
, FTAG
);
5800 * Verify that we can loop over all pools.
5802 mutex_enter(&spa_namespace_lock
);
5803 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
5804 if (ztest_opts
.zo_verbose
> 3)
5805 (void) printf("spa_next: found %s\n", spa_name(spa
));
5806 mutex_exit(&spa_namespace_lock
);
5809 * Verify that we can export the pool and reimport it under a
5812 if (ztest_random(2) == 0) {
5813 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5814 (void) snprintf(name
, sizeof (name
), "%s_import",
5815 ztest_opts
.zo_pool
);
5816 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
5817 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
5822 list_destroy(&zcl
.zcl_callbacks
);
5824 (void) _mutex_destroy(&zcl
.zcl_callbacks_lock
);
5826 (void) rwlock_destroy(&ztest_name_lock
);
5827 (void) _mutex_destroy(&ztest_vdev_lock
);
5833 ztest_ds_t
*zd
= &ztest_ds
[0];
5837 if (ztest_opts
.zo_verbose
>= 3)
5838 (void) printf("testing spa_freeze()...\n");
5840 kernel_init(FREAD
| FWRITE
);
5841 VERIFY3U(0, ==, spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5842 VERIFY3U(0, ==, ztest_dataset_open(0));
5843 spa
->spa_debug
= B_TRUE
;
5847 * Force the first log block to be transactionally allocated.
5848 * We have to do this before we freeze the pool -- otherwise
5849 * the log chain won't be anchored.
5851 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
5852 ztest_dmu_object_alloc_free(zd
, 0);
5853 zil_commit(zd
->zd_zilog
, 0);
5856 txg_wait_synced(spa_get_dsl(spa
), 0);
5859 * Freeze the pool. This stops spa_sync() from doing anything,
5860 * so that the only way to record changes from now on is the ZIL.
5865 * Because it is hard to predict how much space a write will actually
5866 * require beforehand, we leave ourselves some fudge space to write over
5869 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
5872 * Run tests that generate log records but don't alter the pool config
5873 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5874 * We do a txg_wait_synced() after each iteration to force the txg
5875 * to increase well beyond the last synced value in the uberblock.
5876 * The ZIL should be OK with that.
5878 * Run a random number of times less than zo_maxloops and ensure we do
5879 * not run out of space on the pool.
5881 while (ztest_random(10) != 0 &&
5882 numloops
++ < ztest_opts
.zo_maxloops
&&
5883 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
5885 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0);
5886 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
5887 ztest_io(zd
, od
.od_object
,
5888 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5889 txg_wait_synced(spa_get_dsl(spa
), 0);
5893 * Commit all of the changes we just generated.
5895 zil_commit(zd
->zd_zilog
, 0);
5896 txg_wait_synced(spa_get_dsl(spa
), 0);
5899 * Close our dataset and close the pool.
5901 ztest_dataset_close(0);
5902 spa_close(spa
, FTAG
);
5906 * Open and close the pool and dataset to induce log replay.
5908 kernel_init(FREAD
| FWRITE
);
5909 VERIFY3U(0, ==, spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5910 ASSERT(spa_freeze_txg(spa
) == UINT64_MAX
);
5911 VERIFY3U(0, ==, ztest_dataset_open(0));
5912 ztest_dataset_close(0);
5914 spa
->spa_debug
= B_TRUE
;
5916 txg_wait_synced(spa_get_dsl(spa
), 0);
5917 ztest_reguid(NULL
, 0);
5919 spa_close(spa
, FTAG
);
5924 print_time(hrtime_t t
, char *timebuf
)
5926 hrtime_t s
= t
/ NANOSEC
;
5927 hrtime_t m
= s
/ 60;
5928 hrtime_t h
= m
/ 60;
5929 hrtime_t d
= h
/ 24;
5938 (void) sprintf(timebuf
,
5939 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
5941 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
5943 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
5945 (void) sprintf(timebuf
, "%llus", s
);
5953 VERIFY(nvlist_alloc(&props
, NV_UNIQUE_NAME
, 0) == 0);
5954 if (ztest_random(2) == 0)
5956 VERIFY(nvlist_add_uint64(props
, "autoreplace", 1) == 0);
5962 * Create a storage pool with the given name and initial vdev size.
5963 * Then test spa_freeze() functionality.
5966 ztest_init(ztest_shared_t
*zs
)
5969 nvlist_t
*nvroot
, *props
;
5971 VERIFY(_mutex_init(&ztest_vdev_lock
, USYNC_THREAD
, NULL
) == 0);
5972 VERIFY(rwlock_init(&ztest_name_lock
, USYNC_THREAD
, NULL
) == 0);
5974 kernel_init(FREAD
| FWRITE
);
5977 * Create the storage pool.
5979 (void) spa_destroy(ztest_opts
.zo_pool
);
5980 ztest_shared
->zs_vdev_next_leaf
= 0;
5982 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
5983 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
5984 0, ztest_opts
.zo_raidz
, zs
->zs_mirrors
, 1);
5985 props
= make_random_props();
5986 for (int i
= 0; i
< SPA_FEATURES
; i
++) {
5988 (void) snprintf(buf
, sizeof (buf
), "feature@%s",
5989 spa_feature_table
[i
].fi_uname
);
5990 VERIFY3U(0, ==, nvlist_add_uint64(props
, buf
, 0));
5992 VERIFY3U(0, ==, spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
));
5993 nvlist_free(nvroot
);
5996 VERIFY3U(0, ==, spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5997 zs
->zs_metaslab_sz
=
5998 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
6000 spa_close(spa
, FTAG
);
6004 ztest_run_zdb(ztest_opts
.zo_pool
);
6008 ztest_run_zdb(ztest_opts
.zo_pool
);
6010 (void) rwlock_destroy(&ztest_name_lock
);
6011 (void) _mutex_destroy(&ztest_vdev_lock
);
6017 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
6019 ztest_fd_data
= mkstemp(ztest_name_data
);
6020 ASSERT3S(ztest_fd_data
, >=, 0);
6021 (void) unlink(ztest_name_data
);
6026 shared_data_size(ztest_shared_hdr_t
*hdr
)
6030 size
= hdr
->zh_hdr_size
;
6031 size
+= hdr
->zh_opts_size
;
6032 size
+= hdr
->zh_size
;
6033 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
6034 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
6043 ztest_shared_hdr_t
*hdr
;
6045 hdr
= mmap(NULL
, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
6046 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
6047 ASSERT(hdr
!= MAP_FAILED
);
6049 VERIFY3U(0, ==, ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
6051 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
6052 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
6053 hdr
->zh_size
= sizeof (ztest_shared_t
);
6054 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
6055 hdr
->zh_stats_count
= ZTEST_FUNCS
;
6056 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
6057 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
6059 size
= shared_data_size(hdr
);
6060 VERIFY3U(0, ==, ftruncate(ztest_fd_data
, size
));
6062 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
6069 ztest_shared_hdr_t
*hdr
;
6072 hdr
= mmap(NULL
, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
6073 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
6074 ASSERT(hdr
!= MAP_FAILED
);
6076 size
= shared_data_size(hdr
);
6078 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
6079 hdr
= ztest_shared_hdr
= mmap(NULL
, P2ROUNDUP(size
, getpagesize()),
6080 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
6081 ASSERT(hdr
!= MAP_FAILED
);
6082 buf
= (uint8_t *)hdr
;
6084 offset
= hdr
->zh_hdr_size
;
6085 ztest_shared_opts
= (void *)&buf
[offset
];
6086 offset
+= hdr
->zh_opts_size
;
6087 ztest_shared
= (void *)&buf
[offset
];
6088 offset
+= hdr
->zh_size
;
6089 ztest_shared_callstate
= (void *)&buf
[offset
];
6090 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
6091 ztest_shared_ds
= (void *)&buf
[offset
];
6095 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
6099 char *cmdbuf
= NULL
;
6104 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6105 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
6110 fatal(1, "fork failed");
6112 if (pid
== 0) { /* child */
6113 char *emptyargv
[2] = { cmd
, NULL
};
6114 char fd_data_str
[12];
6116 struct rlimit rl
= { 1024, 1024 };
6117 (void) setrlimit(RLIMIT_NOFILE
, &rl
);
6119 (void) close(ztest_fd_rand
);
6121 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
6122 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
6124 (void) enable_extended_FILE_stdio(-1, -1);
6125 if (libpath
!= NULL
)
6126 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath
, 1));
6127 (void) execv(cmd
, emptyargv
);
6128 ztest_dump_core
= B_FALSE
;
6129 fatal(B_TRUE
, "exec failed: %s", cmd
);
6132 if (cmdbuf
!= NULL
) {
6133 umem_free(cmdbuf
, MAXPATHLEN
);
6137 while (waitpid(pid
, &status
, 0) != pid
)
6139 if (statusp
!= NULL
)
6142 if (WIFEXITED(status
)) {
6143 if (WEXITSTATUS(status
) != 0) {
6144 (void) fprintf(stderr
, "child exited with code %d\n",
6145 WEXITSTATUS(status
));
6149 } else if (WIFSIGNALED(status
)) {
6150 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
6151 (void) fprintf(stderr
, "child died with signal %d\n",
6157 (void) fprintf(stderr
, "something strange happened to child\n");
6164 ztest_run_init(void)
6166 ztest_shared_t
*zs
= ztest_shared
;
6168 ASSERT(ztest_opts
.zo_init
!= 0);
6171 * Blow away any existing copy of zpool.cache
6173 (void) remove(spa_config_path
);
6176 * Create and initialize our storage pool.
6178 for (int i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
6179 bzero(zs
, sizeof (ztest_shared_t
));
6180 if (ztest_opts
.zo_verbose
>= 3 &&
6181 ztest_opts
.zo_init
!= 1) {
6182 (void) printf("ztest_init(), pass %d\n", i
);
6189 main(int argc
, char **argv
)
6197 ztest_shared_callstate_t
*zc
;
6203 char *fd_data_str
= getenv("ZTEST_FD_DATA");
6205 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
6207 dprintf_setup(&argc
, argv
);
6208 zfs_deadman_synctime_ms
= 300000;
6210 ztest_fd_rand
= open("/dev/urandom", O_RDONLY
);
6211 ASSERT3S(ztest_fd_rand
, >=, 0);
6214 process_options(argc
, argv
);
6219 bcopy(&ztest_opts
, ztest_shared_opts
,
6220 sizeof (*ztest_shared_opts
));
6222 ztest_fd_data
= atoi(fd_data_str
);
6224 bcopy(ztest_shared_opts
, &ztest_opts
, sizeof (ztest_opts
));
6226 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
6228 /* Override location of zpool.cache */
6229 VERIFY3U(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
6230 ztest_opts
.zo_dir
), !=, -1);
6232 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
6237 metaslab_gang_bang
= ztest_opts
.zo_metaslab_gang_bang
;
6238 metaslab_df_alloc_threshold
=
6239 zs
->zs_metaslab_df_alloc_threshold
;
6248 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
6250 if (ztest_opts
.zo_verbose
>= 1) {
6251 (void) printf("%llu vdevs, %d datasets, %d threads,"
6252 " %llu seconds...\n",
6253 (u_longlong_t
)ztest_opts
.zo_vdevs
,
6254 ztest_opts
.zo_datasets
,
6255 ztest_opts
.zo_threads
,
6256 (u_longlong_t
)ztest_opts
.zo_time
);
6259 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
6260 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
6262 zs
->zs_do_init
= B_TRUE
;
6263 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
6264 if (ztest_opts
.zo_verbose
>= 1) {
6265 (void) printf("Executing older ztest for "
6266 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
6268 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
6269 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
6271 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
6273 zs
->zs_do_init
= B_FALSE
;
6275 zs
->zs_proc_start
= gethrtime();
6276 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
6278 for (int f
= 0; f
< ZTEST_FUNCS
; f
++) {
6279 zi
= &ztest_info
[f
];
6280 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
6281 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
6282 zc
->zc_next
= UINT64_MAX
;
6284 zc
->zc_next
= zs
->zs_proc_start
+
6285 ztest_random(2 * zi
->zi_interval
[0] + 1);
6289 * Run the tests in a loop. These tests include fault injection
6290 * to verify that self-healing data works, and forced crashes
6291 * to verify that we never lose on-disk consistency.
6293 while (gethrtime() < zs
->zs_proc_stop
) {
6298 * Initialize the workload counters for each function.
6300 for (int f
= 0; f
< ZTEST_FUNCS
; f
++) {
6301 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
6306 /* Set the allocation switch size */
6307 zs
->zs_metaslab_df_alloc_threshold
=
6308 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
6310 if (!hasalt
|| ztest_random(2) == 0) {
6311 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
6312 (void) printf("Executing newer ztest: %s\n",
6316 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
6318 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
6319 (void) printf("Executing older ztest: %s\n",
6320 ztest_opts
.zo_alt_ztest
);
6323 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
6324 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
6331 if (ztest_opts
.zo_verbose
>= 1) {
6332 hrtime_t now
= gethrtime();
6334 now
= MIN(now
, zs
->zs_proc_stop
);
6335 print_time(zs
->zs_proc_stop
- now
, timebuf
);
6336 nicenum(zs
->zs_space
, numbuf
);
6338 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6339 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6341 WIFEXITED(status
) ? "Complete" : "SIGKILL",
6342 (u_longlong_t
)zs
->zs_enospc_count
,
6343 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
6345 100.0 * (now
- zs
->zs_proc_start
) /
6346 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
6349 if (ztest_opts
.zo_verbose
>= 2) {
6350 (void) printf("\nWorkload summary:\n\n");
6351 (void) printf("%7s %9s %s\n",
6352 "Calls", "Time", "Function");
6353 (void) printf("%7s %9s %s\n",
6354 "-----", "----", "--------");
6355 for (int f
= 0; f
< ZTEST_FUNCS
; f
++) {
6358 zi
= &ztest_info
[f
];
6359 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
6360 print_time(zc
->zc_time
, timebuf
);
6361 (void) dladdr((void *)zi
->zi_func
, &dli
);
6362 (void) printf("%7llu %9s %s\n",
6363 (u_longlong_t
)zc
->zc_count
, timebuf
,
6366 (void) printf("\n");
6370 * It's possible that we killed a child during a rename test,
6371 * in which case we'll have a 'ztest_tmp' pool lying around
6372 * instead of 'ztest'. Do a blind rename in case this happened.
6375 if (spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
) == 0) {
6376 spa_close(spa
, FTAG
);
6378 char tmpname
[ZFS_MAX_DATASET_NAME_LEN
];
6380 kernel_init(FREAD
| FWRITE
);
6381 (void) snprintf(tmpname
, sizeof (tmpname
), "%s_tmp",
6382 ztest_opts
.zo_pool
);
6383 (void) spa_rename(tmpname
, ztest_opts
.zo_pool
);
6387 ztest_run_zdb(ztest_opts
.zo_pool
);
6390 if (ztest_opts
.zo_verbose
>= 1) {
6392 (void) printf("%d runs of older ztest: %s\n", older
,
6393 ztest_opts
.zo_alt_ztest
);
6394 (void) printf("%d runs of newer ztest: %s\n", newer
,
6397 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6398 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
6401 umem_free(cmd
, MAXNAMELEN
);