2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
7 * Cleaned-up and optimized version of MD5, based on the reference
8 * implementation provided in RFC 1321. See RSA Copyright information
13 * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
17 * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
20 * License to copy and use this software is granted provided that it
21 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
22 * Algorithm" in all material mentioning or referencing this software
25 * License is also granted to make and use derivative works provided
26 * that such works are identified as "derived from the RSA Data
27 * Security, Inc. MD5 Message-Digest Algorithm" in all material
28 * mentioning or referencing the derived work.
30 * RSA Data Security, Inc. makes no representations concerning either
31 * the merchantability of this software or the suitability of this
32 * software for any particular purpose. It is provided "as is"
33 * without express or implied warranty of any kind.
35 * These notices must be retained in any copies of any part of this
36 * documentation and/or software.
43 #include <sys/types.h>
45 #include <sys/md5_consts.h> /* MD5_CONST() optimization */
46 #include "md5_byteswap.h"
47 #if !defined(_KERNEL) || defined(_BOOT)
49 #endif /* !_KERNEL || _BOOT */
52 #include <sys/systm.h>
55 static void Encode(uint8_t *, const uint32_t *, size_t);
58 static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX
*,
61 void md5_block_asm_host_order(MD5_CTX
*ctx
, const void *inpp
,
62 unsigned int input_length_in_blocks
);
63 #endif /* !defined(__amd64) */
65 static uint8_t PADDING
[64] = { 0x80, /* all zeros */ };
68 * F, G, H and I are the basic MD5 functions.
70 #define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
71 #define G(b, c, d) (((b) & (d)) | ((c) & (~d)))
72 #define H(b, c, d) ((b) ^ (c) ^ (d))
73 #define I(b, c, d) ((c) ^ ((b) | (~d)))
76 * ROTATE_LEFT rotates x left n bits.
78 #define ROTATE_LEFT(x, n) \
79 (((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n))))
82 * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
83 * Rotation is separate from addition to prevent recomputation.
86 #define FF(a, b, c, d, x, s, ac) { \
87 (a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
88 (a) = ROTATE_LEFT((a), (s)); \
92 #define GG(a, b, c, d, x, s, ac) { \
93 (a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
94 (a) = ROTATE_LEFT((a), (s)); \
98 #define HH(a, b, c, d, x, s, ac) { \
99 (a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
100 (a) = ROTATE_LEFT((a), (s)); \
104 #define II(a, b, c, d, x, s, ac) { \
105 (a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
106 (a) = ROTATE_LEFT((a), (s)); \
111 * Loading 32-bit constants on a RISC is expensive since it involves both a
112 * `sethi' and an `or'. thus, we instead have the compiler generate `ld's to
113 * load the constants from an array called `md5_consts'. however, on intel
114 * (and other CISC processors), it is cheaper to load the constant
115 * directly. thus, the c code in MD5Transform() uses the macro MD5_CONST()
116 * which either expands to a constant or an array reference, depending on the
117 * architecture the code is being compiled for.
119 * Right now, i386 and amd64 are the CISC exceptions.
120 * If we get another CISC ISA, we'll have to change the ifdef.
123 #if defined(__i386) || defined(__amd64)
125 #define MD5_CONST(x) (MD5_CONST_ ## x)
126 #define MD5_CONST_e(x) MD5_CONST(x)
127 #define MD5_CONST_o(x) MD5_CONST(x)
131 * sparc/RISC optimization:
133 * while it is somewhat counter-intuitive, on sparc (and presumably other RISC
134 * machines), it is more efficient to place all the constants used in this
135 * function in an array and load the values out of the array than to manually
136 * load the constants. this is because setting a register to a 32-bit value
137 * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit
138 * value from memory only takes one `ld' (or `lduw' on v9). while this
139 * increases memory usage, the compiler can find enough other things to do
140 * while waiting to keep the pipeline does not stall. additionally, it is
141 * likely that many of these constants are cached so that later accesses do
142 * not even go out to the bus.
144 * this array is declared `static' to keep the compiler from having to
145 * bcopy() this array onto the stack frame of MD5Transform() each time it is
146 * called -- which is unacceptably expensive.
148 * the `const' is to ensure that callers are good citizens and do not try to
149 * munge the array. since these routines are going to be called from inside
150 * multithreaded kernelland, this is a good safety check. -- `constants' will
153 * unfortunately, loading from an array in this manner hurts performance under
154 * intel (and presumably other CISC machines). so, there is a macro,
155 * MD5_CONST(), used in MD5Transform(), that either expands to a reference to
156 * this array, or to the actual constant, depending on what platform this code
163 * Going to load these consts in 8B chunks, so need to enforce 8B alignment
167 #pragma align 64 (md5_consts)
168 #define _MD5_CHECK_ALIGNMENT
172 static const uint32_t md5_consts
[] = {
173 MD5_CONST_0
, MD5_CONST_1
, MD5_CONST_2
, MD5_CONST_3
,
174 MD5_CONST_4
, MD5_CONST_5
, MD5_CONST_6
, MD5_CONST_7
,
175 MD5_CONST_8
, MD5_CONST_9
, MD5_CONST_10
, MD5_CONST_11
,
176 MD5_CONST_12
, MD5_CONST_13
, MD5_CONST_14
, MD5_CONST_15
,
177 MD5_CONST_16
, MD5_CONST_17
, MD5_CONST_18
, MD5_CONST_19
,
178 MD5_CONST_20
, MD5_CONST_21
, MD5_CONST_22
, MD5_CONST_23
,
179 MD5_CONST_24
, MD5_CONST_25
, MD5_CONST_26
, MD5_CONST_27
,
180 MD5_CONST_28
, MD5_CONST_29
, MD5_CONST_30
, MD5_CONST_31
,
181 MD5_CONST_32
, MD5_CONST_33
, MD5_CONST_34
, MD5_CONST_35
,
182 MD5_CONST_36
, MD5_CONST_37
, MD5_CONST_38
, MD5_CONST_39
,
183 MD5_CONST_40
, MD5_CONST_41
, MD5_CONST_42
, MD5_CONST_43
,
184 MD5_CONST_44
, MD5_CONST_45
, MD5_CONST_46
, MD5_CONST_47
,
185 MD5_CONST_48
, MD5_CONST_49
, MD5_CONST_50
, MD5_CONST_51
,
186 MD5_CONST_52
, MD5_CONST_53
, MD5_CONST_54
, MD5_CONST_55
,
187 MD5_CONST_56
, MD5_CONST_57
, MD5_CONST_58
, MD5_CONST_59
,
188 MD5_CONST_60
, MD5_CONST_61
, MD5_CONST_62
, MD5_CONST_63
194 * To reduce the number of loads, load consts in 64-bit
195 * chunks and then split.
197 * No need to mask upper 32-bits, as just interested in
198 * low 32-bits (saves an & operation and means that this
199 * optimization doesn't increases the icount.
201 #define MD5_CONST_e(x) (md5_consts64[x/2] >> 32)
202 #define MD5_CONST_o(x) (md5_consts64[x/2])
206 #define MD5_CONST_e(x) (md5_consts[x])
207 #define MD5_CONST_o(x) (md5_consts[x])
216 * purpose: initializes the md5 context and begins and md5 digest operation
217 * input: MD5_CTX * : the context to initialize.
222 MD5Init(MD5_CTX
*ctx
)
224 ctx
->count
[0] = ctx
->count
[1] = 0;
226 /* load magic initialization constants */
227 ctx
->state
[0] = MD5_INIT_CONST_1
;
228 ctx
->state
[1] = MD5_INIT_CONST_2
;
229 ctx
->state
[2] = MD5_INIT_CONST_3
;
230 ctx
->state
[3] = MD5_INIT_CONST_4
;
236 * purpose: continues an md5 digest operation, using the message block
237 * to update the context.
238 * input: MD5_CTX * : the context to update
239 * uint8_t * : the message block
240 * uint32_t : the length of the message block in bytes
243 * MD5 crunches in 64-byte blocks. All numeric constants here are related to
244 * that property of MD5.
248 MD5Update(MD5_CTX
*ctx
, const void *inpp
, unsigned int input_len
)
250 uint32_t i
, buf_index
, buf_len
;
255 uint32_t block_count
;
256 #endif /* !defined(__amd64) */
257 const unsigned char *input
= (const unsigned char *)inpp
;
259 /* compute (number of bytes computed so far) mod 64 */
260 buf_index
= (ctx
->count
[0] >> 3) & 0x3F;
262 /* update number of bits hashed into this MD5 computation so far */
263 if ((ctx
->count
[0] += (input_len
<< 3)) < (input_len
<< 3))
265 ctx
->count
[1] += (input_len
>> 29);
267 buf_len
= 64 - buf_index
;
269 /* transform as many times as possible */
271 if (input_len
>= buf_len
) {
274 * general optimization:
276 * only do initial bcopy() and MD5Transform() if
277 * buf_index != 0. if buf_index == 0, we're just
278 * wasting our time doing the bcopy() since there
279 * wasn't any data left over from a previous call to
285 * For N1 use %asi register. However, costly to repeatedly set
286 * in MD5Transform. Therefore, set once here.
287 * Should probably restore the old value afterwards...
289 old_asi
= get_little();
294 bcopy(input
, &ctx
->buf_un
.buf8
[buf_index
], buf_len
);
296 #if !defined(__amd64)
297 MD5Transform(ctx
->state
[0], ctx
->state
[1],
298 ctx
->state
[2], ctx
->state
[3], ctx
,
301 md5_block_asm_host_order(ctx
, ctx
->buf_un
.buf8
, 1);
302 #endif /* !defined(__amd64) */
307 #if !defined(__amd64)
308 for (; i
+ 63 < input_len
; i
+= 64)
309 MD5Transform(ctx
->state
[0], ctx
->state
[1],
310 ctx
->state
[2], ctx
->state
[3], ctx
, &input
[i
]);
313 block_count
= (input_len
- i
) >> 6;
314 if (block_count
> 0) {
315 md5_block_asm_host_order(ctx
, &input
[i
], block_count
);
316 i
+= block_count
<< 6;
318 #endif /* !defined(__amd64) */
323 * Restore old %ASI value
329 * general optimization:
331 * if i and input_len are the same, return now instead
332 * of calling bcopy(), since the bcopy() in this
333 * case will be an expensive nop.
342 /* buffer remaining input */
343 bcopy(&input
[i
], &ctx
->buf_un
.buf8
[buf_index
], input_len
- i
);
349 * purpose: ends an md5 digest operation, finalizing the message digest and
350 * zeroing the context.
351 * input: uchar_t * : a buffer to store the digest in
352 * : The function actually uses void* because many
353 * : callers pass things other than uchar_t here.
354 * MD5_CTX * : the context to finalize, save, and zero
359 MD5Final(void *digest
, MD5_CTX
*ctx
)
361 uint8_t bitcount_le
[sizeof (ctx
->count
)];
362 uint32_t index
= (ctx
->count
[0] >> 3) & 0x3f;
364 /* store bit count, little endian */
365 Encode(bitcount_le
, ctx
->count
, sizeof (bitcount_le
));
367 /* pad out to 56 mod 64 */
368 MD5Update(ctx
, PADDING
, ((index
< 56) ? 56 : 120) - index
);
370 /* append length (before padding) */
371 MD5Update(ctx
, bitcount_le
, sizeof (bitcount_le
));
373 /* store state in digest */
374 Encode(digest
, ctx
->state
, sizeof (ctx
->state
));
376 /* zeroize sensitive information */
377 bzero(ctx
, sizeof (*ctx
));
383 md5_calc(unsigned char *output
, unsigned char *input
, unsigned int inlen
)
388 MD5Update(&context
, input
, inlen
);
389 MD5Final(output
, &context
);
392 #endif /* !_KERNEL */
394 #if !defined(__amd64)
396 * sparc register window optimization:
398 * `a', `b', `c', and `d' are passed into MD5Transform explicitly
399 * since it increases the number of registers available to the
400 * compiler. under this scheme, these variables can be held in
401 * %i0 - %i3, which leaves more local and out registers available.
407 * purpose: md5 transformation -- updates the digest based on `block'
408 * input: uint32_t : bytes 1 - 4 of the digest
409 * uint32_t : bytes 5 - 8 of the digest
410 * uint32_t : bytes 9 - 12 of the digest
411 * uint32_t : bytes 12 - 16 of the digest
412 * MD5_CTX * : the context to update
413 * uint8_t [64]: the block to use to update the digest
418 MD5Transform(uint32_t a
, uint32_t b
, uint32_t c
, uint32_t d
,
419 MD5_CTX
*ctx
, const uint8_t block
[64])
422 * general optimization:
424 * use individual integers instead of using an array. this is a
425 * win, although the amount it wins by seems to vary quite a bit.
428 register uint32_t x_0
, x_1
, x_2
, x_3
, x_4
, x_5
, x_6
, x_7
;
429 register uint32_t x_8
, x_9
, x_10
, x_11
, x_12
, x_13
, x_14
, x_15
;
431 unsigned long long *md5_consts64
;
433 /* LINTED E_BAD_PTR_CAST_ALIGN */
434 md5_consts64
= (unsigned long long *) md5_consts
;
438 * general optimization:
440 * the compiler (at least SC4.2/5.x) generates better code if
441 * variable use is localized. in this case, swapping the integers in
442 * this order allows `x_0 'to be swapped nearest to its first use in
443 * FF(), and likewise for `x_1' and up. note that the compiler
444 * prefers this to doing each swap right before the FF() that
449 * sparc v9/v8plus optimization:
451 * if `block' is already aligned on a 4-byte boundary, use the
452 * optimized load_little_32() directly. otherwise, bcopy()
453 * into a buffer that *is* aligned on a 4-byte boundary and
454 * then do the load_little_32() on that buffer. benchmarks
455 * have shown that using the bcopy() is better than loading
456 * the bytes individually and doing the endian-swap by hand.
458 * even though it's quite tempting to assign to do:
460 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
462 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least
463 * SC4.2/5.x) *does not* like that, so please resist the urge.
466 #ifdef _MD5_CHECK_ALIGNMENT
467 if ((uintptr_t)block
& 0x3) { /* not 4-byte aligned? */
468 bcopy(block
, ctx
->buf_un
.buf32
, sizeof (ctx
->buf_un
.buf32
));
471 x_15
= LOAD_LITTLE_32_f(ctx
->buf_un
.buf32
);
472 x_14
= LOAD_LITTLE_32_e(ctx
->buf_un
.buf32
);
473 x_13
= LOAD_LITTLE_32_d(ctx
->buf_un
.buf32
);
474 x_12
= LOAD_LITTLE_32_c(ctx
->buf_un
.buf32
);
475 x_11
= LOAD_LITTLE_32_b(ctx
->buf_un
.buf32
);
476 x_10
= LOAD_LITTLE_32_a(ctx
->buf_un
.buf32
);
477 x_9
= LOAD_LITTLE_32_9(ctx
->buf_un
.buf32
);
478 x_8
= LOAD_LITTLE_32_8(ctx
->buf_un
.buf32
);
479 x_7
= LOAD_LITTLE_32_7(ctx
->buf_un
.buf32
);
480 x_6
= LOAD_LITTLE_32_6(ctx
->buf_un
.buf32
);
481 x_5
= LOAD_LITTLE_32_5(ctx
->buf_un
.buf32
);
482 x_4
= LOAD_LITTLE_32_4(ctx
->buf_un
.buf32
);
483 x_3
= LOAD_LITTLE_32_3(ctx
->buf_un
.buf32
);
484 x_2
= LOAD_LITTLE_32_2(ctx
->buf_un
.buf32
);
485 x_1
= LOAD_LITTLE_32_1(ctx
->buf_un
.buf32
);
486 x_0
= LOAD_LITTLE_32_0(ctx
->buf_un
.buf32
);
488 x_15
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 15);
489 x_14
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 14);
490 x_13
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 13);
491 x_12
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 12);
492 x_11
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 11);
493 x_10
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 10);
494 x_9
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 9);
495 x_8
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 8);
496 x_7
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 7);
497 x_6
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 6);
498 x_5
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 5);
499 x_4
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 4);
500 x_3
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 3);
501 x_2
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 2);
502 x_1
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 1);
503 x_0
= LOAD_LITTLE_32(ctx
->buf_un
.buf32
+ 0);
510 /* LINTED E_BAD_PTR_CAST_ALIGN */
511 x_15
= LOAD_LITTLE_32_f(block
);
512 /* LINTED E_BAD_PTR_CAST_ALIGN */
513 x_14
= LOAD_LITTLE_32_e(block
);
514 /* LINTED E_BAD_PTR_CAST_ALIGN */
515 x_13
= LOAD_LITTLE_32_d(block
);
516 /* LINTED E_BAD_PTR_CAST_ALIGN */
517 x_12
= LOAD_LITTLE_32_c(block
);
518 /* LINTED E_BAD_PTR_CAST_ALIGN */
519 x_11
= LOAD_LITTLE_32_b(block
);
520 /* LINTED E_BAD_PTR_CAST_ALIGN */
521 x_10
= LOAD_LITTLE_32_a(block
);
522 /* LINTED E_BAD_PTR_CAST_ALIGN */
523 x_9
= LOAD_LITTLE_32_9(block
);
524 /* LINTED E_BAD_PTR_CAST_ALIGN */
525 x_8
= LOAD_LITTLE_32_8(block
);
526 /* LINTED E_BAD_PTR_CAST_ALIGN */
527 x_7
= LOAD_LITTLE_32_7(block
);
528 /* LINTED E_BAD_PTR_CAST_ALIGN */
529 x_6
= LOAD_LITTLE_32_6(block
);
530 /* LINTED E_BAD_PTR_CAST_ALIGN */
531 x_5
= LOAD_LITTLE_32_5(block
);
532 /* LINTED E_BAD_PTR_CAST_ALIGN */
533 x_4
= LOAD_LITTLE_32_4(block
);
534 /* LINTED E_BAD_PTR_CAST_ALIGN */
535 x_3
= LOAD_LITTLE_32_3(block
);
536 /* LINTED E_BAD_PTR_CAST_ALIGN */
537 x_2
= LOAD_LITTLE_32_2(block
);
538 /* LINTED E_BAD_PTR_CAST_ALIGN */
539 x_1
= LOAD_LITTLE_32_1(block
);
540 /* LINTED E_BAD_PTR_CAST_ALIGN */
541 x_0
= LOAD_LITTLE_32_0(block
);
543 x_15
= LOAD_LITTLE_32(block
+ 60);
544 x_14
= LOAD_LITTLE_32(block
+ 56);
545 x_13
= LOAD_LITTLE_32(block
+ 52);
546 x_12
= LOAD_LITTLE_32(block
+ 48);
547 x_11
= LOAD_LITTLE_32(block
+ 44);
548 x_10
= LOAD_LITTLE_32(block
+ 40);
549 x_9
= LOAD_LITTLE_32(block
+ 36);
550 x_8
= LOAD_LITTLE_32(block
+ 32);
551 x_7
= LOAD_LITTLE_32(block
+ 28);
552 x_6
= LOAD_LITTLE_32(block
+ 24);
553 x_5
= LOAD_LITTLE_32(block
+ 20);
554 x_4
= LOAD_LITTLE_32(block
+ 16);
555 x_3
= LOAD_LITTLE_32(block
+ 12);
556 x_2
= LOAD_LITTLE_32(block
+ 8);
557 x_1
= LOAD_LITTLE_32(block
+ 4);
558 x_0
= LOAD_LITTLE_32(block
+ 0);
563 FF(a
, b
, c
, d
, x_0
, MD5_SHIFT_11
, MD5_CONST_e(0)); /* 1 */
564 FF(d
, a
, b
, c
, x_1
, MD5_SHIFT_12
, MD5_CONST_o(1)); /* 2 */
565 FF(c
, d
, a
, b
, x_2
, MD5_SHIFT_13
, MD5_CONST_e(2)); /* 3 */
566 FF(b
, c
, d
, a
, x_3
, MD5_SHIFT_14
, MD5_CONST_o(3)); /* 4 */
567 FF(a
, b
, c
, d
, x_4
, MD5_SHIFT_11
, MD5_CONST_e(4)); /* 5 */
568 FF(d
, a
, b
, c
, x_5
, MD5_SHIFT_12
, MD5_CONST_o(5)); /* 6 */
569 FF(c
, d
, a
, b
, x_6
, MD5_SHIFT_13
, MD5_CONST_e(6)); /* 7 */
570 FF(b
, c
, d
, a
, x_7
, MD5_SHIFT_14
, MD5_CONST_o(7)); /* 8 */
571 FF(a
, b
, c
, d
, x_8
, MD5_SHIFT_11
, MD5_CONST_e(8)); /* 9 */
572 FF(d
, a
, b
, c
, x_9
, MD5_SHIFT_12
, MD5_CONST_o(9)); /* 10 */
573 FF(c
, d
, a
, b
, x_10
, MD5_SHIFT_13
, MD5_CONST_e(10)); /* 11 */
574 FF(b
, c
, d
, a
, x_11
, MD5_SHIFT_14
, MD5_CONST_o(11)); /* 12 */
575 FF(a
, b
, c
, d
, x_12
, MD5_SHIFT_11
, MD5_CONST_e(12)); /* 13 */
576 FF(d
, a
, b
, c
, x_13
, MD5_SHIFT_12
, MD5_CONST_o(13)); /* 14 */
577 FF(c
, d
, a
, b
, x_14
, MD5_SHIFT_13
, MD5_CONST_e(14)); /* 15 */
578 FF(b
, c
, d
, a
, x_15
, MD5_SHIFT_14
, MD5_CONST_o(15)); /* 16 */
581 GG(a
, b
, c
, d
, x_1
, MD5_SHIFT_21
, MD5_CONST_e(16)); /* 17 */
582 GG(d
, a
, b
, c
, x_6
, MD5_SHIFT_22
, MD5_CONST_o(17)); /* 18 */
583 GG(c
, d
, a
, b
, x_11
, MD5_SHIFT_23
, MD5_CONST_e(18)); /* 19 */
584 GG(b
, c
, d
, a
, x_0
, MD5_SHIFT_24
, MD5_CONST_o(19)); /* 20 */
585 GG(a
, b
, c
, d
, x_5
, MD5_SHIFT_21
, MD5_CONST_e(20)); /* 21 */
586 GG(d
, a
, b
, c
, x_10
, MD5_SHIFT_22
, MD5_CONST_o(21)); /* 22 */
587 GG(c
, d
, a
, b
, x_15
, MD5_SHIFT_23
, MD5_CONST_e(22)); /* 23 */
588 GG(b
, c
, d
, a
, x_4
, MD5_SHIFT_24
, MD5_CONST_o(23)); /* 24 */
589 GG(a
, b
, c
, d
, x_9
, MD5_SHIFT_21
, MD5_CONST_e(24)); /* 25 */
590 GG(d
, a
, b
, c
, x_14
, MD5_SHIFT_22
, MD5_CONST_o(25)); /* 26 */
591 GG(c
, d
, a
, b
, x_3
, MD5_SHIFT_23
, MD5_CONST_e(26)); /* 27 */
592 GG(b
, c
, d
, a
, x_8
, MD5_SHIFT_24
, MD5_CONST_o(27)); /* 28 */
593 GG(a
, b
, c
, d
, x_13
, MD5_SHIFT_21
, MD5_CONST_e(28)); /* 29 */
594 GG(d
, a
, b
, c
, x_2
, MD5_SHIFT_22
, MD5_CONST_o(29)); /* 30 */
595 GG(c
, d
, a
, b
, x_7
, MD5_SHIFT_23
, MD5_CONST_e(30)); /* 31 */
596 GG(b
, c
, d
, a
, x_12
, MD5_SHIFT_24
, MD5_CONST_o(31)); /* 32 */
599 HH(a
, b
, c
, d
, x_5
, MD5_SHIFT_31
, MD5_CONST_e(32)); /* 33 */
600 HH(d
, a
, b
, c
, x_8
, MD5_SHIFT_32
, MD5_CONST_o(33)); /* 34 */
601 HH(c
, d
, a
, b
, x_11
, MD5_SHIFT_33
, MD5_CONST_e(34)); /* 35 */
602 HH(b
, c
, d
, a
, x_14
, MD5_SHIFT_34
, MD5_CONST_o(35)); /* 36 */
603 HH(a
, b
, c
, d
, x_1
, MD5_SHIFT_31
, MD5_CONST_e(36)); /* 37 */
604 HH(d
, a
, b
, c
, x_4
, MD5_SHIFT_32
, MD5_CONST_o(37)); /* 38 */
605 HH(c
, d
, a
, b
, x_7
, MD5_SHIFT_33
, MD5_CONST_e(38)); /* 39 */
606 HH(b
, c
, d
, a
, x_10
, MD5_SHIFT_34
, MD5_CONST_o(39)); /* 40 */
607 HH(a
, b
, c
, d
, x_13
, MD5_SHIFT_31
, MD5_CONST_e(40)); /* 41 */
608 HH(d
, a
, b
, c
, x_0
, MD5_SHIFT_32
, MD5_CONST_o(41)); /* 42 */
609 HH(c
, d
, a
, b
, x_3
, MD5_SHIFT_33
, MD5_CONST_e(42)); /* 43 */
610 HH(b
, c
, d
, a
, x_6
, MD5_SHIFT_34
, MD5_CONST_o(43)); /* 44 */
611 HH(a
, b
, c
, d
, x_9
, MD5_SHIFT_31
, MD5_CONST_e(44)); /* 45 */
612 HH(d
, a
, b
, c
, x_12
, MD5_SHIFT_32
, MD5_CONST_o(45)); /* 46 */
613 HH(c
, d
, a
, b
, x_15
, MD5_SHIFT_33
, MD5_CONST_e(46)); /* 47 */
614 HH(b
, c
, d
, a
, x_2
, MD5_SHIFT_34
, MD5_CONST_o(47)); /* 48 */
617 II(a
, b
, c
, d
, x_0
, MD5_SHIFT_41
, MD5_CONST_e(48)); /* 49 */
618 II(d
, a
, b
, c
, x_7
, MD5_SHIFT_42
, MD5_CONST_o(49)); /* 50 */
619 II(c
, d
, a
, b
, x_14
, MD5_SHIFT_43
, MD5_CONST_e(50)); /* 51 */
620 II(b
, c
, d
, a
, x_5
, MD5_SHIFT_44
, MD5_CONST_o(51)); /* 52 */
621 II(a
, b
, c
, d
, x_12
, MD5_SHIFT_41
, MD5_CONST_e(52)); /* 53 */
622 II(d
, a
, b
, c
, x_3
, MD5_SHIFT_42
, MD5_CONST_o(53)); /* 54 */
623 II(c
, d
, a
, b
, x_10
, MD5_SHIFT_43
, MD5_CONST_e(54)); /* 55 */
624 II(b
, c
, d
, a
, x_1
, MD5_SHIFT_44
, MD5_CONST_o(55)); /* 56 */
625 II(a
, b
, c
, d
, x_8
, MD5_SHIFT_41
, MD5_CONST_e(56)); /* 57 */
626 II(d
, a
, b
, c
, x_15
, MD5_SHIFT_42
, MD5_CONST_o(57)); /* 58 */
627 II(c
, d
, a
, b
, x_6
, MD5_SHIFT_43
, MD5_CONST_e(58)); /* 59 */
628 II(b
, c
, d
, a
, x_13
, MD5_SHIFT_44
, MD5_CONST_o(59)); /* 60 */
629 II(a
, b
, c
, d
, x_4
, MD5_SHIFT_41
, MD5_CONST_e(60)); /* 61 */
630 II(d
, a
, b
, c
, x_11
, MD5_SHIFT_42
, MD5_CONST_o(61)); /* 62 */
631 II(c
, d
, a
, b
, x_2
, MD5_SHIFT_43
, MD5_CONST_e(62)); /* 63 */
632 II(b
, c
, d
, a
, x_9
, MD5_SHIFT_44
, MD5_CONST_o(63)); /* 64 */
640 * zeroize sensitive information -- compiler will optimize
641 * this out if everything is kept in registers
644 x_0
= x_1
= x_2
= x_3
= x_4
= x_5
= x_6
= x_7
= x_8
= 0;
645 x_9
= x_10
= x_11
= x_12
= x_13
= x_14
= x_15
= 0;
647 #endif /* !defined(__amd64) */
652 * purpose: to convert a list of numbers from big endian to little endian
653 * input: uint8_t * : place to store the converted little endian numbers
654 * uint32_t * : place to get numbers to convert from
655 * size_t : the length of the input in bytes
660 Encode(uint8_t *_RESTRICT_KYWD output
, const uint32_t *_RESTRICT_KYWD input
,
665 for (i
= 0, j
= 0; j
< input_len
; i
++, j
+= sizeof (uint32_t)) {
667 #ifdef _LITTLE_ENDIAN
669 #ifdef _MD5_CHECK_ALIGNMENT
670 if ((uintptr_t)output
& 0x3) /* Not 4-byte aligned */
671 bcopy(input
+ i
, output
+ j
, 4);
672 else *(uint32_t *)(output
+ j
) = input
[i
];
674 /*LINTED E_BAD_PTR_CAST_ALIGN*/
675 *(uint32_t *)(output
+ j
) = input
[i
];
676 #endif /* _MD5_CHECK_ALIGNMENT */
678 #else /* big endian -- will work on little endian, but slowly */
680 output
[j
] = input
[i
] & 0xff;
681 output
[j
+ 1] = (input
[i
] >> 8) & 0xff;
682 output
[j
+ 2] = (input
[i
] >> 16) & 0xff;
683 output
[j
+ 3] = (input
[i
] >> 24) & 0xff;