4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright (c) 2016 by Delphix. All rights reserved.
33 #include <sys/socket.h>
34 #include <sys/types.h>
38 #include <netinet/in.h>
39 #include <netinet/tcp.h>
41 #include <sys/sockio.h>
42 #include <sys/fcntl.h>
44 #include <stdio.h> /* snprintf */
45 #include <arpa/inet.h> /* ntohl, ntohs, etc */
48 #include "dhcpagent_ipc.h"
49 #include "dhcpagent_util.h"
52 * the protocol used here is a simple request/reply scheme: a client
53 * sends a dhcp_ipc_request_t message to the agent, and the agent
54 * sends a dhcp_ipc_reply_t back to the client. since the requests
55 * and replies can be variable-length, they are prefixed on "the wire"
56 * by a 32-bit number that tells the other end how many bytes to
59 * the format of a request consists of a single dhcp_ipc_request_t;
60 * note that the length of this dhcp_ipc_request_t is variable (using
61 * the standard c array-of-size-1 trick). the type of the payload is
62 * given by `data_type', which is guaranteed to be `data_length' bytes
63 * long starting at `buffer'. note that `buffer' is guaranteed to be
64 * 32-bit aligned but it is poor taste to rely on this.
66 * the format of a reply is much the same: a single dhcp_ipc_reply_t;
67 * note again that the length of the dhcp_ipc_reply_t is variable.
68 * the type of the payload is given by `data_type', which is
69 * guaranteed to be `data_length' bytes long starting at `buffer'.
70 * once again, note that `buffer' is guaranteed to be 32-bit aligned
71 * but it is poor taste to rely on this.
73 * requests and replies can be paired up by comparing `ipc_id' fields.
78 static int dhcp_ipc_timed_read(int, void *, unsigned int, int *);
79 static int getinfo_ifnames(const char *, dhcp_optnum_t
*, DHCP_OPT
**);
80 static char *get_ifnames(int, int);
82 /* must be kept in sync with enum in dhcpagent_ipc.h */
83 static const char *ipc_typestr
[] = {
84 "drop", "extend", "ping", "release", "start", "status",
89 * dhcp_ipc_alloc_request(): allocates a dhcp_ipc_request_t of the given type
90 * and interface, with a timeout of 0.
92 * input: dhcp_ipc_type_t: the type of ipc request to allocate
93 * const char *: the interface to associate the request with
94 * const void *: the payload to send with the message (NULL if none)
95 * uint32_t: the payload size (0 if none)
96 * dhcp_data_type_t: the description of the type of payload
97 * output: dhcp_ipc_request_t *: the request on success, NULL on failure
101 dhcp_ipc_alloc_request(dhcp_ipc_type_t type
, const char *ifname
,
102 const void *buffer
, uint32_t buffer_size
, dhcp_data_type_t data_type
)
104 dhcp_ipc_request_t
*request
= calloc(1, DHCP_IPC_REQUEST_SIZE
+
110 request
->message_type
= type
;
111 request
->data_length
= buffer_size
;
112 request
->data_type
= data_type
;
115 (void) strlcpy(request
->ifname
, ifname
, LIFNAMSIZ
);
118 (void) memcpy(request
->buffer
, buffer
, buffer_size
);
124 * dhcp_ipc_alloc_reply(): allocates a dhcp_ipc_reply_t
126 * input: dhcp_ipc_request_t *: the request the reply is for
127 * int: the return code (0 for success, DHCP_IPC_E_* otherwise)
128 * const void *: the payload to send with the message (NULL if none)
129 * uint32_t: the payload size (0 if none)
130 * dhcp_data_type_t: the description of the type of payload
131 * output: dhcp_ipc_reply_t *: the reply on success, NULL on failure
135 dhcp_ipc_alloc_reply(dhcp_ipc_request_t
*request
, int return_code
,
136 const void *buffer
, uint32_t buffer_size
, dhcp_data_type_t data_type
)
138 dhcp_ipc_reply_t
*reply
= calloc(1, DHCP_IPC_REPLY_SIZE
+ buffer_size
);
143 reply
->message_type
= request
->message_type
;
144 reply
->ipc_id
= request
->ipc_id
;
145 reply
->return_code
= return_code
;
146 reply
->data_length
= buffer_size
;
147 reply
->data_type
= data_type
;
150 (void) memcpy(reply
->buffer
, buffer
, buffer_size
);
156 * dhcp_ipc_get_data(): gets the data and data type from a dhcp_ipc_reply_t
158 * input: dhcp_ipc_reply_t *: the reply to get data from
159 * size_t *: the size of the resulting data
160 * dhcp_data_type_t *: the type of the message (returned)
161 * output: void *: a pointer to the data, if there is any.
165 dhcp_ipc_get_data(dhcp_ipc_reply_t
*reply
, size_t *size
, dhcp_data_type_t
*type
)
167 if (reply
== NULL
|| reply
->data_length
== 0) {
173 *type
= reply
->data_type
;
175 *size
= reply
->data_length
;
176 return (reply
->buffer
);
180 * dhcp_ipc_recv_msg(): gets a message using the agent's ipc protocol
182 * input: int: the file descriptor to get the message from
183 * void **: the address of a pointer to store the message
184 * (dynamically allocated)
185 * uint32_t: the minimum length of the packet
186 * int: the # of milliseconds to wait for the message (-1 is forever)
187 * output: int: DHCP_IPC_SUCCESS on success, DHCP_IPC_E_* otherwise
191 dhcp_ipc_recv_msg(int fd
, void **msg
, uint32_t base_length
, int msec
)
194 dhcp_ipc_reply_t
*ipc_msg
;
197 retval
= dhcp_ipc_timed_read(fd
, &length
, sizeof (uint32_t), &msec
);
198 if (retval
!= DHCP_IPC_SUCCESS
)
202 return (DHCP_IPC_E_PROTO
);
204 *msg
= malloc(length
);
206 return (DHCP_IPC_E_MEMORY
);
208 retval
= dhcp_ipc_timed_read(fd
, *msg
, length
, &msec
);
209 if (retval
!= DHCP_IPC_SUCCESS
) {
214 if (length
< base_length
) {
216 return (DHCP_IPC_E_PROTO
);
220 * the data_length field is in the same place in either ipc message.
223 ipc_msg
= (dhcp_ipc_reply_t
*)(*msg
);
224 if (ipc_msg
->data_length
+ base_length
!= length
) {
226 return (DHCP_IPC_E_PROTO
);
229 return (DHCP_IPC_SUCCESS
);
233 * dhcp_ipc_recv_request(): gets a request using the agent's ipc protocol
235 * input: int: the file descriptor to get the message from
236 * dhcp_ipc_request_t **: address of a pointer to store the request
237 * (dynamically allocated)
238 * int: the # of milliseconds to wait for the message (-1 is forever)
239 * output: int: 0 on success, DHCP_IPC_E_* otherwise
243 dhcp_ipc_recv_request(int fd
, dhcp_ipc_request_t
**request
, int msec
)
247 retval
= dhcp_ipc_recv_msg(fd
, (void **)request
, DHCP_IPC_REQUEST_SIZE
,
250 /* guarantee that ifname will be NUL-terminated */
252 (*request
)->ifname
[LIFNAMSIZ
- 1] = '\0';
258 * dhcp_ipc_recv_reply(): gets a reply using the agent's ipc protocol
260 * input: int: the file descriptor to get the message from
261 * dhcp_ipc_reply_t **: address of a pointer to store the reply
262 * (dynamically allocated)
263 * int32_t: timeout (in seconds), or DHCP_IPC_WAIT_FOREVER,
264 * or DHCP_IPC_WAIT_DEFAULT
265 * output: int: 0 on success, DHCP_IPC_E_* otherwise
269 dhcp_ipc_recv_reply(int fd
, dhcp_ipc_reply_t
**reply
, int32_t timeout
)
272 * If the caller doesn't want to wait forever, and the amount of time
273 * it wants to wait is expressible as an integer number of milliseconds
274 * (as needed by the msg function), then we wait that amount of time
275 * plus an extra two seconds for the daemon to do its work. The extra
276 * two seconds is arbitrary; it should allow plenty of time for the
277 * daemon to respond within the existing timeout, as specified in the
278 * original request, so the only time we give up is when the daemon is
279 * stopped or otherwise malfunctioning.
281 * Note that the wait limit (milliseconds in an 'int') is over 24 days,
282 * so it's unlikely that any request will actually be that long, and
283 * it's unlikely that anyone will care if we wait forever on a request
284 * for a 30 day timer. The point is to protect against daemon
285 * malfunction in the usual cases, not to provide an absolute command
288 if (timeout
== DHCP_IPC_WAIT_DEFAULT
)
289 timeout
= DHCP_IPC_DEFAULT_WAIT
;
290 if (timeout
!= DHCP_IPC_WAIT_FOREVER
&& timeout
< INT_MAX
/ 1000 - 2)
291 timeout
= (timeout
+ 2) * 1000;
294 return (dhcp_ipc_recv_msg(fd
, (void **)reply
, DHCP_IPC_REPLY_SIZE
,
299 * dhcp_ipc_send_msg(): transmits a message using the agent's ipc protocol
301 * input: int: the file descriptor to transmit on
302 * void *: the message to send
303 * uint32_t: the message length
304 * output: int: 0 on success, DHCP_IPC_E_* otherwise
308 dhcp_ipc_send_msg(int fd
, void *msg
, uint32_t message_length
)
310 struct iovec iovec
[2];
312 iovec
[0].iov_base
= (caddr_t
)&message_length
;
313 iovec
[0].iov_len
= sizeof (uint32_t);
314 iovec
[1].iov_base
= msg
;
315 iovec
[1].iov_len
= message_length
;
317 if (writev(fd
, iovec
, sizeof (iovec
) / sizeof (*iovec
)) == -1)
318 return (DHCP_IPC_E_WRITEV
);
324 * dhcp_ipc_send_reply(): transmits a reply using the agent's ipc protocol
326 * input: int: the file descriptor to transmit on
327 * dhcp_ipc_reply_t *: the reply to send
328 * output: int: 0 on success, DHCP_IPC_E_* otherwise
332 dhcp_ipc_send_reply(int fd
, dhcp_ipc_reply_t
*reply
)
334 return (dhcp_ipc_send_msg(fd
, reply
, DHCP_IPC_REPLY_SIZE
+
335 reply
->data_length
));
339 * dhcp_ipc_send_request(): transmits a request using the agent's ipc protocol
341 * input: int: the file descriptor to transmit on
342 * dhcp_ipc_request_t *: the request to send
343 * output: int: 0 on success, DHCP_IPC_E_* otherwise
347 dhcp_ipc_send_request(int fd
, dhcp_ipc_request_t
*request
)
350 * for now, ipc_ids aren't really used, but they're intended
351 * to make it easy to send several requests and then collect
352 * all of the replies (and pair them with the requests).
355 request
->ipc_id
= gethrtime();
357 return (dhcp_ipc_send_msg(fd
, request
, DHCP_IPC_REQUEST_SIZE
+
358 request
->data_length
));
362 * dhcp_ipc_make_request(): sends the provided request to the agent and reaps
365 * input: dhcp_ipc_request_t *: the request to make
366 * dhcp_ipc_reply_t **: the reply (dynamically allocated)
367 * int32_t: timeout (in seconds), or DHCP_IPC_WAIT_FOREVER,
368 * or DHCP_IPC_WAIT_DEFAULT
369 * output: int: 0 on success, DHCP_IPC_E_* otherwise
373 dhcp_ipc_make_request(dhcp_ipc_request_t
*request
, dhcp_ipc_reply_t
**reply
,
377 struct sockaddr_in sinv
;
379 fd
= socket(AF_INET
, SOCK_STREAM
, 0);
381 return (DHCP_IPC_E_SOCKET
);
384 * Bind a privileged port if we have sufficient privilege to do so.
385 * Continue as non-privileged otherwise.
388 (void) setsockopt(fd
, IPPROTO_TCP
, TCP_ANONPRIVBIND
, &on
, sizeof (on
));
390 (void) memset(&sinv
, 0, sizeof (sinv
));
391 sinv
.sin_family
= AF_INET
;
392 if (bind(fd
, (struct sockaddr
*)&sinv
, sizeof (sinv
)) == -1) {
393 (void) dhcp_ipc_close(fd
);
394 return (DHCP_IPC_E_BIND
);
397 sinv
.sin_port
= htons(IPPORT_DHCPAGENT
);
398 sinv
.sin_addr
.s_addr
= htonl(INADDR_LOOPBACK
);
399 retval
= connect(fd
, (struct sockaddr
*)&sinv
, sizeof (sinv
));
401 (void) dhcp_ipc_close(fd
);
402 return (DHCP_IPC_E_CONNECT
);
405 request
->timeout
= timeout
;
407 retval
= dhcp_ipc_send_request(fd
, request
);
409 retval
= dhcp_ipc_recv_reply(fd
, reply
, timeout
);
411 (void) dhcp_ipc_close(fd
);
417 * dhcp_ipc_init(): initializes the ipc channel for use by the agent
419 * input: int *: the file descriptor to accept on (returned)
420 * output: int: 0 on success, DHCP_IPC_E_* otherwise
424 dhcp_ipc_init(int *listen_fd
)
426 struct sockaddr_in sin
;
429 (void) memset(&sin
, 0, sizeof (struct sockaddr_in
));
431 sin
.sin_family
= AF_INET
;
432 sin
.sin_port
= htons(IPPORT_DHCPAGENT
);
433 sin
.sin_addr
.s_addr
= htonl(INADDR_LOOPBACK
);
435 *listen_fd
= socket(AF_INET
, SOCK_STREAM
, 0);
436 if (*listen_fd
== -1)
437 return (DHCP_IPC_E_SOCKET
);
440 * we use SO_REUSEADDR here since in the case where there
441 * really is another daemon running that is using the agent's
442 * port, bind(3N) will fail. so we can't lose.
445 (void) setsockopt(*listen_fd
, SOL_SOCKET
, SO_REUSEADDR
, &on
,
448 if (bind(*listen_fd
, (struct sockaddr
*)&sin
, sizeof (sin
)) == -1) {
449 (void) close(*listen_fd
);
450 return (DHCP_IPC_E_BIND
);
453 if (listen(*listen_fd
, DHCP_IPC_LISTEN_BACKLOG
) == -1) {
454 (void) close(*listen_fd
);
455 return (DHCP_IPC_E_LISTEN
);
462 * dhcp_ipc_accept(): accepts an incoming connection for the agent
464 * input: int: the file descriptor to accept on
465 * int *: the accepted file descriptor (returned)
466 * int *: nonzero if the client is privileged (returned)
467 * output: int: 0 on success, DHCP_IPC_E_* otherwise
468 * note: sets the socket into nonblocking mode
472 dhcp_ipc_accept(int listen_fd
, int *fd
, int *is_priv
)
474 struct sockaddr_in sin_peer
;
475 socklen_t sin_len
= sizeof (sin_peer
);
479 * if we were extremely concerned with portability, we would
480 * set the socket into nonblocking mode before doing the
481 * accept(3N), since on BSD-based networking stacks, there is
482 * a potential race that can occur if the socket which
483 * connected to us performs a TCP RST before we accept, since
484 * BSD handles this case entirely in the kernel and as a
485 * result even though select said we will not block, we can
486 * end up blocking since there is no longer a connection to
487 * accept. on SVR4-based systems, this should be okay,
488 * and we will get EPROTO back, even though POSIX.1g says
489 * we should get ECONNABORTED.
492 *fd
= accept(listen_fd
, (struct sockaddr
*)&sin_peer
, &sin_len
);
494 return (DHCP_IPC_E_ACCEPT
);
496 /* get credentials */
497 *is_priv
= ntohs(sin_peer
.sin_port
) < IPPORT_RESERVED
;
500 * kick the socket into non-blocking mode so that later
501 * operations on the socket don't block and hold up the whole
502 * application. with the event demuxing approach, this may
503 * seem unnecessary, but in order to get partial reads/writes
504 * and to handle our internal protocol for passing data
505 * between the agent and its consumers, this is needed.
508 if ((sockflags
= fcntl(*fd
, F_GETFL
, 0)) == -1) {
510 return (DHCP_IPC_E_FCNTL
);
513 if (fcntl(*fd
, F_SETFL
, sockflags
| O_NONBLOCK
) == -1) {
515 return (DHCP_IPC_E_FCNTL
);
522 * dhcp_ipc_close(): closes an ipc descriptor
524 * input: int: the file descriptor to close
525 * output: int: 0 on success, DHCP_IPC_E_* otherwise
529 dhcp_ipc_close(int fd
)
531 return ((close(fd
) == -1) ? DHCP_IPC_E_CLOSE
: 0);
535 * dhcp_ipc_strerror(): maps an ipc error code into a human-readable string
537 * input: int: the ipc error code to map
538 * output: const char *: the corresponding human-readable string
542 dhcp_ipc_strerror(int error
)
544 /* note: this must be kept in sync with DHCP_IPC_E_* definitions */
545 const char *syscalls
[] = {
546 "<unknown>", "socket", "fcntl", "read", "accept", "close",
547 "bind", "listen", "malloc", "connect", "writev", "poll"
550 const char *error_string
;
551 static char buffer
[BUFMAX
];
556 * none of these errors actually go over the wire.
557 * hence, we assume that errno is still fresh.
560 case DHCP_IPC_E_SOCKET
: /* FALLTHRU */
561 case DHCP_IPC_E_FCNTL
: /* FALLTHRU */
562 case DHCP_IPC_E_READ
: /* FALLTHRU */
563 case DHCP_IPC_E_ACCEPT
: /* FALLTHRU */
564 case DHCP_IPC_E_CLOSE
: /* FALLTHRU */
565 case DHCP_IPC_E_BIND
: /* FALLTHRU */
566 case DHCP_IPC_E_LISTEN
: /* FALLTHRU */
567 case DHCP_IPC_E_CONNECT
: /* FALLTHRU */
568 case DHCP_IPC_E_WRITEV
: /* FALLTHRU */
569 case DHCP_IPC_E_POLL
:
571 error_string
= strerror(errno
);
572 if (error_string
== NULL
)
573 error_string
= "unknown error";
575 (void) snprintf(buffer
, sizeof (buffer
), "%s: %s",
576 syscalls
[error
], error_string
);
578 error_string
= buffer
;
581 case DHCP_IPC_E_MEMORY
:
582 error_string
= "out of memory";
585 case DHCP_IPC_E_TIMEOUT
:
586 error_string
= "wait timed out, operation still pending...";
589 case DHCP_IPC_E_INVIF
:
590 error_string
= "interface does not exist or cannot be managed "
595 error_string
= "internal error (might work later)";
598 case DHCP_IPC_E_PERM
:
599 error_string
= "permission denied";
602 case DHCP_IPC_E_OUTSTATE
:
603 error_string
= "interface not in appropriate state for command";
606 case DHCP_IPC_E_PEND
:
607 error_string
= "interface currently has a pending command "
611 case DHCP_IPC_E_BOOTP
:
612 error_string
= "interface is administered with BOOTP, not DHCP";
615 case DHCP_IPC_E_CMD_UNKNOWN
:
616 error_string
= "unknown command";
619 case DHCP_IPC_E_UNKIF
:
620 error_string
= "interface is not under DHCP control";
623 case DHCP_IPC_E_PROTO
:
624 error_string
= "ipc protocol violation";
627 case DHCP_IPC_E_FAILEDIF
:
628 error_string
= "interface is in a FAILED state and must be "
629 "manually restarted";
632 case DHCP_IPC_E_NOPRIMARY
:
633 error_string
= "primary interface requested but no primary "
637 case DHCP_IPC_E_NOIPIF
:
638 error_string
= "interface currently has no IP address";
641 case DHCP_IPC_E_DOWNIF
:
642 error_string
= "interface is currently down";
645 case DHCP_IPC_E_NOVALUE
:
646 error_string
= "no value was found for this option";
649 case DHCP_IPC_E_RUNNING
:
650 error_string
= "DHCP is already running";
653 case DHCP_IPC_E_SRVFAILED
:
654 error_string
= "DHCP server refused request";
658 error_string
= "ipc connection closed";
662 error_string
= "unknown error";
667 * TODO: internationalize this error string
670 return (error_string
);
674 * dhcp_string_to_request(): maps a string into a request code
676 * input: const char *: the string to map
677 * output: dhcp_ipc_type_t: the request code, or -1 if unknown
681 dhcp_string_to_request(const char *request
)
685 for (i
= 0; i
< DHCP_NIPC
; i
++)
686 if (strcmp(ipc_typestr
[i
], request
) == 0)
687 return ((dhcp_ipc_type_t
)i
);
689 return ((dhcp_ipc_type_t
)-1);
693 * dhcp_ipc_type_to_string(): maps an ipc command code into a human-readable
696 * input: int: the ipc command code to map
697 * output: const char *: the corresponding human-readable string
701 dhcp_ipc_type_to_string(dhcp_ipc_type_t type
)
703 if (type
< 0 || type
>= DHCP_NIPC
)
706 return (ipc_typestr
[(int)type
]);
710 * getinfo_ifnames(): checks the value of a specified option on a list of
712 * input: const char *: a list of interface names to query (in order) for
713 * the option; "" queries the primary interface
714 * dhcp_optnum_t *: a description of the desired option
715 * DHCP_OPT **: filled in with the (dynamically allocated) value of
716 * the option upon success.
717 * output: int: DHCP_IPC_E_* on error, 0 on success or if no value was
718 * found but no error occurred either (*result will be NULL)
722 getinfo_ifnames(const char *ifn
, dhcp_optnum_t
*optnum
, DHCP_OPT
**result
)
724 dhcp_ipc_request_t
*request
;
725 dhcp_ipc_reply_t
*reply
;
726 char *ifnames
, *ifnames_head
;
732 ifnames_head
= ifnames
= strdup(ifn
);
734 return (DHCP_IPC_E_MEMORY
);
736 request
= dhcp_ipc_alloc_request(DHCP_GET_TAG
, "", optnum
,
737 sizeof (dhcp_optnum_t
), DHCP_TYPE_OPTNUM
);
739 if (request
== NULL
) {
741 return (DHCP_IPC_E_MEMORY
);
744 ifnames
= strtok(ifnames
, " ");
748 for (; ifnames
!= NULL
; ifnames
= strtok(NULL
, " ")) {
750 (void) strlcpy(request
->ifname
, ifnames
, LIFNAMSIZ
);
751 retval
= dhcp_ipc_make_request(request
, &reply
, 0);
755 if (reply
->return_code
== 0) {
756 opt
= dhcp_ipc_get_data(reply
, &opt_size
, NULL
);
757 if (opt_size
> 2 && (opt
->len
== opt_size
- 2)) {
758 *result
= malloc(opt_size
);
760 retval
= DHCP_IPC_E_MEMORY
;
762 (void) memcpy(*result
, opt
, opt_size
);
770 if (ifnames
[0] == '\0')
781 * get_ifnames(): returns a space-separated list of interface names that
782 * match the specified flags
784 * input: int: flags which must be on in each interface returned
785 * int: flags which must be off in each interface returned
786 * output: char *: a dynamically-allocated list of interface names, or
791 get_ifnames(int flags_on
, int flags_off
)
794 int n_ifs
, i
, sock_fd
;
798 sock_fd
= socket(AF_INET
, SOCK_DGRAM
, 0);
802 if ((ioctl(sock_fd
, SIOCGIFNUM
, &n_ifs
) == -1) || (n_ifs
<= 0)) {
803 (void) close(sock_fd
);
807 ifnames
= calloc(1, n_ifs
* (LIFNAMSIZ
+ 1));
808 ifc
.ifc_len
= n_ifs
* sizeof (struct ifreq
);
809 ifc
.ifc_req
= calloc(n_ifs
, sizeof (struct ifreq
));
810 if (ifc
.ifc_req
!= NULL
&& ifnames
!= NULL
) {
812 if (ioctl(sock_fd
, SIOCGIFCONF
, &ifc
) == -1) {
813 (void) close(sock_fd
);
819 for (i
= 0; i
< n_ifs
; i
++) {
821 if (ioctl(sock_fd
, SIOCGIFFLAGS
, &ifc
.ifc_req
[i
]) == 0)
822 if ((ifc
.ifc_req
[i
].ifr_flags
&
823 (flags_on
| flags_off
)) != flags_on
)
826 (void) strcat(ifnames
, ifc
.ifc_req
[i
].ifr_name
);
827 (void) strcat(ifnames
, " ");
830 if (strlen(ifnames
) > 1)
831 ifnames
[strlen(ifnames
) - 1] = '\0';
834 (void) close(sock_fd
);
840 * dhcp_ipc_getinfo(): attempts to retrieve a value for the specified DHCP
841 * option; tries primary interface, then all DHCP-owned
842 * interfaces, then INFORMs on the remaining interfaces
843 * (these interfaces are dropped prior to returning).
844 * input: dhcp_optnum_t *: a description of the desired option
845 * DHCP_OPT **: filled in with the (dynamically allocated) value of
846 * the option upon success.
847 * int32_t: timeout (in seconds), or DHCP_IPC_WAIT_FOREVER,
848 * or DHCP_IPC_WAIT_DEFAULT.
849 * output: int: DHCP_IPC_E_* on error, 0 upon success.
853 dhcp_ipc_getinfo(dhcp_optnum_t
*optnum
, DHCP_OPT
**result
, int32_t timeout
)
855 dhcp_ipc_request_t
*request
;
856 dhcp_ipc_reply_t
*reply
;
857 char *ifnames
, *ifnames_copy
, *ifnames_head
;
859 time_t start_time
= time(NULL
);
861 if (timeout
== DHCP_IPC_WAIT_DEFAULT
)
862 timeout
= DHCP_IPC_DEFAULT_WAIT
;
865 * wait at most 5 seconds for the agent to start.
868 if (dhcp_start_agent((timeout
> 5 || timeout
< 0) ? 5 : timeout
) == -1)
869 return (DHCP_IPC_E_INT
);
872 * check the primary interface for the option value first.
875 retval
= getinfo_ifnames("", optnum
, result
);
876 if ((retval
!= 0) || (retval
== 0 && *result
!= NULL
))
880 * no luck. get a list of the interfaces under DHCP control
881 * and perform a GET_TAG on each one.
884 ifnames
= get_ifnames(IFF_DHCPRUNNING
, 0);
885 if (ifnames
!= NULL
&& strlen(ifnames
) != 0) {
886 retval
= getinfo_ifnames(ifnames
, optnum
, result
);
887 if ((retval
!= 0) || (retval
== 0 && *result
!= NULL
)) {
895 * still no luck. retrieve a list of all interfaces on the
896 * system that could use DHCP but aren't. send INFORMs out on
897 * each one. after that, sit in a loop for the next `timeout'
898 * seconds, trying every second to see if a response for the
899 * option we want has come in on one of the interfaces.
902 ifnames
= get_ifnames(IFF_UP
|IFF_RUNNING
, IFF_LOOPBACK
|IFF_DHCPRUNNING
);
903 if (ifnames
== NULL
|| strlen(ifnames
) == 0) {
905 return (DHCP_IPC_E_NOVALUE
);
908 ifnames_head
= ifnames_copy
= strdup(ifnames
);
909 if (ifnames_copy
== NULL
) {
911 return (DHCP_IPC_E_MEMORY
);
914 request
= dhcp_ipc_alloc_request(DHCP_INFORM
, "", NULL
, 0,
916 if (request
== NULL
) {
919 return (DHCP_IPC_E_MEMORY
);
922 ifnames_copy
= strtok(ifnames_copy
, " ");
923 for (; ifnames_copy
!= NULL
; ifnames_copy
= strtok(NULL
, " ")) {
924 (void) strlcpy(request
->ifname
, ifnames_copy
, LIFNAMSIZ
);
925 if (dhcp_ipc_make_request(request
, &reply
, 0) == 0)
930 if ((timeout
!= DHCP_IPC_WAIT_FOREVER
) &&
931 (time(NULL
) - start_time
> timeout
)) {
932 retval
= DHCP_IPC_E_TIMEOUT
;
936 retval
= getinfo_ifnames(ifnames
, optnum
, result
);
937 if (retval
!= 0 || (retval
== 0 && *result
!= NULL
))
944 * drop any interfaces that weren't under DHCP control before
945 * we got here; this keeps this function more of a black box
946 * and the behavior more consistent from call to call.
949 request
->message_type
= DHCP_DROP
;
951 ifnames_copy
= strcpy(ifnames_head
, ifnames
);
952 ifnames_copy
= strtok(ifnames_copy
, " ");
953 for (; ifnames_copy
!= NULL
; ifnames_copy
= strtok(NULL
, " ")) {
954 (void) strlcpy(request
->ifname
, ifnames_copy
, LIFNAMSIZ
);
955 if (dhcp_ipc_make_request(request
, &reply
, 0) == 0)
966 * dhcp_ipc_timed_read(): reads from a descriptor using a maximum timeout
968 * input: int: the file descriptor to read from
969 * void *: the buffer to read into
970 * unsigned int: the total length of data to read
971 * int *: the number of milliseconds to wait; the number of
972 * milliseconds left are returned (-1 is "forever")
973 * output: int: DHCP_IPC_SUCCESS on success, DHCP_IPC_E_* otherwise
977 dhcp_ipc_timed_read(int fd
, void *buffer
, unsigned int length
, int *msec
)
979 unsigned int n_total
= 0;
981 struct pollfd pollfd
;
986 pollfd
.events
= POLLIN
;
988 while (n_total
< length
) {
992 retv
= poll(&pollfd
, 1, *msec
);
994 /* This can happen only if *msec is not -1 */
996 return (DHCP_IPC_E_TIMEOUT
);
1001 *msec
-= NSEC2MSEC(end
- start
);
1008 return (DHCP_IPC_E_POLL
);
1009 else if (*msec
== 0)
1010 return (DHCP_IPC_E_TIMEOUT
);
1014 if (!(pollfd
.revents
& POLLIN
)) {
1016 return (DHCP_IPC_E_POLL
);
1019 n_read
= read(fd
, (caddr_t
)buffer
+ n_total
, length
- n_total
);
1023 return (DHCP_IPC_E_READ
);
1024 else if (*msec
== 0)
1025 return (DHCP_IPC_E_TIMEOUT
);
1030 return (n_total
== 0 ? DHCP_IPC_E_EOF
:
1036 if (*msec
== 0 && n_total
< length
)
1037 return (DHCP_IPC_E_TIMEOUT
);
1040 return (DHCP_IPC_SUCCESS
);