dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / usr / src / lib / libdtrace / common / dt_aggregate.c
bloba0eebe5a75695d9853c5ca9d705f62878cc5ca3b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
32 #include <stdlib.h>
33 #include <strings.h>
34 #include <errno.h>
35 #include <unistd.h>
36 #include <dt_impl.h>
37 #include <assert.h>
38 #include <alloca.h>
39 #include <limits.h>
41 #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */
44 * Because qsort(3C) does not allow an argument to be passed to a comparison
45 * function, the variables that affect comparison must regrettably be global;
46 * they are protected by a global static lock, dt_qsort_lock.
48 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
50 static int dt_revsort;
51 static int dt_keysort;
52 static int dt_keypos;
54 #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1)
55 #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1)
57 static void
58 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
60 int i;
62 for (i = 0; i < size / sizeof (int64_t); i++)
63 existing[i] = existing[i] + new[i];
66 static int
67 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
69 int64_t lvar = *lhs;
70 int64_t rvar = *rhs;
72 if (lvar < rvar)
73 return (DT_LESSTHAN);
75 if (lvar > rvar)
76 return (DT_GREATERTHAN);
78 return (0);
81 /*ARGSUSED*/
82 static void
83 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
85 if (*new < *existing)
86 *existing = *new;
89 /*ARGSUSED*/
90 static void
91 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
93 if (*new > *existing)
94 *existing = *new;
97 static int
98 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
100 int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
101 int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
103 if (lavg < ravg)
104 return (DT_LESSTHAN);
106 if (lavg > ravg)
107 return (DT_GREATERTHAN);
109 return (0);
112 static int
113 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
115 uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
116 uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
118 if (lsd < rsd)
119 return (DT_LESSTHAN);
121 if (lsd > rsd)
122 return (DT_GREATERTHAN);
124 return (0);
127 /*ARGSUSED*/
128 static void
129 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
131 int64_t arg = *existing++;
132 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
133 int i;
135 for (i = 0; i <= levels + 1; i++)
136 existing[i] = existing[i] + new[i + 1];
139 static long double
140 dt_aggregate_lquantizedsum(int64_t *lquanta)
142 int64_t arg = *lquanta++;
143 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
144 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
145 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
146 long double total = (long double)lquanta[0] * (long double)(base - 1);
148 for (i = 0; i < levels; base += step, i++)
149 total += (long double)lquanta[i + 1] * (long double)base;
151 return (total + (long double)lquanta[levels + 1] *
152 (long double)(base + 1));
155 static int64_t
156 dt_aggregate_lquantizedzero(int64_t *lquanta)
158 int64_t arg = *lquanta++;
159 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
160 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
161 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
163 if (base - 1 == 0)
164 return (lquanta[0]);
166 for (i = 0; i < levels; base += step, i++) {
167 if (base != 0)
168 continue;
170 return (lquanta[i + 1]);
173 if (base + 1 == 0)
174 return (lquanta[levels + 1]);
176 return (0);
179 static int
180 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
182 long double lsum = dt_aggregate_lquantizedsum(lhs);
183 long double rsum = dt_aggregate_lquantizedsum(rhs);
184 int64_t lzero, rzero;
186 if (lsum < rsum)
187 return (DT_LESSTHAN);
189 if (lsum > rsum)
190 return (DT_GREATERTHAN);
193 * If they're both equal, then we will compare based on the weights at
194 * zero. If the weights at zero are equal (or if zero is not within
195 * the range of the linear quantization), then this will be judged a
196 * tie and will be resolved based on the key comparison.
198 lzero = dt_aggregate_lquantizedzero(lhs);
199 rzero = dt_aggregate_lquantizedzero(rhs);
201 if (lzero < rzero)
202 return (DT_LESSTHAN);
204 if (lzero > rzero)
205 return (DT_GREATERTHAN);
207 return (0);
210 static void
211 dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
213 int i;
215 for (i = 1; i < size / sizeof (int64_t); i++)
216 existing[i] = existing[i] + new[i];
219 static long double
220 dt_aggregate_llquantizedsum(int64_t *llquanta)
222 int64_t arg = *llquanta++;
223 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
224 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
225 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
226 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
227 int bin = 0, order;
228 int64_t value = 1, next, step;
229 long double total;
231 assert(nsteps >= factor);
232 assert(nsteps % factor == 0);
234 for (order = 0; order < low; order++)
235 value *= factor;
237 total = (long double)llquanta[bin++] * (long double)(value - 1);
239 next = value * factor;
240 step = next > nsteps ? next / nsteps : 1;
242 while (order <= high) {
243 assert(value < next);
244 total += (long double)llquanta[bin++] * (long double)(value);
246 if ((value += step) != next)
247 continue;
249 next = value * factor;
250 step = next > nsteps ? next / nsteps : 1;
251 order++;
254 return (total + (long double)llquanta[bin] * (long double)value);
257 static int
258 dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
260 long double lsum = dt_aggregate_llquantizedsum(lhs);
261 long double rsum = dt_aggregate_llquantizedsum(rhs);
262 int64_t lzero, rzero;
264 if (lsum < rsum)
265 return (DT_LESSTHAN);
267 if (lsum > rsum)
268 return (DT_GREATERTHAN);
271 * If they're both equal, then we will compare based on the weights at
272 * zero. If the weights at zero are equal, then this will be judged a
273 * tie and will be resolved based on the key comparison.
275 lzero = lhs[1];
276 rzero = rhs[1];
278 if (lzero < rzero)
279 return (DT_LESSTHAN);
281 if (lzero > rzero)
282 return (DT_GREATERTHAN);
284 return (0);
287 static int
288 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
290 int nbuckets = DTRACE_QUANTIZE_NBUCKETS, i;
291 long double ltotal = 0, rtotal = 0;
292 int64_t lzero, rzero;
294 for (i = 0; i < nbuckets; i++) {
295 int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
297 if (bucketval == 0) {
298 lzero = lhs[i];
299 rzero = rhs[i];
302 ltotal += (long double)bucketval * (long double)lhs[i];
303 rtotal += (long double)bucketval * (long double)rhs[i];
306 if (ltotal < rtotal)
307 return (DT_LESSTHAN);
309 if (ltotal > rtotal)
310 return (DT_GREATERTHAN);
313 * If they're both equal, then we will compare based on the weights at
314 * zero. If the weights at zero are equal, then this will be judged a
315 * tie and will be resolved based on the key comparison.
317 if (lzero < rzero)
318 return (DT_LESSTHAN);
320 if (lzero > rzero)
321 return (DT_GREATERTHAN);
323 return (0);
326 static void
327 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
329 uint64_t pid = data[0];
330 uint64_t *pc = &data[1];
331 struct ps_prochandle *P;
332 GElf_Sym sym;
334 if (dtp->dt_vector != NULL)
335 return;
337 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
338 return;
340 dt_proc_lock(dtp, P);
342 if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
343 *pc = sym.st_value;
345 dt_proc_unlock(dtp, P);
346 dt_proc_release(dtp, P);
349 static void
350 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
352 uint64_t pid = data[0];
353 uint64_t *pc = &data[1];
354 struct ps_prochandle *P;
355 const prmap_t *map;
357 if (dtp->dt_vector != NULL)
358 return;
360 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
361 return;
363 dt_proc_lock(dtp, P);
365 if ((map = Paddr_to_map(P, *pc)) != NULL)
366 *pc = map->pr_vaddr;
368 dt_proc_unlock(dtp, P);
369 dt_proc_release(dtp, P);
372 static void
373 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
375 GElf_Sym sym;
376 uint64_t *pc = data;
378 if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
379 *pc = sym.st_value;
382 static void
383 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
385 uint64_t *pc = data;
386 dt_module_t *dmp;
388 if (dtp->dt_vector != NULL) {
390 * We don't have a way of just getting the module for a
391 * vectored open, and it doesn't seem to be worth defining
392 * one. This means that use of mod() won't get true
393 * aggregation in the postmortem case (some modules may
394 * appear more than once in aggregation output). It seems
395 * unlikely that anyone will ever notice or care...
397 return;
400 for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
401 dmp = dt_list_next(dmp)) {
402 if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
403 *pc = dmp->dm_text_va;
404 return;
409 static dtrace_aggvarid_t
410 dt_aggregate_aggvarid(dt_ahashent_t *ent)
412 dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
413 caddr_t data = ent->dtahe_data.dtada_data;
414 dtrace_recdesc_t *rec = agg->dtagd_rec;
417 * First, we'll check the variable ID in the aggdesc. If it's valid,
418 * we'll return it. If not, we'll use the compiler-generated ID
419 * present as the first record.
421 if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
422 return (agg->dtagd_varid);
424 agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
425 rec->dtrd_offset));
427 return (agg->dtagd_varid);
431 static int
432 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
434 dtrace_epid_t id;
435 uint64_t hashval;
436 size_t offs, roffs, size, ndx;
437 int i, j, rval;
438 caddr_t addr, data;
439 dtrace_recdesc_t *rec;
440 dt_aggregate_t *agp = &dtp->dt_aggregate;
441 dtrace_aggdesc_t *agg;
442 dt_ahash_t *hash = &agp->dtat_hash;
443 dt_ahashent_t *h;
444 dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
445 dtrace_aggdata_t *aggdata;
446 int flags = agp->dtat_flags;
448 buf->dtbd_cpu = cpu;
450 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
451 if (errno == ENOENT) {
453 * If that failed with ENOENT, it may be because the
454 * CPU was unconfigured. This is okay; we'll just
455 * do nothing but return success.
457 return (0);
460 return (dt_set_errno(dtp, errno));
463 if (buf->dtbd_drops != 0) {
464 if (dt_handle_cpudrop(dtp, cpu,
465 DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1)
466 return (-1);
469 if (buf->dtbd_size == 0)
470 return (0);
472 if (hash->dtah_hash == NULL) {
473 size_t size;
475 hash->dtah_size = DTRACE_AHASHSIZE;
476 size = hash->dtah_size * sizeof (dt_ahashent_t *);
478 if ((hash->dtah_hash = malloc(size)) == NULL)
479 return (dt_set_errno(dtp, EDT_NOMEM));
481 bzero(hash->dtah_hash, size);
484 for (offs = 0; offs < buf->dtbd_size; ) {
486 * We're guaranteed to have an ID.
488 id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
489 (uintptr_t)offs));
491 if (id == DTRACE_AGGIDNONE) {
493 * This is filler to assure proper alignment of the
494 * next record; we simply ignore it.
496 offs += sizeof (id);
497 continue;
500 if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
501 return (rval);
503 addr = buf->dtbd_data + offs;
504 size = agg->dtagd_size;
505 hashval = 0;
507 for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
508 rec = &agg->dtagd_rec[j];
509 roffs = rec->dtrd_offset;
511 switch (rec->dtrd_action) {
512 case DTRACEACT_USYM:
513 dt_aggregate_usym(dtp,
514 /* LINTED - alignment */
515 (uint64_t *)&addr[roffs]);
516 break;
518 case DTRACEACT_UMOD:
519 dt_aggregate_umod(dtp,
520 /* LINTED - alignment */
521 (uint64_t *)&addr[roffs]);
522 break;
524 case DTRACEACT_SYM:
525 /* LINTED - alignment */
526 dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
527 break;
529 case DTRACEACT_MOD:
530 /* LINTED - alignment */
531 dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
532 break;
534 default:
535 break;
538 for (i = 0; i < rec->dtrd_size; i++)
539 hashval += addr[roffs + i];
542 ndx = hashval % hash->dtah_size;
544 for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
545 if (h->dtahe_hashval != hashval)
546 continue;
548 if (h->dtahe_size != size)
549 continue;
551 aggdata = &h->dtahe_data;
552 data = aggdata->dtada_data;
554 for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
555 rec = &agg->dtagd_rec[j];
556 roffs = rec->dtrd_offset;
558 for (i = 0; i < rec->dtrd_size; i++)
559 if (addr[roffs + i] != data[roffs + i])
560 goto hashnext;
564 * We found it. Now we need to apply the aggregating
565 * action on the data here.
567 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
568 roffs = rec->dtrd_offset;
569 /* LINTED - alignment */
570 h->dtahe_aggregate((int64_t *)&data[roffs],
571 /* LINTED - alignment */
572 (int64_t *)&addr[roffs], rec->dtrd_size);
575 * If we're keeping per CPU data, apply the aggregating
576 * action there as well.
578 if (aggdata->dtada_percpu != NULL) {
579 data = aggdata->dtada_percpu[cpu];
581 /* LINTED - alignment */
582 h->dtahe_aggregate((int64_t *)data,
583 /* LINTED - alignment */
584 (int64_t *)&addr[roffs], rec->dtrd_size);
587 goto bufnext;
588 hashnext:
589 continue;
593 * If we're here, we couldn't find an entry for this record.
595 if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
596 return (dt_set_errno(dtp, EDT_NOMEM));
597 bzero(h, sizeof (dt_ahashent_t));
598 aggdata = &h->dtahe_data;
600 if ((aggdata->dtada_data = malloc(size)) == NULL) {
601 free(h);
602 return (dt_set_errno(dtp, EDT_NOMEM));
605 bcopy(addr, aggdata->dtada_data, size);
606 aggdata->dtada_size = size;
607 aggdata->dtada_desc = agg;
608 aggdata->dtada_handle = dtp;
609 (void) dt_epid_lookup(dtp, agg->dtagd_epid,
610 &aggdata->dtada_edesc, &aggdata->dtada_pdesc);
611 aggdata->dtada_normal = 1;
613 h->dtahe_hashval = hashval;
614 h->dtahe_size = size;
615 (void) dt_aggregate_aggvarid(h);
617 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
619 if (flags & DTRACE_A_PERCPU) {
620 int max_cpus = agp->dtat_maxcpu;
621 caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
623 if (percpu == NULL) {
624 free(aggdata->dtada_data);
625 free(h);
626 return (dt_set_errno(dtp, EDT_NOMEM));
629 for (j = 0; j < max_cpus; j++) {
630 percpu[j] = malloc(rec->dtrd_size);
632 if (percpu[j] == NULL) {
633 while (--j >= 0)
634 free(percpu[j]);
636 free(aggdata->dtada_data);
637 free(h);
638 return (dt_set_errno(dtp, EDT_NOMEM));
641 if (j == cpu) {
642 bcopy(&addr[rec->dtrd_offset],
643 percpu[j], rec->dtrd_size);
644 } else {
645 bzero(percpu[j], rec->dtrd_size);
649 aggdata->dtada_percpu = percpu;
652 switch (rec->dtrd_action) {
653 case DTRACEAGG_MIN:
654 h->dtahe_aggregate = dt_aggregate_min;
655 break;
657 case DTRACEAGG_MAX:
658 h->dtahe_aggregate = dt_aggregate_max;
659 break;
661 case DTRACEAGG_LQUANTIZE:
662 h->dtahe_aggregate = dt_aggregate_lquantize;
663 break;
665 case DTRACEAGG_LLQUANTIZE:
666 h->dtahe_aggregate = dt_aggregate_llquantize;
667 break;
669 case DTRACEAGG_COUNT:
670 case DTRACEAGG_SUM:
671 case DTRACEAGG_AVG:
672 case DTRACEAGG_STDDEV:
673 case DTRACEAGG_QUANTIZE:
674 h->dtahe_aggregate = dt_aggregate_count;
675 break;
677 default:
678 return (dt_set_errno(dtp, EDT_BADAGG));
681 if (hash->dtah_hash[ndx] != NULL)
682 hash->dtah_hash[ndx]->dtahe_prev = h;
684 h->dtahe_next = hash->dtah_hash[ndx];
685 hash->dtah_hash[ndx] = h;
687 if (hash->dtah_all != NULL)
688 hash->dtah_all->dtahe_prevall = h;
690 h->dtahe_nextall = hash->dtah_all;
691 hash->dtah_all = h;
692 bufnext:
693 offs += agg->dtagd_size;
696 return (0);
700 dtrace_aggregate_snap(dtrace_hdl_t *dtp)
702 int i, rval;
703 dt_aggregate_t *agp = &dtp->dt_aggregate;
704 hrtime_t now = gethrtime();
705 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
707 if (dtp->dt_lastagg != 0) {
708 if (now - dtp->dt_lastagg < interval)
709 return (0);
711 dtp->dt_lastagg += interval;
712 } else {
713 dtp->dt_lastagg = now;
716 if (!dtp->dt_active)
717 return (dt_set_errno(dtp, EINVAL));
719 if (agp->dtat_buf.dtbd_size == 0)
720 return (0);
722 for (i = 0; i < agp->dtat_ncpus; i++) {
723 if (rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))
724 return (rval);
727 return (0);
730 static int
731 dt_aggregate_hashcmp(const void *lhs, const void *rhs)
733 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
734 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
735 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
736 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
738 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
739 return (DT_LESSTHAN);
741 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
742 return (DT_GREATERTHAN);
744 return (0);
747 static int
748 dt_aggregate_varcmp(const void *lhs, const void *rhs)
750 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
751 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
752 dtrace_aggvarid_t lid, rid;
754 lid = dt_aggregate_aggvarid(lh);
755 rid = dt_aggregate_aggvarid(rh);
757 if (lid < rid)
758 return (DT_LESSTHAN);
760 if (lid > rid)
761 return (DT_GREATERTHAN);
763 return (0);
766 static int
767 dt_aggregate_keycmp(const void *lhs, const void *rhs)
769 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
770 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
771 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
772 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
773 dtrace_recdesc_t *lrec, *rrec;
774 char *ldata, *rdata;
775 int rval, i, j, keypos, nrecs;
777 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
778 return (rval);
780 nrecs = lagg->dtagd_nrecs - 1;
781 assert(nrecs == ragg->dtagd_nrecs - 1);
783 keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
785 for (i = 1; i < nrecs; i++) {
786 uint64_t lval, rval;
787 int ndx = i + keypos;
789 if (ndx >= nrecs)
790 ndx = ndx - nrecs + 1;
792 lrec = &lagg->dtagd_rec[ndx];
793 rrec = &ragg->dtagd_rec[ndx];
795 ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
796 rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
798 if (lrec->dtrd_size < rrec->dtrd_size)
799 return (DT_LESSTHAN);
801 if (lrec->dtrd_size > rrec->dtrd_size)
802 return (DT_GREATERTHAN);
804 switch (lrec->dtrd_size) {
805 case sizeof (uint64_t):
806 /* LINTED - alignment */
807 lval = *((uint64_t *)ldata);
808 /* LINTED - alignment */
809 rval = *((uint64_t *)rdata);
810 break;
812 case sizeof (uint32_t):
813 /* LINTED - alignment */
814 lval = *((uint32_t *)ldata);
815 /* LINTED - alignment */
816 rval = *((uint32_t *)rdata);
817 break;
819 case sizeof (uint16_t):
820 /* LINTED - alignment */
821 lval = *((uint16_t *)ldata);
822 /* LINTED - alignment */
823 rval = *((uint16_t *)rdata);
824 break;
826 case sizeof (uint8_t):
827 lval = *((uint8_t *)ldata);
828 rval = *((uint8_t *)rdata);
829 break;
831 default:
832 switch (lrec->dtrd_action) {
833 case DTRACEACT_UMOD:
834 case DTRACEACT_UADDR:
835 case DTRACEACT_USYM:
836 for (j = 0; j < 2; j++) {
837 /* LINTED - alignment */
838 lval = ((uint64_t *)ldata)[j];
839 /* LINTED - alignment */
840 rval = ((uint64_t *)rdata)[j];
842 if (lval < rval)
843 return (DT_LESSTHAN);
845 if (lval > rval)
846 return (DT_GREATERTHAN);
849 break;
851 default:
852 for (j = 0; j < lrec->dtrd_size; j++) {
853 lval = ((uint8_t *)ldata)[j];
854 rval = ((uint8_t *)rdata)[j];
856 if (lval < rval)
857 return (DT_LESSTHAN);
859 if (lval > rval)
860 return (DT_GREATERTHAN);
864 continue;
867 if (lval < rval)
868 return (DT_LESSTHAN);
870 if (lval > rval)
871 return (DT_GREATERTHAN);
874 return (0);
877 static int
878 dt_aggregate_valcmp(const void *lhs, const void *rhs)
880 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
881 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
882 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
883 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
884 caddr_t ldata = lh->dtahe_data.dtada_data;
885 caddr_t rdata = rh->dtahe_data.dtada_data;
886 dtrace_recdesc_t *lrec, *rrec;
887 int64_t *laddr, *raddr;
888 int rval;
890 assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs);
892 lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1];
893 rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1];
895 assert(lrec->dtrd_action == rrec->dtrd_action);
897 laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
898 raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
900 switch (lrec->dtrd_action) {
901 case DTRACEAGG_AVG:
902 rval = dt_aggregate_averagecmp(laddr, raddr);
903 break;
905 case DTRACEAGG_STDDEV:
906 rval = dt_aggregate_stddevcmp(laddr, raddr);
907 break;
909 case DTRACEAGG_QUANTIZE:
910 rval = dt_aggregate_quantizedcmp(laddr, raddr);
911 break;
913 case DTRACEAGG_LQUANTIZE:
914 rval = dt_aggregate_lquantizedcmp(laddr, raddr);
915 break;
917 case DTRACEAGG_LLQUANTIZE:
918 rval = dt_aggregate_llquantizedcmp(laddr, raddr);
919 break;
921 case DTRACEAGG_COUNT:
922 case DTRACEAGG_SUM:
923 case DTRACEAGG_MIN:
924 case DTRACEAGG_MAX:
925 rval = dt_aggregate_countcmp(laddr, raddr);
926 break;
928 default:
929 assert(0);
932 return (rval);
935 static int
936 dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
938 int rval;
940 if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
941 return (rval);
944 * If we're here, the values for the two aggregation elements are
945 * equal. We already know that the key layout is the same for the two
946 * elements; we must now compare the keys themselves as a tie-breaker.
948 return (dt_aggregate_keycmp(lhs, rhs));
951 static int
952 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
954 int rval;
956 if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
957 return (rval);
959 return (dt_aggregate_varcmp(lhs, rhs));
962 static int
963 dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
965 int rval;
967 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
968 return (rval);
970 return (dt_aggregate_keycmp(lhs, rhs));
973 static int
974 dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
976 int rval;
978 if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
979 return (rval);
981 return (dt_aggregate_varcmp(lhs, rhs));
984 static int
985 dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
987 int rval;
989 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
990 return (rval);
992 return (dt_aggregate_valkeycmp(lhs, rhs));
995 static int
996 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
998 return (dt_aggregate_keyvarcmp(rhs, lhs));
1001 static int
1002 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
1004 return (dt_aggregate_varkeycmp(rhs, lhs));
1007 static int
1008 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
1010 return (dt_aggregate_valvarcmp(rhs, lhs));
1013 static int
1014 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
1016 return (dt_aggregate_varvalcmp(rhs, lhs));
1019 static int
1020 dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
1022 dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
1023 dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
1024 int i, rval;
1026 if (dt_keysort) {
1028 * If we're sorting on keys, we need to scan until we find the
1029 * last entry -- that's the representative key. (The order of
1030 * the bundle is values followed by key to accommodate the
1031 * default behavior of sorting by value.) If the keys are
1032 * equal, we'll fall into the value comparison loop, below.
1034 for (i = 0; lh[i + 1] != NULL; i++)
1035 continue;
1037 assert(i != 0);
1038 assert(rh[i + 1] == NULL);
1040 if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
1041 return (rval);
1044 for (i = 0; ; i++) {
1045 if (lh[i + 1] == NULL) {
1047 * All of the values are equal; if we're sorting on
1048 * keys, then we're only here because the keys were
1049 * found to be equal and these records are therefore
1050 * equal. If we're not sorting on keys, we'll use the
1051 * key comparison from the representative key as the
1052 * tie-breaker.
1054 if (dt_keysort)
1055 return (0);
1057 assert(i != 0);
1058 assert(rh[i + 1] == NULL);
1059 return (dt_aggregate_keycmp(&lh[i], &rh[i]));
1060 } else {
1061 if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
1062 return (rval);
1068 dt_aggregate_go(dtrace_hdl_t *dtp)
1070 dt_aggregate_t *agp = &dtp->dt_aggregate;
1071 dtrace_optval_t size, cpu;
1072 dtrace_bufdesc_t *buf = &agp->dtat_buf;
1073 int rval, i;
1075 assert(agp->dtat_maxcpu == 0);
1076 assert(agp->dtat_ncpu == 0);
1077 assert(agp->dtat_cpus == NULL);
1079 agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1080 agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX);
1081 agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
1083 if (agp->dtat_cpus == NULL)
1084 return (dt_set_errno(dtp, EDT_NOMEM));
1087 * Use the aggregation buffer size as reloaded from the kernel.
1089 size = dtp->dt_options[DTRACEOPT_AGGSIZE];
1091 rval = dtrace_getopt(dtp, "aggsize", &size);
1092 assert(rval == 0);
1094 if (size == 0 || size == DTRACEOPT_UNSET)
1095 return (0);
1097 buf = &agp->dtat_buf;
1098 buf->dtbd_size = size;
1100 if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
1101 return (dt_set_errno(dtp, EDT_NOMEM));
1104 * Now query for the CPUs enabled.
1106 rval = dtrace_getopt(dtp, "cpu", &cpu);
1107 assert(rval == 0 && cpu != DTRACEOPT_UNSET);
1109 if (cpu != DTRACE_CPUALL) {
1110 assert(cpu < agp->dtat_ncpu);
1111 agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
1113 return (0);
1116 agp->dtat_ncpus = 0;
1117 for (i = 0; i < agp->dtat_maxcpu; i++) {
1118 if (dt_status(dtp, i) == -1)
1119 continue;
1121 agp->dtat_cpus[agp->dtat_ncpus++] = i;
1124 return (0);
1127 static int
1128 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
1130 dt_aggregate_t *agp = &dtp->dt_aggregate;
1131 dtrace_aggdata_t *data;
1132 dtrace_aggdesc_t *aggdesc;
1133 dtrace_recdesc_t *rec;
1134 int i;
1136 switch (rval) {
1137 case DTRACE_AGGWALK_NEXT:
1138 break;
1140 case DTRACE_AGGWALK_CLEAR: {
1141 uint32_t size, offs = 0;
1143 aggdesc = h->dtahe_data.dtada_desc;
1144 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1145 size = rec->dtrd_size;
1146 data = &h->dtahe_data;
1148 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE ||
1149 rec->dtrd_action == DTRACEAGG_LLQUANTIZE) {
1151 * For lquantize() and llquantize(), we want to be
1152 * sure to not zero the aggregation parameters; step
1153 * over them and adjust our size accordingly.
1155 offs = sizeof (uint64_t);
1156 size -= sizeof (uint64_t);
1159 bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
1161 if (data->dtada_percpu == NULL)
1162 break;
1164 for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
1165 bzero(data->dtada_percpu[i] + offs, size);
1166 break;
1169 case DTRACE_AGGWALK_ERROR:
1171 * We assume that errno is already set in this case.
1173 return (dt_set_errno(dtp, errno));
1175 case DTRACE_AGGWALK_ABORT:
1176 return (dt_set_errno(dtp, EDT_DIRABORT));
1178 case DTRACE_AGGWALK_DENORMALIZE:
1179 h->dtahe_data.dtada_normal = 1;
1180 return (0);
1182 case DTRACE_AGGWALK_NORMALIZE:
1183 if (h->dtahe_data.dtada_normal == 0) {
1184 h->dtahe_data.dtada_normal = 1;
1185 return (dt_set_errno(dtp, EDT_BADRVAL));
1188 return (0);
1190 case DTRACE_AGGWALK_REMOVE: {
1191 dtrace_aggdata_t *aggdata = &h->dtahe_data;
1192 int i, max_cpus = agp->dtat_maxcpu;
1195 * First, remove this hash entry from its hash chain.
1197 if (h->dtahe_prev != NULL) {
1198 h->dtahe_prev->dtahe_next = h->dtahe_next;
1199 } else {
1200 dt_ahash_t *hash = &agp->dtat_hash;
1201 size_t ndx = h->dtahe_hashval % hash->dtah_size;
1203 assert(hash->dtah_hash[ndx] == h);
1204 hash->dtah_hash[ndx] = h->dtahe_next;
1207 if (h->dtahe_next != NULL)
1208 h->dtahe_next->dtahe_prev = h->dtahe_prev;
1211 * Now remove it from the list of all hash entries.
1213 if (h->dtahe_prevall != NULL) {
1214 h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
1215 } else {
1216 dt_ahash_t *hash = &agp->dtat_hash;
1218 assert(hash->dtah_all == h);
1219 hash->dtah_all = h->dtahe_nextall;
1222 if (h->dtahe_nextall != NULL)
1223 h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
1226 * We're unlinked. We can safely destroy the data.
1228 if (aggdata->dtada_percpu != NULL) {
1229 for (i = 0; i < max_cpus; i++)
1230 free(aggdata->dtada_percpu[i]);
1231 free(aggdata->dtada_percpu);
1234 free(aggdata->dtada_data);
1235 free(h);
1237 return (0);
1240 default:
1241 return (dt_set_errno(dtp, EDT_BADRVAL));
1244 return (0);
1247 void
1248 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
1249 int (*compar)(const void *, const void *))
1251 int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
1252 dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
1254 dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
1255 dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
1257 if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
1258 dt_keypos = (int)keyposopt;
1259 } else {
1260 dt_keypos = 0;
1263 if (compar == NULL) {
1264 if (!dt_keysort) {
1265 compar = dt_aggregate_varvalcmp;
1266 } else {
1267 compar = dt_aggregate_varkeycmp;
1271 qsort(base, nel, width, compar);
1273 dt_revsort = rev;
1274 dt_keysort = key;
1275 dt_keypos = keypos;
1279 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
1281 dt_ahashent_t *h, *next;
1282 dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
1284 for (h = hash->dtah_all; h != NULL; h = next) {
1286 * dt_aggwalk_rval() can potentially remove the current hash
1287 * entry; we need to load the next hash entry before calling
1288 * into it.
1290 next = h->dtahe_nextall;
1292 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1293 return (-1);
1296 return (0);
1299 static int
1300 dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear)
1302 dt_ahashent_t *h;
1303 dtrace_aggdata_t **total;
1304 dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1305 dt_aggregate_t *agp = &dtp->dt_aggregate;
1306 dt_ahash_t *hash = &agp->dtat_hash;
1307 uint32_t tflags;
1309 tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES;
1312 * If we need to deliver per-aggregation totals, we're going to take
1313 * three passes over the aggregate: one to clear everything out and
1314 * determine our maximum aggregation ID, one to actually total
1315 * everything up, and a final pass to assign the totals to the
1316 * individual elements.
1318 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1319 dtrace_aggdata_t *aggdata = &h->dtahe_data;
1321 if ((id = dt_aggregate_aggvarid(h)) > max)
1322 max = id;
1324 aggdata->dtada_total = 0;
1325 aggdata->dtada_flags &= ~tflags;
1328 if (clear || max == DTRACE_AGGVARIDNONE)
1329 return (0);
1331 total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1333 if (total == NULL)
1334 return (-1);
1336 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1337 dtrace_aggdata_t *aggdata = &h->dtahe_data;
1338 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1339 dtrace_recdesc_t *rec;
1340 caddr_t data;
1341 int64_t val, *addr;
1343 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1344 data = aggdata->dtada_data;
1345 addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1347 switch (rec->dtrd_action) {
1348 case DTRACEAGG_STDDEV:
1349 val = dt_stddev((uint64_t *)addr, 1);
1350 break;
1352 case DTRACEAGG_SUM:
1353 case DTRACEAGG_COUNT:
1354 val = *addr;
1355 break;
1357 case DTRACEAGG_AVG:
1358 val = addr[0] ? (addr[1] / addr[0]) : 0;
1359 break;
1361 default:
1362 continue;
1365 if (total[agg->dtagd_varid] == NULL) {
1366 total[agg->dtagd_varid] = aggdata;
1367 aggdata->dtada_flags |= DTRACE_A_TOTAL;
1368 } else {
1369 aggdata = total[agg->dtagd_varid];
1372 if (val > 0)
1373 aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES;
1375 if (val < 0) {
1376 aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES;
1377 val = -val;
1380 if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) {
1381 val = (int64_t)((long double)val *
1382 (1 / DTRACE_AGGZOOM_MAX));
1384 if (val > aggdata->dtada_total)
1385 aggdata->dtada_total = val;
1386 } else {
1387 aggdata->dtada_total += val;
1392 * And now one final pass to set everyone's total.
1394 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1395 dtrace_aggdata_t *aggdata = &h->dtahe_data, *t;
1396 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1398 if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t)
1399 continue;
1401 aggdata->dtada_total = t->dtada_total;
1402 aggdata->dtada_flags |= (t->dtada_flags & tflags);
1405 dt_free(dtp, total);
1407 return (0);
1410 static int
1411 dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear)
1413 dt_ahashent_t *h;
1414 dtrace_aggdata_t **minmax;
1415 dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1416 dt_aggregate_t *agp = &dtp->dt_aggregate;
1417 dt_ahash_t *hash = &agp->dtat_hash;
1419 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1420 dtrace_aggdata_t *aggdata = &h->dtahe_data;
1422 if ((id = dt_aggregate_aggvarid(h)) > max)
1423 max = id;
1425 aggdata->dtada_minbin = 0;
1426 aggdata->dtada_maxbin = 0;
1427 aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN;
1430 if (clear || max == DTRACE_AGGVARIDNONE)
1431 return (0);
1433 minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1435 if (minmax == NULL)
1436 return (-1);
1438 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1439 dtrace_aggdata_t *aggdata = &h->dtahe_data;
1440 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1441 dtrace_recdesc_t *rec;
1442 caddr_t data;
1443 int64_t *addr;
1444 int minbin = -1, maxbin = -1, i;
1445 int start = 0, size;
1447 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1448 size = rec->dtrd_size / sizeof (int64_t);
1449 data = aggdata->dtada_data;
1450 addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1452 switch (rec->dtrd_action) {
1453 case DTRACEAGG_LQUANTIZE:
1455 * For lquantize(), we always display the entire range
1456 * of the aggregation when aggpack is set.
1458 start = 1;
1459 minbin = start;
1460 maxbin = size - 1 - start;
1461 break;
1463 case DTRACEAGG_QUANTIZE:
1464 for (i = start; i < size; i++) {
1465 if (!addr[i])
1466 continue;
1468 if (minbin == -1)
1469 minbin = i - start;
1471 maxbin = i - start;
1474 if (minbin == -1) {
1476 * If we have no data (e.g., due to a clear()
1477 * or negative increments), we'll use the
1478 * zero bucket as both our min and max.
1480 minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET;
1483 break;
1485 default:
1486 continue;
1489 if (minmax[agg->dtagd_varid] == NULL) {
1490 minmax[agg->dtagd_varid] = aggdata;
1491 aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1492 aggdata->dtada_minbin = minbin;
1493 aggdata->dtada_maxbin = maxbin;
1494 continue;
1497 if (minbin < minmax[agg->dtagd_varid]->dtada_minbin)
1498 minmax[agg->dtagd_varid]->dtada_minbin = minbin;
1500 if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin)
1501 minmax[agg->dtagd_varid]->dtada_maxbin = maxbin;
1505 * And now one final pass to set everyone's minbin and maxbin.
1507 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1508 dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm;
1509 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1511 if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm)
1512 continue;
1514 aggdata->dtada_minbin = mm->dtada_minbin;
1515 aggdata->dtada_maxbin = mm->dtada_maxbin;
1516 aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1519 dt_free(dtp, minmax);
1521 return (0);
1524 static int
1525 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1526 dtrace_aggregate_f *func, void *arg,
1527 int (*sfunc)(const void *, const void *))
1529 dt_aggregate_t *agp = &dtp->dt_aggregate;
1530 dt_ahashent_t *h, **sorted;
1531 dt_ahash_t *hash = &agp->dtat_hash;
1532 size_t i, nentries = 0;
1533 int rval = -1;
1535 agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN);
1537 if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) {
1538 agp->dtat_flags |= DTRACE_A_TOTAL;
1540 if (dt_aggregate_total(dtp, B_FALSE) != 0)
1541 return (-1);
1544 if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) {
1545 agp->dtat_flags |= DTRACE_A_MINMAXBIN;
1547 if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0)
1548 return (-1);
1551 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
1552 nentries++;
1554 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1556 if (sorted == NULL)
1557 goto out;
1559 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
1560 sorted[i++] = h;
1562 (void) pthread_mutex_lock(&dt_qsort_lock);
1564 if (sfunc == NULL) {
1565 dt_aggregate_qsort(dtp, sorted, nentries,
1566 sizeof (dt_ahashent_t *), NULL);
1567 } else {
1569 * If we've been explicitly passed a sorting function,
1570 * we'll use that -- ignoring the values of the "aggsortrev",
1571 * "aggsortkey" and "aggsortkeypos" options.
1573 qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
1576 (void) pthread_mutex_unlock(&dt_qsort_lock);
1578 for (i = 0; i < nentries; i++) {
1579 h = sorted[i];
1581 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1582 goto out;
1585 rval = 0;
1586 out:
1587 if (agp->dtat_flags & DTRACE_A_TOTAL)
1588 (void) dt_aggregate_total(dtp, B_TRUE);
1590 if (agp->dtat_flags & DTRACE_A_MINMAXBIN)
1591 (void) dt_aggregate_minmaxbin(dtp, B_TRUE);
1593 dt_free(dtp, sorted);
1594 return (rval);
1598 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1599 dtrace_aggregate_f *func, void *arg)
1601 return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
1605 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
1606 dtrace_aggregate_f *func, void *arg)
1608 return (dt_aggregate_walk_sorted(dtp, func,
1609 arg, dt_aggregate_varkeycmp));
1613 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
1614 dtrace_aggregate_f *func, void *arg)
1616 return (dt_aggregate_walk_sorted(dtp, func,
1617 arg, dt_aggregate_varvalcmp));
1621 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
1622 dtrace_aggregate_f *func, void *arg)
1624 return (dt_aggregate_walk_sorted(dtp, func,
1625 arg, dt_aggregate_keyvarcmp));
1629 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
1630 dtrace_aggregate_f *func, void *arg)
1632 return (dt_aggregate_walk_sorted(dtp, func,
1633 arg, dt_aggregate_valvarcmp));
1637 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
1638 dtrace_aggregate_f *func, void *arg)
1640 return (dt_aggregate_walk_sorted(dtp, func,
1641 arg, dt_aggregate_varkeyrevcmp));
1645 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
1646 dtrace_aggregate_f *func, void *arg)
1648 return (dt_aggregate_walk_sorted(dtp, func,
1649 arg, dt_aggregate_varvalrevcmp));
1653 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
1654 dtrace_aggregate_f *func, void *arg)
1656 return (dt_aggregate_walk_sorted(dtp, func,
1657 arg, dt_aggregate_keyvarrevcmp));
1661 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
1662 dtrace_aggregate_f *func, void *arg)
1664 return (dt_aggregate_walk_sorted(dtp, func,
1665 arg, dt_aggregate_valvarrevcmp));
1669 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
1670 int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
1672 dt_aggregate_t *agp = &dtp->dt_aggregate;
1673 dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
1674 const dtrace_aggdata_t **data;
1675 dt_ahashent_t *zaggdata = NULL;
1676 dt_ahash_t *hash = &agp->dtat_hash;
1677 size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
1678 dtrace_aggvarid_t max = 0, aggvar;
1679 int rval = -1, *map, *remap = NULL;
1680 int i, j;
1681 dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
1684 * If the sorting position is greater than the number of aggregation
1685 * variable IDs, we silently set it to 0.
1687 if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
1688 sortpos = 0;
1691 * First we need to translate the specified aggregation variable IDs
1692 * into a linear map that will allow us to translate an aggregation
1693 * variable ID into its position in the specified aggvars.
1695 for (i = 0; i < naggvars; i++) {
1696 if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
1697 return (dt_set_errno(dtp, EDT_BADAGGVAR));
1699 if (aggvars[i] > max)
1700 max = aggvars[i];
1703 if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
1704 return (-1);
1706 zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
1708 if (zaggdata == NULL)
1709 goto out;
1711 for (i = 0; i < naggvars; i++) {
1712 int ndx = i + sortpos;
1714 if (ndx >= naggvars)
1715 ndx -= naggvars;
1717 aggvar = aggvars[ndx];
1718 assert(aggvar <= max);
1720 if (map[aggvar]) {
1722 * We have an aggregation variable that is present
1723 * more than once in the array of aggregation
1724 * variables. While it's unclear why one might want
1725 * to do this, it's legal. To support this construct,
1726 * we will allocate a remap that will indicate the
1727 * position from which this aggregation variable
1728 * should be pulled. (That is, where the remap will
1729 * map from one position to another.)
1731 if (remap == NULL) {
1732 remap = dt_zalloc(dtp, naggvars * sizeof (int));
1734 if (remap == NULL)
1735 goto out;
1739 * Given that the variable is already present, assert
1740 * that following through the mapping and adjusting
1741 * for the sort position yields the same aggregation
1742 * variable ID.
1744 assert(aggvars[(map[aggvar] - 1 + sortpos) %
1745 naggvars] == aggvars[ndx]);
1747 remap[i] = map[aggvar];
1748 continue;
1751 map[aggvar] = i + 1;
1755 * We need to take two passes over the data to size our allocation, so
1756 * we'll use the first pass to also fill in the zero-filled data to be
1757 * used to properly format a zero-valued aggregation.
1759 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1760 dtrace_aggvarid_t id;
1761 int ndx;
1763 if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
1764 continue;
1766 if (zaggdata[ndx - 1].dtahe_size == 0) {
1767 zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
1768 zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
1771 nentries++;
1774 if (nentries == 0) {
1776 * We couldn't find any entries; there is nothing else to do.
1778 rval = 0;
1779 goto out;
1783 * Before we sort the data, we're going to look for any holes in our
1784 * zero-filled data. This will occur if an aggregation variable that
1785 * we are being asked to print has not yet been assigned the result of
1786 * any aggregating action for _any_ tuple. The issue becomes that we
1787 * would like a zero value to be printed for all columns for this
1788 * aggregation, but without any record description, we don't know the
1789 * aggregating action that corresponds to the aggregation variable. To
1790 * try to find a match, we're simply going to lookup aggregation IDs
1791 * (which are guaranteed to be contiguous and to start from 1), looking
1792 * for the specified aggregation variable ID. If we find a match,
1793 * we'll use that. If we iterate over all aggregation IDs and don't
1794 * find a match, then we must be an anonymous enabling. (Anonymous
1795 * enablings can't currently derive either aggregation variable IDs or
1796 * aggregation variable names given only an aggregation ID.) In this
1797 * obscure case (anonymous enabling, multiple aggregation printa() with
1798 * some aggregations not represented for any tuple), our defined
1799 * behavior is that the zero will be printed in the format of the first
1800 * aggregation variable that contains any non-zero value.
1802 for (i = 0; i < naggvars; i++) {
1803 if (zaggdata[i].dtahe_size == 0) {
1804 dtrace_aggvarid_t aggvar;
1806 aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1807 assert(zaggdata[i].dtahe_data.dtada_data == NULL);
1809 for (j = DTRACE_AGGIDNONE + 1; ; j++) {
1810 dtrace_aggdesc_t *agg;
1811 dtrace_aggdata_t *aggdata;
1813 if (dt_aggid_lookup(dtp, j, &agg) != 0)
1814 break;
1816 if (agg->dtagd_varid != aggvar)
1817 continue;
1820 * We have our description -- now we need to
1821 * cons up the zaggdata entry for it.
1823 aggdata = &zaggdata[i].dtahe_data;
1824 aggdata->dtada_size = agg->dtagd_size;
1825 aggdata->dtada_desc = agg;
1826 aggdata->dtada_handle = dtp;
1827 (void) dt_epid_lookup(dtp, agg->dtagd_epid,
1828 &aggdata->dtada_edesc,
1829 &aggdata->dtada_pdesc);
1830 aggdata->dtada_normal = 1;
1831 zaggdata[i].dtahe_hashval = 0;
1832 zaggdata[i].dtahe_size = agg->dtagd_size;
1833 break;
1836 if (zaggdata[i].dtahe_size == 0) {
1837 caddr_t data;
1840 * We couldn't find this aggregation, meaning
1841 * that we have never seen it before for any
1842 * tuple _and_ this is an anonymous enabling.
1843 * That is, we're in the obscure case outlined
1844 * above. In this case, our defined behavior
1845 * is to format the data in the format of the
1846 * first non-zero aggregation -- of which, of
1847 * course, we know there to be at least one
1848 * (or nentries would have been zero).
1850 for (j = 0; j < naggvars; j++) {
1851 if (zaggdata[j].dtahe_size != 0)
1852 break;
1855 assert(j < naggvars);
1856 zaggdata[i] = zaggdata[j];
1858 data = zaggdata[i].dtahe_data.dtada_data;
1859 assert(data != NULL);
1865 * Now we need to allocate our zero-filled data for use for
1866 * aggregations that don't have a value corresponding to a given key.
1868 for (i = 0; i < naggvars; i++) {
1869 dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
1870 dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
1871 dtrace_recdesc_t *rec;
1872 uint64_t larg;
1873 caddr_t zdata;
1875 zsize = zaggdata[i].dtahe_size;
1876 assert(zsize != 0);
1878 if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
1880 * If we failed to allocated some zero-filled data, we
1881 * need to zero out the remaining dtada_data pointers
1882 * to prevent the wrong data from being freed below.
1884 for (j = i; j < naggvars; j++)
1885 zaggdata[j].dtahe_data.dtada_data = NULL;
1886 goto out;
1889 aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1892 * First, the easy bit. To maintain compatibility with
1893 * consumers that pull the compiler-generated ID out of the
1894 * data, we put that ID at the top of the zero-filled data.
1896 rec = &aggdesc->dtagd_rec[0];
1897 /* LINTED - alignment */
1898 *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
1900 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1903 * Now for the more complicated part. For the lquantize() and
1904 * llquantize() aggregating actions, zero-filled data is not
1905 * equivalent to an empty record: we must also get the
1906 * parameters for the lquantize()/llquantize().
1908 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE ||
1909 rec->dtrd_action == DTRACEAGG_LLQUANTIZE) {
1910 if (aggdata->dtada_data != NULL) {
1912 * The easier case here is if we actually have
1913 * some prototype data -- in which case we
1914 * manually dig it out of the aggregation
1915 * record.
1917 /* LINTED - alignment */
1918 larg = *((uint64_t *)(aggdata->dtada_data +
1919 rec->dtrd_offset));
1920 } else {
1922 * We don't have any prototype data. As a
1923 * result, we know that we _do_ have the
1924 * compiler-generated information. (If this
1925 * were an anonymous enabling, all of our
1926 * zero-filled data would have prototype data
1927 * -- either directly or indirectly.) So as
1928 * gross as it is, we'll grovel around in the
1929 * compiler-generated information to find the
1930 * lquantize()/llquantize() parameters.
1932 dtrace_stmtdesc_t *sdp;
1933 dt_ident_t *aid;
1934 dt_idsig_t *isp;
1936 sdp = (dtrace_stmtdesc_t *)(uintptr_t)
1937 aggdesc->dtagd_rec[0].dtrd_uarg;
1938 aid = sdp->dtsd_aggdata;
1939 isp = (dt_idsig_t *)aid->di_data;
1940 assert(isp->dis_auxinfo != 0);
1941 larg = isp->dis_auxinfo;
1944 /* LINTED - alignment */
1945 *((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
1948 aggdata->dtada_data = zdata;
1952 * Now that we've dealt with setting up our zero-filled data, we can
1953 * allocate our sorted array, and take another pass over the data to
1954 * fill it.
1956 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1958 if (sorted == NULL)
1959 goto out;
1961 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
1962 dtrace_aggvarid_t id;
1964 if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
1965 continue;
1967 sorted[i++] = h;
1970 assert(i == nentries);
1973 * We've loaded our array; now we need to sort by value to allow us
1974 * to create bundles of like value. We're going to acquire the
1975 * dt_qsort_lock here, and hold it across all of our subsequent
1976 * comparison and sorting.
1978 (void) pthread_mutex_lock(&dt_qsort_lock);
1980 qsort(sorted, nentries, sizeof (dt_ahashent_t *),
1981 dt_aggregate_keyvarcmp);
1984 * Now we need to go through and create bundles. Because the number
1985 * of bundles is bounded by the size of the sorted array, we're going
1986 * to reuse the underlying storage. And note that "bundle" is an
1987 * array of pointers to arrays of pointers to dt_ahashent_t -- making
1988 * its type (regrettably) "dt_ahashent_t ***". (Regrettable because
1989 * '*' -- like '_' and 'X' -- should never appear in triplicate in
1990 * an ideal world.)
1992 bundle = (dt_ahashent_t ***)sorted;
1994 for (i = 1, start = 0; i <= nentries; i++) {
1995 if (i < nentries &&
1996 dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
1997 continue;
2000 * We have a bundle boundary. Everything from start to
2001 * (i - 1) belongs in one bundle.
2003 assert(i - start <= naggvars);
2004 bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
2006 if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
2007 (void) pthread_mutex_unlock(&dt_qsort_lock);
2008 goto out;
2011 for (j = start; j < i; j++) {
2012 dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
2014 assert(id <= max);
2015 assert(map[id] != 0);
2016 assert(map[id] - 1 < naggvars);
2017 assert(nbundle[map[id] - 1] == NULL);
2018 nbundle[map[id] - 1] = sorted[j];
2020 if (nbundle[naggvars] == NULL)
2021 nbundle[naggvars] = sorted[j];
2024 for (j = 0; j < naggvars; j++) {
2025 if (nbundle[j] != NULL)
2026 continue;
2029 * Before we assume that this aggregation variable
2030 * isn't present (and fall back to using the
2031 * zero-filled data allocated earlier), check the
2032 * remap. If we have a remapping, we'll drop it in
2033 * here. Note that we might be remapping an
2034 * aggregation variable that isn't present for this
2035 * key; in this case, the aggregation data that we
2036 * copy will point to the zeroed data.
2038 if (remap != NULL && remap[j]) {
2039 assert(remap[j] - 1 < j);
2040 assert(nbundle[remap[j] - 1] != NULL);
2041 nbundle[j] = nbundle[remap[j] - 1];
2042 } else {
2043 nbundle[j] = &zaggdata[j];
2047 bundle[nbundles++] = nbundle;
2048 start = i;
2052 * Now we need to re-sort based on the first value.
2054 dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
2055 dt_aggregate_bundlecmp);
2057 (void) pthread_mutex_unlock(&dt_qsort_lock);
2060 * We're done! Now we just need to go back over the sorted bundles,
2061 * calling the function.
2063 data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
2065 for (i = 0; i < nbundles; i++) {
2066 for (j = 0; j < naggvars; j++)
2067 data[j + 1] = NULL;
2069 for (j = 0; j < naggvars; j++) {
2070 int ndx = j - sortpos;
2072 if (ndx < 0)
2073 ndx += naggvars;
2075 assert(bundle[i][ndx] != NULL);
2076 data[j + 1] = &bundle[i][ndx]->dtahe_data;
2079 for (j = 0; j < naggvars; j++)
2080 assert(data[j + 1] != NULL);
2083 * The representative key is the last element in the bundle.
2084 * Assert that we have one, and then set it to be the first
2085 * element of data.
2087 assert(bundle[i][j] != NULL);
2088 data[0] = &bundle[i][j]->dtahe_data;
2090 if ((rval = func(data, naggvars + 1, arg)) == -1)
2091 goto out;
2094 rval = 0;
2095 out:
2096 for (i = 0; i < nbundles; i++)
2097 dt_free(dtp, bundle[i]);
2099 if (zaggdata != NULL) {
2100 for (i = 0; i < naggvars; i++)
2101 dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
2104 dt_free(dtp, zaggdata);
2105 dt_free(dtp, sorted);
2106 dt_free(dtp, remap);
2107 dt_free(dtp, map);
2109 return (rval);
2113 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
2114 dtrace_aggregate_walk_f *func)
2116 dt_print_aggdata_t pd;
2118 bzero(&pd, sizeof (pd));
2120 pd.dtpa_dtp = dtp;
2121 pd.dtpa_fp = fp;
2122 pd.dtpa_allunprint = 1;
2124 if (func == NULL)
2125 func = dtrace_aggregate_walk_sorted;
2127 if ((*func)(dtp, dt_print_agg, &pd) == -1)
2128 return (dt_set_errno(dtp, dtp->dt_errno));
2130 return (0);
2133 void
2134 dtrace_aggregate_clear(dtrace_hdl_t *dtp)
2136 dt_aggregate_t *agp = &dtp->dt_aggregate;
2137 dt_ahash_t *hash = &agp->dtat_hash;
2138 dt_ahashent_t *h;
2139 dtrace_aggdata_t *data;
2140 dtrace_aggdesc_t *aggdesc;
2141 dtrace_recdesc_t *rec;
2142 int i, max_cpus = agp->dtat_maxcpu;
2144 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
2145 aggdesc = h->dtahe_data.dtada_desc;
2146 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
2147 data = &h->dtahe_data;
2149 bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
2151 if (data->dtada_percpu == NULL)
2152 continue;
2154 for (i = 0; i < max_cpus; i++)
2155 bzero(data->dtada_percpu[i], rec->dtrd_size);
2159 void
2160 dt_aggregate_destroy(dtrace_hdl_t *dtp)
2162 dt_aggregate_t *agp = &dtp->dt_aggregate;
2163 dt_ahash_t *hash = &agp->dtat_hash;
2164 dt_ahashent_t *h, *next;
2165 dtrace_aggdata_t *aggdata;
2166 int i, max_cpus = agp->dtat_maxcpu;
2168 if (hash->dtah_hash == NULL) {
2169 assert(hash->dtah_all == NULL);
2170 } else {
2171 free(hash->dtah_hash);
2173 for (h = hash->dtah_all; h != NULL; h = next) {
2174 next = h->dtahe_nextall;
2176 aggdata = &h->dtahe_data;
2178 if (aggdata->dtada_percpu != NULL) {
2179 for (i = 0; i < max_cpus; i++)
2180 free(aggdata->dtada_percpu[i]);
2181 free(aggdata->dtada_percpu);
2184 free(aggdata->dtada_data);
2185 free(h);
2188 hash->dtah_hash = NULL;
2189 hash->dtah_all = NULL;
2190 hash->dtah_size = 0;
2193 free(agp->dtat_buf.dtbd_data);
2194 free(agp->dtat_cpus);