4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
32 * __k_tan( double x; double y; int k )
33 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
36 * Input k indicate -- tan if k=0; else -1/tan
38 * Table look up algorithm
39 * 1. by tan(-x) = -tan(x), need only to consider positive x
40 * 2. if x < 5/32 = [0x3fc40000, 0] = 0.15625 , then
41 * if x < 2^-27 (hx < 0x3e400000 0), set w=x with inexact if x != 0
44 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45 * return (k == 0)? w: 1/w;
47 * ht = (hx + 0x4000)&0x7fff8000 (round x to a break point t)
49 * i = (hy-0x3fc40000)>>15; (i<=64)
50 * x' = (x - t)+y (|x'| ~<= 2^-7)
53 * = (tan(t)+tan(x'))/(1-tan(x')tan(t))
55 * sin(x')+tan(t)*(tan(t)*sin(x'))
56 * = tan(t) + ------------------------------- for k=0
57 * cos(x') - tan(t)*sin(x')
59 * cos(x') - tan(t)*sin(x')
60 * = - -------------------------------------- for k=1
61 * tan(t) + tan(t)*(cos(x')-1) + sin(x')
64 * where tan(t) is from the table,
65 * sin(x') = x + pp1*x^3 + pp2*x^5
66 * cos(x') = 1 + qq1*x^2 + qq2*x^4
71 extern const double _TBL_tan_hi
[], _TBL_tan_lo
[];
72 static const double q
[] = {
76 * |sin(x) - pp1*x*(pp2+x *(pp3+x )| <= 2 for |x|<1/64
78 /* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003,
79 /* pp2 = */ 1.20001038589438965215025680596868692381425944526e+0002,
80 /* pp3 = */ -2.00001730975089451192161504877731204032897949219e+0001,
84 * |cos(x) - (1+qq1*x (qq2+x ))| <= 2 for |x|<=1/128
86 /* qq1 = */ 4.16665486385721928197511942926212213933467864990e-0002,
87 /* qq2 = */ -1.20000339921340035687080671777948737144470214844e+0001,
91 * |--------------| <= 2^-58.57 for |x|<0.15625
95 * PF(x) = x + (t1*x*z)(t2 + z(t3 + z))(t4 + z)(t5 + z(t6 + z))
97 /* t1 = */ 3.71923358986516816929168705030406272271648049355e-0003,
98 /* t2 = */ 6.02645120354857866118436504621058702468872070312e+0000,
99 /* t3 = */ 2.42627327587398156083509093150496482849121093750e+0000,
100 /* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000,
101 /* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000,
102 /* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000,
123 __k_tan(double x
, double y
, int k
) {
124 double a
, t
, z
, w
= 0.0L, s
, c
, r
, rh
, xh
, xl
;
128 hx
= ((int *) &x
)[HIWORD
];
129 ix
= hx
& 0x7fffffff;
130 if (ix
< 0x3fc40000) { /* 0.15625 */
131 if (ix
< 0x3e400000) { /* 2^-27 */
132 if ((i
= (int) x
) == 0) /* generate inexact */
137 t
= y
+ (((t1
* x
) * z
) * (t2
+ z
* (t3
+ z
))) *
138 ((t4
+ z
) * (t5
+ z
* (t6
+ z
)));
144 * Compute -1/(x+T) with great care
145 * Let r = -1/(x+T), rh = r chopped to 20 bits.
146 * Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then
147 * -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T))
148 * = rh + r*((1+rh*xh)+rh*xl).
151 ((int *) &rh
)[LOWORD
] = 0;
153 ((int *) &xh
)[LOWORD
] = 0;
155 return (rh
+ r
* ((one
+ rh
* xh
) + rh
* xl
));
157 j
= (ix
+ 0x4000) & 0x7fff8000;
158 i
= (j
- 0x3fc40000) >> 15;
159 ((int *) &t
)[HIWORD
] = j
;
166 s
= (pp1
* x
) * (pp2
+ z
* (pp3
+ z
)); /* sin(x) */
167 t
= (qq1
* z
) * (qq2
+ z
); /* cos(x) - 1 */
170 t
= _TBL_tan_lo
[i
] + (s
+ a
* w
) / (one
- (w
- t
));
171 return (hx
< 0 ? -a
- t
: a
+ t
);
174 c
= w
+ _TBL_tan_lo
[i
];
177 * Now try to compute [(1-T)/(a+c)] accurately
179 * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
180 * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then
181 * (1-T)/(a+c) = rh + ((1-T)/(a+c)-rh)
182 * = rh + r*(1-T-rh*(a+c))
183 * = rh + r*((1-T-rh*xh)-rh*xl)
184 * = rh + r*(((1-rh*xh)-T)-rh*xl)
188 ((int *) &rh
)[LOWORD
] = 0;
190 ((int *) &xh
)[LOWORD
] = 0;
192 z
= rh
+ r
* (((one
- rh
* xh
) - t
) - rh
* xl
);
193 return (hx
>= 0 ? -z
: z
);