4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
30 #pragma weak __atan = atan
35 * Accurate Table look-up algorithm with polynomial approximation in
36 * partially product form.
38 * -- K.C. Ng, October 17, 2004
42 * (1). Purge off Inf and NaN and 0
43 * (2). Reduce x to positive by atan(x) = -atan(-x).
44 * (3). For x <= 1/8 and let z = x*x, return
45 * (2.1) if x < 2^(-prec/2), atan(x) = x with inexact flag raised
46 * (2.2) if x < 2^(-prec/4-1), atan(x) = x+(x/3)(x*x)
47 * (2.3) if x < 2^(-prec/6-2), atan(x) = x+(z-5/3)(z*x/5)
49 * atan(x) = poly1(x) = x + A * B,
51 * A = (p1*x*z) * (p2+z(p3+z))
52 * B = (p4+z)+z*z) * (p5+z(p6+z))
53 * Note: (i) domain of poly1 is [0, 1/8], (ii) remez relative
54 * approximation error of poly1 is bounded by
55 * |(atan(x)-poly1(x))/x| <= 2^-57.61
56 * (4). For x >= 8 then
57 * (3.1) if x >= 2^prec, atan(x) = atan(inf) - pio2lo
58 * (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x
59 * (3.3) if x <= 65, atan(x) = atan(inf) - poly1(1/x)
60 * (3.4) otherwise atan(x) = atan(inf) - poly2(1/x)
62 * poly2(r) = (q1*r) * (q2+z(q3+z)) * (q4+z),
63 * its domain is [0, 0.0154]; and its remez absolute
64 * approximation error is bounded by
65 * |atan(x)-poly2(x)|<= 2^-59.45
67 * (5). Now x is in (0.125, 8).
69 * atan(x) = atan(y) + atan((x-y)/(1+x*y)).
70 * Let j = (ix - 0x3fc00000) >> 16, 0 <= j < 96, where ix is the high
71 * part of x in IEEE double format. Then
72 * atan(x) = atan(y[j]) + poly2((x-y[j])/(1+x*y[j]))
73 * where y[j] are carefully chosen so that it matches x to around 4.5
74 * bits and at the same time atan(y[j]) is very close to an IEEE double
75 * floating point number. Calculation indicates that
76 * max|(x-y[j])/(1+x*y[j])| < 0.0154
79 * Accuracy: Maximum error observed is bounded by 0.6 ulp after testing
80 * more than 10 million random arguments
85 #include "libm_protos.h"
87 extern const double _TBL_atan
[];
88 static const double g
[] = {
90 /* p1 = */ 8.02176624254765935351230154992663301527500152588e-0002,
91 /* p2 = */ 1.27223421700559402580665846471674740314483642578e+0000,
92 /* p3 = */ -1.20606901800503640842521235754247754812240600586e+0000,
93 /* p4 = */ -2.36088967922325565496066701598465442657470703125e+0000,
94 /* p5 = */ 1.38345799501389166152875986881554126739501953125e+0000,
95 /* p6 = */ 1.06742368078953453469637224770849570631980895996e+0000,
96 /* q1 = */ -1.42796626333911796935538518482644576579332351685e-0001,
97 /* q2 = */ 3.51427110447873227059810477159863497078605962912e+0000,
98 /* q3 = */ 5.92129112708164262457444237952586263418197631836e-0001,
99 /* q4 = */ -1.99272234785683144409063061175402253866195678711e+0000,
100 /* pio2hi */ 1.570796326794896558e+00,
101 /* pio2lo */ 6.123233995736765886e-17,
102 /* t1 = */ -0.333333333333333333333333333333333,
104 /* t3 = */ -1.666666666666666666666666666666666,
127 double y
, z
, r
, p
, s
;
130 hx
= ((int *) &x
)[HIWORD
];
131 lx
= ((int *) &x
)[LOWORD
];
132 ix
= hx
& ~0x80000000;
137 if (j
< 0x3f5) { /* when |x| < 2**(-prec/6-2) */
138 if (j
< 0x3e3) { /* if |x| < 2**(-prec/2-2) */
139 return ((int) x
== 0 ? x
: one
);
141 if (j
< 0x3f1) { /* if |x| < 2**(-prec/4-1) */
142 return (x
+ (x
* t1
) * (x
* x
));
143 } else { /* if |x| < 2**(-prec/6-2) */
146 return (x
+ (t3
+ z
) * (s
* z
));
149 z
= x
* x
; s
= p1
* x
;
150 return (x
+ ((s
* z
) * (p2
+ z
* (p3
+ z
))) *
151 (((p4
+ z
) + z
* z
) * (p5
+ z
* (p6
+ z
))));
159 y
= pio2hi
; p
= pio2lo
;
161 y
= -pio2hi
; p
= -pio2lo
;
163 if (ix
< 0x40504000) { /* x < 65 */
166 return (y
+ ((p
- r
) - ((s
* z
) *
167 (p2
+ z
* (p3
+ z
))) *
168 (((p4
+ z
) + z
* z
) *
169 (p5
+ z
* (p6
+ z
)))));
170 } else if (j
< 0x412) {
172 return (y
+ (p
- ((q1
* r
) * (q4
+ z
)) *
173 (q2
+ z
* (q3
+ z
))));
175 return (y
+ (p
- r
));
177 if (j
>= 0x7ff) /* x is inf or NaN */
178 if (((ix
- 0x7ff00000) | lx
) != 0)
179 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
180 return (ix
>= 0x7ff80000 ? x
: x
- x
);
181 /* assumes sparc-like QNaN */
186 return (hx
>= 0 ? pio2hi
- y
: y
- pio2hi
);
188 } else { /* now x is between 1/8 and 8 */
189 double *w
, w0
, w1
, s
, z
;
190 w
= (double *) _TBL_atan
+ (((ix
- 0x3fc00000) >> 16) << 1);
191 w0
= (hx
>= 0)? w
[0] : -w
[0];
192 s
= (x
- w0
) / (one
+ x
* w0
);
193 w1
= (hx
>= 0)? w
[1] : -w
[1];
195 return (((q1
* s
) * (q4
+ z
)) * (q2
+ z
* (q3
+ z
)) + w1
);