4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
32 * __k_sinl( long double x; long double y )
33 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
37 * Table look up algorithm
38 * 1. by sin(-x) = -sin(x), need only to consider positive x
39 * 2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then
40 * if x < 2^-57 (hx < 0x3fc60000,0,0,0), return x (inexact if x != 0)
42 * if x <= 1/64 = 2**-6
43 * sin(x) = x + (y+(x*z)*(p1 + z*p2))
45 * sin(x) = x + (y+(x*z)*(p1 + z*(p2 + z*(p3 + z*p4))))
47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
49 * i = (hy-0x3ffc4000)>>11; (i<=64)
50 * x' = (x - t)+y (|x'| ~<= 2^-7
53 * = sin(t)cos(x')+cos(t)sin(x')
54 * = sin(t)(1+z*(qq1+z*qq2))+[cos(t)]*x*(1+z*(pp1+z*pp2))
55 * = sin(t) + [sin(t)]*(z*(qq1+z*qq2))+
56 * [cos(t)]*x*(1+z*(pp1+z*pp2))
59 * let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i],
62 * sin(t+x) = a+(b+ ((c*x)*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2)))
67 #include <sys/isa_defs.h>
69 extern const long double _TBL_sinl_hi
[], _TBL_sinl_lo
[], _TBL_cosl_hi
[];
70 static const long double
73 * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
75 pp1
= -1.666666666666666666666666666586782940810e-0001L,
76 pp2
= 8.333333333333333333333003723660929317540e-0003L,
77 pp3
= -1.984126984126984076045903483778337804470e-0004L,
78 pp4
= 2.755731922361906641319723106210900949413e-0006L,
79 pp5
= -2.505198398570947019093998469135012057673e-0008L,
81 * |(sin(x) - (x+p1*x^3+...+p8*x^17)|
82 * |------------------------------- | <= 2^-116.17 for |x|<0.1953125
85 p1
= -1.666666666666666666666666666666211262297e-0001L,
86 p2
= 8.333333333333333333333333301497876908541e-0003L,
87 p3
= -1.984126984126984126984041302881180621922e-0004L,
88 p4
= 2.755731922398589064100587351307269621093e-0006L,
89 p5
= -2.505210838544163129378906953765595393873e-0008L,
90 p6
= 1.605904383643244375050998243778534074273e-0010L,
91 p7
= -7.647162722800685516901456114270824622699e-0013L,
92 p8
= 2.810046428661902961725428841068844462603e-0015L,
95 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128
97 qq1
= -4.999999999999999999999999999999378373641e-0001L,
98 qq2
= 4.166666666666666666666665478399327703130e-0002L,
99 qq3
= -1.388888888888888888058211230618051613494e-0003L,
100 qq4
= 2.480158730156105377771585658905303111866e-0005L,
101 qq5
= -2.755728099762526325736488376695157008736e-0007L;
104 __k_sinl(long double x
, long double y
) {
105 long double a
, t
, z
, w
;
106 int *pt
= (int *) &t
, *px
= (int *) &x
;
110 #if defined(__i386) || defined(__amd64)
115 ix
= hx
& 0x7fffffff;
116 if (ix
< 0x3ffc9000) {
119 return (x
); /* generate inexact */
121 t
= z
* (p1
+ z
* (p2
+ z
* (p3
+ z
* (p4
+ z
* (p5
+ z
*
122 (p6
+ z
* (p7
+ z
* p8
)))))));
126 j
= (ix
+ 0x400) & 0x7ffff800;
127 i
= (j
- 0x3ffc4000) >> 11;
128 #if defined(__i386) || defined(__amd64)
139 t
= z
* (qq1
+ z
* (qq2
+ z
* (qq3
+ z
* (qq4
+ z
* qq5
))));
140 w
= x
* (one
+ z
* (pp1
+ z
* (pp2
+ z
* (pp3
+ z
* (pp4
+ z
*
142 t
= _TBL_cosl_hi
[i
] * w
+ a
* t
;
143 t
+= _TBL_sinl_lo
[i
];