4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
30 #pragma weak __cosl = cosl
34 * Table look-up algorithm by K.C. Ng, November, 1989.
37 * __k_sinl ... sin function on [-pi/4,pi/4]
38 * __k_cosl ... cos function on [-pi/4,pi/4]
39 * __rem_pio2l ... argument reduction routine
42 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
43 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
44 * [-pi/2 , +pi/2], and let n = k mod 4.
45 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
47 * n sin(x) cos(x) tan(x)
48 * ----------------------------------------------------------
53 * ----------------------------------------------------------
56 * Let trig be any of sin, cos, or tan.
57 * trig(+-INF) is NaN, with signals;
58 * trig(NaN) is that NaN;
61 * computer TRIG(x) returns trig(x) nearly rounded.
66 #include "longdouble.h"
68 #include <sys/isa_defs.h>
72 long double y
[2], z
= 0.0L;
76 /* trig(Inf or NaN) is NaN */
81 #if defined(__i386) || defined(__amd64)
90 return __k_cosl(x
, z
);
92 /* argument reduction needed */
94 n
= __rem_pio2l(x
, y
);
97 return __k_cosl(y
[0], y
[1]);
99 return -__k_sinl(y
[0], y
[1]);
101 return -__k_cosl(y
[0], y
[1]);
103 return __k_sinl(y
[0], y
[1]);