4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
30 #pragma weak __sincosl = sincosl
34 * Table look-up algorithm by K.C. Ng, November, 1989.
37 * __k_sincosl ... sin and cos function on [-pi/4,pi/4]
38 * __rem_pio2l ... argument reduction routine
41 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
42 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
43 * [-pi/2 , +pi/2], and let n = k mod 4.
44 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
46 * n sin(x) cos(x) tan(x)
47 * ----------------------------------------------------------
52 * ----------------------------------------------------------
55 * Let trig be any of sin, cos, or tan.
56 * trig(+-INF) is NaN, with signals;
57 * trig(NaN) is that NaN;
60 * computer TRIG(x) returns trig(x) nearly rounded.
65 #include "longdouble.h"
67 #include <sys/isa_defs.h>
70 sincosl(long double x
, long double *s
, long double *c
) {
71 long double y
[2], z
= 0.0L;
73 #if defined(__i386) || defined(__amd64)
77 /* trig(Inf or NaN) is NaN */
84 #if defined(__i386) || defined(__amd64)
93 *s
= __k_sincosl(x
, z
, c
);
95 /* argument reduction needed */
97 n
= __rem_pio2l(x
, y
);
100 *s
= __k_sincosl(y
[0], y
[1], c
);
103 *c
= -__k_sincosl(y
[0], y
[1], s
);
106 *s
= -__k_sincosl(y
[0], y
[1], c
);
110 *c
= __k_sincosl(y
[0], y
[1], s
);