4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
30 #pragma weak __cacos = cacos
34 * dcomplex cacos(dcomplex z);
37 * (based on T.E.Hull, Thomas F. Fairgrieve and Ping Tak Peter Tang's
38 * paper "Implementing the Complex Arcsine and Arccosine Functins Using
39 * Exception Handling", ACM TOMS, Vol 23, pp 299-335)
41 * The principal value of complex inverse cosine function cacos(z),
42 * where z = x+iy, can be defined by
44 * cacos(z) = acos(B) - i sign(y) log (A + sqrt(A*A-1)),
46 * where the log function is the natural log, and
47 * ____________ ____________
49 * A = --- / (x+1) + y + --- / (x-1) + y
51 * ____________ ____________
53 * B = --- / (x+1) + y - --- / (x-1) + y .
56 * The Branch cuts are on the real line from -inf to -1 and from 1 to inf.
57 * The real and imaginary parts are based on Abramowitz and Stegun
58 * [Handbook of Mathematic Functions, 1972]. The sign of the imaginary
59 * part is chosen to be the generally considered the principal value of
62 * Notes:1. A is the average of the distances from z to the points (1,0)
63 * and (-1,0) in the complex z-plane, and in particular A>=1.
64 * 2. B is in [-1,1], and A*B = x
67 * cacos(conj(z)) = conj(cacos(z))
68 * cacos(-z) = pi - cacos(z)
69 * cacos( z) = pi/2 - casin(z)
71 * Special cases (conform to ISO/IEC 9899:1999(E)):
72 * cacos(+-0 + i y ) = pi/2 - i y for y is +-0, +-inf, NaN
73 * cacos( x + i inf) = pi/2 - i inf for all x
74 * cacos( x + i NaN) = NaN + i NaN with invalid for non-zero finite x
75 * cacos(-inf + i y ) = pi - i inf for finite +y
76 * cacos( inf + i y ) = 0 - i inf for finite +y
77 * cacos(-inf + i inf) = 3pi/4- i inf
78 * cacos( inf + i inf) = pi/4 - i inf
79 * cacos(+-inf+ i NaN) = NaN - i inf (sign of imaginary is unspecified)
80 * cacos(NaN + i y ) = NaN + i NaN with invalid for finite y
81 * cacos(NaN + i inf) = NaN - i inf
82 * cacos(NaN + i NaN) = NaN + i NaN
84 * Special Regions (better formula for accuracy and for avoiding spurious
85 * overflow or underflow) (all x and y are assumed nonnegative):
87 * case 2: tiny y relative to x-1: y <= ulp(0.5)*|x-1|
88 * case 3: tiny y: y < 4 sqrt(u), where u = minimum normal number
89 * case 4: huge y relative to x+1: y >= (1+x)/ulp(0.5)
90 * case 5: huge x and y: x and y >= sqrt(M)/8, where M = maximum normal number
91 * case 6: tiny x: x < 4 sqrt(u)
93 * case 1 & 2. y=0 or y/|x-1| is tiny. We have
94 * ____________ _____________
96 * / (x+-1) + y = |x+-1| / 1 + (------)
100 * ~ |x+-1| ( 1 + --- (------) )
105 * = |x+-1| + --------.
108 * Consequently, it is not difficult to see that
111 * [ 1 + ------------ , if x < 1,
115 * [ x, if x = 1 (y = 0),
119 * [ x + ------------ ~ x, if x > 1
125 * A + \/ A - 1 ~ 1 + ---------------- + -----------, if x < 1,
126 * sqrt((x+1)(1-x)) 2(x+1)(1-x)
129 * ~ x + sqrt((x-1)*(x+1)), if x >= 1.
133 * [ x(1 - -----------) ~ x, if x < 1,
140 * [ 1 - ------------ , if x > 1,
143 * [ acos(x) - i y/sqrt((x-1)*(x+1)), if x < 1,
145 * cacos(x+i*y)~ [ 0 - i 0, if x = 1,
147 * [ y/sqrt(x*x-1) - i log(x+sqrt(x*x-1)), if x > 1.
149 * Note: y/sqrt(x*x-1) ~ y/x when x >= 2**26.
150 * case 3. y < 4 sqrt(u), where u = minimum normal x.
151 * After case 1 and 2, this will only occurs when x=1. When x=1, we have
152 * A = (sqrt(4+y*y)+y)/2 ~ 1 + y/2 + y^2/8 + ...
154 * B = 1/A = 1 - y/2 + y^2/8 + ...
156 * cos(sqrt(y)) ~ 1 - y/2 + ...
157 * we have, for the real part,
158 * acos(B) ~ acos(1 - y/2) ~ sqrt(y)
159 * For the imaginary part,
160 * log(A+sqrt(A*A-1)) ~ log(1+y/2+sqrt(2*y/2))
161 * = log(1+y/2+sqrt(y))
162 * = (y/2+sqrt(y)) - (y/2+sqrt(y))^2/2 + ...
163 * ~ sqrt(y) - y*(sqrt(y)+y/2)/2
166 * case 4. y >= (x+1)/ulp(0.5). In this case, A ~ y and B ~ x/y. Thus
167 * real part = acos(B) ~ pi/2
169 * imag part = log(y+sqrt(y*y-one))
171 * case 5. Both x and y are large: x and y > sqrt(M)/8, where M = maximum x
174 * B ~ x/sqrt(x*x+y*y).
176 * real part = acos(B) = atan(y/x),
177 * imag part = log(A+sqrt(A*A-1)) ~ log(2A)
178 * = log(2) + 0.5*log(x*x+y*y)
179 * = log(2) + log(y) + 0.5*log(1+(x/y)^2)
181 * case 6. x < 4 sqrt(u). In this case, we have
182 * A ~ sqrt(1+y*y), B = x/sqrt(1+y*y).
183 * Since B is tiny, we have
184 * real part = acos(B) ~ pi/2
185 * imag part = log(A+sqrt(A*A-1)) = log (A+sqrt(y*y))
186 * = log(y+sqrt(1+y*y))
187 * = 0.5*log(y^2+2ysqrt(1+y^2)+1+y^2)
188 * = 0.5*log(1+2y(y+sqrt(1+y^2)));
189 * = 0.5*log1p(2y(y+A));
191 * cacos(z) = acos(B) - i sign(y) log (A + sqrt(A*A-1)),
196 #include "complex_wrapper.h"
202 E
= 1.11022302462515654042e-16, /* 2**-53 */
203 ln2
= 6.93147180559945286227e-01,
204 pi
= 3.1415926535897931159979634685,
205 pi_l
= 1.224646799147353177e-16,
206 pi_2
= 1.570796326794896558e+00,
207 pi_2_l
= 6.123233995736765886e-17,
208 pi_4
= 0.78539816339744827899949,
209 pi_4_l
= 3.061616997868382943e-17,
210 pi3_4
= 2.356194490192344836998,
211 pi3_4_l
= 9.184850993605148829195e-17,
212 Foursqrtu
= 5.96667258496016539463e-154, /* 2**(-509) */
220 double x
, y
, t
, R
, S
, A
, Am1
, B
, y2
, xm1
, xp1
, Apx
;
231 ix
= hx
& 0x7fffffff;
232 iy
= hy
& 0x7fffffff;
235 if ((ix
| lx
) == 0) {
236 if (((iy
| ly
) == 0) || (iy
>= 0x7ff00000)) {
243 /* |y| is inf or NaN */
244 if (iy
>= 0x7ff00000) {
245 if (ISINF(iy
, ly
)) { /* cacos(x + i inf) = pi/2 - i inf */
247 if (ix
< 0x7ff00000) {
248 D_RE(ans
) = pi_2
+ pi_2_l
;
249 } else if (ISINF(ix
, lx
)) {
251 D_RE(ans
) = pi_4
+ pi_4_l
;
253 D_RE(ans
) = pi3_4
+ pi3_4_l
;
257 } else { /* cacos(x + i NaN) = NaN + i NaN */
260 D_IM(ans
) = -fabs(x
);
270 /* x is inf or NaN */
271 if (ix
>= 0x7ff00000) { /* x is inf or NaN */
272 if (ISINF(ix
, lx
)) { /* x is INF */
274 if (iy
>= 0x7ff00000) {
277 /* cacos(inf + i inf) = pi/4 - i inf */
278 /* cacos(-inf+ i inf) =3pi/4 - i inf */
281 D_RE(ans
) = pi_4
+ pi_4_l
;
283 D_RE(ans
) = pi3_4
+ pi3_4_l
;
286 /* cacos(inf + i NaN) = NaN - i inf */
291 /* cacos(inf + iy ) = 0 - i inf */
292 /* cacos(-inf+ iy ) = pi - i inf */
297 D_RE(ans
) = pi
+ pi_l
;
298 } else { /* x is NaN */
301 * cacos(NaN + i inf) = NaN - i inf
302 * cacos(NaN + i y ) = NaN + i NaN
303 * cacos(NaN + i NaN) = NaN + i NaN
307 if (iy
>= 0x7ff00000) {
314 D_IM(ans
) = -D_IM(ans
);
318 if ((iy
| ly
) == 0) { /* region 1: y=0 */
319 if (ix
< 0x3ff00000) { /* |x| < 1 */
324 if (ix
>= 0x43500000) /* |x| >= 2**54 */
325 D_IM(ans
) = ln2
+ log(x
);
326 else if (ix
>= 0x3ff80000) /* x > Acrossover */
327 D_IM(ans
) = log(x
+ sqrt((x
- one
) * (x
+
331 D_IM(ans
) = log1p(xm1
+ sqrt(xm1
* (x
+ one
)));
334 } else if (y
<= E
* fabs(x
- one
)) { /* region 2: y < tiny*|x-1| */
335 if (ix
< 0x3ff00000) { /* x < 1 */
337 D_IM(ans
) = y
/ sqrt((one
+ x
) * (one
- x
));
338 } else if (ix
>= 0x43500000) { /* |x| >= 2**54 */
340 D_IM(ans
) = ln2
+ log(x
);
342 t
= sqrt((x
- one
) * (x
+ one
));
344 if (ix
>= 0x3ff80000) /* x > Acrossover */
345 D_IM(ans
) = log(x
+ t
);
347 D_IM(ans
) = log1p((x
- one
) + t
);
349 } else if (y
< Foursqrtu
) { /* region 3 */
353 } else if (E
* y
- one
>= x
) { /* region 4 */
355 D_IM(ans
) = ln2
+ log(y
);
356 } else if (ix
>= 0x5fc00000 || iy
>= 0x5fc00000) { /* x,y>2**509 */
357 /* region 5: x+1 or y is very large (>= sqrt(max)/8) */
359 D_RE(ans
) = atan(y
/ x
);
360 D_IM(ans
) = ln2
+ log(y
) + half
* log1p(t
* t
);
361 } else if (x
< Foursqrtu
) {
362 /* region 6: x is very small, < 4sqrt(min) */
364 A
= sqrt(one
+ y
* y
);
365 if (iy
>= 0x3ff80000) /* if y > Acrossover */
366 D_IM(ans
) = log(y
+ A
);
368 D_IM(ans
) = half
* log1p((y
+ y
) * (y
+ A
));
369 } else { /* safe region */
373 R
= sqrt(xp1
* xp1
+ y2
);
374 S
= sqrt(xm1
* xm1
+ y2
);
379 else { /* use atan and an accurate approx to a-x */
382 D_RE(ans
) = atan(sqrt(half
* Apx
* (y2
/ (R
+
383 xp1
) + (S
- xm1
))) / x
);
385 D_RE(ans
) = atan((y
* sqrt(half
* (Apx
/ (R
+
386 xp1
) + Apx
/ (S
+ xm1
)))) / x
);
388 if (A
<= Acrossover
) {
389 /* use log1p and an accurate approx to A-1 */
391 Am1
= half
* (y2
/ (R
+ xp1
) + y2
/ (S
- xm1
));
393 Am1
= half
* (y2
/ (R
+ xp1
) + (S
+ xm1
));
394 D_IM(ans
) = log1p(Am1
+ sqrt(Am1
* (A
+ one
)));
396 D_IM(ans
) = log(A
+ sqrt(A
* A
- one
));
400 D_RE(ans
) = pi
- D_RE(ans
);
402 D_IM(ans
) = -D_IM(ans
);