dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / usr / src / lib / pkcs11 / pkcs11_kernel / common / kernelObjectUtil.c
blobd2ace778f33f9cc6a8ff3f2eeff60441249dfe68
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <strings.h>
29 #include <errno.h>
30 #include <security/cryptoki.h>
31 #include <cryptoutil.h>
32 #include "kernelGlobal.h"
33 #include "kernelObject.h"
34 #include "kernelSession.h"
35 #include "kernelSlot.h"
38 * Add an object to the session's object list.
40 * This function will acquire the lock on the session, and release
41 * that lock after adding the object to the session's object list.
43 void
44 kernel_add_object_to_session(kernel_object_t *objp, kernel_session_t *sp)
46 /* Acquire the session lock. */
47 (void) pthread_mutex_lock(&sp->session_mutex);
49 /* Insert the new object in front of session's object list. */
50 if (sp->object_list == NULL) {
51 sp->object_list = objp;
52 objp->next = NULL;
53 objp->prev = NULL;
54 } else {
55 sp->object_list->prev = objp;
56 objp->next = sp->object_list;
57 objp->prev = NULL;
58 sp->object_list = objp;
61 /* Release the session lock. */
62 (void) pthread_mutex_unlock(&sp->session_mutex);
66 * Clean up and release the storage allocated to the object.
68 * The function is called either with the object lock being held
69 * (by caller kernel_delete_object()), or there is no object lock
70 * yet (by kernel_build_XXX_object() during creating an object).
72 void
73 kernel_cleanup_object(kernel_object_t *objp)
76 * Free the storage allocated to a secret key object.
78 if (objp->class == CKO_SECRET_KEY) {
79 if (OBJ_SEC(objp) != NULL && OBJ_SEC_VALUE(objp) != NULL) {
80 bzero(OBJ_SEC_VALUE(objp), OBJ_SEC_VALUE_LEN(objp));
81 free(OBJ_SEC_VALUE(objp));
82 OBJ_SEC_VALUE(objp) = NULL;
83 OBJ_SEC_VALUE_LEN(objp) = 0;
85 free(OBJ_SEC(objp));
86 OBJ_SEC(objp) = NULL;
87 } else {
88 kernel_cleanup_object_bigint_attrs(objp);
92 * Free the storage allocated to the extra attribute list.
94 kernel_cleanup_extra_attr(objp);
98 * Create a new object. Copy the attributes that can be modified
99 * (in the boolean attribute mask field and extra attribute list)
100 * from the old object to the new object.
102 * The caller of this function holds the lock on the old object.
104 CK_RV
105 kernel_copy_object(kernel_object_t *old_object, kernel_object_t **new_object,
106 boolean_t copy_everything, kernel_session_t *sp)
108 CK_RV rv = CKR_OK;
109 kernel_object_t *new_objp = NULL;
110 CK_ATTRIBUTE_INFO_PTR attrp;
112 /* Allocate new object. */
113 new_objp = calloc(1, sizeof (kernel_object_t));
114 if (new_objp == NULL)
115 return (CKR_HOST_MEMORY);
117 new_objp->class = old_object->class;
118 new_objp->bool_attr_mask = old_object->bool_attr_mask;
120 attrp = old_object->extra_attrlistp;
121 while (attrp) {
123 * Copy the attribute_info struct from the old
124 * object to a new attribute_info struct, and add
125 * that new struct to the extra attribute list
126 * of the new object.
128 rv = kernel_copy_extra_attr(attrp, new_objp);
129 if (rv != CKR_OK) {
130 kernel_cleanup_extra_attr(new_objp);
131 free(new_objp);
132 return (rv);
134 attrp = attrp->next;
137 *new_object = new_objp;
139 if (!copy_everything) {
140 /* done with copying all information that can be modified */
141 return (CKR_OK);
145 * Copy the rest of the object.
146 * Certain fields that are not appropriate for coping will be
147 * initialized.
149 new_objp->key_type = old_object->key_type;
150 new_objp->magic_marker = old_object->magic_marker;
151 new_objp->mechanism = old_object->mechanism;
152 new_objp->session_handle = (CK_SESSION_HANDLE)sp;
153 (void) pthread_mutex_init(&(new_objp->object_mutex), NULL);
154 /* copy key related information */
155 switch (new_objp->class) {
156 case CKO_PUBLIC_KEY:
157 rv = kernel_copy_public_key_attr(OBJ_PUB(old_object),
158 &(OBJ_PUB(new_objp)), new_objp->key_type);
159 break;
160 case CKO_PRIVATE_KEY:
161 rv = kernel_copy_private_key_attr(OBJ_PRI(old_object),
162 &(OBJ_PRI(new_objp)), new_objp->key_type);
163 break;
164 case CKO_SECRET_KEY:
165 rv = kernel_copy_secret_key_attr(OBJ_SEC(old_object),
166 &(OBJ_SEC(new_objp)));
167 break;
168 default:
169 /* should never be this case */
170 break;
172 if (rv != CKR_OK) {
174 * don't need to cleanup the memory from failure of copying
175 * any key related stuff. Each individual function for
176 * copying key attr will free the memory if it fails
178 kernel_cleanup_extra_attr(new_objp);
179 free(new_objp);
181 return (rv);
185 * Copy the attributes (in the boolean attribute mask field and
186 * extra attribute list) from the new object back to the original
187 * object. Also, clean up and release all the storage in the extra
188 * attribute list of the original object.
190 * The caller of this function holds the lock on the old object.
192 void
193 kernel_merge_object(kernel_object_t *old_object, kernel_object_t *new_object)
196 old_object->bool_attr_mask = new_object->bool_attr_mask;
197 kernel_cleanup_extra_attr(old_object);
198 old_object->extra_attrlistp = new_object->extra_attrlistp;
203 * Create a new object struct. If it is a session object, add the object to
204 * the session's object list. If it is a token object, add it to the slot's
205 * token object list. The caller does not hold the slot lock.
207 CK_RV
208 kernel_add_object(CK_ATTRIBUTE_PTR pTemplate, CK_ULONG ulCount,
209 CK_ULONG *objecthandle_p, kernel_session_t *sp)
211 CK_RV rv = CKR_OK;
212 kernel_object_t *new_objp = NULL;
213 kernel_slot_t *pslot;
214 crypto_object_create_t objc;
215 CK_BBOOL is_pri_obj;
216 CK_BBOOL is_token_obj = B_FALSE;
217 int r;
219 new_objp = calloc(1, sizeof (kernel_object_t));
220 if (new_objp == NULL) {
221 rv = CKR_HOST_MEMORY;
222 goto fail_cleanup;
225 new_objp->extra_attrlistp = NULL;
226 new_objp->is_lib_obj = B_TRUE;
229 * If the HW provider supports object creation, create the object
230 * in the HW provider by calling the CRYPTO_OBJECT_CREATE ioctl.
231 * Otherwise, create the object in the library.
233 pslot = slot_table[sp->ses_slotid];
234 if (pslot->sl_func_list.fl_object_create) {
235 new_objp->is_lib_obj = B_FALSE;
236 objc.oc_session = sp->k_session;
237 objc.oc_count = ulCount;
238 rv = process_object_attributes(pTemplate, ulCount,
239 &objc.oc_attributes, &is_token_obj);
240 if (rv != CKR_OK) {
241 goto fail_cleanup;
244 /* Cannot create a token object with a READ-ONLY session */
245 if (is_token_obj && sp->ses_RO) {
246 free_object_attributes(objc.oc_attributes, ulCount);
247 rv = CKR_SESSION_READ_ONLY;
248 goto fail_cleanup;
251 while ((r = ioctl(kernel_fd, CRYPTO_OBJECT_CREATE,
252 &objc)) < 0) {
253 if (errno != EINTR)
254 break;
256 if (r < 0) {
257 rv = CKR_FUNCTION_FAILED;
258 } else {
259 rv = crypto2pkcs11_error_number(objc.oc_return_value);
262 free_object_attributes(objc.oc_attributes, ulCount);
264 if (rv != CKR_OK) {
265 goto fail_cleanup;
268 /* Get the CKA_PRIVATE value of this object. */
269 new_objp->k_handle = objc.oc_handle;
270 rv = get_cka_private_value(sp, new_objp->k_handle,
271 &is_pri_obj);
272 if (rv != CKR_OK) {
273 goto fail_cleanup;
276 /* Set the PRIVATE_BOOL_ON and TOKEN_BOOL_ON attributes */
277 if (is_pri_obj)
278 new_objp->bool_attr_mask |= PRIVATE_BOOL_ON;
279 else
280 new_objp->bool_attr_mask &= ~PRIVATE_BOOL_ON;
282 if (is_token_obj)
283 new_objp->bool_attr_mask |= TOKEN_BOOL_ON;
284 else
285 new_objp->bool_attr_mask &= ~TOKEN_BOOL_ON;
287 } else {
289 * Create the object in the library.
290 * Validate attribute template and fill in the attributes
291 * in the kernel_object_t.
293 rv = kernel_build_object(pTemplate, ulCount, new_objp, sp,
294 KERNEL_CREATE_OBJ);
295 if (rv != CKR_OK) {
296 goto fail_cleanup;
300 /* Initialize the rest of stuffs in kernel_object_t. */
301 (void) pthread_mutex_init(&new_objp->object_mutex, NULL);
302 new_objp->magic_marker = KERNELTOKEN_OBJECT_MAGIC;
303 new_objp->session_handle = (CK_SESSION_HANDLE)sp;
305 if (is_token_obj) {
306 /* Add the new object to the slot's token object list. */
307 pslot = slot_table[sp->ses_slotid];
308 kernel_add_token_object_to_slot(new_objp, pslot);
309 } else {
310 /* Add the new object to the session's object list. */
311 kernel_add_object_to_session(new_objp, sp);
314 /* Type casting the address of an object struct to an object handle. */
315 *objecthandle_p = (CK_ULONG)new_objp;
317 return (CKR_OK);
319 fail_cleanup:
320 if (new_objp) {
322 * If the object is created in the HW provider, the storage
323 * allocated for the ioctl call is always cleaned up after
324 * the call. If the object is created in the library,
325 * the storage allocated inside of this object should
326 * have been cleaned up in the kernel_build_object()
327 * after an error occurred. Therefore, we can safely
328 * free the object.
330 free(new_objp);
333 return (rv);
337 * Remove an object from the session's object list.
339 * The caller of this function holds the session lock.
341 CK_RV
342 kernel_remove_object_from_session(kernel_object_t *objp, kernel_session_t *sp)
344 kernel_object_t *tmp_objp;
345 boolean_t found = B_FALSE;
348 * Remove the object from the session's object list.
350 if ((sp == NULL) ||
351 (sp->magic_marker != KERNELTOKEN_SESSION_MAGIC)) {
352 return (CKR_SESSION_HANDLE_INVALID);
355 if ((sp->object_list == NULL) || (objp == NULL) ||
356 (objp->magic_marker != KERNELTOKEN_OBJECT_MAGIC)) {
357 return (CKR_OBJECT_HANDLE_INVALID);
360 tmp_objp = sp->object_list;
361 while (tmp_objp) {
362 if (tmp_objp == objp) {
363 found = B_TRUE;
364 break;
366 tmp_objp = tmp_objp->next;
368 if (!found)
369 return (CKR_OBJECT_HANDLE_INVALID);
371 if (sp->object_list == objp) {
372 /* Object is the first one in the list. */
373 if (objp->next) {
374 sp->object_list = objp->next;
375 objp->next->prev = NULL;
376 } else {
377 /* Object is the only one in the list. */
378 sp->object_list = NULL;
380 } else {
381 /* Object is not the first one in the list. */
382 if (objp->next) {
383 /* Object is in the middle of the list. */
384 objp->prev->next = objp->next;
385 objp->next->prev = objp->prev;
386 } else {
387 /* Object is the last one in the list. */
388 objp->prev->next = NULL;
391 return (CKR_OK);
394 static void
395 kernel_delete_object_cleanup(kernel_object_t *objp, boolean_t wrapper_only)
397 /* Acquire the lock on the object. */
398 (void) pthread_mutex_lock(&objp->object_mutex);
401 * Make sure another thread hasn't freed the object.
403 if (objp->magic_marker != KERNELTOKEN_OBJECT_MAGIC) {
404 (void) pthread_mutex_unlock(&objp->object_mutex);
405 return;
409 * The deletion of an object must be blocked when the object
410 * reference count is not zero. This means if any object related
411 * operation starts prior to the delete object operation gets in,
412 * the object deleting thread must wait for the non-deleting
413 * operation to be completed before it can proceed the delete
414 * operation.
416 * Unless we are being forced to shut everything down, this only
417 * happens if the library's _fini() is running not if someone
418 * explicitly called C_Finalize().
420 if (wrapper_only) {
421 objp->obj_refcnt = 0;
424 while (objp->obj_refcnt != 0) {
426 * We set the OBJECT_REFCNT_WAITING flag before we put
427 * this deleting thread in a wait state, so other non-deleting
428 * operation thread will signal to wake it up only when
429 * the object reference count becomes zero and this flag
430 * is set.
432 objp->obj_delete_sync |= OBJECT_REFCNT_WAITING;
433 (void) pthread_cond_wait(&objp->obj_free_cond,
434 &objp->object_mutex);
437 objp->obj_delete_sync &= ~OBJECT_REFCNT_WAITING;
439 /* Mark object as no longer valid. */
440 objp->magic_marker = 0;
442 (void) pthread_cond_destroy(&objp->obj_free_cond);
446 * Delete a session object:
447 * - Remove the object from the session's object list.
448 * - Release the storage allocated to the object.
450 * The boolean argument ses_lock_held is used to indicate that whether
451 * the caller holds the session lock or not.
452 * - When called by kernel_delete_all_objects_in_session() or
453 * kernel_delete_pri_objects_in_slot() -- ses_lock_held = TRUE.
455 * The boolean argument wrapper_only is used to indicate that whether
456 * the caller only wants to clean up the object wrapper from the library and
457 * needs not to make an ioctl call.
458 * - This argument only applies to the object created in the provider level.
459 * - When called by kernel_cleanup_pri_objects_in_slot(), wrapper_only is TRUE.
460 * - When called by C_DestroyObject(), wrapper_only is FALSE.
461 * - When called by kernel_delete_all_objects_in_session(), the value of
462 * wrapper_only depends on its caller.
464 CK_RV
465 kernel_delete_session_object(kernel_session_t *sp, kernel_object_t *objp,
466 boolean_t ses_lock_held, boolean_t wrapper_only)
468 CK_RV rv = CKR_OK;
469 crypto_object_destroy_t obj_destroy;
472 * Check to see if the caller holds the lock on the session.
473 * If not, we need to acquire that lock in order to proceed.
475 if (!ses_lock_held) {
476 /* Acquire the session lock. */
477 (void) pthread_mutex_lock(&sp->session_mutex);
480 /* Remove the object from the session's object list first. */
481 rv = kernel_remove_object_from_session(objp, sp);
482 if (!ses_lock_held) {
484 * If the session lock is obtained by this function,
485 * then release that lock after removing the object
486 * from session's object list.
487 * We want the releasing of the object storage to
488 * be done without holding the session lock.
490 (void) pthread_mutex_unlock(&sp->session_mutex);
493 if (rv != CKR_OK)
494 return (rv);
496 kernel_delete_object_cleanup(objp, wrapper_only);
498 /* Destroy the object. */
499 if (objp->is_lib_obj) {
501 * If this object is created in the library, cleanup the
502 * contents of this object such as free all the storage
503 * allocated for this object.
505 kernel_cleanup_object(objp);
506 } else {
508 * This object is created in the HW provider. If wrapper_only
509 * is FALSE, make an ioctl call to destroy it in kernel.
511 if (!wrapper_only) {
512 obj_destroy.od_session = sp->k_session;
513 obj_destroy.od_handle = objp->k_handle;
515 while (ioctl(kernel_fd, CRYPTO_OBJECT_DESTROY,
516 &obj_destroy) < 0) {
517 if (errno != EINTR)
518 break;
522 * Ignore ioctl return codes for a session object.
523 * If the kernel can not delete a session object, it
524 * is likely caused by the HW provider. There's not
525 * much that can be done. The library will still
526 * cleanup the object wrapper in the library. The HW
527 * provider will destroy all session objects when
528 * the application exits.
533 /* Reset OBJECT_IS_DELETING flag. */
534 objp->obj_delete_sync &= ~OBJECT_IS_DELETING;
536 (void) pthread_mutex_unlock(&objp->object_mutex);
537 /* Destroy the object lock */
538 (void) pthread_mutex_destroy(&objp->object_mutex);
539 /* Free the object itself */
540 kernel_object_delay_free(objp);
542 return (CKR_OK);
546 * Delete all the objects in a session. The caller holds the lock
547 * on the session. If the wrapper_only argument is TRUE, the caller only
548 * want to clean up object wrappers in the library.
550 void
551 kernel_delete_all_objects_in_session(kernel_session_t *sp,
552 boolean_t wrapper_only)
554 kernel_object_t *objp = sp->object_list;
555 kernel_object_t *objp1;
557 /* Delete all the objects in the session. */
558 while (objp) {
559 objp1 = objp->next;
562 * Delete an session object by calling
563 * kernel_delete_session_object():
564 * - The 3rd TRUE boolean argument indicates that the caller
565 * holds the session lock.
566 * - The 4th boolean argument indicates whether we only want
567 * clean up object wrappers in the library.
569 (void) kernel_delete_session_object(sp, objp, B_TRUE,
570 wrapper_only);
572 objp = objp1;
576 static CK_RV
577 add_to_search_result(kernel_object_t *obj, find_context_t *fcontext,
578 CK_ULONG *num_result_alloc)
581 * allocate space for storing results if the currently
582 * allocated space is not enough
584 if (*num_result_alloc <= fcontext->num_results) {
585 fcontext->objs_found = reallocarray(fcontext->objs_found,
586 *num_result_alloc + BUFSIZ, sizeof (kernel_object_t *));
587 if (fcontext->objs_found == NULL) {
588 return (CKR_HOST_MEMORY);
590 *num_result_alloc += BUFSIZ;
593 (fcontext->objs_found)[(fcontext->num_results)++] = obj;
594 return (CKR_OK);
597 static CK_RV
598 search_for_objects(kernel_session_t *sp, CK_ATTRIBUTE_PTR pTemplate,
599 CK_ULONG ulCount, find_context_t *fcontext)
601 kernel_session_t *session_p;
602 kernel_object_t *obj;
603 CK_OBJECT_CLASS pclasses[6]; /* classes attrs possibly exist */
604 CK_ULONG num_pclasses; /* number of possible classes */
605 CK_ULONG num_result_alloc = 0; /* spaces allocated for results */
606 CK_RV rv = CKR_OK;
607 kernel_slot_t *pslot;
609 if (ulCount > 0) {
610 /* there are some search requirement */
611 kernel_process_find_attr(pclasses, &num_pclasses,
612 pTemplate, ulCount);
615 /* Acquire the slot lock */
616 pslot = slot_table[sp->ses_slotid];
617 (void) pthread_mutex_lock(&pslot->sl_mutex);
620 * Go through all objects in each session.
621 * Acquire individual session lock for the session
622 * we are searching.
624 session_p = pslot->sl_sess_list;
625 while (session_p) {
626 (void) pthread_mutex_lock(&session_p->session_mutex);
627 obj = session_p->object_list;
628 while (obj) {
629 (void) pthread_mutex_lock(&obj->object_mutex);
630 if (ulCount > 0) {
631 if (kernel_find_match_attrs(obj, pclasses,
632 num_pclasses, pTemplate, ulCount)) {
633 rv = add_to_search_result(
634 obj, fcontext, &num_result_alloc);
636 } else {
637 /* no search criteria, just record the object */
638 rv = add_to_search_result(obj, fcontext,
639 &num_result_alloc);
641 (void) pthread_mutex_unlock(&obj->object_mutex);
642 if (rv != CKR_OK) {
643 (void) pthread_mutex_unlock(
644 &session_p->session_mutex);
645 goto cleanup;
647 obj = obj->next;
649 (void) pthread_mutex_unlock(&session_p->session_mutex);
650 session_p = session_p->next;
653 cleanup:
654 /* Release the slot lock */
655 (void) pthread_mutex_unlock(&pslot->sl_mutex);
656 return (rv);
660 * Initialize the context for C_FindObjects() calls
662 CK_RV
663 kernel_find_objects_init(kernel_session_t *sp, CK_ATTRIBUTE_PTR pTemplate,
664 CK_ULONG ulCount)
666 CK_RV rv = CKR_OK;
667 CK_OBJECT_CLASS class; /* for kernel_validate_attr(). Value unused */
668 find_context_t *fcontext;
670 if (ulCount) {
671 rv = kernel_validate_attr(pTemplate, ulCount, &class);
672 /* Make sure all attributes in template are valid */
673 if (rv != CKR_OK) {
674 return (rv);
678 /* prepare the find context */
679 fcontext = calloc(1, sizeof (find_context_t));
680 if (fcontext == NULL) {
681 return (CKR_HOST_MEMORY);
684 rv = search_for_objects(sp, pTemplate, ulCount, fcontext);
685 if (rv != CKR_OK) {
686 free(fcontext);
687 return (rv);
690 /* store the find_context in the session */
691 sp->find_objects.context = (CK_VOID_PTR)fcontext;
693 return (rv);
696 void
697 kernel_find_objects_final(kernel_session_t *sp)
699 find_context_t *fcontext;
701 fcontext = sp->find_objects.context;
702 sp->find_objects.context = NULL;
703 sp->find_objects.flags = 0;
704 if (fcontext->objs_found != NULL) {
705 free(fcontext->objs_found);
708 free(fcontext);
711 void
712 kernel_find_objects(kernel_session_t *sp, CK_OBJECT_HANDLE *obj_found,
713 CK_ULONG max_obj_requested, CK_ULONG *found_obj_count)
715 find_context_t *fcontext;
716 CK_ULONG num_obj_found = 0;
717 CK_ULONG i;
718 kernel_object_t *obj;
720 fcontext = sp->find_objects.context;
722 for (i = fcontext->next_result_index;
723 ((num_obj_found < max_obj_requested) &&
724 (i < fcontext->num_results));
725 i++) {
726 obj = fcontext->objs_found[i];
727 if (obj != NULL) {
728 (void) pthread_mutex_lock(&obj->object_mutex);
729 /* a sanity check to make sure the obj is still valid */
730 if (obj->magic_marker == KERNELTOKEN_OBJECT_MAGIC) {
731 obj_found[num_obj_found] =
732 (CK_OBJECT_HANDLE)obj;
733 num_obj_found++;
735 (void) pthread_mutex_unlock(&obj->object_mutex);
738 fcontext->next_result_index = i;
739 *found_obj_count = num_obj_found;
743 * Add an token object to the token object list in slot.
745 * This function will acquire the lock on the slot, and release
746 * that lock after adding the object to the slot's token object list.
748 void
749 kernel_add_token_object_to_slot(kernel_object_t *objp, kernel_slot_t *pslot)
751 /* Acquire the slot lock. */
752 (void) pthread_mutex_lock(&pslot->sl_mutex);
754 /* Insert the new object in front of slot's token object list. */
755 if (pslot->sl_tobj_list == NULL) {
756 pslot->sl_tobj_list = objp;
757 objp->next = NULL;
758 objp->prev = NULL;
759 } else {
760 pslot->sl_tobj_list->prev = objp;
761 objp->next = pslot->sl_tobj_list;
762 objp->prev = NULL;
763 pslot->sl_tobj_list = objp;
766 /* Release the slot lock. */
767 (void) pthread_mutex_unlock(&pslot->sl_mutex);
771 * Remove an token object from the slot's token object list.
772 * This routine is called by kernel_delete_token_object().
773 * The caller of this function hold the slot lock.
775 void
776 kernel_remove_token_object_from_slot(kernel_slot_t *pslot,
777 kernel_object_t *objp)
780 if (pslot->sl_tobj_list == objp) {
781 /* Object is the first one in the list */
782 if (objp->next) {
783 pslot->sl_tobj_list = objp->next;
784 objp->next->prev = NULL;
785 } else {
786 /* Object is the only one in the list. */
787 pslot->sl_tobj_list = NULL;
789 } else {
790 /* Object is not the first one in the list. */
791 if (objp->next) {
792 /* Object is in the middle of the list. */
793 objp->prev->next = objp->next;
794 objp->next->prev = objp->prev;
795 } else {
796 /* Object is the last one in the list. */
797 objp->prev->next = NULL;
803 * Delete a token object:
804 * - Remove the object from the slot's token object list.
805 * - Release the storage allocated to the object.
807 * The boolean argument slot_lock_held is used to indicate that whether
808 * the caller holds the slot lock or not. When the caller does not hold
809 * the slot lock, this function will acquire that lock in order to proceed,
810 * and also release that lock before returning to caller.
812 * The boolean argument wrapper_only is used to indicate that whether
813 * the caller only wants to the object wrapper from library.
815 CK_RV
816 kernel_delete_token_object(kernel_slot_t *pslot, kernel_session_t *sp,
817 kernel_object_t *objp, boolean_t slot_lock_held, boolean_t wrapper_only)
819 CK_RV rv;
820 crypto_object_destroy_t obj_destroy;
821 int r;
824 * Check to see if the caller holds the lock on the slot.
825 * If not, we need to acquire that lock in order to proceed.
827 if (!slot_lock_held) {
828 (void) pthread_mutex_lock(&pslot->sl_mutex);
831 /* Remove the object from the slot's token object list first. */
832 kernel_remove_token_object_from_slot(pslot, objp);
834 /* Release the slot lock if the call doesn't hold the lock. */
835 if (!slot_lock_held) {
836 (void) pthread_mutex_unlock(&pslot->sl_mutex);
839 kernel_delete_object_cleanup(objp, wrapper_only);
841 if (!wrapper_only) {
842 obj_destroy.od_session = sp->k_session;
843 obj_destroy.od_handle = objp->k_handle;
845 while ((r = ioctl(kernel_fd, CRYPTO_OBJECT_DESTROY,
846 &obj_destroy)) < 0) {
847 if (errno != EINTR)
848 break;
850 if (r < 0) {
851 rv = CKR_FUNCTION_FAILED;
852 } else {
853 rv = crypto2pkcs11_error_number(
854 obj_destroy.od_return_value);
858 * Could not destroy an object from kernel. Write a warning
859 * in syslog, but we still clean up the object wrapper in
860 * the library.
862 if (rv != CKR_OK) {
863 cryptoerror(LOG_ERR, "pkcs11_kernel: Could not "
864 "destroy an object in kernel.");
868 (void) pthread_mutex_unlock(&objp->object_mutex);
869 /* Destroy the object lock */
870 (void) pthread_mutex_destroy(&objp->object_mutex);
871 /* Free the object itself */
872 kernel_object_delay_free(objp);
874 return (CKR_OK);
878 * Clean up private object wrappers in this slot. The caller holds the slot
879 * lock.
881 void
882 kernel_cleanup_pri_objects_in_slot(kernel_slot_t *pslot,
883 kernel_session_t *cur_sp)
885 kernel_session_t *session_p;
886 kernel_object_t *objp;
887 kernel_object_t *objp1;
890 * Delete every private token object from the slot' token object list
892 objp = pslot->sl_tobj_list;
893 while (objp) {
894 objp1 = objp->next;
896 * The first TRUE boolean argument indicates that the caller
897 * hold the slot lock. The second TRUE boolean argument
898 * indicates that the caller just wants to clean up the object
899 * wrapper from the library only.
901 if (objp->bool_attr_mask & PRIVATE_BOOL_ON) {
902 (void) kernel_delete_token_object(pslot, cur_sp, objp,
903 B_TRUE, B_TRUE);
905 objp = objp1;
909 * Walk through all the sessions in this slot and delete every
910 * private object.
912 session_p = pslot->sl_sess_list;
913 while (session_p) {
915 /* Delete all the objects in the session. */
916 objp = session_p->object_list;
917 while (objp) {
918 objp1 = objp->next;
920 * The FALSE boolean argument indicates that the
921 * caller does not hold the session lock. The TRUE
922 * boolean argument indicates that the caller just
923 * want to clean upt the object wrapper from the
924 * library only.
926 if (objp->bool_attr_mask & PRIVATE_BOOL_ON) {
927 (void) kernel_delete_session_object(session_p,
928 objp, B_FALSE, B_TRUE);
931 objp = objp1;
934 session_p = session_p->next;
939 * Get the object size in bytes for the objects created in the library.
941 CK_RV
942 kernel_get_object_size(kernel_object_t *obj, CK_ULONG_PTR pulSize)
944 CK_RV rv = CKR_OK;
945 CK_ULONG obj_size;
946 biginteger_t *big;
948 obj_size = sizeof (kernel_object_t);
950 switch (obj->class) {
951 case CKO_PUBLIC_KEY:
952 if (obj->key_type == CKK_RSA) {
953 big = OBJ_PUB_RSA_PUBEXPO(obj);
954 obj_size += big->big_value_len;
955 big = OBJ_PUB_RSA_MOD(obj);
956 obj_size += big->big_value_len;
958 } else if (obj->key_type == CKK_DSA) {
959 big = OBJ_PUB_DSA_PRIME(obj);
960 obj_size += big->big_value_len;
961 big = OBJ_PUB_DSA_SUBPRIME(obj);
962 obj_size += big->big_value_len;
963 big = OBJ_PUB_DSA_BASE(obj);
964 obj_size += big->big_value_len;
965 big = OBJ_PUB_DSA_VALUE(obj);
966 obj_size += big->big_value_len;
968 } else if (obj->key_type == CKK_EC) {
969 big = OBJ_PUB_EC_POINT(obj);
970 obj_size += big->big_value_len;
972 } else {
973 rv = CKR_OBJECT_HANDLE_INVALID;
975 break;
977 case CKO_PRIVATE_KEY:
978 if (obj->key_type == CKK_RSA) {
979 big = OBJ_PRI_RSA_MOD(obj);
980 obj_size += big->big_value_len;
982 big = OBJ_PRI_RSA_PUBEXPO(obj); /* optional */
983 if (big != NULL) {
984 obj_size += big->big_value_len;
987 big = OBJ_PRI_RSA_PRIEXPO(obj);
988 obj_size += big->big_value_len;
990 big = OBJ_PRI_RSA_PRIME1(obj); /* optional */
991 if (big != NULL) {
992 obj_size += big->big_value_len;
995 big = OBJ_PRI_RSA_PRIME2(obj); /* optional */
996 if (big != NULL) {
997 obj_size += big->big_value_len;
1000 big = OBJ_PRI_RSA_EXPO1(obj); /* optional */
1001 if (big != NULL) {
1002 obj_size += big->big_value_len;
1005 big = OBJ_PRI_RSA_EXPO2(obj); /* optional */
1006 if (big != NULL) {
1007 obj_size += big->big_value_len;
1010 big = OBJ_PRI_RSA_COEF(obj); /* optional */
1011 if (big != NULL) {
1012 obj_size += big->big_value_len;
1015 } else if (obj->key_type == CKK_DSA) {
1016 big = OBJ_PRI_DSA_PRIME(obj);
1017 obj_size += big->big_value_len;
1018 big = OBJ_PRI_DSA_SUBPRIME(obj);
1019 obj_size += big->big_value_len;
1020 big = OBJ_PRI_DSA_BASE(obj);
1021 obj_size += big->big_value_len;
1022 big = OBJ_PRI_DSA_VALUE(obj);
1023 obj_size += big->big_value_len;
1025 } else if (obj->key_type == CKK_EC) {
1026 big = OBJ_PRI_EC_VALUE(obj);
1027 obj_size += big->big_value_len;
1029 } else {
1030 rv = CKR_OBJECT_HANDLE_INVALID;
1032 break;
1034 case CKO_SECRET_KEY:
1035 obj_size += OBJ_SEC_VALUE_LEN(obj);
1036 break;
1038 default:
1039 rv = CKR_OBJECT_HANDLE_INVALID;
1042 if (rv == CKR_OK) {
1043 *pulSize = obj_size;
1046 return (rv);
1050 * This function adds the to-be-freed session object to a linked list.
1051 * When the number of objects queued in the linked list reaches the
1052 * maximum threshold MAX_OBJ_TO_BE_FREED, it will free the first
1053 * object (FIFO) in the list.
1055 void
1056 kernel_object_delay_free(kernel_object_t *objp)
1058 kernel_object_t *tmp;
1060 (void) pthread_mutex_lock(&obj_delay_freed.obj_to_be_free_mutex);
1062 /* Add the newly deleted object at the end of the list */
1063 objp->next = NULL;
1064 if (obj_delay_freed.first == NULL) {
1065 obj_delay_freed.last = objp;
1066 obj_delay_freed.first = objp;
1067 } else {
1068 obj_delay_freed.last->next = objp;
1069 obj_delay_freed.last = objp;
1072 if (++obj_delay_freed.count >= MAX_OBJ_TO_BE_FREED) {
1074 * Free the first object in the list only if
1075 * the total count reaches maximum threshold.
1077 obj_delay_freed.count--;
1078 tmp = obj_delay_freed.first->next;
1079 free(obj_delay_freed.first);
1080 obj_delay_freed.first = tmp;
1082 (void) pthread_mutex_unlock(&obj_delay_freed.obj_to_be_free_mutex);