4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
29 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <security/cryptoki.h>
34 #include "softGlobal.h"
36 #include "softKeystore.h"
38 #include "softObject.h"
39 #include "softSession.h"
43 * This files contains the implementation of the following PKCS#11
44 * mechanisms needed by SSL:
45 * CKM_SSL3_MASTER_KEY_DERIVE
46 * CKM_SSL3_MASTER_KEY_DERIVE_DH
47 * CKM_SSL3_KEY_AND_DERIVE
48 * CKM_TLS_MASTER_KEY_DERIVE
49 * CKM_TLS_MASTER_KEY_DERIVE_DH
50 * CKM_TLS_KEY_AND_DERIVE
52 * SSL refers to common functions between SSL v3.0 and SSL v3.1 (a.k.a TLS.)
55 #define MAX_KEYBLOCK 160 /* should be plenty for all known cipherspecs */
57 #define MAX_DEFAULT_ATTRS 10 /* Enough for major applicarions */
59 static char *ssl3_const_vals
[] = {
71 static uint_t ssl3_const_lens
[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
73 static uchar_t TLS_MASTER_SECRET_LABEL
[] = {"master secret"};
74 #define TLS_MASTER_SECRET_LABEL_LEN 13
76 static uchar_t TLS_KEY_EXPANSION_LABEL
[] = {"key expansion"};
77 #define TLS_KEY_EXPANSION_LABEL_LEN 13
79 static uchar_t TLS_CLIENT_KEY_LABEL
[] = {"client write key"};
80 #define TLS_CLIENT_KEY_LABEL_LEN 16
82 static uchar_t TLS_SERVER_KEY_LABEL
[] = {"server write key"};
83 #define TLS_SERVER_KEY_LABEL_LEN 16
85 static uchar_t TLS_IV_BLOCK_LABEL
[] = {"IV block"};
86 #define TLS_IV_BLOCK_LABEL_LEN 8
88 static void P_MD5(uchar_t
*, uint_t
, uchar_t
*, uint_t
, uchar_t
*, uint_t
,
89 uchar_t
*, uint_t
, uchar_t
*, uint_t
, boolean_t
);
90 static void P_SHA1(uchar_t
*, uint_t
, uchar_t
*, uint_t
, uchar_t
*, uint_t
,
91 uchar_t
*, uint_t
, uchar_t
*, uint_t
, boolean_t
);
93 static CK_RV
soft_add_derived_key(CK_ATTRIBUTE_PTR
, CK_ULONG
,
94 CK_OBJECT_HANDLE_PTR
, soft_session_t
*, soft_object_t
*);
95 static void soft_delete_derived_key(soft_session_t
*, soft_object_t
*);
96 static void soft_ssl_weaken_key(CK_MECHANISM_PTR
, uchar_t
*, uint_t
,
97 uchar_t
*, uint_t
, uchar_t
*, uint_t
, uchar_t
*, boolean_t
);
101 * Called for derivation of the master secret from the pre-master secret,
102 * and for the derivation of the key_block in an SSL3 handshake
103 * result is assumed to be larger than rounds * MD5_HASH_SIZE.
106 soft_ssl3_churn(uchar_t
*secret
, uint_t secretlen
, uchar_t
*rand1
,
107 uint_t rand1len
, uchar_t
*rand2
, uint_t rand2len
, int rounds
,
112 uchar_t sha1_digest
[SHA1_HASH_SIZE
];
114 uchar_t
*ms
= result
;
115 for (i
= 0; i
< rounds
; i
++) {
117 SHA1Update(&sha1_ctx
, (const uint8_t *)ssl3_const_vals
[i
],
119 SHA1Update(&sha1_ctx
, secret
, secretlen
);
120 SHA1Update(&sha1_ctx
, rand1
, rand1len
);
121 SHA1Update(&sha1_ctx
, rand2
, rand2len
);
122 SHA1Final(sha1_digest
, &sha1_ctx
);
125 MD5Update(&md5_ctx
, secret
, secretlen
);
126 MD5Update(&md5_ctx
, sha1_digest
, SHA1_HASH_SIZE
);
127 MD5Final(ms
, &md5_ctx
);
133 * This TLS generic Pseudo Random Function expands a triplet
134 * {secret, label, seed} into any arbitrary length string of pseudo
136 * Here, it is called for the derivation of the master secret from the
137 * pre-master secret, and for the derivation of the key_block in a TLS
141 soft_tls_prf(uchar_t
*secret
, uint_t secretlen
, uchar_t
*label
, uint_t labellen
,
142 uchar_t
*rand1
, uint_t rand1len
, uchar_t
*rand2
, uint_t rand2len
,
143 uchar_t
*result
, uint_t resultlen
)
146 uchar_t md5_digested_key
[MD5_HASH_SIZE
];
147 uchar_t sha1_digested_key
[SHA1_HASH_SIZE
];
148 uint_t L_S
, L_S1
, L_S2
;
150 /* secret is NULL for IV's in exportable ciphersuites */
151 if (secret
== NULL
) {
159 L_S
= roundup(secretlen
, 2) / 2;
163 S2
= secret
+ (secretlen
/ 2); /* Possible overlap of S1 and S2. */
165 /* Reduce the half secrets if bigger than the HASH's block size */
166 if (L_S
> MD5_HMAC_BLOCK_SIZE
) {
171 MD5Update(&md5_ctx
, S1
, L_S
);
172 MD5Final(md5_digested_key
, &md5_ctx
);
173 S1
= md5_digested_key
;
174 L_S1
= MD5_HASH_SIZE
;
177 SHA1Update(&sha1_ctx
, S2
, L_S
);
178 SHA1Final(sha1_digested_key
, &sha1_ctx
);
179 S2
= sha1_digested_key
;
180 L_S2
= SHA1_HASH_SIZE
;
184 * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
185 * P_SHA-1(S2, label + seed);
186 * the 'seed' here is rand1 + rand2
189 /* The first one writes directly to the result */
190 P_MD5(S1
, L_S1
, label
, labellen
, rand1
, rand1len
, rand2
, rand2len
,
191 result
, resultlen
, B_FALSE
);
193 /* The second one XOR's with the result. */
194 P_SHA1(S2
, L_S2
, label
, labellen
, rand1
, rand1len
, rand2
, rand2len
,
195 result
, resultlen
, B_TRUE
);
199 * These two expansion routines are very similar. (they can merge one day).
200 * They implement the P_HASH() function for MD5 and for SHA1, as defined in
203 * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
204 * HMAC_hash(secret, A(2) + seed) +
205 * HMAC_hash(secret, A(3) + seed) + ...
206 * Where + indicates concatenation.
209 * A(i) = HMAC_hash(secret, A(i-1))
211 * The seed is the concatenation of 'babel', 'rand1', and 'rand2'.
214 P_MD5(uchar_t
*secret
, uint_t secretlen
, uchar_t
*label
, uint_t labellen
,
215 uchar_t
*rand1
, uint_t rand1len
, uchar_t
*rand2
, uint_t rand2len
,
216 uchar_t
*result
, uint_t resultlen
, boolean_t xor_it
)
218 uint32_t md5_ipad
[MD5_HMAC_INTS_PER_BLOCK
];
219 uint32_t md5_opad
[MD5_HMAC_INTS_PER_BLOCK
];
220 uchar_t md5_hmac
[MD5_HASH_SIZE
];
221 uchar_t A
[MD5_HASH_SIZE
];
222 md5_hc_ctx_t md5_hmac_ctx
;
224 uint_t left
= resultlen
;
227 /* good compilers will leverage the aligment */
228 bzero(md5_ipad
, MD5_HMAC_BLOCK_SIZE
);
229 bzero(md5_opad
, MD5_HMAC_BLOCK_SIZE
);
232 bcopy(secret
, md5_ipad
, secretlen
);
233 bcopy(secret
, md5_opad
, secretlen
);
236 /* A(1) = HMAC_MD5(secret, rand1 + rand2) */
237 md5_hmac_ctx_init(&md5_hmac_ctx
, md5_ipad
, md5_opad
);
238 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, label
, labellen
);
239 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, rand1
, rand1len
);
240 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, rand2
, rand2len
);
241 SOFT_MAC_FINAL(MD5
, &md5_hmac_ctx
, A
);
252 * Compute HMAC_MD5(secret, A(i) + seed);
253 * The secret is already expanded in the ictx and octx, so
254 * we can call the SOFT_MAC_INIT_CTX() directly.
256 SOFT_MAC_INIT_CTX(MD5
, &md5_hmac_ctx
, md5_ipad
, md5_opad
,
257 MD5_HMAC_BLOCK_SIZE
);
258 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, A
, MD5_HASH_SIZE
);
259 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, label
, labellen
);
260 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, rand1
, rand1len
);
261 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, rand2
, rand2len
);
263 if (left
> MD5_HASH_SIZE
) {
264 SOFT_MAC_FINAL(MD5
, &md5_hmac_ctx
, res
);
266 for (i
= 0; i
< MD5_HASH_SIZE
; i
++) {
271 res
+= MD5_HASH_SIZE
;
273 left
-= MD5_HASH_SIZE
;
275 SOFT_MAC_FINAL(MD5
, &md5_hmac_ctx
, md5_hmac
);
277 for (i
= 0; i
< left
; i
++) {
282 bcopy(md5_hmac
, res
, left
);
286 /* A(i) = HMAC_MD5(secret, A(i-1) */
287 SOFT_MAC_INIT_CTX(MD5
, &md5_hmac_ctx
, md5_ipad
, md5_opad
,
288 MD5_HMAC_BLOCK_SIZE
);
289 SOFT_MAC_UPDATE(MD5
, &md5_hmac_ctx
, A
, MD5_HASH_SIZE
);
290 SOFT_MAC_FINAL(MD5
, &md5_hmac_ctx
, A
);
294 P_SHA1(uchar_t
*secret
, uint_t secretlen
, uchar_t
*label
, uint_t labellen
,
295 uchar_t
*rand1
, uint_t rand1len
, uchar_t
*rand2
, uint_t rand2len
,
296 uchar_t
*result
, uint_t resultlen
, boolean_t xor_it
)
298 uint32_t sha1_ipad
[SHA1_HMAC_INTS_PER_BLOCK
];
299 uint32_t sha1_opad
[SHA1_HMAC_INTS_PER_BLOCK
];
300 uchar_t sha1_hmac
[SHA1_HASH_SIZE
];
301 uchar_t A
[SHA1_HASH_SIZE
];
302 sha1_hc_ctx_t sha1_hmac_ctx
;
304 uint_t left
= resultlen
;
307 /* good compilers will leverage the aligment */
308 bzero(sha1_ipad
, SHA1_HMAC_BLOCK_SIZE
);
309 bzero(sha1_opad
, SHA1_HMAC_BLOCK_SIZE
);
312 bcopy(secret
, sha1_ipad
, secretlen
);
313 bcopy(secret
, sha1_opad
, secretlen
);
316 /* A(1) = HMAC_SHA1(secret, rand1 + rand2) */
317 sha1_hmac_ctx_init(&sha1_hmac_ctx
, sha1_ipad
, sha1_opad
);
318 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, label
, labellen
);
319 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, rand1
, rand1len
);
320 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, rand2
, rand2len
);
321 SOFT_MAC_FINAL(SHA1
, &sha1_hmac_ctx
, A
);
332 * Compute HMAC_SHA1(secret, A(i) + seed);
333 * The secret is already expanded in the ictx and octx, so
334 * we can call the SOFT_MAC_INIT_CTX() directly.
336 SOFT_MAC_INIT_CTX(SHA1
, &sha1_hmac_ctx
,
337 (const uchar_t
*)sha1_ipad
, (const uchar_t
*)sha1_opad
,
338 SHA1_HMAC_BLOCK_SIZE
);
339 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, A
, SHA1_HASH_SIZE
);
340 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, label
, labellen
);
341 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, rand1
, rand1len
);
342 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, rand2
, rand2len
);
344 if (left
> SHA1_HASH_SIZE
) {
345 SOFT_MAC_FINAL(SHA1
, &sha1_hmac_ctx
, res
);
347 for (i
= 0; i
< SHA1_HASH_SIZE
; i
++) {
352 res
+= SHA1_HASH_SIZE
;
354 left
-= SHA1_HASH_SIZE
;
356 SOFT_MAC_FINAL(SHA1
, &sha1_hmac_ctx
, sha1_hmac
);
358 for (i
= 0; i
< left
; i
++) {
359 *cur
^= sha1_hmac
[i
];
363 bcopy(sha1_hmac
, res
, left
);
367 /* A(i) = HMAC_SHA1(secret, A(i-1) */
368 SOFT_MAC_INIT_CTX(SHA1
, &sha1_hmac_ctx
,
369 (const uchar_t
*)sha1_ipad
, (const uchar_t
*)sha1_opad
,
370 SHA1_HMAC_BLOCK_SIZE
);
371 SOFT_MAC_UPDATE(SHA1
, &sha1_hmac_ctx
, A
, SHA1_HASH_SIZE
);
372 SOFT_MAC_FINAL(SHA1
, &sha1_hmac_ctx
, A
);
376 /* This function handles the call from C_DeriveKey for CKM_TLS_PRF */
378 derive_tls_prf(CK_TLS_PRF_PARAMS_PTR param
, soft_object_t
*basekey_p
)
381 if (param
->pOutput
== NULL
|| param
->pulOutputLen
== 0)
382 return (CKR_BUFFER_TOO_SMALL
);
384 (void) soft_tls_prf(OBJ_SEC_VALUE(basekey_p
),
385 OBJ_SEC_VALUE_LEN(basekey_p
), param
->pLabel
, param
->ulLabelLen
,
386 param
->pSeed
, param
->ulSeedLen
, NULL
, 0, param
->pOutput
,
387 *param
->pulOutputLen
);
394 * soft_ssl_master_key_derive()
398 * . mech_p: key derivation mechanism. the mechanism parameter carries the
399 * client and master random from the Hello handshake messages.
400 * . basekey_p: The pre-master secret key.
401 * . pTemplate & ulAttributeCount: Any extra attributes for the key to be
403 * . phKey: store for handle to the derived key.
406 * Derive the SSL master secret from the pre-master secret, the client
408 * In SSL 3.0, master_secret =
409 * MD5(pre_master_secret + SHA('A' + pre_master_secret +
410 * ClientHello.random + ServerHello.random)) +
411 * MD5(pre_master_secret + SHA('BB' + pre_master_secret +
412 * ClientHello.random + ServerHello.random)) +
413 * MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
414 * ClientHello.random + ServerHello.random));
416 * In TLS 1.0 (a.k.a. SSL 3.1), master_secret =
417 * PRF(pre_master_secret, "master secret",
418 * ClientHello.random + ServerHello.random)
421 soft_ssl_master_key_derive(soft_session_t
*sp
, CK_MECHANISM_PTR mech
,
422 soft_object_t
*basekey_p
, CK_ATTRIBUTE_PTR pTemplate
,
423 CK_ULONG ulAttributeCount
, CK_OBJECT_HANDLE_PTR phKey
)
425 uchar_t
*pmsecret
= OBJ_SEC_VALUE(basekey_p
);
426 uint_t pmlen
= OBJ_SEC_VALUE_LEN(basekey_p
);
427 CK_SSL3_MASTER_KEY_DERIVE_PARAMS
*mkd_params
;
428 CK_SSL3_RANDOM_DATA
*random_data
;
429 CK_VERSION_PTR pVersion
;
430 uchar_t ssl_master_secret
[48];
431 CK_OBJECT_CLASS
class = CKO_SECRET_KEY
;
432 CK_KEY_TYPE keyType
= CKK_GENERIC_SECRET
;
433 CK_BBOOL
true = TRUE
;
434 CK_ATTRIBUTE obj_tmpl
[MAX_DEFAULT_ATTRS
];
435 CK_ATTRIBUTE_PTR new_tmpl
;
436 CK_ULONG newattrcount
;
437 boolean_t new_tmpl_allocated
= B_FALSE
, is_tls
= B_FALSE
;
440 uint_t ClientRandomLen
, ServerRandomLen
;
442 /* Check the validity of the mechanism's parameter */
444 mkd_params
= (CK_SSL3_MASTER_KEY_DERIVE_PARAMS
*)mech
->pParameter
;
446 if (mkd_params
== NULL
||
447 mech
->ulParameterLen
!= sizeof (CK_SSL3_MASTER_KEY_DERIVE_PARAMS
))
448 return (CKR_MECHANISM_PARAM_INVALID
);
450 pVersion
= mkd_params
->pVersion
;
452 switch (mech
->mechanism
) {
453 case CKM_TLS_MASTER_KEY_DERIVE
:
456 case CKM_SSL3_MASTER_KEY_DERIVE
:
457 /* Invalid pre-master key length. What else to return? */
459 return (CKR_ARGUMENTS_BAD
);
461 /* Get the SSL version number from the premaster secret */
462 if (pVersion
== NULL_PTR
)
463 return (CKR_MECHANISM_PARAM_INVALID
);
465 bcopy(pmsecret
, pVersion
, sizeof (CK_VERSION
));
468 case CKM_TLS_MASTER_KEY_DERIVE_DH
:
471 case CKM_SSL3_MASTER_KEY_DERIVE_DH
:
472 if (pVersion
!= NULL_PTR
)
473 return (CKR_MECHANISM_PARAM_INVALID
);
476 random_data
= &mkd_params
->RandomInfo
;
477 ClientRandomLen
= random_data
->ulClientRandomLen
;
478 ServerRandomLen
= random_data
->ulServerRandomLen
;
480 if (random_data
->pClientRandom
== NULL_PTR
|| ClientRandomLen
== 0 ||
481 random_data
->pServerRandom
== NULL_PTR
|| ServerRandomLen
== 0) {
482 return (CKR_MECHANISM_PARAM_INVALID
);
485 /* Now the actual secret derivation */
487 soft_ssl3_churn(pmsecret
, pmlen
, random_data
->pClientRandom
,
488 ClientRandomLen
, random_data
->pServerRandom
,
489 ServerRandomLen
, 3, ssl_master_secret
);
491 soft_tls_prf(pmsecret
, pmlen
, TLS_MASTER_SECRET_LABEL
,
492 TLS_MASTER_SECRET_LABEL_LEN
, random_data
->pClientRandom
,
493 ClientRandomLen
, random_data
->pServerRandom
,
494 ServerRandomLen
, ssl_master_secret
, 48);
498 * The object creation attributes need to be in one contiguous
499 * array. In addition to the attrs from the application supplied
500 * pTemplates, We need to add the class, type, value, valuelen and
502 * In the most likely case, the application passes between zero and
503 * handful of attributes, We optimize for that case by allocating
504 * the new template on the stack. Oherwise we malloc() it.
507 newattrcount
= ulAttributeCount
+ 4;
508 if (newattrcount
> MAX_DEFAULT_ATTRS
) {
509 new_tmpl
= malloc(sizeof (CK_ATTRIBUTE
) * newattrcount
);
511 if (new_tmpl
== NULL
)
512 return (CKR_HOST_MEMORY
);
514 new_tmpl_allocated
= B_TRUE
;
519 * Fill in the new template.
520 * We put the attributes contributed by the mechanism first
521 * so that they override the application supplied ones.
523 new_tmpl
[0].type
= CKA_CLASS
;
524 new_tmpl
[0].pValue
= &class;
525 new_tmpl
[0].ulValueLen
= sizeof (class);
526 new_tmpl
[1].type
= CKA_KEY_TYPE
;
527 new_tmpl
[1].pValue
= &keyType
;
528 new_tmpl
[1].ulValueLen
= sizeof (keyType
);
529 new_tmpl
[2].type
= CKA_DERIVE
;
530 new_tmpl
[2].pValue
= &true;
531 new_tmpl
[2].ulValueLen
= sizeof (true);
532 new_tmpl
[3].type
= CKA_VALUE
;
533 new_tmpl
[3].pValue
= ssl_master_secret
;
534 new_tmpl
[3].ulValueLen
= 48;
536 /* Any attributes left? */
537 if (ulAttributeCount
> 0) {
539 /* Validate the default class and type attributes */
540 for (i
= 0; i
< ulAttributeCount
; i
++) {
541 /* The caller is responsible for proper alignment */
542 if ((pTemplate
[i
].type
== CKA_CLASS
) &&
543 (*((CK_OBJECT_CLASS
*)pTemplate
[i
].pValue
) !=
545 rv
= CKR_TEMPLATE_INCONSISTENT
;
548 if ((pTemplate
[i
].type
== CKA_KEY_TYPE
) &&
549 (*((CK_KEY_TYPE
*)pTemplate
[i
].pValue
) !=
550 CKK_GENERIC_SECRET
)) {
551 rv
= CKR_TEMPLATE_INCONSISTENT
;
555 bcopy(pTemplate
, &new_tmpl
[4],
556 ulAttributeCount
* sizeof (CK_ATTRIBUTE
));
559 rv
= soft_add_derived_key(new_tmpl
, newattrcount
, phKey
, sp
, basekey_p
);
561 if (new_tmpl_allocated
)
568 * soft_ssl3_key_and_mac_derive()
572 * . mech_p: key derivation mechanism. the mechanism parameter carries the
573 * client and mastter random from the Hello handshake messages,
574 * the specification of the key and IV sizes, and the location
575 * for the resulting keys and IVs.
576 * . basekey_p: The master secret key.
577 * . pTemplate & ulAttributeCount: Any extra attributes for the key to be
581 * Derive the SSL key material (Client and server MAC secrets, symmetric
582 * keys and IVs), from the master secret and the client
584 * First a keyblock is generated usining the following formula:
586 * MD5(master_secret + SHA(`A' + master_secret +
587 * ServerHello.random +
588 * ClientHello.random)) +
589 * MD5(master_secret + SHA(`BB' + master_secret +
590 * ServerHello.random +
591 * ClientHello.random)) +
592 * MD5(master_secret + SHA(`CCC' + master_secret +
593 * ServerHello.random +
594 * ClientHello.random)) + [...];
596 * In TLS 1.0 (a.k.a. SSL 3.1), key_block =
597 * PRF(master_secret, "key expansion",
598 * ServerHello.random + ClientHello.random)
600 * Then the keys materials are taken from the keyblock.
604 soft_ssl_key_and_mac_derive(soft_session_t
*sp
, CK_MECHANISM_PTR mech
,
605 soft_object_t
*basekey_p
, CK_ATTRIBUTE_PTR pTemplate
,
606 CK_ULONG ulAttributeCount
)
608 uchar_t
*msecret
= OBJ_SEC_VALUE(basekey_p
);
609 uint_t mslen
= OBJ_SEC_VALUE_LEN(basekey_p
);
610 CK_SSL3_KEY_MAT_PARAMS
*km_params
;
611 CK_SSL3_RANDOM_DATA
*random_data
;
612 CK_SSL3_KEY_MAT_OUT
*kmo
;
613 uchar_t key_block
[MAX_KEYBLOCK
], *kb
, *export_keys
= NULL
;
614 CK_OBJECT_CLASS
class = CKO_SECRET_KEY
;
615 CK_KEY_TYPE keyType
= CKK_GENERIC_SECRET
;
616 CK_BBOOL
true = TRUE
;
617 CK_ATTRIBUTE obj_tmpl
[MAX_DEFAULT_ATTRS
];
618 CK_ATTRIBUTE_PTR new_tmpl
;
619 ulong_t newattrcount
, mac_key_bytes
, secret_key_bytes
, iv_bytes
;
620 ulong_t extra_attr_count
;
623 boolean_t new_tmpl_allocated
= B_FALSE
, isExport
;
625 uint_t ClientRandomLen
, ServerRandomLen
;
627 /* Check the validity of the mechanism's parameter */
629 km_params
= (CK_SSL3_KEY_MAT_PARAMS
*)mech
->pParameter
;
631 if (km_params
== NULL
||
632 mech
->ulParameterLen
!= sizeof (CK_SSL3_KEY_MAT_PARAMS
) ||
633 (kmo
= km_params
->pReturnedKeyMaterial
) == NULL
)
634 return (CKR_MECHANISM_PARAM_INVALID
);
636 isExport
= (km_params
->bIsExport
== TRUE
);
638 random_data
= &km_params
->RandomInfo
;
639 ClientRandomLen
= random_data
->ulClientRandomLen
;
640 ServerRandomLen
= random_data
->ulServerRandomLen
;
642 if (random_data
->pClientRandom
== NULL_PTR
|| ClientRandomLen
== 0 ||
643 random_data
->pServerRandom
== NULL_PTR
|| ServerRandomLen
== 0) {
644 return (CKR_MECHANISM_PARAM_INVALID
);
647 mac_key_bytes
= km_params
->ulMacSizeInBits
/ 8;
648 secret_key_bytes
= km_params
->ulKeySizeInBits
/ 8;
649 iv_bytes
= km_params
->ulIVSizeInBits
/ 8;
651 if ((iv_bytes
> 0) &&
652 ((kmo
->pIVClient
== NULL
) || (kmo
->pIVServer
== NULL
)))
653 return (CKR_MECHANISM_PARAM_INVALID
);
656 * For exportable ciphersuites, the IV's aren't taken from the
657 * key block. They are directly derived from the client and
658 * server random data.
660 * client_write_IV = MD5(ClientHello.random + ServerHello.random);
661 * server_write_IV = MD5(ServerHello.random + ClientHello.random);
663 * iv_block = PRF("", "IV block", client_random +
664 * server_random)[0..15]
665 * client_write_IV = iv_block[0..7]
666 * server_write_IV = iv_block[8..15]
668 if ((isExport
) && (iv_bytes
> 0)) {
670 if (mech
->mechanism
== CKM_SSL3_KEY_AND_MAC_DERIVE
) {
673 if (iv_bytes
> MD5_HASH_SIZE
)
674 return (CKR_MECHANISM_PARAM_INVALID
);
676 MD5Init(&exp_md5_ctx
);
677 MD5Update(&exp_md5_ctx
, random_data
->pClientRandom
,
679 MD5Update(&exp_md5_ctx
, random_data
->pServerRandom
,
682 /* there's room in key_block. use it */
683 MD5Final(key_block
, &exp_md5_ctx
);
684 bcopy(key_block
, kmo
->pIVClient
, iv_bytes
);
686 MD5Init(&exp_md5_ctx
);
687 MD5Update(&exp_md5_ctx
, random_data
->pServerRandom
,
689 MD5Update(&exp_md5_ctx
, random_data
->pClientRandom
,
691 MD5Final(key_block
, &exp_md5_ctx
);
692 bcopy(key_block
, kmo
->pIVServer
, iv_bytes
);
694 uchar_t iv_block
[16];
697 return (CKR_MECHANISM_PARAM_INVALID
);
699 soft_tls_prf(NULL
, 0, TLS_IV_BLOCK_LABEL
,
700 TLS_IV_BLOCK_LABEL_LEN
,
701 random_data
->pClientRandom
, ClientRandomLen
,
702 random_data
->pServerRandom
, ServerRandomLen
,
704 bcopy(iv_block
, kmo
->pIVClient
, 8);
705 bcopy(iv_block
+ 8, kmo
->pIVServer
, 8);
707 /* so we won't allocate a key_block bigger than needed */
711 /* Now the actual secret derivation */
713 size
= (mac_key_bytes
+ secret_key_bytes
+ iv_bytes
) * 2;
715 /* Need to handle this better */
716 if (size
> MAX_KEYBLOCK
)
717 return (CKR_MECHANISM_PARAM_INVALID
);
719 rounds
= howmany(size
, MD5_HASH_SIZE
);
723 if (mech
->mechanism
== CKM_SSL3_KEY_AND_MAC_DERIVE
) {
724 soft_ssl3_churn(msecret
, mslen
, random_data
->pServerRandom
,
725 ServerRandomLen
, random_data
->pClientRandom
,
726 ClientRandomLen
, rounds
, kb
);
728 soft_tls_prf(msecret
, mslen
, TLS_KEY_EXPANSION_LABEL
,
729 TLS_KEY_EXPANSION_LABEL_LEN
,
730 random_data
->pServerRandom
, ServerRandomLen
,
731 random_data
->pClientRandom
, ClientRandomLen
,
735 /* Now create the objects */
737 kmo
->hClientMacSecret
= CK_INVALID_HANDLE
;
738 kmo
->hServerMacSecret
= CK_INVALID_HANDLE
;
739 kmo
->hClientKey
= CK_INVALID_HANDLE
;
740 kmo
->hServerKey
= CK_INVALID_HANDLE
;
742 /* First the MAC secrets */
743 if (mac_key_bytes
> 0) {
744 obj_tmpl
[0].type
= CKA_CLASS
;
745 obj_tmpl
[0].pValue
= &class; /* CKO_SECRET_KEY */
746 obj_tmpl
[0].ulValueLen
= sizeof (class);
747 obj_tmpl
[1].type
= CKA_KEY_TYPE
;
748 obj_tmpl
[1].pValue
= &keyType
; /* CKK_GENERIC_SECRET */
749 obj_tmpl
[1].ulValueLen
= sizeof (keyType
);
750 obj_tmpl
[2].type
= CKA_DERIVE
;
751 obj_tmpl
[2].pValue
= &true;
752 obj_tmpl
[2].ulValueLen
= sizeof (true);
753 obj_tmpl
[3].type
= CKA_SIGN
;
754 obj_tmpl
[3].pValue
= &true;
755 obj_tmpl
[3].ulValueLen
= sizeof (true);
756 obj_tmpl
[4].type
= CKA_VERIFY
;
757 obj_tmpl
[4].pValue
= &true;
758 obj_tmpl
[4].ulValueLen
= sizeof (true);
759 obj_tmpl
[5].type
= CKA_VALUE
;
760 obj_tmpl
[5].pValue
= kb
;
761 obj_tmpl
[5].ulValueLen
= mac_key_bytes
;
763 rv
= soft_add_derived_key(obj_tmpl
, 6,
764 &(kmo
->hClientMacSecret
), sp
, basekey_p
);
771 obj_tmpl
[5].pValue
= kb
;
772 rv
= soft_add_derived_key(obj_tmpl
, 6,
773 &(kmo
->hServerMacSecret
), sp
, basekey_p
);
781 /* Then the symmetric ciphers keys */
783 extra_attr_count
= (secret_key_bytes
== 0) ? 6 : 5;
784 newattrcount
= ulAttributeCount
+ extra_attr_count
;
785 if (newattrcount
> MAX_DEFAULT_ATTRS
) {
786 new_tmpl
= malloc(sizeof (CK_ATTRIBUTE
) * newattrcount
);
788 if (new_tmpl
== NULL
)
789 return (CKR_HOST_MEMORY
);
791 new_tmpl_allocated
= B_TRUE
;
795 new_tmpl
[n
].type
= CKA_CLASS
;
796 new_tmpl
[n
].pValue
= &class; /* CKO_SECRET_KEY */
797 new_tmpl
[n
].ulValueLen
= sizeof (class);
800 * The keyType comes from the application's template, and depends
801 * on the ciphersuite. The only exception is authentication only
802 * ciphersuites which do not use cipher keys.
804 if (secret_key_bytes
== 0) {
805 new_tmpl
[n
].type
= CKA_KEY_TYPE
;
806 new_tmpl
[n
].pValue
= &keyType
; /* CKK_GENERIC_SECRET */
807 new_tmpl
[n
].ulValueLen
= sizeof (keyType
);
810 new_tmpl
[n
].type
= CKA_DERIVE
;
811 new_tmpl
[n
].pValue
= &true;
812 new_tmpl
[n
].ulValueLen
= sizeof (true);
814 new_tmpl
[n
].type
= CKA_ENCRYPT
;
815 new_tmpl
[n
].pValue
= &true;
816 new_tmpl
[n
].ulValueLen
= sizeof (true);
818 new_tmpl
[n
].type
= CKA_DECRYPT
;
819 new_tmpl
[n
].pValue
= &true;
820 new_tmpl
[n
].ulValueLen
= sizeof (true);
822 new_tmpl
[n
].type
= CKA_VALUE
;
823 new_tmpl
[n
].pValue
= NULL
;
824 new_tmpl
[n
].ulValueLen
= 0;
826 if (secret_key_bytes
> 0) {
828 if (secret_key_bytes
> MD5_HASH_SIZE
) {
829 rv
= CKR_MECHANISM_PARAM_INVALID
;
832 if ((export_keys
= malloc(2 * MD5_HASH_SIZE
)) == NULL
) {
833 rv
= CKR_HOST_MEMORY
;
836 soft_ssl_weaken_key(mech
, kb
, secret_key_bytes
,
837 random_data
->pClientRandom
, ClientRandomLen
,
838 random_data
->pServerRandom
, ServerRandomLen
,
839 export_keys
, B_TRUE
);
840 new_tmpl
[n
].pValue
= export_keys
;
841 new_tmpl
[n
].ulValueLen
= MD5_HASH_SIZE
;
843 new_tmpl
[n
].pValue
= kb
;
844 new_tmpl
[n
].ulValueLen
= secret_key_bytes
;
848 if (ulAttributeCount
> 0)
849 bcopy(pTemplate
, &new_tmpl
[extra_attr_count
],
850 ulAttributeCount
* sizeof (CK_ATTRIBUTE
));
852 rv
= soft_add_derived_key(new_tmpl
, newattrcount
,
853 &(kmo
->hClientKey
), sp
, basekey_p
);
858 kb
+= secret_key_bytes
;
860 if (secret_key_bytes
> 0) {
862 soft_ssl_weaken_key(mech
, kb
, secret_key_bytes
,
863 random_data
->pServerRandom
, ServerRandomLen
,
864 random_data
->pClientRandom
, ClientRandomLen
,
865 export_keys
+ MD5_HASH_SIZE
, B_FALSE
);
866 new_tmpl
[n
].pValue
= export_keys
+ MD5_HASH_SIZE
;
868 new_tmpl
[n
].pValue
= kb
;
871 rv
= soft_add_derived_key(new_tmpl
, newattrcount
,
872 &(kmo
->hServerKey
), sp
, basekey_p
);
877 kb
+= secret_key_bytes
;
879 /* Finally, the IVs */
881 bcopy(kb
, kmo
->pIVClient
, iv_bytes
);
883 bcopy(kb
, kmo
->pIVServer
, iv_bytes
);
886 if (new_tmpl_allocated
)
894 if (kmo
->hClientMacSecret
!= CK_INVALID_HANDLE
) {
895 (void) soft_delete_derived_key(sp
,
896 (soft_object_t
*)(kmo
->hClientMacSecret
));
897 kmo
->hClientMacSecret
= CK_INVALID_HANDLE
;
899 if (kmo
->hServerMacSecret
!= CK_INVALID_HANDLE
) {
900 (void) soft_delete_derived_key(sp
,
901 (soft_object_t
*)(kmo
->hServerMacSecret
));
902 kmo
->hServerMacSecret
= CK_INVALID_HANDLE
;
904 if (kmo
->hClientKey
!= CK_INVALID_HANDLE
) {
905 (void) soft_delete_derived_key(sp
,
906 (soft_object_t
*)(kmo
->hClientKey
));
907 kmo
->hClientKey
= CK_INVALID_HANDLE
;
909 if (kmo
->hServerKey
!= CK_INVALID_HANDLE
) {
910 (void) soft_delete_derived_key(sp
,
911 (soft_object_t
*)(kmo
->hServerKey
));
912 kmo
->hServerKey
= CK_INVALID_HANDLE
;
915 if (new_tmpl_allocated
)
924 * Add the derived key to the session, and, if it's a token object,
925 * write it to the token.
928 soft_add_derived_key(CK_ATTRIBUTE_PTR tmpl
, CK_ULONG attrcount
,
929 CK_OBJECT_HANDLE_PTR phKey
, soft_session_t
*sp
, soft_object_t
*basekey_p
)
932 soft_object_t
*secret_key
;
934 if ((secret_key
= calloc(1, sizeof (soft_object_t
))) == NULL
) {
935 return (CKR_HOST_MEMORY
);
938 if (((rv
= soft_build_secret_key_object(tmpl
, attrcount
, secret_key
,
939 SOFT_CREATE_OBJ_INT
, 0, (CK_KEY_TYPE
)~0UL)) != CKR_OK
) ||
940 ((rv
= soft_pin_expired_check(secret_key
)) != CKR_OK
) ||
941 ((rv
= soft_object_write_access_check(sp
, secret_key
)) != CKR_OK
)) {
947 /* Set the sensitivity and extractability attributes as a needed */
948 soft_derive_enforce_flags(basekey_p
, secret_key
);
950 /* Initialize the rest of stuffs in soft_object_t. */
951 (void) pthread_mutex_init(&secret_key
->object_mutex
, NULL
);
952 secret_key
->magic_marker
= SOFTTOKEN_OBJECT_MAGIC
;
954 /* ... and, if it needs to persist, write on the token */
955 if (IS_TOKEN_OBJECT(secret_key
)) {
956 secret_key
->session_handle
= (CK_SESSION_HANDLE
)NULL
;
957 soft_add_token_object_to_slot(secret_key
);
958 rv
= soft_put_object_to_keystore(secret_key
);
960 soft_delete_token_object(secret_key
, B_FALSE
, B_FALSE
);
963 *phKey
= (CK_OBJECT_HANDLE
)secret_key
;
968 /* Add the new object to the session's object list. */
969 soft_add_object_to_session(secret_key
, sp
);
970 secret_key
->session_handle
= (CK_SESSION_HANDLE
)sp
;
972 *phKey
= (CK_OBJECT_HANDLE
)secret_key
;
978 * Delete the derived key from the session, and, if it's a token object,
979 * remove it from the token.
982 soft_delete_derived_key(soft_session_t
*sp
, soft_object_t
*key
)
984 /* session_handle is the creating session. It's NULL for token objs */
986 if (IS_TOKEN_OBJECT(key
))
987 soft_delete_token_object(key
, B_FALSE
, B_FALSE
);
989 soft_delete_object(sp
, key
, B_FALSE
, B_FALSE
);
993 * soft_ssl_weaken_key()
994 * Reduce the key length to an exportable size.
996 * final_client_write_key = MD5(client_write_key +
997 * ClientHello.random +
998 * ServerHello.random);
999 * final_server_write_key = MD5(server_write_key +
1000 * ServerHello.random +
1001 * ClientHello.random);
1003 * final_client_write_key = PRF(SecurityParameters.client_write_key,
1004 * "client write key",
1005 * SecurityParameters.client_random +
1006 * SecurityParameters.server_random)[0..15];
1007 * final_server_write_key = PRF(SecurityParameters.server_write_key,
1008 * "server write key",
1009 * SecurityParameters.client_random +
1010 * SecurityParameters.server_random)[0..15];
1013 soft_ssl_weaken_key(CK_MECHANISM_PTR mech
, uchar_t
*secret
, uint_t secretlen
,
1014 uchar_t
*rand1
, uint_t rand1len
, uchar_t
*rand2
, uint_t rand2len
,
1015 uchar_t
*result
, boolean_t isclient
)
1017 MD5_CTX exp_md5_ctx
;
1021 if (mech
->mechanism
== CKM_SSL3_KEY_AND_MAC_DERIVE
) {
1022 MD5Init(&exp_md5_ctx
);
1023 MD5Update(&exp_md5_ctx
, secret
, secretlen
);
1024 MD5Update(&exp_md5_ctx
, rand1
, rand1len
);
1025 MD5Update(&exp_md5_ctx
, rand2
, rand2len
);
1026 MD5Final(result
, &exp_md5_ctx
);
1029 label
= TLS_CLIENT_KEY_LABEL
;
1030 labellen
= TLS_CLIENT_KEY_LABEL_LEN
;
1031 soft_tls_prf(secret
, secretlen
, label
, labellen
,
1032 rand1
, rand1len
, rand2
, rand2len
, result
, 16);
1034 label
= TLS_SERVER_KEY_LABEL
;
1035 labellen
= TLS_SERVER_KEY_LABEL_LEN
;
1036 soft_tls_prf(secret
, secretlen
, label
, labellen
,
1037 rand2
, rand2len
, rand1
, rand1len
, result
, 16);