4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
29 * The 512-byte leaf is broken into 32 16-byte chunks.
30 * chunk number n means l_chunk[n], even though the header precedes it.
31 * the names are stored null-terminated.
37 #include <sys/zfs_context.h>
38 #include <sys/fs/zfs.h>
40 #include <sys/zap_impl.h>
41 #include <sys/zap_leaf.h>
44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t
*l
, uint16_t entry
);
46 #define CHAIN_END 0xffff /* end of the chunk chain */
48 /* half the (current) minimum block size */
49 #define MAX_ARRAY_BYTES (8<<10)
51 #define LEAF_HASH(l, h) \
52 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
54 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
56 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
58 extern inline zap_leaf_phys_t
*zap_leaf_phys(zap_leaf_t
*l
);
61 zap_memset(void *a
, int c
, size_t n
)
71 stv(int len
, void *addr
, uint64_t value
)
75 *(uint8_t *)addr
= value
;
78 *(uint16_t *)addr
= value
;
81 *(uint32_t *)addr
= value
;
84 *(uint64_t *)addr
= value
;
87 ASSERT(!"bad int len");
91 ldv(int len
, const void *addr
)
95 return (*(uint8_t *)addr
);
97 return (*(uint16_t *)addr
);
99 return (*(uint32_t *)addr
);
101 return (*(uint64_t *)addr
);
103 ASSERT(!"bad int len");
104 return (0xFEEDFACEDEADBEEFULL
);
108 zap_leaf_byteswap(zap_leaf_phys_t
*buf
, int size
)
114 l_dbuf
.db_data
= buf
;
115 l
.l_bs
= highbit64(size
) - 1;
118 buf
->l_hdr
.lh_block_type
= BSWAP_64(buf
->l_hdr
.lh_block_type
);
119 buf
->l_hdr
.lh_prefix
= BSWAP_64(buf
->l_hdr
.lh_prefix
);
120 buf
->l_hdr
.lh_magic
= BSWAP_32(buf
->l_hdr
.lh_magic
);
121 buf
->l_hdr
.lh_nfree
= BSWAP_16(buf
->l_hdr
.lh_nfree
);
122 buf
->l_hdr
.lh_nentries
= BSWAP_16(buf
->l_hdr
.lh_nentries
);
123 buf
->l_hdr
.lh_prefix_len
= BSWAP_16(buf
->l_hdr
.lh_prefix_len
);
124 buf
->l_hdr
.lh_freelist
= BSWAP_16(buf
->l_hdr
.lh_freelist
);
126 for (i
= 0; i
< ZAP_LEAF_HASH_NUMENTRIES(&l
); i
++)
127 buf
->l_hash
[i
] = BSWAP_16(buf
->l_hash
[i
]);
129 for (i
= 0; i
< ZAP_LEAF_NUMCHUNKS(&l
); i
++) {
130 zap_leaf_chunk_t
*lc
= &ZAP_LEAF_CHUNK(&l
, i
);
131 struct zap_leaf_entry
*le
;
133 switch (lc
->l_free
.lf_type
) {
134 case ZAP_CHUNK_ENTRY
:
137 le
->le_type
= BSWAP_8(le
->le_type
);
138 le
->le_value_intlen
= BSWAP_8(le
->le_value_intlen
);
139 le
->le_next
= BSWAP_16(le
->le_next
);
140 le
->le_name_chunk
= BSWAP_16(le
->le_name_chunk
);
141 le
->le_name_numints
= BSWAP_16(le
->le_name_numints
);
142 le
->le_value_chunk
= BSWAP_16(le
->le_value_chunk
);
143 le
->le_value_numints
= BSWAP_16(le
->le_value_numints
);
144 le
->le_cd
= BSWAP_32(le
->le_cd
);
145 le
->le_hash
= BSWAP_64(le
->le_hash
);
148 lc
->l_free
.lf_type
= BSWAP_8(lc
->l_free
.lf_type
);
149 lc
->l_free
.lf_next
= BSWAP_16(lc
->l_free
.lf_next
);
151 case ZAP_CHUNK_ARRAY
:
152 lc
->l_array
.la_type
= BSWAP_8(lc
->l_array
.la_type
);
153 lc
->l_array
.la_next
= BSWAP_16(lc
->l_array
.la_next
);
154 /* la_array doesn't need swapping */
157 ASSERT(!"bad leaf type");
163 zap_leaf_init(zap_leaf_t
*l
, boolean_t sort
)
167 l
->l_bs
= highbit64(l
->l_dbuf
->db_size
) - 1;
168 zap_memset(&zap_leaf_phys(l
)->l_hdr
, 0,
169 sizeof (struct zap_leaf_header
));
170 zap_memset(zap_leaf_phys(l
)->l_hash
, CHAIN_END
,
171 2*ZAP_LEAF_HASH_NUMENTRIES(l
));
172 for (i
= 0; i
< ZAP_LEAF_NUMCHUNKS(l
); i
++) {
173 ZAP_LEAF_CHUNK(l
, i
).l_free
.lf_type
= ZAP_CHUNK_FREE
;
174 ZAP_LEAF_CHUNK(l
, i
).l_free
.lf_next
= i
+1;
176 ZAP_LEAF_CHUNK(l
, ZAP_LEAF_NUMCHUNKS(l
)-1).l_free
.lf_next
= CHAIN_END
;
177 zap_leaf_phys(l
)->l_hdr
.lh_block_type
= ZBT_LEAF
;
178 zap_leaf_phys(l
)->l_hdr
.lh_magic
= ZAP_LEAF_MAGIC
;
179 zap_leaf_phys(l
)->l_hdr
.lh_nfree
= ZAP_LEAF_NUMCHUNKS(l
);
181 zap_leaf_phys(l
)->l_hdr
.lh_flags
|= ZLF_ENTRIES_CDSORTED
;
185 * Routines which manipulate leaf chunks (l_chunk[]).
189 zap_leaf_chunk_alloc(zap_leaf_t
*l
)
193 ASSERT(zap_leaf_phys(l
)->l_hdr
.lh_nfree
> 0);
195 chunk
= zap_leaf_phys(l
)->l_hdr
.lh_freelist
;
196 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
197 ASSERT3U(ZAP_LEAF_CHUNK(l
, chunk
).l_free
.lf_type
, ==, ZAP_CHUNK_FREE
);
199 zap_leaf_phys(l
)->l_hdr
.lh_freelist
=
200 ZAP_LEAF_CHUNK(l
, chunk
).l_free
.lf_next
;
202 zap_leaf_phys(l
)->l_hdr
.lh_nfree
--;
208 zap_leaf_chunk_free(zap_leaf_t
*l
, uint16_t chunk
)
210 struct zap_leaf_free
*zlf
= &ZAP_LEAF_CHUNK(l
, chunk
).l_free
;
211 ASSERT3U(zap_leaf_phys(l
)->l_hdr
.lh_nfree
, <, ZAP_LEAF_NUMCHUNKS(l
));
212 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
213 ASSERT(zlf
->lf_type
!= ZAP_CHUNK_FREE
);
215 zlf
->lf_type
= ZAP_CHUNK_FREE
;
216 zlf
->lf_next
= zap_leaf_phys(l
)->l_hdr
.lh_freelist
;
217 bzero(zlf
->lf_pad
, sizeof (zlf
->lf_pad
)); /* help it to compress */
218 zap_leaf_phys(l
)->l_hdr
.lh_freelist
= chunk
;
220 zap_leaf_phys(l
)->l_hdr
.lh_nfree
++;
224 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
228 zap_leaf_array_create(zap_leaf_t
*l
, const char *buf
,
229 int integer_size
, int num_integers
)
232 uint16_t *chunkp
= &chunk_head
;
235 int shift
= (integer_size
-1)*8;
236 int len
= num_integers
;
238 ASSERT3U(num_integers
* integer_size
, <, MAX_ARRAY_BYTES
);
241 uint16_t chunk
= zap_leaf_chunk_alloc(l
);
242 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
245 la
->la_type
= ZAP_CHUNK_ARRAY
;
246 for (i
= 0; i
< ZAP_LEAF_ARRAY_BYTES
; i
++) {
248 value
= ldv(integer_size
, buf
);
249 la
->la_array
[i
] = value
>> shift
;
251 if (++byten
== integer_size
) {
260 chunkp
= &la
->la_next
;
268 zap_leaf_array_free(zap_leaf_t
*l
, uint16_t *chunkp
)
270 uint16_t chunk
= *chunkp
;
274 while (chunk
!= CHAIN_END
) {
275 int nextchunk
= ZAP_LEAF_CHUNK(l
, chunk
).l_array
.la_next
;
276 ASSERT3U(ZAP_LEAF_CHUNK(l
, chunk
).l_array
.la_type
, ==,
278 zap_leaf_chunk_free(l
, chunk
);
283 /* array_len and buf_len are in integers, not bytes */
285 zap_leaf_array_read(zap_leaf_t
*l
, uint16_t chunk
,
286 int array_int_len
, int array_len
, int buf_int_len
, uint64_t buf_len
,
289 int len
= MIN(array_len
, buf_len
);
294 ASSERT3U(array_int_len
, <=, buf_int_len
);
296 /* Fast path for one 8-byte integer */
297 if (array_int_len
== 8 && buf_int_len
== 8 && len
== 1) {
298 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
299 uint8_t *ip
= la
->la_array
;
300 uint64_t *buf64
= buf
;
302 *buf64
= (uint64_t)ip
[0] << 56 | (uint64_t)ip
[1] << 48 |
303 (uint64_t)ip
[2] << 40 | (uint64_t)ip
[3] << 32 |
304 (uint64_t)ip
[4] << 24 | (uint64_t)ip
[5] << 16 |
305 (uint64_t)ip
[6] << 8 | (uint64_t)ip
[7];
309 /* Fast path for an array of 1-byte integers (eg. the entry name) */
310 if (array_int_len
== 1 && buf_int_len
== 1 &&
311 buf_len
> array_len
+ ZAP_LEAF_ARRAY_BYTES
) {
312 while (chunk
!= CHAIN_END
) {
313 struct zap_leaf_array
*la
=
314 &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
315 bcopy(la
->la_array
, p
, ZAP_LEAF_ARRAY_BYTES
);
316 p
+= ZAP_LEAF_ARRAY_BYTES
;
323 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
326 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
327 for (i
= 0; i
< ZAP_LEAF_ARRAY_BYTES
&& len
> 0; i
++) {
328 value
= (value
<< 8) | la
->la_array
[i
];
330 if (byten
== array_int_len
) {
331 stv(buf_int_len
, p
, value
);
344 zap_leaf_array_match(zap_leaf_t
*l
, zap_name_t
*zn
,
345 int chunk
, int array_numints
)
349 if (zap_getflags(zn
->zn_zap
) & ZAP_FLAG_UINT64_KEY
) {
353 ASSERT(zn
->zn_key_intlen
== sizeof (*thiskey
));
354 thiskey
= kmem_alloc(array_numints
* sizeof (*thiskey
),
357 zap_leaf_array_read(l
, chunk
, sizeof (*thiskey
), array_numints
,
358 sizeof (*thiskey
), array_numints
, thiskey
);
359 match
= bcmp(thiskey
, zn
->zn_key_orig
,
360 array_numints
* sizeof (*thiskey
)) == 0;
361 kmem_free(thiskey
, array_numints
* sizeof (*thiskey
));
365 ASSERT(zn
->zn_key_intlen
== 1);
366 if (zn
->zn_matchtype
& MT_NORMALIZE
) {
367 char *thisname
= kmem_alloc(array_numints
, KM_SLEEP
);
370 zap_leaf_array_read(l
, chunk
, sizeof (char), array_numints
,
371 sizeof (char), array_numints
, thisname
);
372 match
= zap_match(zn
, thisname
);
373 kmem_free(thisname
, array_numints
);
378 * Fast path for exact matching.
379 * First check that the lengths match, so that we don't read
380 * past the end of the zn_key_orig array.
382 if (array_numints
!= zn
->zn_key_orig_numints
)
384 while (bseen
< array_numints
) {
385 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
386 int toread
= MIN(array_numints
- bseen
, ZAP_LEAF_ARRAY_BYTES
);
387 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
388 if (bcmp(la
->la_array
, (char *)zn
->zn_key_orig
+ bseen
, toread
))
393 return (bseen
== array_numints
);
397 * Routines which manipulate leaf entries.
401 zap_leaf_lookup(zap_leaf_t
*l
, zap_name_t
*zn
, zap_entry_handle_t
*zeh
)
404 struct zap_leaf_entry
*le
;
406 ASSERT3U(zap_leaf_phys(l
)->l_hdr
.lh_magic
, ==, ZAP_LEAF_MAGIC
);
408 for (chunkp
= LEAF_HASH_ENTPTR(l
, zn
->zn_hash
);
409 *chunkp
!= CHAIN_END
; chunkp
= &le
->le_next
) {
410 uint16_t chunk
= *chunkp
;
411 le
= ZAP_LEAF_ENTRY(l
, chunk
);
413 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
414 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
416 if (le
->le_hash
!= zn
->zn_hash
)
420 * NB: the entry chain is always sorted by cd on
421 * normalized zap objects, so this will find the
422 * lowest-cd match for MT_NORMALIZE.
424 ASSERT((zn
->zn_matchtype
== 0) ||
425 (zap_leaf_phys(l
)->l_hdr
.lh_flags
& ZLF_ENTRIES_CDSORTED
));
426 if (zap_leaf_array_match(l
, zn
, le
->le_name_chunk
,
427 le
->le_name_numints
)) {
428 zeh
->zeh_num_integers
= le
->le_value_numints
;
429 zeh
->zeh_integer_size
= le
->le_value_intlen
;
430 zeh
->zeh_cd
= le
->le_cd
;
431 zeh
->zeh_hash
= le
->le_hash
;
432 zeh
->zeh_chunkp
= chunkp
;
438 return (SET_ERROR(ENOENT
));
441 /* Return (h1,cd1 >= h2,cd2) */
442 #define HCD_GTEQ(h1, cd1, h2, cd2) \
443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
446 zap_leaf_lookup_closest(zap_leaf_t
*l
,
447 uint64_t h
, uint32_t cd
, zap_entry_handle_t
*zeh
)
450 uint64_t besth
= -1ULL;
451 uint32_t bestcd
= -1U;
452 uint16_t bestlh
= ZAP_LEAF_HASH_NUMENTRIES(l
)-1;
454 struct zap_leaf_entry
*le
;
456 ASSERT3U(zap_leaf_phys(l
)->l_hdr
.lh_magic
, ==, ZAP_LEAF_MAGIC
);
458 for (lh
= LEAF_HASH(l
, h
); lh
<= bestlh
; lh
++) {
459 for (chunk
= zap_leaf_phys(l
)->l_hash
[lh
];
460 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
461 le
= ZAP_LEAF_ENTRY(l
, chunk
);
463 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
464 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
466 if (HCD_GTEQ(le
->le_hash
, le
->le_cd
, h
, cd
) &&
467 HCD_GTEQ(besth
, bestcd
, le
->le_hash
, le
->le_cd
)) {
468 ASSERT3U(bestlh
, >=, lh
);
473 zeh
->zeh_num_integers
= le
->le_value_numints
;
474 zeh
->zeh_integer_size
= le
->le_value_intlen
;
475 zeh
->zeh_cd
= le
->le_cd
;
476 zeh
->zeh_hash
= le
->le_hash
;
477 zeh
->zeh_fakechunk
= chunk
;
478 zeh
->zeh_chunkp
= &zeh
->zeh_fakechunk
;
484 return (bestcd
== -1U ? ENOENT
: 0);
488 zap_entry_read(const zap_entry_handle_t
*zeh
,
489 uint8_t integer_size
, uint64_t num_integers
, void *buf
)
491 struct zap_leaf_entry
*le
=
492 ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, *zeh
->zeh_chunkp
);
493 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
495 if (le
->le_value_intlen
> integer_size
)
496 return (SET_ERROR(EINVAL
));
498 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_value_chunk
,
499 le
->le_value_intlen
, le
->le_value_numints
,
500 integer_size
, num_integers
, buf
);
502 if (zeh
->zeh_num_integers
> num_integers
)
503 return (SET_ERROR(EOVERFLOW
));
509 zap_entry_read_name(zap_t
*zap
, const zap_entry_handle_t
*zeh
, uint16_t buflen
,
512 struct zap_leaf_entry
*le
=
513 ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, *zeh
->zeh_chunkp
);
514 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
516 if (zap_getflags(zap
) & ZAP_FLAG_UINT64_KEY
) {
517 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_name_chunk
, 8,
518 le
->le_name_numints
, 8, buflen
/ 8, buf
);
520 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_name_chunk
, 1,
521 le
->le_name_numints
, 1, buflen
, buf
);
523 if (le
->le_name_numints
> buflen
)
524 return (SET_ERROR(EOVERFLOW
));
529 zap_entry_update(zap_entry_handle_t
*zeh
,
530 uint8_t integer_size
, uint64_t num_integers
, const void *buf
)
533 zap_leaf_t
*l
= zeh
->zeh_leaf
;
534 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, *zeh
->zeh_chunkp
);
536 delta_chunks
= ZAP_LEAF_ARRAY_NCHUNKS(num_integers
* integer_size
) -
537 ZAP_LEAF_ARRAY_NCHUNKS(le
->le_value_numints
* le
->le_value_intlen
);
539 if ((int)zap_leaf_phys(l
)->l_hdr
.lh_nfree
< delta_chunks
)
540 return (SET_ERROR(EAGAIN
));
542 zap_leaf_array_free(l
, &le
->le_value_chunk
);
544 zap_leaf_array_create(l
, buf
, integer_size
, num_integers
);
545 le
->le_value_numints
= num_integers
;
546 le
->le_value_intlen
= integer_size
;
551 zap_entry_remove(zap_entry_handle_t
*zeh
)
553 uint16_t entry_chunk
;
554 struct zap_leaf_entry
*le
;
555 zap_leaf_t
*l
= zeh
->zeh_leaf
;
557 ASSERT3P(zeh
->zeh_chunkp
, !=, &zeh
->zeh_fakechunk
);
559 entry_chunk
= *zeh
->zeh_chunkp
;
560 le
= ZAP_LEAF_ENTRY(l
, entry_chunk
);
561 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
563 zap_leaf_array_free(l
, &le
->le_name_chunk
);
564 zap_leaf_array_free(l
, &le
->le_value_chunk
);
566 *zeh
->zeh_chunkp
= le
->le_next
;
567 zap_leaf_chunk_free(l
, entry_chunk
);
569 zap_leaf_phys(l
)->l_hdr
.lh_nentries
--;
573 zap_entry_create(zap_leaf_t
*l
, zap_name_t
*zn
, uint32_t cd
,
574 uint8_t integer_size
, uint64_t num_integers
, const void *buf
,
575 zap_entry_handle_t
*zeh
)
579 struct zap_leaf_entry
*le
;
582 uint64_t h
= zn
->zn_hash
;
584 valuelen
= integer_size
* num_integers
;
586 numchunks
= 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn
->zn_key_orig_numints
*
587 zn
->zn_key_intlen
) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen
);
588 if (numchunks
> ZAP_LEAF_NUMCHUNKS(l
))
591 if (cd
== ZAP_NEED_CD
) {
592 /* find the lowest unused cd */
593 if (zap_leaf_phys(l
)->l_hdr
.lh_flags
& ZLF_ENTRIES_CDSORTED
) {
596 for (chunk
= *LEAF_HASH_ENTPTR(l
, h
);
597 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
598 le
= ZAP_LEAF_ENTRY(l
, chunk
);
601 if (le
->le_hash
== h
) {
602 ASSERT3U(cd
, ==, le
->le_cd
);
607 /* old unsorted format; do it the O(n^2) way */
608 for (cd
= 0; ; cd
++) {
609 for (chunk
= *LEAF_HASH_ENTPTR(l
, h
);
610 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
611 le
= ZAP_LEAF_ENTRY(l
, chunk
);
612 if (le
->le_hash
== h
&&
617 /* If this cd is not in use, we are good. */
618 if (chunk
== CHAIN_END
)
623 * We would run out of space in a block before we could
624 * store enough entries to run out of CD values.
626 ASSERT3U(cd
, <, zap_maxcd(zn
->zn_zap
));
629 if (zap_leaf_phys(l
)->l_hdr
.lh_nfree
< numchunks
)
630 return (SET_ERROR(EAGAIN
));
633 chunk
= zap_leaf_chunk_alloc(l
);
634 le
= ZAP_LEAF_ENTRY(l
, chunk
);
635 le
->le_type
= ZAP_CHUNK_ENTRY
;
636 le
->le_name_chunk
= zap_leaf_array_create(l
, zn
->zn_key_orig
,
637 zn
->zn_key_intlen
, zn
->zn_key_orig_numints
);
638 le
->le_name_numints
= zn
->zn_key_orig_numints
;
640 zap_leaf_array_create(l
, buf
, integer_size
, num_integers
);
641 le
->le_value_numints
= num_integers
;
642 le
->le_value_intlen
= integer_size
;
646 /* link it into the hash chain */
647 /* XXX if we did the search above, we could just use that */
648 chunkp
= zap_leaf_rehash_entry(l
, chunk
);
650 zap_leaf_phys(l
)->l_hdr
.lh_nentries
++;
653 zeh
->zeh_num_integers
= num_integers
;
654 zeh
->zeh_integer_size
= le
->le_value_intlen
;
655 zeh
->zeh_cd
= le
->le_cd
;
656 zeh
->zeh_hash
= le
->le_hash
;
657 zeh
->zeh_chunkp
= chunkp
;
663 * Determine if there is another entry with the same normalized form.
664 * For performance purposes, either zn or name must be provided (the
665 * other can be NULL). Note, there usually won't be any hash
666 * conflicts, in which case we don't need the concatenated/normalized
667 * form of the name. But all callers have one of these on hand anyway,
668 * so might as well take advantage. A cleaner but slower interface
669 * would accept neither argument, and compute the normalized name as
670 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
673 zap_entry_normalization_conflict(zap_entry_handle_t
*zeh
, zap_name_t
*zn
,
674 const char *name
, zap_t
*zap
)
677 struct zap_leaf_entry
*le
;
678 boolean_t allocdzn
= B_FALSE
;
680 if (zap
->zap_normflags
== 0)
683 for (chunk
= *LEAF_HASH_ENTPTR(zeh
->zeh_leaf
, zeh
->zeh_hash
);
684 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
685 le
= ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, chunk
);
686 if (le
->le_hash
!= zeh
->zeh_hash
)
688 if (le
->le_cd
== zeh
->zeh_cd
)
692 zn
= zap_name_alloc(zap
, name
, MT_NORMALIZE
);
695 if (zap_leaf_array_match(zeh
->zeh_leaf
, zn
,
696 le
->le_name_chunk
, le
->le_name_numints
)) {
708 * Routines for transferring entries between leafs.
712 zap_leaf_rehash_entry(zap_leaf_t
*l
, uint16_t entry
)
714 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, entry
);
715 struct zap_leaf_entry
*le2
;
719 * keep the entry chain sorted by cd
720 * NB: this will not cause problems for unsorted leafs, though
721 * it is unnecessary there.
723 for (chunkp
= LEAF_HASH_ENTPTR(l
, le
->le_hash
);
724 *chunkp
!= CHAIN_END
; chunkp
= &le2
->le_next
) {
725 le2
= ZAP_LEAF_ENTRY(l
, *chunkp
);
726 if (le2
->le_cd
> le
->le_cd
)
730 le
->le_next
= *chunkp
;
736 zap_leaf_transfer_array(zap_leaf_t
*l
, uint16_t chunk
, zap_leaf_t
*nl
)
739 uint16_t *nchunkp
= &new_chunk
;
741 while (chunk
!= CHAIN_END
) {
742 uint16_t nchunk
= zap_leaf_chunk_alloc(nl
);
743 struct zap_leaf_array
*nla
=
744 &ZAP_LEAF_CHUNK(nl
, nchunk
).l_array
;
745 struct zap_leaf_array
*la
=
746 &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
747 int nextchunk
= la
->la_next
;
749 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
750 ASSERT3U(nchunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
752 *nla
= *la
; /* structure assignment */
754 zap_leaf_chunk_free(l
, chunk
);
757 nchunkp
= &nla
->la_next
;
759 *nchunkp
= CHAIN_END
;
764 zap_leaf_transfer_entry(zap_leaf_t
*l
, int entry
, zap_leaf_t
*nl
)
766 struct zap_leaf_entry
*le
, *nle
;
769 le
= ZAP_LEAF_ENTRY(l
, entry
);
770 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
772 chunk
= zap_leaf_chunk_alloc(nl
);
773 nle
= ZAP_LEAF_ENTRY(nl
, chunk
);
774 *nle
= *le
; /* structure assignment */
776 (void) zap_leaf_rehash_entry(nl
, chunk
);
778 nle
->le_name_chunk
= zap_leaf_transfer_array(l
, le
->le_name_chunk
, nl
);
779 nle
->le_value_chunk
=
780 zap_leaf_transfer_array(l
, le
->le_value_chunk
, nl
);
782 zap_leaf_chunk_free(l
, entry
);
784 zap_leaf_phys(l
)->l_hdr
.lh_nentries
--;
785 zap_leaf_phys(nl
)->l_hdr
.lh_nentries
++;
789 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
792 zap_leaf_split(zap_leaf_t
*l
, zap_leaf_t
*nl
, boolean_t sort
)
795 int bit
= 64 - 1 - zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
;
797 /* set new prefix and prefix_len */
798 zap_leaf_phys(l
)->l_hdr
.lh_prefix
<<= 1;
799 zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
++;
800 zap_leaf_phys(nl
)->l_hdr
.lh_prefix
=
801 zap_leaf_phys(l
)->l_hdr
.lh_prefix
| 1;
802 zap_leaf_phys(nl
)->l_hdr
.lh_prefix_len
=
803 zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
;
805 /* break existing hash chains */
806 zap_memset(zap_leaf_phys(l
)->l_hash
, CHAIN_END
,
807 2*ZAP_LEAF_HASH_NUMENTRIES(l
));
810 zap_leaf_phys(l
)->l_hdr
.lh_flags
|= ZLF_ENTRIES_CDSORTED
;
813 * Transfer entries whose hash bit 'bit' is set to nl; rehash
814 * the remaining entries
816 * NB: We could find entries via the hashtable instead. That
817 * would be O(hashents+numents) rather than O(numblks+numents),
818 * but this accesses memory more sequentially, and when we're
819 * called, the block is usually pretty full.
821 for (i
= 0; i
< ZAP_LEAF_NUMCHUNKS(l
); i
++) {
822 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, i
);
823 if (le
->le_type
!= ZAP_CHUNK_ENTRY
)
826 if (le
->le_hash
& (1ULL << bit
))
827 zap_leaf_transfer_entry(l
, i
, nl
);
829 (void) zap_leaf_rehash_entry(l
, i
);
834 zap_leaf_stats(zap_t
*zap
, zap_leaf_t
*l
, zap_stats_t
*zs
)
838 n
= zap_f_phys(zap
)->zap_ptrtbl
.zt_shift
-
839 zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
;
840 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
841 zs
->zs_leafs_with_2n_pointers
[n
]++;
844 n
= zap_leaf_phys(l
)->l_hdr
.lh_nentries
/5;
845 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
846 zs
->zs_blocks_with_n5_entries
[n
]++;
848 n
= ((1<<FZAP_BLOCK_SHIFT(zap
)) -
849 zap_leaf_phys(l
)->l_hdr
.lh_nfree
* (ZAP_LEAF_ARRAY_BYTES
+1))*10 /
850 (1<<FZAP_BLOCK_SHIFT(zap
));
851 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
852 zs
->zs_blocks_n_tenths_full
[n
]++;
854 for (i
= 0; i
< ZAP_LEAF_HASH_NUMENTRIES(l
); i
++) {
856 int chunk
= zap_leaf_phys(l
)->l_hash
[i
];
858 while (chunk
!= CHAIN_END
) {
859 struct zap_leaf_entry
*le
=
860 ZAP_LEAF_ENTRY(l
, chunk
);
862 n
= 1 + ZAP_LEAF_ARRAY_NCHUNKS(le
->le_name_numints
) +
863 ZAP_LEAF_ARRAY_NCHUNKS(le
->le_value_numints
*
864 le
->le_value_intlen
);
865 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
866 zs
->zs_entries_using_n_chunks
[n
]++;
873 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
874 zs
->zs_buckets_with_n_entries
[n
]++;