4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
31 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
35 #include <sys/zio_checksum.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
47 * EREPORT POOL VDEV IO
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
63 * | Aggregate I/O | No associated logical data or device
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
106 zfs_ereport_start(nvlist_t
**ereport_out
, nvlist_t
**detector_out
,
107 const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
,
108 uint64_t stateoroffset
, uint64_t size
)
110 nvlist_t
*ereport
, *detector
;
116 * If we are doing a spa_tryimport() or in recovery mode,
119 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
||
120 spa_load_state(spa
) == SPA_LOAD_RECOVER
)
124 * If we are in the middle of opening a pool, and the previous attempt
125 * failed, don't bother logging any new ereports - we're just going to
126 * get the same diagnosis anyway.
128 if (spa_load_state(spa
) != SPA_LOAD_NONE
&&
129 spa
->spa_last_open_failed
)
134 * If this is not a read or write zio, ignore the error. This
135 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
137 if (zio
->io_type
!= ZIO_TYPE_READ
&&
138 zio
->io_type
!= ZIO_TYPE_WRITE
)
142 * Ignore any errors from speculative I/Os, as failure is an
145 if (zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)
149 * If this I/O is not a retry I/O, don't post an ereport.
150 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
153 if (zio
->io_error
== EIO
&&
154 !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
))
159 * If the vdev has already been marked as failing due
160 * to a failed probe, then ignore any subsequent I/O
161 * errors, as the DE will automatically fault the vdev
162 * on the first such failure. This also catches cases
163 * where vdev_remove_wanted is set and the device has
164 * not yet been asynchronously placed into the REMOVED
167 if (zio
->io_vd
== vd
&& !vdev_accessible(vd
, zio
))
171 * Ignore checksum errors for reads from DTL regions of
174 if (zio
->io_type
== ZIO_TYPE_READ
&&
175 zio
->io_error
== ECKSUM
&&
176 vd
->vdev_ops
->vdev_op_leaf
&&
177 vdev_dtl_contains(vd
, DTL_MISSING
, zio
->io_txg
, 1))
183 * For probe failure, we want to avoid posting ereports if we've
184 * already removed the device in the meantime.
187 strcmp(subclass
, FM_EREPORT_ZFS_PROBE_FAILURE
) == 0 &&
188 (vd
->vdev_remove_wanted
|| vd
->vdev_state
== VDEV_STATE_REMOVED
))
191 if ((ereport
= fm_nvlist_create(NULL
)) == NULL
)
194 if ((detector
= fm_nvlist_create(NULL
)) == NULL
) {
195 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
200 * Serialize ereport generation
202 mutex_enter(&spa
->spa_errlist_lock
);
205 * Determine the ENA to use for this event. If we are in a loading
206 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
207 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
209 if (spa_load_state(spa
) != SPA_LOAD_NONE
) {
210 if (spa
->spa_ena
== 0)
211 spa
->spa_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
213 } else if (zio
!= NULL
&& zio
->io_logical
!= NULL
) {
214 if (zio
->io_logical
->io_ena
== 0)
215 zio
->io_logical
->io_ena
=
216 fm_ena_generate(0, FM_ENA_FMT1
);
217 ena
= zio
->io_logical
->io_ena
;
219 ena
= fm_ena_generate(0, FM_ENA_FMT1
);
223 * Construct the full class, detector, and other standard FMA fields.
225 (void) snprintf(class, sizeof (class), "%s.%s",
226 ZFS_ERROR_CLASS
, subclass
);
228 fm_fmri_zfs_set(detector
, FM_ZFS_SCHEME_VERSION
, spa_guid(spa
),
229 vd
!= NULL
? vd
->vdev_guid
: 0);
231 fm_ereport_set(ereport
, FM_EREPORT_VERSION
, class, ena
, detector
, NULL
);
234 * Construct the per-ereport payload, depending on which parameters are
239 * Generic payload members common to all ereports.
241 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL
,
242 DATA_TYPE_STRING
, spa_name(spa
), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
,
243 DATA_TYPE_UINT64
, spa_guid(spa
),
244 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, DATA_TYPE_INT32
,
245 spa_load_state(spa
), NULL
);
248 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE
,
250 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_WAIT
?
251 FM_EREPORT_FAILMODE_WAIT
:
252 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_CONTINUE
?
253 FM_EREPORT_FAILMODE_CONTINUE
: FM_EREPORT_FAILMODE_PANIC
,
258 vdev_t
*pvd
= vd
->vdev_parent
;
260 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
,
261 DATA_TYPE_UINT64
, vd
->vdev_guid
,
262 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE
,
263 DATA_TYPE_STRING
, vd
->vdev_ops
->vdev_op_type
, NULL
);
264 if (vd
->vdev_path
!= NULL
)
265 fm_payload_set(ereport
,
266 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
,
267 DATA_TYPE_STRING
, vd
->vdev_path
, NULL
);
268 if (vd
->vdev_devid
!= NULL
)
269 fm_payload_set(ereport
,
270 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
,
271 DATA_TYPE_STRING
, vd
->vdev_devid
, NULL
);
272 if (vd
->vdev_fru
!= NULL
)
273 fm_payload_set(ereport
,
274 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
,
275 DATA_TYPE_STRING
, vd
->vdev_fru
, NULL
);
278 fm_payload_set(ereport
,
279 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID
,
280 DATA_TYPE_UINT64
, pvd
->vdev_guid
,
281 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE
,
282 DATA_TYPE_STRING
, pvd
->vdev_ops
->vdev_op_type
,
285 fm_payload_set(ereport
,
286 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH
,
287 DATA_TYPE_STRING
, pvd
->vdev_path
, NULL
);
289 fm_payload_set(ereport
,
290 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID
,
291 DATA_TYPE_STRING
, pvd
->vdev_devid
, NULL
);
297 * Payload common to all I/Os.
299 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR
,
300 DATA_TYPE_INT32
, zio
->io_error
, NULL
);
303 * If the 'size' parameter is non-zero, it indicates this is a
304 * RAID-Z or other I/O where the physical offset and length are
305 * provided for us, instead of within the zio_t.
309 fm_payload_set(ereport
,
310 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
311 DATA_TYPE_UINT64
, stateoroffset
,
312 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
313 DATA_TYPE_UINT64
, size
, NULL
);
315 fm_payload_set(ereport
,
316 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
317 DATA_TYPE_UINT64
, zio
->io_offset
,
318 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
319 DATA_TYPE_UINT64
, zio
->io_size
, NULL
);
323 * Payload for I/Os with corresponding logical information.
325 if (zio
->io_logical
!= NULL
)
326 fm_payload_set(ereport
,
327 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET
,
329 zio
->io_logical
->io_bookmark
.zb_objset
,
330 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT
,
332 zio
->io_logical
->io_bookmark
.zb_object
,
333 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL
,
335 zio
->io_logical
->io_bookmark
.zb_level
,
336 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID
,
338 zio
->io_logical
->io_bookmark
.zb_blkid
, NULL
);
339 } else if (vd
!= NULL
) {
341 * If we have a vdev but no zio, this is a device fault, and the
342 * 'stateoroffset' parameter indicates the previous state of the
345 fm_payload_set(ereport
,
346 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE
,
347 DATA_TYPE_UINT64
, stateoroffset
, NULL
);
350 mutex_exit(&spa
->spa_errlist_lock
);
352 *ereport_out
= ereport
;
353 *detector_out
= detector
;
356 /* if it's <= 128 bytes, save the corruption directly */
357 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
359 #define MAX_RANGES 16
361 typedef struct zfs_ecksum_info
{
362 /* histograms of set and cleared bits by bit number in a 64-bit word */
363 uint16_t zei_histogram_set
[sizeof (uint64_t) * NBBY
];
364 uint16_t zei_histogram_cleared
[sizeof (uint64_t) * NBBY
];
366 /* inline arrays of bits set and cleared. */
367 uint64_t zei_bits_set
[ZFM_MAX_INLINE
];
368 uint64_t zei_bits_cleared
[ZFM_MAX_INLINE
];
371 * for each range, the number of bits set and cleared. The Hamming
372 * distance between the good and bad buffers is the sum of them all.
374 uint32_t zei_range_sets
[MAX_RANGES
];
375 uint32_t zei_range_clears
[MAX_RANGES
];
380 } zei_ranges
[MAX_RANGES
];
382 size_t zei_range_count
;
384 uint32_t zei_allowed_mingap
;
389 update_histogram(uint64_t value_arg
, uint16_t *hist
, uint32_t *count
)
393 uint64_t value
= BE_64(value_arg
);
395 /* We store the bits in big-endian (largest-first) order */
396 for (i
= 0; i
< 64; i
++) {
397 if (value
& (1ull << i
)) {
402 /* update the count of bits changed */
407 * We've now filled up the range array, and need to increase "mingap" and
408 * shrink the range list accordingly. zei_mingap is always the smallest
409 * distance between array entries, so we set the new_allowed_gap to be
410 * one greater than that. We then go through the list, joining together
411 * any ranges which are closer than the new_allowed_gap.
413 * By construction, there will be at least one. We also update zei_mingap
414 * to the new smallest gap, to prepare for our next invocation.
417 shrink_ranges(zfs_ecksum_info_t
*eip
)
419 uint32_t mingap
= UINT32_MAX
;
420 uint32_t new_allowed_gap
= eip
->zei_mingap
+ 1;
423 size_t max
= eip
->zei_range_count
;
425 struct zei_ranges
*r
= eip
->zei_ranges
;
427 ASSERT3U(eip
->zei_range_count
, >, 0);
428 ASSERT3U(eip
->zei_range_count
, <=, MAX_RANGES
);
431 while (idx
< max
- 1) {
432 uint32_t start
= r
[idx
].zr_start
;
433 uint32_t end
= r
[idx
].zr_end
;
435 while (idx
< max
- 1) {
438 uint32_t nstart
= r
[idx
].zr_start
;
439 uint32_t nend
= r
[idx
].zr_end
;
441 uint32_t gap
= nstart
- end
;
442 if (gap
< new_allowed_gap
) {
450 r
[output
].zr_start
= start
;
451 r
[output
].zr_end
= end
;
454 ASSERT3U(output
, <, eip
->zei_range_count
);
455 eip
->zei_range_count
= output
;
456 eip
->zei_mingap
= mingap
;
457 eip
->zei_allowed_mingap
= new_allowed_gap
;
461 add_range(zfs_ecksum_info_t
*eip
, int start
, int end
)
463 struct zei_ranges
*r
= eip
->zei_ranges
;
464 size_t count
= eip
->zei_range_count
;
466 if (count
>= MAX_RANGES
) {
468 count
= eip
->zei_range_count
;
471 eip
->zei_mingap
= UINT32_MAX
;
472 eip
->zei_allowed_mingap
= 1;
474 int gap
= start
- r
[count
- 1].zr_end
;
476 if (gap
< eip
->zei_allowed_mingap
) {
477 r
[count
- 1].zr_end
= end
;
480 if (gap
< eip
->zei_mingap
)
481 eip
->zei_mingap
= gap
;
483 r
[count
].zr_start
= start
;
484 r
[count
].zr_end
= end
;
485 eip
->zei_range_count
++;
489 range_total_size(zfs_ecksum_info_t
*eip
)
491 struct zei_ranges
*r
= eip
->zei_ranges
;
492 size_t count
= eip
->zei_range_count
;
496 for (idx
= 0; idx
< count
; idx
++)
497 result
+= (r
[idx
].zr_end
- r
[idx
].zr_start
);
502 static zfs_ecksum_info_t
*
503 annotate_ecksum(nvlist_t
*ereport
, zio_bad_cksum_t
*info
,
504 const uint8_t *goodbuf
, const uint8_t *badbuf
, size_t size
,
505 boolean_t drop_if_identical
)
507 const uint64_t *good
= (const uint64_t *)goodbuf
;
508 const uint64_t *bad
= (const uint64_t *)badbuf
;
511 uint64_t allcleared
= 0;
513 size_t nui64s
= size
/ sizeof (uint64_t);
523 zfs_ecksum_info_t
*eip
= kmem_zalloc(sizeof (*eip
), KM_SLEEP
);
525 /* don't do any annotation for injected checksum errors */
526 if (info
!= NULL
&& info
->zbc_injected
)
529 if (info
!= NULL
&& info
->zbc_has_cksum
) {
530 fm_payload_set(ereport
,
531 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED
,
532 DATA_TYPE_UINT64_ARRAY
,
533 sizeof (info
->zbc_expected
) / sizeof (uint64_t),
534 (uint64_t *)&info
->zbc_expected
,
535 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL
,
536 DATA_TYPE_UINT64_ARRAY
,
537 sizeof (info
->zbc_actual
) / sizeof (uint64_t),
538 (uint64_t *)&info
->zbc_actual
,
539 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO
,
541 info
->zbc_checksum_name
,
544 if (info
->zbc_byteswapped
) {
545 fm_payload_set(ereport
,
546 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP
,
547 DATA_TYPE_BOOLEAN
, 1,
552 if (badbuf
== NULL
|| goodbuf
== NULL
)
555 ASSERT3U(nui64s
, <=, UINT16_MAX
);
556 ASSERT3U(size
, ==, nui64s
* sizeof (uint64_t));
557 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
558 ASSERT3U(size
, <=, UINT32_MAX
);
560 /* build up the range list by comparing the two buffers. */
561 for (idx
= 0; idx
< nui64s
; idx
++) {
562 if (good
[idx
] == bad
[idx
]) {
566 add_range(eip
, start
, idx
);
576 add_range(eip
, start
, idx
);
578 /* See if it will fit in our inline buffers */
579 inline_size
= range_total_size(eip
);
580 if (inline_size
> ZFM_MAX_INLINE
)
584 * If there is no change and we want to drop if the buffers are
587 if (inline_size
== 0 && drop_if_identical
) {
588 kmem_free(eip
, sizeof (*eip
));
593 * Now walk through the ranges, filling in the details of the
594 * differences. Also convert our uint64_t-array offsets to byte
597 for (range
= 0; range
< eip
->zei_range_count
; range
++) {
598 size_t start
= eip
->zei_ranges
[range
].zr_start
;
599 size_t end
= eip
->zei_ranges
[range
].zr_end
;
601 for (idx
= start
; idx
< end
; idx
++) {
602 uint64_t set
, cleared
;
604 // bits set in bad, but not in good
605 set
= ((~good
[idx
]) & bad
[idx
]);
606 // bits set in good, but not in bad
607 cleared
= (good
[idx
] & (~bad
[idx
]));
610 allcleared
|= cleared
;
613 ASSERT3U(offset
, <, inline_size
);
614 eip
->zei_bits_set
[offset
] = set
;
615 eip
->zei_bits_cleared
[offset
] = cleared
;
619 update_histogram(set
, eip
->zei_histogram_set
,
620 &eip
->zei_range_sets
[range
]);
621 update_histogram(cleared
, eip
->zei_histogram_cleared
,
622 &eip
->zei_range_clears
[range
]);
625 /* convert to byte offsets */
626 eip
->zei_ranges
[range
].zr_start
*= sizeof (uint64_t);
627 eip
->zei_ranges
[range
].zr_end
*= sizeof (uint64_t);
629 eip
->zei_allowed_mingap
*= sizeof (uint64_t);
630 inline_size
*= sizeof (uint64_t);
632 /* fill in ereport */
633 fm_payload_set(ereport
,
634 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES
,
635 DATA_TYPE_UINT32_ARRAY
, 2 * eip
->zei_range_count
,
636 (uint32_t *)eip
->zei_ranges
,
637 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP
,
638 DATA_TYPE_UINT32
, eip
->zei_allowed_mingap
,
639 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS
,
640 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_sets
,
641 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS
,
642 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_clears
,
646 fm_payload_set(ereport
,
647 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS
,
648 DATA_TYPE_UINT8_ARRAY
,
649 inline_size
, (uint8_t *)eip
->zei_bits_set
,
650 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS
,
651 DATA_TYPE_UINT8_ARRAY
,
652 inline_size
, (uint8_t *)eip
->zei_bits_cleared
,
655 fm_payload_set(ereport
,
656 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM
,
657 DATA_TYPE_UINT16_ARRAY
,
658 NBBY
* sizeof (uint64_t), eip
->zei_histogram_set
,
659 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM
,
660 DATA_TYPE_UINT16_ARRAY
,
661 NBBY
* sizeof (uint64_t), eip
->zei_histogram_cleared
,
669 zfs_ereport_post(const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
,
670 uint64_t stateoroffset
, uint64_t size
)
673 nvlist_t
*ereport
= NULL
;
674 nvlist_t
*detector
= NULL
;
676 zfs_ereport_start(&ereport
, &detector
,
677 subclass
, spa
, vd
, zio
, stateoroffset
, size
);
682 fm_ereport_post(ereport
, EVCH_SLEEP
);
684 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
685 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
690 zfs_ereport_start_checksum(spa_t
*spa
, vdev_t
*vd
,
691 struct zio
*zio
, uint64_t offset
, uint64_t length
, void *arg
,
692 zio_bad_cksum_t
*info
)
694 zio_cksum_report_t
*report
= kmem_zalloc(sizeof (*report
), KM_SLEEP
);
696 if (zio
->io_vsd
!= NULL
)
697 zio
->io_vsd_ops
->vsd_cksum_report(zio
, report
, arg
);
699 zio_vsd_default_cksum_report(zio
, report
, arg
);
701 /* copy the checksum failure information if it was provided */
703 report
->zcr_ckinfo
= kmem_zalloc(sizeof (*info
), KM_SLEEP
);
704 bcopy(info
, report
->zcr_ckinfo
, sizeof (*info
));
707 report
->zcr_align
= 1ULL << vd
->vdev_top
->vdev_ashift
;
708 report
->zcr_length
= length
;
711 zfs_ereport_start(&report
->zcr_ereport
, &report
->zcr_detector
,
712 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
, offset
, length
);
714 if (report
->zcr_ereport
== NULL
) {
715 report
->zcr_free(report
->zcr_cbdata
, report
->zcr_cbinfo
);
716 if (report
->zcr_ckinfo
!= NULL
) {
717 kmem_free(report
->zcr_ckinfo
,
718 sizeof (*report
->zcr_ckinfo
));
720 kmem_free(report
, sizeof (*report
));
725 mutex_enter(&spa
->spa_errlist_lock
);
726 report
->zcr_next
= zio
->io_logical
->io_cksum_report
;
727 zio
->io_logical
->io_cksum_report
= report
;
728 mutex_exit(&spa
->spa_errlist_lock
);
732 zfs_ereport_finish_checksum(zio_cksum_report_t
*report
,
733 const void *good_data
, const void *bad_data
, boolean_t drop_if_identical
)
736 zfs_ecksum_info_t
*info
= NULL
;
737 info
= annotate_ecksum(report
->zcr_ereport
, report
->zcr_ckinfo
,
738 good_data
, bad_data
, report
->zcr_length
, drop_if_identical
);
741 fm_ereport_post(report
->zcr_ereport
, EVCH_SLEEP
);
743 fm_nvlist_destroy(report
->zcr_ereport
, FM_NVA_FREE
);
744 fm_nvlist_destroy(report
->zcr_detector
, FM_NVA_FREE
);
745 report
->zcr_ereport
= report
->zcr_detector
= NULL
;
748 kmem_free(info
, sizeof (*info
));
753 zfs_ereport_free_checksum(zio_cksum_report_t
*rpt
)
756 if (rpt
->zcr_ereport
!= NULL
) {
757 fm_nvlist_destroy(rpt
->zcr_ereport
,
759 fm_nvlist_destroy(rpt
->zcr_detector
,
763 rpt
->zcr_free(rpt
->zcr_cbdata
, rpt
->zcr_cbinfo
);
765 if (rpt
->zcr_ckinfo
!= NULL
)
766 kmem_free(rpt
->zcr_ckinfo
, sizeof (*rpt
->zcr_ckinfo
));
768 kmem_free(rpt
, sizeof (*rpt
));
772 zfs_ereport_send_interim_checksum(zio_cksum_report_t
*report
)
775 fm_ereport_post(report
->zcr_ereport
, EVCH_SLEEP
);
780 zfs_ereport_post_checksum(spa_t
*spa
, vdev_t
*vd
,
781 struct zio
*zio
, uint64_t offset
, uint64_t length
,
782 const void *good_data
, const void *bad_data
, zio_bad_cksum_t
*zbc
)
785 nvlist_t
*ereport
= NULL
;
786 nvlist_t
*detector
= NULL
;
787 zfs_ecksum_info_t
*info
;
789 zfs_ereport_start(&ereport
, &detector
,
790 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
, offset
, length
);
795 info
= annotate_ecksum(ereport
, zbc
, good_data
, bad_data
, length
,
799 fm_ereport_post(ereport
, EVCH_SLEEP
);
801 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
802 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
805 kmem_free(info
, sizeof (*info
));
810 zfs_post_common(spa_t
*spa
, vdev_t
*vd
, const char *name
)
816 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
)
819 if ((resource
= fm_nvlist_create(NULL
)) == NULL
)
822 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE
,
823 ZFS_ERROR_CLASS
, name
);
824 VERIFY(nvlist_add_uint8(resource
, FM_VERSION
, FM_RSRC_VERSION
) == 0);
825 VERIFY(nvlist_add_string(resource
, FM_CLASS
, class) == 0);
826 VERIFY(nvlist_add_uint64(resource
,
827 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, spa_guid(spa
)) == 0);
829 VERIFY(nvlist_add_uint64(resource
,
830 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
, vd
->vdev_guid
) == 0);
832 fm_ereport_post(resource
, EVCH_SLEEP
);
834 fm_nvlist_destroy(resource
, FM_NVA_FREE
);
839 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
840 * has been removed from the system. This will cause the DE to ignore any
841 * recent I/O errors, inferring that they are due to the asynchronous device
845 zfs_post_remove(spa_t
*spa
, vdev_t
*vd
)
847 zfs_post_common(spa
, vd
, FM_RESOURCE_REMOVED
);
851 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
852 * has the 'autoreplace' property set, and therefore any broken vdevs will be
853 * handled by higher level logic, and no vdev fault should be generated.
856 zfs_post_autoreplace(spa_t
*spa
, vdev_t
*vd
)
858 zfs_post_common(spa
, vd
, FM_RESOURCE_AUTOREPLACE
);
862 * The 'resource.fs.zfs.statechange' event is an internal signal that the
863 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
864 * cause the retire agent to repair any outstanding fault management cases
865 * open because the device was not found (fault.fs.zfs.device).
868 zfs_post_state_change(spa_t
*spa
, vdev_t
*vd
)
870 zfs_post_common(spa
, vd
, FM_RESOURCE_STATECHANGE
);