add UNLEASHED_OBJ to unleashed.mk
[unleashed/tickless.git] / usr / src / lib / libast / common / uwin / gamma.c
blob7f2d92dd744d03c24156057f9b9b06942a9494b8
1 #include "FEATURE/uwin"
3 #if !_UWIN || _lib_gamma
5 void _STUB_gamma(){}
7 #else
9 /*-
10 * Copyright (c) 1992, 1993
11 * The Regents of the University of California. All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
38 static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93";
41 * This code by P. McIlroy, Oct 1992;
43 * The financial support of UUNET Communications Services is greatfully
44 * acknowledged.
47 #define gamma ______gamma
49 #include <math.h>
50 #include <errno.h>
51 #include "mathimpl.h"
53 #undef gamma
55 /* METHOD:
56 * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
57 * At negative integers, return +Inf, and set errno.
59 * x < 6.5:
60 * Use argument reduction G(x+1) = xG(x) to reach the
61 * range [1.066124,2.066124]. Use a rational
62 * approximation centered at the minimum (x0+1) to
63 * ensure monotonicity.
65 * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
66 * adjusted for equal-ripples:
68 * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
70 * Keep extra precision in multiplying (x-.5)(log(x)-1), to
71 * avoid premature round-off.
73 * Special values:
74 * non-positive integer: Set overflow trap; return +Inf;
75 * x > 171.63: Set overflow trap; return +Inf;
76 * NaN: Set invalid trap; return NaN
78 * Accuracy: Gamma(x) is accurate to within
79 * x > 0: error provably < 0.9ulp.
80 * Maximum observed in 1,000,000 trials was .87ulp.
81 * x < 0:
82 * Maximum observed error < 4ulp in 1,000,000 trials.
85 static double neg_gam __P((double));
86 static double small_gam __P((double));
87 static double smaller_gam __P((double));
88 static struct Double large_gam __P((double));
89 static struct Double ratfun_gam __P((double, double));
92 * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
93 * [1.066.., 2.066..] accurate to 4.25e-19.
95 #define LEFT -.3955078125 /* left boundary for rat. approx */
96 #define x0 .461632144968362356785 /* xmin - 1 */
98 #define a0_hi 0.88560319441088874992
99 #define a0_lo -.00000000000000004996427036469019695
100 #define P0 6.21389571821820863029017800727e-01
101 #define P1 2.65757198651533466104979197553e-01
102 #define P2 5.53859446429917461063308081748e-03
103 #define P3 1.38456698304096573887145282811e-03
104 #define P4 2.40659950032711365819348969808e-03
105 #define Q0 1.45019531250000000000000000000e+00
106 #define Q1 1.06258521948016171343454061571e+00
107 #define Q2 -2.07474561943859936441469926649e-01
108 #define Q3 -1.46734131782005422506287573015e-01
109 #define Q4 3.07878176156175520361557573779e-02
110 #define Q5 5.12449347980666221336054633184e-03
111 #define Q6 -1.76012741431666995019222898833e-03
112 #define Q7 9.35021023573788935372153030556e-05
113 #define Q8 6.13275507472443958924745652239e-06
115 * Constants for large x approximation (x in [6, Inf])
116 * (Accurate to 2.8*10^-19 absolute)
118 #define lns2pi_hi 0.418945312500000
119 #define lns2pi_lo -.000006779295327258219670263595
120 #define Pa0 8.33333333333333148296162562474e-02
121 #define Pa1 -2.77777777774548123579378966497e-03
122 #define Pa2 7.93650778754435631476282786423e-04
123 #define Pa3 -5.95235082566672847950717262222e-04
124 #define Pa4 8.41428560346653702135821806252e-04
125 #define Pa5 -1.89773526463879200348872089421e-03
126 #define Pa6 5.69394463439411649408050664078e-03
127 #define Pa7 -1.44705562421428915453880392761e-02
129 static const double zero = 0., one = 1.0, tiny = 1e-300;
130 static int endian;
132 * TRUNC sets trailing bits in a floating-point number to zero.
133 * is a temporary variable.
135 #if defined(vax) || defined(tahoe)
136 #define _IEEE 0
137 #define TRUNC(x) x = (double) (float) (x)
138 #else
139 #define _IEEE 1
140 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
141 #define infnan(x) 0.0
142 #endif
144 extern double gamma(x)
145 double x;
147 struct Double u;
148 endian = (*(int *) &one) ? 1 : 0;
150 if (x >= 6) {
151 if(x > 171.63)
152 return(one/zero);
153 u = large_gam(x);
154 return(__exp__D(u.a, u.b));
155 } else if (x >= 1.0 + LEFT + x0)
156 return (small_gam(x));
157 else if (x > 1.e-17)
158 return (smaller_gam(x));
159 else if (x > -1.e-17) {
160 if (x == 0.0)
161 if (!_IEEE) return (infnan(ERANGE));
162 else return (one/x);
163 one+1e-20; /* Raise inexact flag. */
164 return (one/x);
165 } else if (!finite(x)) {
166 if (_IEEE) /* x = NaN, -Inf */
167 return (x*x);
168 else
169 return (infnan(EDOM));
170 } else
171 return (neg_gam(x));
174 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
176 static struct Double
177 large_gam(x)
178 double x;
180 double z, p;
181 struct Double t, u, v;
183 z = one/(x*x);
184 p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
185 p = p/x;
187 u = __log__D(x);
188 u.a -= one;
189 v.a = (x -= .5);
190 TRUNC(v.a);
191 v.b = x - v.a;
192 t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
193 t.b = v.b*u.a + x*u.b;
194 /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
195 t.b += lns2pi_lo; t.b += p;
196 u.a = lns2pi_hi + t.b; u.a += t.a;
197 u.b = t.a - u.a;
198 u.b += lns2pi_hi; u.b += t.b;
199 return (u);
202 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
203 * It also has correct monotonicity.
205 static double
206 small_gam(x)
207 double x;
209 double y, ym1, t;
210 struct Double yy, r;
211 y = x - one;
212 ym1 = y - one;
213 if (y <= 1.0 + (LEFT + x0)) {
214 yy = ratfun_gam(y - x0, 0);
215 return (yy.a + yy.b);
217 r.a = y;
218 TRUNC(r.a);
219 yy.a = r.a - one;
220 y = ym1;
221 yy.b = r.b = y - yy.a;
222 /* Argument reduction: G(x+1) = x*G(x) */
223 for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
224 t = r.a*yy.a;
225 r.b = r.a*yy.b + y*r.b;
226 r.a = t;
227 TRUNC(r.a);
228 r.b += (t - r.a);
230 /* Return r*gamma(y). */
231 yy = ratfun_gam(y - x0, 0);
232 y = r.b*(yy.a + yy.b) + r.a*yy.b;
233 y += yy.a*r.a;
234 return (y);
237 * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
239 static double
240 smaller_gam(x)
241 double x;
243 double t, d;
244 struct Double r, xx;
245 if (x < x0 + LEFT) {
246 t = x, TRUNC(t);
247 d = (t+x)*(x-t);
248 t *= t;
249 xx.a = (t + x), TRUNC(xx.a);
250 xx.b = x - xx.a; xx.b += t; xx.b += d;
251 t = (one-x0); t += x;
252 d = (one-x0); d -= t; d += x;
253 x = xx.a + xx.b;
254 } else {
255 xx.a = x, TRUNC(xx.a);
256 xx.b = x - xx.a;
257 t = x - x0;
258 d = (-x0 -t); d += x;
260 r = ratfun_gam(t, d);
261 d = r.a/x, TRUNC(d);
262 r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
263 return (d + r.a/x);
266 * returns (z+c)^2 * P(z)/Q(z) + a0
268 static struct Double
269 ratfun_gam(z, c)
270 double z, c;
272 double p, q;
273 struct Double r, t;
275 q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
276 p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
278 /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
279 p = p/q;
280 t.a = z, TRUNC(t.a); /* t ~= z + c */
281 t.b = (z - t.a) + c;
282 t.b *= (t.a + z);
283 q = (t.a *= t.a); /* t = (z+c)^2 */
284 TRUNC(t.a);
285 t.b += (q - t.a);
286 r.a = p, TRUNC(r.a); /* r = P/Q */
287 r.b = p - r.a;
288 t.b = t.b*p + t.a*r.b + a0_lo;
289 t.a *= r.a; /* t = (z+c)^2*(P/Q) */
290 r.a = t.a + a0_hi, TRUNC(r.a);
291 r.b = ((a0_hi-r.a) + t.a) + t.b;
292 return (r); /* r = a0 + t */
295 static double
296 neg_gam(x)
297 double x;
299 int sgn = 1;
300 struct Double lg, lsine;
301 double y, z;
303 y = floor(x + .5);
304 if (y == x) /* Negative integer. */
305 if(!_IEEE)
306 return (infnan(ERANGE));
307 else
308 return (one/zero);
309 z = fabs(x - y);
310 y = .5*ceil(x);
311 if (y == ceil(y))
312 sgn = -1;
313 if (z < .25)
314 z = sin(M_PI*z);
315 else
316 z = cos(M_PI*(0.5-z));
317 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
318 if (x < -170) {
319 if (x < -190)
320 return ((double)sgn*tiny*tiny);
321 y = one - x; /* exact: 128 < |x| < 255 */
322 lg = large_gam(y);
323 lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
324 lg.a -= lsine.a; /* exact (opposite signs) */
325 lg.b -= lsine.b;
326 y = -(lg.a + lg.b);
327 z = (y + lg.a) + lg.b;
328 y = __exp__D(y, z);
329 if (sgn < 0) y = -y;
330 return (y);
332 y = one-x;
333 if (one-y == x)
334 y = gamma(y);
335 else /* 1-x is inexact */
336 y = -x*gamma(-x);
337 if (sgn < 0) y = -y;
338 return (M_PI / (y*z));
341 #endif