2 /*---------------------------------------------------------------*/
3 /*--- begin libvex_ir.h ---*/
4 /*---------------------------------------------------------------*/
7 This file is part of Valgrind, a dynamic binary instrumentation
10 Copyright (C) 2004-2017 OpenWorks LLP
13 This program is free software; you can redistribute it and/or
14 modify it under the terms of the GNU General Public License as
15 published by the Free Software Foundation; either version 2 of the
16 License, or (at your option) any later version.
18 This program is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, see <http://www.gnu.org/licenses/>.
26 The GNU General Public License is contained in the file COPYING.
28 Neither the names of the U.S. Department of Energy nor the
29 University of California nor the names of its contributors may be
30 used to endorse or promote products derived from this software
31 without prior written permission.
37 #include "libvex_basictypes.h"
40 /*---------------------------------------------------------------*/
41 /*--- High-level IR description ---*/
42 /*---------------------------------------------------------------*/
44 /* Vex IR is an architecture-neutral intermediate representation.
45 Unlike some IRs in systems similar to Vex, it is not like assembly
46 language (ie. a list of instructions). Rather, it is more like the
47 IR that might be used in a compiler.
51 The code is broken into small code blocks ("superblocks", type:
52 'IRSB'). Each code block typically represents from 1 to perhaps 50
53 instructions. IRSBs are single-entry, multiple-exit code blocks.
54 Each IRSB contains three things:
55 - a type environment, which indicates the type of each temporary
56 value present in the IRSB
57 - a list of statements, which represent code
58 - a jump that exits from the end the IRSB
59 Because the blocks are multiple-exit, there can be additional
60 conditional exit statements that cause control to leave the IRSB
61 before the final exit. Also because of this, IRSBs can cover
62 multiple non-consecutive sequences of code (up to 3). These are
63 recorded in the type VexGuestExtents (see libvex.h).
65 Statements and expressions
66 ~~~~~~~~~~~~~~~~~~~~~~~~~~
67 Statements (type 'IRStmt') represent operations with side-effects,
68 eg. guest register writes, stores, and assignments to temporaries.
69 Expressions (type 'IRExpr') represent operations without
70 side-effects, eg. arithmetic operations, loads, constants.
71 Expressions can contain sub-expressions, forming expression trees,
72 eg. (3 + (4 * load(addr1)).
74 Storage of guest state
75 ~~~~~~~~~~~~~~~~~~~~~~
76 The "guest state" contains the guest registers of the guest machine
77 (ie. the machine that we are simulating). It is stored by default
78 in a block of memory supplied by the user of the VEX library,
79 generally referred to as the guest state (area). To operate on
80 these registers, one must first read ("Get") them from the guest
81 state into a temporary value. Afterwards, one can write ("Put")
82 them back into the guest state.
84 Get and Put are characterised by a byte offset into the guest
85 state, a small integer which effectively gives the identity of the
86 referenced guest register, and a type, which indicates the size of
87 the value to be transferred.
89 The basic "Get" and "Put" operations are sufficient to model normal
90 fixed registers on the guest. Selected areas of the guest state
91 can be treated as a circular array of registers (type:
92 'IRRegArray'), which can be indexed at run-time. This is done with
93 the "GetI" and "PutI" primitives. This is necessary to describe
94 rotating register files, for example the x87 FPU stack, SPARC
95 register windows, and the Itanium register files.
97 Examples, and flattened vs. unflattened code
98 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
99 For example, consider this x86 instruction:
103 One Vex IR translation for this code would be this:
105 ------ IMark(0x24F275, 7, 0) ------
106 t3 = GET:I32(0) # get %eax, a 32-bit integer
107 t2 = GET:I32(12) # get %ebx, a 32-bit integer
108 t1 = Add32(t3,t2) # addl
109 PUT(0) = t1 # put %eax
111 (For simplicity, this ignores the effects on the condition codes, and
112 the update of the instruction pointer.)
114 The "IMark" is an IR statement that doesn't represent actual code.
115 Instead it indicates the address and length of the original
116 instruction. The numbers 0 and 12 are offsets into the guest state
117 for %eax and %ebx. The full list of offsets for an architecture
118 <ARCH> can be found in the type VexGuest<ARCH>State in the file
119 VEX/pub/libvex_guest_<ARCH>.h.
121 The five statements in this example are:
123 - three assignments to temporaries
124 - one register write (put)
126 The six expressions in this example are:
127 - two register reads (gets)
128 - one arithmetic (add) operation
129 - three temporaries (two nested within the Add32, one in the PUT)
131 The above IR is "flattened", ie. all sub-expressions are "atoms",
132 either constants or temporaries. An equivalent, unflattened version
135 PUT(0) = Add32(GET:I32(0), GET:I32(12))
137 IR is guaranteed to be flattened at instrumentation-time. This makes
138 instrumentation easier. Equivalent flattened and unflattened IR
139 typically results in the same generated code.
141 Another example, this one showing loads and stores:
145 This becomes (again ignoring condition code and instruction pointer
148 ------ IMark(0x4000ABA, 3, 0) ------
149 t3 = Add32(GET:I32(0),0x4:I32)
155 The "le" in "LDle" and "STle" is short for "little-endian".
157 No need for deallocations
158 ~~~~~~~~~~~~~~~~~~~~~~~~~
159 Although there are allocation functions for various data structures
160 in this file, there are no deallocation functions. This is because
161 Vex uses a memory allocation scheme that automatically reclaims the
162 memory used by allocated structures once translation is completed.
163 This makes things easier for tools that instruments/transforms code
168 The IR is fully typed. For every IRSB (IR block) it is possible to
169 say unambiguously whether or not it is correctly typed.
170 Incorrectly typed IR has no meaning and the VEX will refuse to
171 process it. At various points during processing VEX typechecks the
172 IR and aborts if any violations are found. This seems overkill but
173 makes it a great deal easier to build a reliable JIT.
175 IR also has the SSA property. SSA stands for Static Single
176 Assignment, and what it means is that each IR temporary may be
177 assigned to only once. This idea became widely used in compiler
178 construction in the mid to late 90s. It makes many IR-level
179 transformations/code improvements easier, simpler and faster.
180 Whenever it typechecks an IR block, VEX also checks the SSA
181 property holds, and will abort if not so. So SSAness is
182 mechanically and rigidly enforced.
185 /*---------------------------------------------------------------*/
186 /*--- Type definitions for the IR ---*/
187 /*---------------------------------------------------------------*/
189 /* General comments about naming schemes:
191 All publically visible functions contain the name of the primary
192 type on which they operate (IRFoo, IRBar, etc). Hence you should
193 be able to identify these functions by grepping for "IR[A-Z]".
195 For some type 'IRFoo':
197 - ppIRFoo is the printing method for IRFoo, printing it to the
198 output channel specified in the LibVEX_Initialise call.
200 - eqIRFoo is a structural equality predicate for IRFoos.
202 - deepCopyIRFoo is a deep copy constructor for IRFoos.
203 It recursively traverses the entire argument tree and
204 produces a complete new tree. All types have a deep copy
207 - shallowCopyIRFoo is the shallow copy constructor for IRFoos.
208 It creates a new top-level copy of the supplied object,
209 but does not copy any sub-objects. Only some types have a
210 shallow copy constructor.
213 /* ------------------ Types ------------------ */
215 /* A type indicates the size of a value, and whether it's an integer, a
216 float, or a vector (SIMD) value. */
225 Ity_I128
, /* 128-bit scalar */
226 Ity_F16
, /* 16 bit float */
227 Ity_F32
, /* IEEE 754 float */
228 Ity_F64
, /* IEEE 754 double */
229 Ity_D32
, /* 32-bit Decimal floating point */
230 Ity_D64
, /* 64-bit Decimal floating point */
231 Ity_D128
, /* 128-bit Decimal floating point */
232 Ity_F128
, /* 128-bit floating point; implementation defined */
233 Ity_V128
, /* 128-bit SIMD */
234 Ity_V256
/* 256-bit SIMD */
238 /* Pretty-print an IRType */
239 extern void ppIRType ( IRType
);
241 /* Get the size (in bytes) of an IRType */
242 extern Int
sizeofIRType ( IRType
);
244 /* Translate 1/2/4/8 into Ity_I{8,16,32,64} respectively. Asserts on
246 extern IRType
integerIRTypeOfSize ( Int szB
);
249 /* ------------------ Endianness ------------------ */
251 /* IREndness is used in load IRExprs and store IRStmts. */
254 Iend_LE
=0x1200, /* little endian */
255 Iend_BE
/* big endian */
260 /* ------------------ Constants ------------------ */
262 /* IRConsts are used within 'Const' and 'Exit' IRExprs. */
264 /* The various kinds of constant. */
272 Ico_F32
, /* 32-bit IEEE754 floating */
273 Ico_F32i
, /* 32-bit unsigned int to be interpreted literally
274 as a IEEE754 single value. */
275 Ico_F64
, /* 64-bit IEEE754 floating */
276 Ico_F64i
, /* 64-bit unsigned int to be interpreted literally
277 as a IEEE754 double value. */
278 Ico_V128
, /* 128-bit restricted vector constant, with 1 bit
279 (repeated 8 times) for each of the 16 x 1-byte lanes */
280 Ico_V256
/* 256-bit restricted vector constant, with 1 bit
281 (repeated 8 times) for each of the 32 x 1-byte lanes */
285 /* A constant. Stored as a tagged union. 'tag' indicates what kind of
286 constant this is. 'Ico' is the union that holds the fields. If an
287 IRConst 'c' has c.tag equal to Ico_U32, then it's a 32-bit constant,
288 and its value can be accessed with 'c.Ico.U32'. */
302 UShort V128
; /* 16-bit value; see Ico_V128 comment above */
303 UInt V256
; /* 32-bit value; see Ico_V256 comment above */
308 /* IRConst constructors */
309 extern IRConst
* IRConst_U1 ( Bool
);
310 extern IRConst
* IRConst_U8 ( UChar
);
311 extern IRConst
* IRConst_U16 ( UShort
);
312 extern IRConst
* IRConst_U32 ( UInt
);
313 extern IRConst
* IRConst_U64 ( ULong
);
314 extern IRConst
* IRConst_F32 ( Float
);
315 extern IRConst
* IRConst_F32i ( UInt
);
316 extern IRConst
* IRConst_F64 ( Double
);
317 extern IRConst
* IRConst_F64i ( ULong
);
318 extern IRConst
* IRConst_V128 ( UShort
);
319 extern IRConst
* IRConst_V256 ( UInt
);
321 /* Deep-copy an IRConst */
322 extern IRConst
* deepCopyIRConst ( const IRConst
* );
324 /* Pretty-print an IRConst */
325 extern void ppIRConst ( const IRConst
* );
327 /* Compare two IRConsts for equality */
328 extern Bool
eqIRConst ( const IRConst
*, const IRConst
* );
331 /* ------------------ Call targets ------------------ */
333 /* Describes a helper function to call. The name part is purely for
334 pretty printing and not actually used. regparms=n tells the back
335 end that the callee has been declared
336 "__attribute__((regparm(n)))", although indirectly using the
337 VEX_REGPARM(n) macro. On some targets (x86) the back end will need
338 to construct a non-standard sequence to call a function declared
341 mcx_mask is a sop to Memcheck. It indicates which args should be
342 considered 'always defined' when lazily computing definedness of
343 the result. Bit 0 of mcx_mask corresponds to args[0], bit 1 to
344 args[1], etc. If a bit is set, the corresponding arg is excluded
345 (hence "x" in "mcx") from definedness checking.
357 /* Create an IRCallee. */
358 extern IRCallee
* mkIRCallee ( Int regparms
, const HChar
* name
, void* addr
);
360 /* Deep-copy an IRCallee. */
361 extern IRCallee
* deepCopyIRCallee ( const IRCallee
* );
363 /* Pretty-print an IRCallee. */
364 extern void ppIRCallee ( const IRCallee
* );
367 /* ------------------ Guest state arrays ------------------ */
369 /* This describes a section of the guest state that we want to
370 be able to index at run time, so as to be able to describe
371 indexed or rotating register files on the guest. */
374 Int base
; /* guest state offset of start of indexed area */
375 IRType elemTy
; /* type of each element in the indexed area */
376 Int nElems
; /* number of elements in the indexed area */
380 extern IRRegArray
* mkIRRegArray ( Int
, IRType
, Int
);
382 extern IRRegArray
* deepCopyIRRegArray ( const IRRegArray
* );
384 extern void ppIRRegArray ( const IRRegArray
* );
385 extern Bool
eqIRRegArray ( const IRRegArray
*, const IRRegArray
* );
388 /* ------------------ Temporaries ------------------ */
390 /* This represents a temporary, eg. t1. The IR optimiser relies on the
391 fact that IRTemps are 32-bit ints. Do not change them to be ints of
395 /* Pretty-print an IRTemp. */
396 extern void ppIRTemp ( IRTemp
);
398 #define IRTemp_INVALID ((IRTemp)0xFFFFFFFF)
401 /* --------------- Primops (arity 1,2,3 and 4) --------------- */
403 /* Primitive operations that are used in Unop, Binop, Triop and Qop
404 IRExprs. Once we take into account integer, floating point and SIMD
405 operations of all the different sizes, there are quite a lot of them.
406 Most instructions supported by the architectures that Vex supports
407 (x86, PPC, etc) are represented. Some more obscure ones (eg. cpuid)
408 are not; they are instead handled with dirty helpers that emulate
409 their functionality. Such obscure ones are thus not directly visible
410 in the IR, but their effects on guest state (memory and registers)
411 are made visible via the annotations in IRDirty structures.
413 2018-Dec-27: some of int<->fp conversion operations have been renamed so as
414 to have a trailing _DEP, meaning "deprecated". This is because they don't
415 specify a rounding mode to be used for the conversion and so are
416 underspecified. Their use should be replaced with equivalents that do
417 specify a rounding mode, either as a first argument or using a suffix on the
418 name, that indicates the rounding mode to use.
422 /* -- Do not change this ordering. The IR generators rely on
423 (eg) Iop_Add64 == IopAdd8 + 3. -- */
426 Iop_Add8
, Iop_Add16
, Iop_Add32
, Iop_Add64
,
427 Iop_Sub8
, Iop_Sub16
, Iop_Sub32
, Iop_Sub64
,
428 /* Signless mul. MullS/MullU is elsewhere. */
429 Iop_Mul8
, Iop_Mul16
, Iop_Mul32
, Iop_Mul64
,
430 Iop_Or8
, Iop_Or16
, Iop_Or32
, Iop_Or64
,
431 Iop_And8
, Iop_And16
, Iop_And32
, Iop_And64
,
432 Iop_Xor8
, Iop_Xor16
, Iop_Xor32
, Iop_Xor64
,
433 Iop_Shl8
, Iop_Shl16
, Iop_Shl32
, Iop_Shl64
,
434 Iop_Shr8
, Iop_Shr16
, Iop_Shr32
, Iop_Shr64
,
435 Iop_Sar8
, Iop_Sar16
, Iop_Sar32
, Iop_Sar64
,
436 /* Integer comparisons. */
437 Iop_CmpEQ8
, Iop_CmpEQ16
, Iop_CmpEQ32
, Iop_CmpEQ64
,
438 Iop_CmpNE8
, Iop_CmpNE16
, Iop_CmpNE32
, Iop_CmpNE64
,
439 /* Tags for unary ops */
440 Iop_Not8
, Iop_Not16
, Iop_Not32
, Iop_Not64
,
442 /* Exactly like CmpEQ8/16/32/64, but carrying the additional
443 hint that these compute the success/failure of a CAS
444 operation, and hence are almost certainly applied to two
445 copies of the same value, which in turn has implications for
446 Memcheck's instrumentation. */
447 Iop_CasCmpEQ8
, Iop_CasCmpEQ16
, Iop_CasCmpEQ32
, Iop_CasCmpEQ64
,
448 Iop_CasCmpNE8
, Iop_CasCmpNE16
, Iop_CasCmpNE32
, Iop_CasCmpNE64
,
450 /* Exactly like CmpNE8/16/32/64, but carrying the additional
451 hint that these needs expensive definedness tracking. */
452 Iop_ExpCmpNE8
, Iop_ExpCmpNE16
, Iop_ExpCmpNE32
, Iop_ExpCmpNE64
,
454 /* -- Ordering not important after here. -- */
456 /* Widening multiplies */
457 Iop_MullS8
, Iop_MullS16
, Iop_MullS32
, Iop_MullS64
,
458 Iop_MullU8
, Iop_MullU16
, Iop_MullU32
, Iop_MullU64
,
461 /* Ctz64/Ctz32/Clz64/Clz32 are UNDEFINED when given arguments of zero.
462 You must ensure they are never given a zero argument. As of
463 2018-Nov-14 they are deprecated. Try to use the Nat variants
464 immediately below, if you can.
466 Iop_Clz64
, Iop_Clz32
, /* count leading zeroes */
467 Iop_Ctz64
, Iop_Ctz32
, /* count trailing zeros */
468 /* Count leading/trailing zeroes, with "natural" semantics for the
469 case where the input is zero: then the result is the number of bits
471 Iop_ClzNat64
, Iop_ClzNat32
,
472 Iop_CtzNat64
, Iop_CtzNat32
,
473 /* Population count -- compute the number of 1 bits in the argument. */
474 Iop_PopCount64
, Iop_PopCount32
,
476 /* Standard integer comparisons */
477 Iop_CmpLT32S
, Iop_CmpLT64S
,
478 Iop_CmpLE32S
, Iop_CmpLE64S
,
479 Iop_CmpLT32U
, Iop_CmpLT64U
,
480 Iop_CmpLE32U
, Iop_CmpLE64U
,
482 /* As a sop to Valgrind-Memcheck, the following are useful. */
483 Iop_CmpNEZ8
, Iop_CmpNEZ16
, Iop_CmpNEZ32
, Iop_CmpNEZ64
,
484 Iop_CmpwNEZ32
, Iop_CmpwNEZ64
, /* all-0s -> all-Os; other -> all-1s */
485 Iop_Left8
, Iop_Left16
, Iop_Left32
, Iop_Left64
, /* \x -> x | -x */
486 Iop_Max32U
, /* unsigned max */
488 /* PowerPC-style 3-way integer comparisons. Without them it is
489 difficult to simulate PPC efficiently.
490 op(x,y) | x < y = 0x8 else
494 Iop_CmpORD32U
, Iop_CmpORD64U
,
495 Iop_CmpORD32S
, Iop_CmpORD64S
,
498 /* TODO: clarify semantics wrt rounding, negative values, whatever */
499 Iop_DivU32
, // :: I32,I32 -> I32 (simple div, no mod)
500 Iop_DivS32
, // ditto, signed
501 Iop_DivU64
, // :: I64,I64 -> I64 (simple div, no mod)
502 Iop_DivS64
, // ditto, signed
503 Iop_DivU64E
, // :: I64,I64 -> I64 (dividend is 64-bit arg (hi)
504 // concat with 64 0's (low))
505 Iop_DivS64E
, // ditto, signed
506 Iop_DivU32E
, // :: I32,I32 -> I32 (dividend is 32-bit arg (hi)
507 // concat with 32 0's (low))
508 Iop_DivS32E
, // ditto, signed
510 Iop_DivModU64to32
, // :: I64,I32 -> I64
511 // of which lo half is div and hi half is mod
512 Iop_DivModS64to32
, // ditto, signed
514 Iop_DivModU128to64
, // :: V128,I64 -> V128
515 // of which lo half is div and hi half is mod
516 Iop_DivModS128to64
, // ditto, signed
518 Iop_DivModS64to64
, // :: I64,I64 -> I128
519 // of which lo half is div and hi half is mod
520 Iop_DivModU64to64
, // :: I64,I64 -> I128
521 // of which lo half is div and hi half is mod
522 Iop_DivModS32to32
, // :: I32,I32 -> I64
523 // of which lo half is div and hi half is mod
524 Iop_DivModU32to32
, // :: I32,I32 -> I64
525 // of which lo half is div and hi half is mod
527 /* Integer conversions. Some of these are redundant (eg
528 Iop_64to8 is the same as Iop_64to32 and then Iop_32to8), but
529 having a complete set reduces the typical dynamic size of IR
530 and makes the instruction selectors easier to write. */
532 /* Widening conversions */
533 Iop_8Uto16
, Iop_8Uto32
, Iop_8Uto64
,
534 Iop_16Uto32
, Iop_16Uto64
,
536 Iop_8Sto16
, Iop_8Sto32
, Iop_8Sto64
,
537 Iop_16Sto32
, Iop_16Sto64
,
540 /* Narrowing conversions */
541 Iop_64to8
, Iop_32to8
, Iop_64to16
,
542 /* 8 <-> 16 bit conversions */
543 Iop_16to8
, // :: I16 -> I8, low half
544 Iop_16HIto8
, // :: I16 -> I8, high half
545 Iop_8HLto16
, // :: (I8,I8) -> I16
546 /* 16 <-> 32 bit conversions */
547 Iop_32to16
, // :: I32 -> I16, low half
548 Iop_32HIto16
, // :: I32 -> I16, high half
549 Iop_16HLto32
, // :: (I16,I16) -> I32
550 /* 32 <-> 64 bit conversions */
551 Iop_64to32
, // :: I64 -> I32, low half
552 Iop_64HIto32
, // :: I64 -> I32, high half
553 Iop_32HLto64
, // :: (I32,I32) -> I64
554 /* 64 <-> 128 bit conversions */
555 Iop_128to64
, // :: I128 -> I64, low half
556 Iop_128HIto64
, // :: I128 -> I64, high half
557 Iop_64HLto128
, // :: (I64,I64) -> I128
559 Iop_Not1
, /* :: Ity_Bit -> Ity_Bit */
560 Iop_And1
, /* :: (Ity_Bit, Ity_Bit) -> Ity_Bit. Evaluates both args! */
561 Iop_Or1
, /* :: (Ity_Bit, Ity_Bit) -> Ity_Bit. Evaluates both args! */
562 Iop_32to1
, /* :: Ity_I32 -> Ity_Bit, just select bit[0] */
563 Iop_64to1
, /* :: Ity_I64 -> Ity_Bit, just select bit[0] */
564 Iop_1Uto8
, /* :: Ity_Bit -> Ity_I8, unsigned widen */
565 Iop_1Uto32
, /* :: Ity_Bit -> Ity_I32, unsigned widen */
566 Iop_1Uto64
, /* :: Ity_Bit -> Ity_I64, unsigned widen */
567 Iop_1Sto8
, /* :: Ity_Bit -> Ity_I8, signed widen */
568 Iop_1Sto16
, /* :: Ity_Bit -> Ity_I16, signed widen */
569 Iop_1Sto32
, /* :: Ity_Bit -> Ity_I32, signed widen */
570 Iop_1Sto64
, /* :: Ity_Bit -> Ity_I64, signed widen */
572 /* ------ Floating point. We try to be IEEE754 compliant. ------ */
574 /* --- Simple stuff as mandated by 754. --- */
576 /* Binary operations, with rounding. */
577 /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
578 Iop_AddF64
, Iop_SubF64
, Iop_MulF64
, Iop_DivF64
,
580 /* :: IRRoundingMode(I32) x F32 x F32 -> F32 */
581 Iop_AddF32
, Iop_SubF32
, Iop_MulF32
, Iop_DivF32
,
583 /* Variants of the above which produce a 64-bit result but which
584 round their result to a IEEE float range first. */
585 /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
586 Iop_AddF64r32
, Iop_SubF64r32
, Iop_MulF64r32
, Iop_DivF64r32
,
588 /* Unary operations, without rounding. */
590 Iop_NegF64
, Iop_AbsF64
,
593 Iop_NegF32
, Iop_AbsF32
,
595 /* Unary operations, with rounding. */
596 /* :: IRRoundingMode(I32) x F64 -> F64 */
599 /* :: IRRoundingMode(I32) x F32 -> F32 */
602 /* Comparison, yielding GT/LT/EQ/UN(ordered), as per the following:
607 This just happens to be the Intel encoding. The values
608 are recorded in the type IRCmpF64Result.
610 /* :: F64 x F64 -> IRCmpF64Result(I32) */
615 /* --- Int to/from FP conversions. --- */
617 /* For the most part, these take a first argument :: Ity_I32 (as
618 IRRoundingMode) which is an indication of the rounding mode
619 to use, as per the following encoding ("the standard
621 00b to nearest (the default)
625 This just happens to be the Intel encoding. For reference only,
627 00b to nearest (the default)
631 Any PPC -> IR front end will have to translate these PPC
632 encodings, as encoded in the guest state, to the standard
633 encodings, to pass to the primops.
634 For reference only, the ARM VFP encoding is:
639 Again, this will have to be converted to the standard encoding
642 If one of these conversions gets an out-of-range condition,
643 or a NaN, as an argument, the result is host-defined. On x86
644 the "integer indefinite" value 0x80..00 is produced. On PPC
645 it is either 0x80..00 or 0x7F..FF depending on the sign of
648 On ARMvfp, when converting to a signed integer result, the
649 overflow result is 0x80..00 for negative args and 0x7F..FF
650 for positive args. For unsigned integer results it is
651 0x00..00 and 0xFF..FF respectively.
653 Rounding is required whenever the destination type cannot
654 represent exactly all values of the source type.
656 Iop_F64toI16S
, /* IRRoundingMode(I32) x F64 -> signed I16 */
657 Iop_F64toI32S
, /* IRRoundingMode(I32) x F64 -> signed I32 */
658 Iop_F64toI64S
, /* IRRoundingMode(I32) x F64 -> signed I64 */
659 Iop_F64toI64U
, /* IRRoundingMode(I32) x F64 -> unsigned I64 */
661 Iop_F64toI32U
, /* IRRoundingMode(I32) x F64 -> unsigned I32 */
663 Iop_I32StoF64
, /* signed I32 -> F64 */
664 Iop_I64StoF64
, /* IRRoundingMode(I32) x signed I64 -> F64 */
665 Iop_I64UtoF64
, /* IRRoundingMode(I32) x unsigned I64 -> F64 */
666 Iop_I64UtoF32
, /* IRRoundingMode(I32) x unsigned I64 -> F32 */
668 Iop_I32UtoF32
, /* IRRoundingMode(I32) x unsigned I32 -> F32 */
669 Iop_I32UtoF64
, /* unsigned I32 -> F64 */
671 Iop_F32toI32S
, /* IRRoundingMode(I32) x F32 -> signed I32 */
672 Iop_F32toI64S
, /* IRRoundingMode(I32) x F32 -> signed I64 */
673 Iop_F32toI32U
, /* IRRoundingMode(I32) x F32 -> unsigned I32 */
674 Iop_F32toI64U
, /* IRRoundingMode(I32) x F32 -> unsigned I64 */
676 Iop_I32StoF32
, /* IRRoundingMode(I32) x signed I32 -> F32 */
677 Iop_I64StoF32
, /* IRRoundingMode(I32) x signed I64 -> F32 */
679 /* Conversion between floating point formats */
680 Iop_F32toF64
, /* F32 -> F64 */
681 Iop_F64toF32
, /* IRRoundingMode(I32) x F64 -> F32 */
683 /* Reinterpretation. Take an F64 and produce an I64 with
684 the same bit pattern, or vice versa. */
685 Iop_ReinterpF64asI64
, Iop_ReinterpI64asF64
,
686 Iop_ReinterpF32asI32
, Iop_ReinterpI32asF32
,
688 /* Support for 128-bit floating point */
689 Iop_F64HLtoF128
,/* (high half of F128,low half of F128) -> F128 */
690 Iop_F128HItoF64
,/* F128 -> high half of F128 into a F64 register */
691 Iop_F128LOtoF64
,/* F128 -> low half of F128 into a F64 register */
693 /* :: IRRoundingMode(I32) x F128 x F128 -> F128 */
694 Iop_AddF128
, Iop_SubF128
, Iop_MulF128
, Iop_DivF128
,
695 Iop_MAddF128
, // (A * B) + C
696 Iop_MSubF128
, // (A * B) - C
697 Iop_NegMAddF128
, // -((A * B) + C)
698 Iop_NegMSubF128
, // -((A * B) - C)
700 /* :: F128 -> F128 */
701 Iop_NegF128
, Iop_AbsF128
,
703 /* :: IRRoundingMode(I32) x F128 -> F128 */
706 Iop_I32StoF128
, /* signed I32 -> F128 */
707 Iop_I64StoF128
, /* signed I64 -> F128 */
708 Iop_I32UtoF128
, /* unsigned I32 -> F128 */
709 Iop_I64UtoF128
, /* unsigned I64 -> F128 */
710 Iop_F32toF128
, /* F32 -> F128 */
711 Iop_F64toF128
, /* F64 -> F128 */
713 Iop_F128toI32S
, /* IRRoundingMode(I32) x F128 -> signed I32 */
714 Iop_F128toI64S
, /* IRRoundingMode(I32) x F128 -> signed I64 */
715 Iop_F128toI32U
, /* IRRoundingMode(I32) x F128 -> unsigned I32 */
716 Iop_F128toI64U
, /* IRRoundingMode(I32) x F128 -> unsigned I64 */
717 Iop_F128toI128S
,/* IRRoundingMode(I32) x F128 -> signed I128 */
718 Iop_F128toF64
, /* IRRoundingMode(I32) x F128 -> F64 */
719 Iop_F128toF32
, /* IRRoundingMode(I32) x F128 -> F32 */
720 Iop_RndF128
, /* IRRoundingMode(I32) x F128 -> F128 */
722 /* Truncate to the specified value, source and result
723 * are stroed in a F128 register.
725 Iop_TruncF128toI32S
, /* truncate F128 -> I32 */
726 Iop_TruncF128toI32U
, /* truncate F128 -> I32 */
727 Iop_TruncF128toI64U
, /* truncate F128 -> I64 */
728 Iop_TruncF128toI64S
, /* truncate F128 -> I64 */
730 /* --- guest x86/amd64 specifics, not mandated by 754. --- */
732 /* Binary ops, with rounding. */
733 /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
734 Iop_AtanF64
, /* FPATAN, arctan(arg1/arg2) */
735 Iop_Yl2xF64
, /* FYL2X, arg1 * log2(arg2) */
736 Iop_Yl2xp1F64
, /* FYL2XP1, arg1 * log2(arg2+1.0) */
737 Iop_PRemF64
, /* FPREM, non-IEEE remainder(arg1/arg2) */
738 Iop_PRemC3210F64
, /* C3210 flags resulting from FPREM, :: I32 */
739 Iop_PRem1F64
, /* FPREM1, IEEE remainder(arg1/arg2) */
740 Iop_PRem1C3210F64
, /* C3210 flags resulting from FPREM1, :: I32 */
741 Iop_ScaleF64
, /* FSCALE, arg1 * (2^RoundTowardsZero(arg2)) */
742 /* Note that on x86 guest, PRem1{C3210} has the same behaviour
743 as the IEEE mandated RemF64, except it is limited in the
744 range of its operand. Hence the partialness. */
746 /* Unary ops, with rounding. */
747 /* :: IRRoundingMode(I32) x F64 -> F64 */
748 Iop_SinF64
, /* FSIN */
749 Iop_CosF64
, /* FCOS */
750 Iop_TanF64
, /* FTAN */
751 Iop_2xm1F64
, /* (2^arg - 1.0) */
752 Iop_RoundF128toInt
, /* F128 value to nearest integral value (still
754 Iop_RoundF64toInt
, /* F64 value to nearest integral value (still
756 Iop_RoundF32toInt
, /* F32 value to nearest integral value (still
759 /* --- guest s390 specifics, not mandated by 754. --- */
761 /* Fused multiply-add/sub */
762 /* :: IRRoundingMode(I32) x F32 x F32 x F32 -> F32
763 (computes arg2 * arg3 +/- arg4) */
764 Iop_MAddF32
, Iop_MSubF32
,
766 /* --- guest ppc32/64 specifics, not mandated by 754. --- */
768 /* Ternary operations, with rounding. */
769 /* Fused multiply-add/sub, with 112-bit intermediate
771 Also used to implement fused multiply-add/sub for s390. */
772 /* :: IRRoundingMode(I32) x F64 x F64 x F64 -> F64
773 (computes arg2 * arg3 +/- arg4) */
774 Iop_MAddF64
, Iop_MSubF64
,
776 /* Variants of the above which produce a 64-bit result but which
777 round their result to a IEEE float range first. */
778 /* :: IRRoundingMode(I32) x F64 x F64 x F64 -> F64 */
779 Iop_MAddF64r32
, Iop_MSubF64r32
,
782 Iop_RSqrtEst5GoodF64
, /* reciprocal square root estimate, 5 good bits */
783 Iop_RoundF64toF64_NEAREST
, /* frin */
784 Iop_RoundF64toF64_NegINF
, /* frim */
785 Iop_RoundF64toF64_PosINF
, /* frip */
786 Iop_RoundF64toF64_ZERO
, /* friz */
789 Iop_TruncF64asF32
, /* do F64->F32 truncation as per 'fsts' */
791 /* :: IRRoundingMode(I32) x F64 -> F64 */
792 Iop_RoundF64toF32
, /* round F64 to nearest F32 value (still as F64) */
793 /* NB: pretty much the same as Iop_F64toF32, except no change
796 /* --- guest arm64 specifics, not mandated by 754. --- */
798 Iop_RecpExpF64
, /* FRECPX d :: IRRoundingMode(I32) x F64 -> F64 */
799 Iop_RecpExpF32
, /* FRECPX s :: IRRoundingMode(I32) x F32 -> F32 */
801 /* --------- Possibly required by IEEE 754-2008. --------- */
803 Iop_MaxNumF64
, /* max, F64, numerical operand if other is a qNaN */
804 Iop_MinNumF64
, /* min, F64, ditto */
805 Iop_MaxNumF32
, /* max, F32, ditto */
806 Iop_MinNumF32
, /* min, F32, ditto */
808 /* ------------------ 16-bit scalar FP ------------------ */
810 Iop_F16toF64
, /* F16 -> F64 */
811 Iop_F64toF16
, /* IRRoundingMode(I32) x F64 -> F16 */
813 Iop_F16toF32
, /* F16 -> F32 */
814 Iop_F32toF16
, /* IRRoundingMode(I32) x F32 -> F16 */
816 /* ------------------ 32-bit SIMD Integer ------------------ */
818 /* 32x1 saturating add/sub (ok, well, not really SIMD :) */
822 /* 16x2 add/sub, also signed/unsigned saturating variants */
823 Iop_Add16x2
, Iop_Sub16x2
,
824 Iop_QAdd16Sx2
, Iop_QAdd16Ux2
,
825 Iop_QSub16Sx2
, Iop_QSub16Ux2
,
827 /* 16x2 signed/unsigned halving add/sub. For each lane, these
828 compute bits 16:1 of (eg) sx(argL) + sx(argR),
829 or zx(argL) - zx(argR) etc. */
830 Iop_HAdd16Ux2
, Iop_HAdd16Sx2
,
831 Iop_HSub16Ux2
, Iop_HSub16Sx2
,
833 /* 8x4 add/sub, also signed/unsigned saturating variants */
834 Iop_Add8x4
, Iop_Sub8x4
,
835 Iop_QAdd8Sx4
, Iop_QAdd8Ux4
,
836 Iop_QSub8Sx4
, Iop_QSub8Ux4
,
838 /* 8x4 signed/unsigned halving add/sub. For each lane, these
839 compute bits 8:1 of (eg) sx(argL) + sx(argR),
840 or zx(argL) - zx(argR) etc. */
841 Iop_HAdd8Ux4
, Iop_HAdd8Sx4
,
842 Iop_HSub8Ux4
, Iop_HSub8Sx4
,
844 /* 8x4 sum of absolute unsigned differences. */
847 /* MISC (vector integer cmp != 0) */
848 Iop_CmpNEZ16x2
, Iop_CmpNEZ8x4
,
850 /* Byte swap in a 32-bit word */
851 Iop_Reverse8sIn32_x1
,
853 /* ------------------ 64-bit SIMD FP ------------------------ */
855 /* Conversion to/from int */
856 // Deprecated: these don't specify a rounding mode
857 Iop_I32UtoF32x2_DEP
, Iop_I32StoF32x2_DEP
, /* I32x2 -> F32x2 */
859 Iop_F32toI32Ux2_RZ
, Iop_F32toI32Sx2_RZ
, /* F32x2 -> I32x2 */
861 /* Fixed32 format is floating-point number with fixed number of fraction
862 bits. The number of fraction bits is passed as a second argument of
864 Iop_F32ToFixed32Ux2_RZ
, Iop_F32ToFixed32Sx2_RZ
, /* fp -> fixed-point */
865 Iop_Fixed32UToF32x2_RN
, Iop_Fixed32SToF32x2_RN
, /* fixed-point -> fp */
867 /* Binary operations */
868 Iop_Max32Fx2
, Iop_Min32Fx2
,
869 /* Pairwise Min and Max. See integer pairwise operations for more
871 Iop_PwMax32Fx2
, Iop_PwMin32Fx2
,
872 /* Note: For the following compares, the arm front-end assumes a
873 nan in a lane of either argument returns zero for that lane. */
874 Iop_CmpEQ32Fx2
, Iop_CmpGT32Fx2
, Iop_CmpGE32Fx2
,
876 /* Vector Reciprocal Estimate finds an approximate reciprocal of each
877 element in the operand vector, and places the results in the destination
881 /* Vector Reciprocal Step computes (2.0 - arg1 * arg2).
882 Note, that if one of the arguments is zero and another one is infinity
883 of arbitrary sign the result of the operation is 2.0. */
886 /* Vector Reciprocal Square Root Estimate finds an approximate reciprocal
887 square root of each element in the operand vector. */
890 /* Vector Reciprocal Square Root Step computes (3.0 - arg1 * arg2) / 2.0.
891 Note, that of one of the arguments is zero and another one is infiinty
892 of arbitrary sign the result of the operation is 1.5. */
896 Iop_Neg32Fx2
, Iop_Abs32Fx2
,
898 /* ------------------ 64-bit SIMD Integer. ------------------ */
900 /* MISC (vector integer cmp != 0) */
901 Iop_CmpNEZ8x8
, Iop_CmpNEZ16x4
, Iop_CmpNEZ32x2
,
903 /* ADDITION (normal / unsigned sat / signed sat) */
904 Iop_Add8x8
, Iop_Add16x4
, Iop_Add32x2
,
905 Iop_QAdd8Ux8
, Iop_QAdd16Ux4
, Iop_QAdd32Ux2
, Iop_QAdd64Ux1
,
906 Iop_QAdd8Sx8
, Iop_QAdd16Sx4
, Iop_QAdd32Sx2
, Iop_QAdd64Sx1
,
908 /* PAIRWISE operations */
909 /* Iop_PwFoo16x4( [a,b,c,d], [e,f,g,h] ) =
910 [Foo16(a,b), Foo16(c,d), Foo16(e,f), Foo16(g,h)] */
911 Iop_PwAdd8x8
, Iop_PwAdd16x4
, Iop_PwAdd32x2
,
912 Iop_PwMax8Sx8
, Iop_PwMax16Sx4
, Iop_PwMax32Sx2
,
913 Iop_PwMax8Ux8
, Iop_PwMax16Ux4
, Iop_PwMax32Ux2
,
914 Iop_PwMin8Sx8
, Iop_PwMin16Sx4
, Iop_PwMin32Sx2
,
915 Iop_PwMin8Ux8
, Iop_PwMin16Ux4
, Iop_PwMin32Ux2
,
916 /* Longening variant is unary. The resulting vector contains two times
917 less elements than operand, but they are two times wider.
919 Iop_PAddL16Ux4( [a,b,c,d] ) = [a+b,c+d]
920 where a+b and c+d are unsigned 32-bit values. */
921 Iop_PwAddL8Ux8
, Iop_PwAddL16Ux4
, Iop_PwAddL32Ux2
,
922 Iop_PwAddL8Sx8
, Iop_PwAddL16Sx4
, Iop_PwAddL32Sx2
,
924 /* SUBTRACTION (normal / unsigned sat / signed sat) */
925 Iop_Sub8x8
, Iop_Sub16x4
, Iop_Sub32x2
,
926 Iop_QSub8Ux8
, Iop_QSub16Ux4
, Iop_QSub32Ux2
, Iop_QSub64Ux1
,
927 Iop_QSub8Sx8
, Iop_QSub16Sx4
, Iop_QSub32Sx2
, Iop_QSub64Sx1
,
930 Iop_Abs8x8
, Iop_Abs16x4
, Iop_Abs32x2
,
932 /* MULTIPLICATION (normal / high half of signed/unsigned / plynomial ) */
933 Iop_Mul8x8
, Iop_Mul16x4
, Iop_Mul32x2
,
937 /* Plynomial multiplication treats it's arguments as coefficients of
938 polynoms over {0, 1}. */
939 Iop_PolynomialMul8x8
,
941 /* Vector Saturating Doubling Multiply Returning High Half and
942 Vector Saturating Rounding Doubling Multiply Returning High Half */
943 /* These IROp's multiply corresponding elements in two vectors, double
944 the results, and place the most significant half of the final results
945 in the destination vector. The results are truncated or rounded. If
946 any of the results overflow, they are saturated. */
947 Iop_QDMulHi16Sx4
, Iop_QDMulHi32Sx2
,
948 Iop_QRDMulHi16Sx4
, Iop_QRDMulHi32Sx2
,
950 /* AVERAGING: note: (arg1 + arg2 + 1) >>u 1 */
955 Iop_Max8Sx8
, Iop_Max16Sx4
, Iop_Max32Sx2
,
956 Iop_Max8Ux8
, Iop_Max16Ux4
, Iop_Max32Ux2
,
957 Iop_Min8Sx8
, Iop_Min16Sx4
, Iop_Min32Sx2
,
958 Iop_Min8Ux8
, Iop_Min16Ux4
, Iop_Min32Ux2
,
961 Iop_CmpEQ8x8
, Iop_CmpEQ16x4
, Iop_CmpEQ32x2
,
962 Iop_CmpGT8Ux8
, Iop_CmpGT16Ux4
, Iop_CmpGT32Ux2
,
963 Iop_CmpGT8Sx8
, Iop_CmpGT16Sx4
, Iop_CmpGT32Sx2
,
965 /* COUNT ones / leading zeroes / leading sign bits (not including topmost
968 Iop_Clz8x8
, Iop_Clz16x4
, Iop_Clz32x2
,
969 Iop_Cls8x8
, Iop_Cls16x4
, Iop_Cls32x2
,
972 /*Vector COUNT trailing zeros */
973 Iop_Ctz8x16
, Iop_Ctz16x8
, Iop_Ctz32x4
, Iop_Ctz64x2
,
975 /* VECTOR x VECTOR SHIFT / ROTATE */
976 Iop_Shl8x8
, Iop_Shl16x4
, Iop_Shl32x2
,
977 Iop_Shr8x8
, Iop_Shr16x4
, Iop_Shr32x2
,
978 Iop_Sar8x8
, Iop_Sar16x4
, Iop_Sar32x2
,
979 Iop_Sal8x8
, Iop_Sal16x4
, Iop_Sal32x2
, Iop_Sal64x1
,
981 /* VECTOR x SCALAR SHIFT (shift amt :: Ity_I8) */
982 Iop_ShlN8x8
, Iop_ShlN16x4
, Iop_ShlN32x2
,
983 Iop_ShrN8x8
, Iop_ShrN16x4
, Iop_ShrN32x2
,
984 Iop_SarN8x8
, Iop_SarN16x4
, Iop_SarN32x2
,
986 /* VECTOR x VECTOR SATURATING SHIFT */
987 Iop_QShl8x8
, Iop_QShl16x4
, Iop_QShl32x2
, Iop_QShl64x1
,
988 Iop_QSal8x8
, Iop_QSal16x4
, Iop_QSal32x2
, Iop_QSal64x1
,
989 /* VECTOR x INTEGER SATURATING SHIFT */
990 Iop_QShlNsatSU8x8
, Iop_QShlNsatSU16x4
,
991 Iop_QShlNsatSU32x2
, Iop_QShlNsatSU64x1
,
992 Iop_QShlNsatUU8x8
, Iop_QShlNsatUU16x4
,
993 Iop_QShlNsatUU32x2
, Iop_QShlNsatUU64x1
,
994 Iop_QShlNsatSS8x8
, Iop_QShlNsatSS16x4
,
995 Iop_QShlNsatSS32x2
, Iop_QShlNsatSS64x1
,
997 /* NARROWING (binary)
998 -- narrow 2xI64 into 1xI64, hi half from left arg */
999 /* For saturated narrowing, I believe there are 4 variants of
1000 the basic arithmetic operation, depending on the signedness
1001 of argument and result. Here are examples that exemplify
1004 QNarrow16Uto8U ( UShort x ) if (x >u 255) x = 255;
1007 QNarrow16Sto8S ( Short x ) if (x <s -128) x = -128;
1008 if (x >s 127) x = 127;
1011 QNarrow16Uto8S ( UShort x ) if (x >u 127) x = 127;
1014 QNarrow16Sto8U ( Short x ) if (x <s 0) x = 0;
1015 if (x >s 255) x = 255;
1018 Iop_QNarrowBin16Sto8Ux8
,
1019 Iop_QNarrowBin16Sto8Sx8
, Iop_QNarrowBin32Sto16Sx4
,
1020 Iop_NarrowBin16to8x8
, Iop_NarrowBin32to16x4
,
1023 /* Interleave lanes from low or high halves of
1024 operands. Most-significant result lane is from the left
1026 Iop_InterleaveHI8x8
, Iop_InterleaveHI16x4
, Iop_InterleaveHI32x2
,
1027 Iop_InterleaveLO8x8
, Iop_InterleaveLO16x4
, Iop_InterleaveLO32x2
,
1028 /* Interleave odd/even lanes of operands. Most-significant result lane
1029 is from the left arg. Note that Interleave{Odd,Even}Lanes32x2 are
1030 identical to Interleave{HI,LO}32x2 and so are omitted.*/
1031 Iop_InterleaveOddLanes8x8
, Iop_InterleaveEvenLanes8x8
,
1032 Iop_InterleaveOddLanes16x4
, Iop_InterleaveEvenLanes16x4
,
1034 /* CONCATENATION -- build a new value by concatenating either
1035 the even or odd lanes of both operands. Note that
1036 Cat{Odd,Even}Lanes32x2 are identical to Interleave{HI,LO}32x2
1037 and so are omitted. */
1038 Iop_CatOddLanes8x8
, Iop_CatOddLanes16x4
,
1039 Iop_CatEvenLanes8x8
, Iop_CatEvenLanes16x4
,
1041 /* GET / SET elements of VECTOR
1042 GET is binop (I64, I8) -> I<elem_size>
1043 SET is triop (I64, I8, I<elem_size>) -> I64 */
1044 /* Note: the arm back-end handles only constant second argument */
1045 Iop_GetElem8x8
, Iop_GetElem16x4
, Iop_GetElem32x2
,
1046 Iop_SetElem8x8
, Iop_SetElem16x4
, Iop_SetElem32x2
,
1048 /* DUPLICATING -- copy value to all lanes */
1049 Iop_Dup8x8
, Iop_Dup16x4
, Iop_Dup32x2
,
1051 /* SLICE -- produces the lowest 64 bits of (arg1:arg2) >> (8 * arg3).
1052 arg3 is a shift amount in bytes and may be between 0 and 8
1053 inclusive. When 0, the result is arg2; when 8, the result is arg1.
1054 Not all back ends handle all values. The arm32 and arm64 back
1055 ends handle only immediate arg3 values. */
1056 Iop_Slice64
, // (I64, I64, I8) -> I64
1058 /* REVERSE the order of chunks in vector lanes. Chunks must be
1059 smaller than the vector lanes (obviously) and so may be 8-, 16- and
1060 32-bit in size. Note that the degenerate case,
1061 Iop_Reverse8sIn64_x1, is a simply a vanilla byte-swap. */
1063 Reverse8sIn16_x4([a,b,c,d,e,f,g,h]) = [b,a,d,c,f,e,h,g]
1064 Reverse8sIn32_x2([a,b,c,d,e,f,g,h]) = [d,c,b,a,h,g,f,e]
1065 Reverse8sIn64_x1([a,b,c,d,e,f,g,h]) = [h,g,f,e,d,c,b,a] */
1066 Iop_Reverse8sIn16_x4
,
1067 Iop_Reverse8sIn32_x2
, Iop_Reverse16sIn32_x2
,
1068 Iop_Reverse8sIn64_x1
, Iop_Reverse16sIn64_x1
, Iop_Reverse32sIn64_x1
,
1070 /* PERMUTING -- copy src bytes to dst,
1071 as indexed by control vector bytes:
1072 for i in 0 .. 7 . result[i] = argL[ argR[i] ]
1073 argR[i] values may only be in the range 0 .. 7, else behaviour
1074 is undefined. That is, argR[i][7:3] must be zero. */
1077 /* PERMUTING with optional zeroing:
1078 for i in 0 .. 7 . result[i] = if argR[i] bit 7 is set
1079 then zero else argL[ argR[i] ]
1080 argR[i][6:3] must be zero, else behaviour is undefined.
1084 /* MISC CONVERSION -- get high bits of each byte lane, a la
1085 x86/amd64 pmovmskb */
1086 Iop_GetMSBs8x8
, /* I64 -> I8 */
1088 /* Vector Reciprocal Estimate and Vector Reciprocal Square Root Estimate
1089 See floating-point equivalents for details. */
1090 Iop_RecipEst32Ux2
, Iop_RSqrtEst32Ux2
,
1092 /* ------------------ Decimal Floating Point ------------------ */
1094 /* ARITHMETIC INSTRUCTIONS 64-bit
1095 ----------------------------------
1096 IRRoundingMode(I32) X D64 X D64 -> D64
1098 Iop_AddD64
, Iop_SubD64
, Iop_MulD64
, Iop_DivD64
,
1100 /* ARITHMETIC INSTRUCTIONS 128-bit
1101 ----------------------------------
1102 IRRoundingMode(I32) X D128 X D128 -> D128
1104 Iop_AddD128
, Iop_SubD128
, Iop_MulD128
, Iop_DivD128
,
1106 /* SHIFT SIGNIFICAND INSTRUCTIONS
1107 * The DFP significand is shifted by the number of digits specified
1108 * by the U8 operand. Digits shifted out of the leftmost digit are
1109 * lost. Zeros are supplied to the vacated positions on the right.
1110 * The sign of the result is the same as the sign of the original
1113 * D64 x U8 -> D64 left shift and right shift respectively */
1114 Iop_ShlD64
, Iop_ShrD64
,
1116 /* D128 x U8 -> D128 left shift and right shift respectively */
1117 Iop_ShlD128
, Iop_ShrD128
,
1120 /* FORMAT CONVERSION INSTRUCTIONS
1140 /* IRRoundingMode(I32) x D64 -> D32 */
1143 /* IRRoundingMode(I32) x D128 -> D64 */
1152 /* IRRoundingMode(I32) x I64 -> D64 */
1155 /* IRRoundingMode(I32) x I64 -> D64 */
1158 /* IRRoundingMode(I32) x D64 -> I32 */
1161 /* IRRoundingMode(I32) x D64 -> I32 */
1164 /* IRRoundingMode(I32) x D64 -> I64 */
1167 /* IRRoundingMode(I32) x D64 -> I64 */
1170 /* IRRoundingMode(I32) x D128 -> I32 */
1173 /* IRRoundingMode(I32) x D128 -> I32 */
1176 /* IRRoundingMode(I32) x D128 -> I64 */
1179 /* IRRoundingMode(I32) x D128 -> I64 */
1182 /* IRRoundingMode(I32) x F32 -> D32 */
1185 /* IRRoundingMode(I32) x F32 -> D64 */
1188 /* IRRoundingMode(I32) x F32 -> D128 */
1191 /* IRRoundingMode(I32) x F64 -> D32 */
1194 /* IRRoundingMode(I32) x F64 -> D64 */
1197 /* IRRoundingMode(I32) x F64 -> D128 */
1200 /* IRRoundingMode(I32) x F128 -> D32 */
1203 /* IRRoundingMode(I32) x F128 -> D64 */
1206 /* IRRoundingMode(I32) x F128 -> D128 */
1209 /* IRRoundingMode(I32) x D32 -> F32 */
1212 /* IRRoundingMode(I32) x D32 -> F64 */
1215 /* IRRoundingMode(I32) x D32 -> F128 */
1218 /* IRRoundingMode(I32) x D64 -> F32 */
1221 /* IRRoundingMode(I32) x D64 -> F64 */
1224 /* IRRoundingMode(I32) x D64 -> F128 */
1227 /* IRRoundingMode(I32) x D128 -> F32 */
1230 /* IRRoundingMode(I32) x D128 -> F64 */
1233 /* IRRoundingMode(I32) x D128 -> F128 */
1236 /* ROUNDING INSTRUCTIONS
1237 * IRRoundingMode(I32) x D64 -> D64
1238 * The D64 operand, if a finite number, it is rounded to a
1239 * floating point integer value, i.e. no fractional part.
1243 /* IRRoundingMode(I32) x D128 -> D128 */
1246 /* COMPARE INSTRUCTIONS
1247 * D64 x D64 -> IRCmpD64Result(I32) */
1250 /* D128 x D128 -> IRCmpD128Result(I32) */
1253 /* COMPARE BIASED EXPONENET INSTRUCTIONS
1254 * D64 x D64 -> IRCmpD64Result(I32) */
1257 /* D128 x D128 -> IRCmpD128Result(I32) */
1260 /* QUANTIZE AND ROUND INSTRUCTIONS
1261 * The source operand is converted and rounded to the form with the
1262 * immediate exponent specified by the rounding and exponent parameter.
1264 * The second operand is converted and rounded to the form
1265 * of the first operand's exponent and the rounded based on the specified
1266 * rounding mode parameter.
1268 * IRRoundingMode(I32) x D64 x D64-> D64 */
1271 /* IRRoundingMode(I32) x D128 x D128 -> D128 */
1274 /* IRRoundingMode(I32) x I8 x D64 -> D64
1275 * The Decimal Floating point operand is rounded to the requested
1276 * significance given by the I8 operand as specified by the rounding
1279 Iop_SignificanceRoundD64
,
1281 /* IRRoundingMode(I32) x I8 x D128 -> D128 */
1282 Iop_SignificanceRoundD128
,
1284 /* EXTRACT AND INSERT INSTRUCTIONS
1286 * The exponent of the D32 or D64 operand is extracted. The
1287 * extracted exponent is converted to a 64-bit signed binary integer.
1295 * The number of significand digits of the D64 operand is extracted.
1296 * The number is stored as a 64-bit signed binary integer.
1304 * The exponent is specified by the first I64 operand the signed
1305 * significand is given by the second I64 value. The result is a D64
1306 * value consisting of the specified significand and exponent whose
1307 * sign is that of the specified significand.
1311 /* I64 x D128 -> D128 */
1314 /* Support for 128-bit DFP type */
1315 Iop_D64HLtoD128
, Iop_D128HItoD64
, Iop_D128LOtoD64
,
1318 * Convert 50-bit densely packed BCD string to 60 bit BCD string
1323 * Convert 60 bit BCD string to 50-bit densely packed BCD string
1327 /* BCD arithmetic instructions, (V128, V128) -> V128
1328 * The BCD format is the same as that used in the BCD<->DPB conversion
1329 * routines, except using 124 digits (vs 60) plus the trailing 4-bit
1331 Iop_BCDAdd
, Iop_BCDSub
,
1333 /* Conversion signed 128-bit integer to signed BCD 128-bit */
1336 /* Conversion signed BCD 128-bit to 128-bit integer */
1339 /* Conversion I64 -> D64 */
1340 Iop_ReinterpI64asD64
,
1342 /* Conversion D64 -> I64 */
1343 Iop_ReinterpD64asI64
,
1345 /* ------------------ 128-bit SIMD FP. ------------------ */
1347 /* --- 32x4 vector FP --- */
1349 /* ternary :: IRRoundingMode(I32) x V128 x V128 -> V128 */
1350 Iop_Add32Fx4
, Iop_Sub32Fx4
, Iop_Mul32Fx4
, Iop_Div32Fx4
,
1353 Iop_Max32Fx4
, Iop_Min32Fx4
,
1354 Iop_Add32Fx2
, Iop_Sub32Fx2
,
1355 /* Note: For the following compares, the ppc and arm front-ends assume a
1356 nan in a lane of either argument returns zero for that lane. */
1357 Iop_CmpEQ32Fx4
, Iop_CmpLT32Fx4
, Iop_CmpLE32Fx4
, Iop_CmpUN32Fx4
,
1358 Iop_CmpGT32Fx4
, Iop_CmpGE32Fx4
,
1360 /* Pairwise Max and Min. See integer pairwise operations for details. */
1361 Iop_PwMax32Fx4
, Iop_PwMin32Fx4
,
1367 /* binary :: IRRoundingMode(I32) x V128 -> V128 */
1370 /* Vector Reciprocal Estimate finds an approximate reciprocal of each
1371 element in the operand vector, and places the results in the
1372 destination vector. */
1375 /* Vector Reciprocal Step computes (2.0 - arg1 * arg2).
1376 Note, that if one of the arguments is zero and another one is infinity
1377 of arbitrary sign the result of the operation is 2.0. */
1380 /* Vector Reciprocal Square Root Estimate finds an approximate reciprocal
1381 square root of each element in the operand vector. */
1384 /* Scaling of vector with a power of 2 (wd[i] <- ws[i] * 2^wt[i]) */
1387 /* Vector floating-point base 2 logarithm */
1390 /* Vector floating-point exponential 2^x */
1393 /* Vector Reciprocal Square Root Step computes (3.0 - arg1 * arg2) / 2.0.
1394 Note, that of one of the arguments is zero and another one is infiinty
1395 of arbitrary sign the result of the operation is 1.5. */
1398 /* --- Int to/from FP conversion --- */
1399 /* Unlike the standard fp conversions, these irops take no
1400 rounding mode argument. Instead the irop trailers _R{M,P,N,Z}
1401 indicate the mode: {-inf, +inf, nearest, zero} respectively. */
1403 // These carry no rounding mode and are therefore deprecated
1404 Iop_I32UtoF32x4_DEP
, Iop_I32StoF32x4_DEP
, /* I32x4 -> F32x4 */
1406 Iop_I32StoF32x4
, /* IRRoundingMode(I32) x V128 -> V128 */
1407 Iop_F32toI32Sx4
, /* IRRoundingMode(I32) x V128 -> V128 */
1409 Iop_F32toI32Ux4_RZ
, Iop_F32toI32Sx4_RZ
, /* F32x4 -> I32x4 */
1410 Iop_QF32toI32Ux4_RZ
, Iop_QF32toI32Sx4_RZ
, /* F32x4 -> I32x4 (saturating) */
1411 Iop_RoundF32x4_RM
, Iop_RoundF32x4_RP
, /* round to fp integer */
1412 Iop_RoundF32x4_RN
, Iop_RoundF32x4_RZ
, /* round to fp integer */
1413 /* Fixed32 format is floating-point number with fixed number of fraction
1414 bits. The number of fraction bits is passed as a second argument of
1416 Iop_F32ToFixed32Ux4_RZ
, Iop_F32ToFixed32Sx4_RZ
, /* fp -> fixed-point */
1417 Iop_Fixed32UToF32x4_RN
, Iop_Fixed32SToF32x4_RN
, /* fixed-point -> fp */
1419 /* --- Single to/from half conversion --- */
1420 /* FIXME: what kind of rounding in F32x4 -> F16x4 case? */
1421 // FIXME these carry no rounding mode
1422 Iop_F32toF16x4_DEP
, /* F32x4(==V128) -> F16x4(==I64), NO ROUNDING MODE */
1423 Iop_F32toF16x4
, /* IRRoundingMode(I32) x V128 -> I64 */
1424 Iop_F16toF32x4
, /* F16x4 -> F32x4 */
1426 /* -- Double to/from half conversion -- */
1427 Iop_F64toF16x2_DEP
, // F64x2 -> F16x2, NO ROUNDING MODE
1430 /* Values from two registers converted in smaller type and put in one
1431 IRRoundingMode(I32) x (F32x4 | F32x4) -> Q16x8 */
1435 /* --- 32x4 lowest-lane-only scalar FP --- */
1437 /* In binary cases, upper 3/4 is copied from first operand. In
1438 unary cases, upper 3/4 is copied from the operand. */
1441 Iop_Add32F0x4
, Iop_Sub32F0x4
, Iop_Mul32F0x4
, Iop_Div32F0x4
,
1442 Iop_Max32F0x4
, Iop_Min32F0x4
,
1443 Iop_CmpEQ32F0x4
, Iop_CmpLT32F0x4
, Iop_CmpLE32F0x4
, Iop_CmpUN32F0x4
,
1446 Iop_RecipEst32F0x4
, Iop_Sqrt32F0x4
, Iop_RSqrtEst32F0x4
,
1448 /* --- 64x2 vector FP --- */
1450 /* ternary :: IRRoundingMode(I32) x V128 x V128 -> V128 */
1451 Iop_Add64Fx2
, Iop_Sub64Fx2
, Iop_Mul64Fx2
, Iop_Div64Fx2
,
1454 Iop_Max64Fx2
, Iop_Min64Fx2
,
1455 Iop_CmpEQ64Fx2
, Iop_CmpLT64Fx2
, Iop_CmpLE64Fx2
, Iop_CmpUN64Fx2
,
1461 /* binary :: IRRoundingMode(I32) x V128 -> V128 */
1464 /* Scaling of vector with a power of 2 (wd[i] <- ws[i] * 2^wt[i]) */
1467 /* Vector floating-point base 2 logarithm */
1470 /* see 32Fx4 variants for description */
1471 Iop_RecipEst64Fx2
, // unary
1472 Iop_RecipStep64Fx2
, // binary
1473 Iop_RSqrtEst64Fx2
, // unary
1474 Iop_RSqrtStep64Fx2
, // binary
1477 /* Values from two registers converted in smaller type and put in one
1478 IRRoundingMode(I32) x (F64x2 | F64x2) -> Q32x4 */
1481 /* --- 64x2 lowest-lane-only scalar FP --- */
1483 /* In binary cases, upper half is copied from first operand. In
1484 unary cases, upper half is copied from the operand. */
1487 Iop_Add64F0x2
, Iop_Sub64F0x2
, Iop_Mul64F0x2
, Iop_Div64F0x2
,
1488 Iop_Max64F0x2
, Iop_Min64F0x2
,
1489 Iop_CmpEQ64F0x2
, Iop_CmpLT64F0x2
, Iop_CmpLE64F0x2
, Iop_CmpUN64F0x2
,
1494 /* --- pack / unpack --- */
1496 /* 64 <-> 128 bit vector */
1497 Iop_V128to64
, // :: V128 -> I64, low half
1498 Iop_V128HIto64
, // :: V128 -> I64, high half
1499 Iop_64HLtoV128
, // :: (I64,I64) -> V128
1504 /* Copies lower 64/32/16/8 bits, zeroes out the rest. */
1505 Iop_ZeroHI64ofV128
, // :: V128 -> V128
1506 Iop_ZeroHI96ofV128
, // :: V128 -> V128
1507 Iop_ZeroHI112ofV128
, // :: V128 -> V128
1508 Iop_ZeroHI120ofV128
, // :: V128 -> V128
1510 /* 32 <-> 128 bit vector */
1512 Iop_V128to32
, // :: V128 -> I32, lowest lane
1513 Iop_SetV128lo32
, // :: (V128,I32) -> V128
1515 /* ------------------ 128-bit SIMD Integer. ------------------ */
1519 Iop_AndV128
, Iop_OrV128
, Iop_XorV128
,
1521 /* VECTOR SHIFT (shift amt :: Ity_I8) */
1522 Iop_ShlV128
, Iop_ShrV128
, Iop_SarV128
,
1524 /* MISC (vector integer cmp != 0) */
1525 Iop_CmpNEZ8x16
, Iop_CmpNEZ16x8
, Iop_CmpNEZ32x4
, Iop_CmpNEZ64x2
,
1528 /* ADDITION (normal / U->U sat / S->S sat) */
1529 Iop_Add8x16
, Iop_Add16x8
, Iop_Add32x4
, Iop_Add64x2
, Iop_Add128x1
,
1530 Iop_QAdd8Ux16
, Iop_QAdd16Ux8
, Iop_QAdd32Ux4
, Iop_QAdd64Ux2
,
1531 Iop_QAdd8Sx16
, Iop_QAdd16Sx8
, Iop_QAdd32Sx4
, Iop_QAdd64Sx2
,
1533 /* ADDITION, ARM64 specific saturating variants. */
1534 /* Unsigned widen left arg, signed widen right arg, add, saturate S->S.
1535 This corresponds to SUQADD. */
1536 Iop_QAddExtUSsatSS8x16
, Iop_QAddExtUSsatSS16x8
,
1537 Iop_QAddExtUSsatSS32x4
, Iop_QAddExtUSsatSS64x2
,
1538 /* Signed widen left arg, unsigned widen right arg, add, saturate U->U.
1539 This corresponds to USQADD. */
1540 Iop_QAddExtSUsatUU8x16
, Iop_QAddExtSUsatUU16x8
,
1541 Iop_QAddExtSUsatUU32x4
, Iop_QAddExtSUsatUU64x2
,
1543 /* SUBTRACTION (normal / unsigned sat / signed sat) */
1544 Iop_Sub8x16
, Iop_Sub16x8
, Iop_Sub32x4
, Iop_Sub64x2
, Iop_Sub128x1
,
1545 Iop_QSub8Ux16
, Iop_QSub16Ux8
, Iop_QSub32Ux4
, Iop_QSub64Ux2
,
1546 Iop_QSub8Sx16
, Iop_QSub16Sx8
, Iop_QSub32Sx4
, Iop_QSub64Sx2
,
1548 /* MULTIPLICATION (normal / high half of signed/unsigned) */
1549 Iop_Mul8x16
, Iop_Mul16x8
, Iop_Mul32x4
,
1550 Iop_MulHi8Ux16
, Iop_MulHi16Ux8
, Iop_MulHi32Ux4
,
1551 Iop_MulHi8Sx16
, Iop_MulHi16Sx8
, Iop_MulHi32Sx4
,
1552 /* (widening signed/unsigned of even lanes, with lowest lane=zero) */
1553 Iop_MullEven8Ux16
, Iop_MullEven16Ux8
, Iop_MullEven32Ux4
,
1554 Iop_MullEven8Sx16
, Iop_MullEven16Sx8
, Iop_MullEven32Sx4
,
1556 /* Widening multiplies, all of the form (I64, I64) -> V128 */
1557 Iop_Mull8Ux8
, Iop_Mull8Sx8
,
1558 Iop_Mull16Ux4
, Iop_Mull16Sx4
,
1559 Iop_Mull32Ux2
, Iop_Mull32Sx2
,
1561 /* Signed doubling saturating widening multiplies, (I64, I64) -> V128 */
1562 Iop_QDMull16Sx4
, Iop_QDMull32Sx2
,
1564 /* Vector Saturating Doubling Multiply Returning High Half and
1565 Vector Saturating Rounding Doubling Multiply Returning High Half.
1566 These IROps multiply corresponding elements in two vectors, double
1567 the results, and place the most significant half of the final results
1568 in the destination vector. The results are truncated or rounded. If
1569 any of the results overflow, they are saturated. To be more precise,
1570 for each lane, the computed result is:
1572 hi-half( sign-extend(laneL) *q sign-extend(laneR) *q 2 )
1574 hi-half( sign-extend(laneL) *q sign-extend(laneR) *q 2
1575 +q (1 << (lane-width-in-bits - 1)) )
1577 Iop_QDMulHi16Sx8
, Iop_QDMulHi32Sx4
, /* (V128, V128) -> V128 */
1578 Iop_QRDMulHi16Sx8
, Iop_QRDMulHi32Sx4
, /* (V128, V128) -> V128 */
1580 /* Polynomial multiplication treats its arguments as
1581 coefficients of polynomials over {0, 1}. */
1582 Iop_PolynomialMul8x16
, /* (V128, V128) -> V128 */
1583 Iop_PolynomialMull8x8
, /* (I64, I64) -> V128 */
1585 /* Vector Polynomial multiplication add. (V128, V128) -> V128
1587 *** Below is the algorithm for the instructions. These Iops could
1588 be emulated to get this functionality, but the emulation would
1591 Example for polynomial multiply add for vector of bytes
1593 prod[i].bit[0:14] <- 0
1594 srcA <- VR[argL].byte[i]
1595 srcB <- VR[argR].byte[i]
1598 gbit <- srcA.bit[k] & srcB.bit[j-k]
1599 prod[i].bit[j] <- prod[i].bit[j] ^ gbit
1605 gbit <- (srcA.bit[k] & srcB.bit[j-k])
1606 prod[i].bit[j] <- prod[i].bit[j] ^ gbit
1612 VR[dst].hword[i] <- 0b0 || (prod[2×i] ^ prod[2×i+1])
1615 Iop_PolynomialMulAdd8x16
, Iop_PolynomialMulAdd16x8
,
1616 Iop_PolynomialMulAdd32x4
, Iop_PolynomialMulAdd64x2
,
1618 /* PAIRWISE operations */
1619 /* Iop_PwFoo16x4( [a,b,c,d], [e,f,g,h] ) =
1620 [Foo16(a,b), Foo16(c,d), Foo16(e,f), Foo16(g,h)] */
1621 Iop_PwAdd8x16
, Iop_PwAdd16x8
, Iop_PwAdd32x4
,
1624 /* Longening variant is unary. The resulting vector contains two times
1625 less elements than operand, but they are two times wider.
1627 Iop_PwAddL16Ux4( [a,b,c,d] ) = [a+b,c+d]
1628 where a+b and c+d are unsigned 32-bit values. */
1629 Iop_PwAddL8Ux16
, Iop_PwAddL16Ux8
, Iop_PwAddL32Ux4
, Iop_PwAddL64Ux2
,
1630 Iop_PwAddL8Sx16
, Iop_PwAddL16Sx8
, Iop_PwAddL32Sx4
,
1632 /* This is amd64 PMADDUBSW, (V128, V128) -> V128. For each adjacent pair
1633 of bytes [a,b] in the first arg and [c,d] in the second, computes:
1634 signed/signed sat to 16 bits ( zxTo16(a) * sxTo16(b)
1635 + zxTo16(c) * sxTo16(d) )
1636 This exists because it's frequently used and there's no reasonably
1637 concise way to express it using other IROps.
1639 Iop_PwExtUSMulQAdd8x16
,
1641 /* Other unary pairwise ops */
1643 /* Vector bit matrix transpose. (V128) -> V128 */
1644 /* For each doubleword element of the source vector, an 8-bit x 8-bit
1645 * matrix transpose is performed. */
1646 Iop_PwBitMtxXpose64x2
,
1648 /* ABSOLUTE VALUE */
1649 Iop_Abs8x16
, Iop_Abs16x8
, Iop_Abs32x4
, Iop_Abs64x2
,
1651 /* AVERAGING: note: (arg1 + arg2 + 1) >>u 1 */
1652 Iop_Avg8Ux16
, Iop_Avg16Ux8
, Iop_Avg32Ux4
, Iop_Avg64Ux2
,
1653 Iop_Avg8Sx16
, Iop_Avg16Sx8
, Iop_Avg32Sx4
, Iop_Avg64Sx2
,
1656 Iop_Max8Sx16
, Iop_Max16Sx8
, Iop_Max32Sx4
, Iop_Max64Sx2
,
1657 Iop_Max8Ux16
, Iop_Max16Ux8
, Iop_Max32Ux4
, Iop_Max64Ux2
,
1658 Iop_Min8Sx16
, Iop_Min16Sx8
, Iop_Min32Sx4
, Iop_Min64Sx2
,
1659 Iop_Min8Ux16
, Iop_Min16Ux8
, Iop_Min32Ux4
, Iop_Min64Ux2
,
1662 Iop_CmpEQ8x16
, Iop_CmpEQ16x8
, Iop_CmpEQ32x4
, Iop_CmpEQ64x2
,
1663 Iop_CmpGT8Sx16
, Iop_CmpGT16Sx8
, Iop_CmpGT32Sx4
, Iop_CmpGT64Sx2
,
1664 Iop_CmpGT8Ux16
, Iop_CmpGT16Ux8
, Iop_CmpGT32Ux4
, Iop_CmpGT64Ux2
,
1666 /* COUNT ones / leading zeroes / leading sign bits (not including topmost
1669 Iop_Clz8x16
, Iop_Clz16x8
, Iop_Clz32x4
,
1670 Iop_Cls8x16
, Iop_Cls16x8
, Iop_Cls32x4
,
1672 /* VECTOR x SCALAR SHIFT (shift amt :: Ity_I8) */
1673 Iop_ShlN8x16
, Iop_ShlN16x8
, Iop_ShlN32x4
, Iop_ShlN64x2
,
1674 Iop_ShrN8x16
, Iop_ShrN16x8
, Iop_ShrN32x4
, Iop_ShrN64x2
,
1675 Iop_SarN8x16
, Iop_SarN16x8
, Iop_SarN32x4
, Iop_SarN64x2
,
1677 /* VECTOR x VECTOR SHIFT / ROTATE */
1678 /* FIXME: I'm pretty sure the ARM32 front/back ends interpret these
1679 differently from all other targets. The intention is that
1680 the shift amount (2nd arg) is interpreted as unsigned and
1681 only the lowest log2(lane-bits) bits are relevant. But the
1682 ARM32 versions treat the shift amount as an 8 bit signed
1683 number. The ARM32 uses should be replaced by the relevant
1684 vector x vector bidirectional shifts instead. */
1685 Iop_Shl8x16
, Iop_Shl16x8
, Iop_Shl32x4
, Iop_Shl64x2
,
1686 Iop_Shr8x16
, Iop_Shr16x8
, Iop_Shr32x4
, Iop_Shr64x2
,
1687 Iop_Sar8x16
, Iop_Sar16x8
, Iop_Sar32x4
, Iop_Sar64x2
,
1688 Iop_Sal8x16
, Iop_Sal16x8
, Iop_Sal32x4
, Iop_Sal64x2
,
1689 Iop_Rol8x16
, Iop_Rol16x8
, Iop_Rol32x4
, Iop_Rol64x2
,
1691 /* VECTOR x VECTOR SATURATING SHIFT */
1692 Iop_QShl8x16
, Iop_QShl16x8
, Iop_QShl32x4
, Iop_QShl64x2
,
1693 Iop_QSal8x16
, Iop_QSal16x8
, Iop_QSal32x4
, Iop_QSal64x2
,
1694 /* VECTOR x INTEGER SATURATING SHIFT */
1695 Iop_QShlNsatSU8x16
, Iop_QShlNsatSU16x8
,
1696 Iop_QShlNsatSU32x4
, Iop_QShlNsatSU64x2
,
1697 Iop_QShlNsatUU8x16
, Iop_QShlNsatUU16x8
,
1698 Iop_QShlNsatUU32x4
, Iop_QShlNsatUU64x2
,
1699 Iop_QShlNsatSS8x16
, Iop_QShlNsatSS16x8
,
1700 Iop_QShlNsatSS32x4
, Iop_QShlNsatSS64x2
,
1702 /* VECTOR x VECTOR BIDIRECTIONAL SATURATING (& MAYBE ROUNDING) SHIFT */
1703 /* All of type (V128, V128) -> V256. */
1704 /* The least significant 8 bits of each lane of the second
1705 operand are used as the shift amount, and interpreted signedly.
1706 Positive values mean a shift left, negative a shift right. The
1707 result is signedly or unsignedly saturated. There are also
1708 rounding variants, which add 2^(shift_amount-1) to the value before
1709 shifting, but only in the shift-right case. Vacated positions
1710 are filled with zeroes. IOW, it's either SHR or SHL, but not SAR.
1712 These operations return 129 bits: one bit ("Q") indicating whether
1713 saturation occurred, and the shift result. The result type is V256,
1714 of which the lower V128 is the shift result, and Q occupies the
1715 least significant bit of the upper V128. All other bits of the
1716 upper V128 are zero. */
1717 // Unsigned saturation, no rounding
1718 Iop_QandUQsh8x16
, Iop_QandUQsh16x8
,
1719 Iop_QandUQsh32x4
, Iop_QandUQsh64x2
,
1720 // Signed saturation, no rounding
1721 Iop_QandSQsh8x16
, Iop_QandSQsh16x8
,
1722 Iop_QandSQsh32x4
, Iop_QandSQsh64x2
,
1724 // Unsigned saturation, rounding
1725 Iop_QandUQRsh8x16
, Iop_QandUQRsh16x8
,
1726 Iop_QandUQRsh32x4
, Iop_QandUQRsh64x2
,
1727 // Signed saturation, rounding
1728 Iop_QandSQRsh8x16
, Iop_QandSQRsh16x8
,
1729 Iop_QandSQRsh32x4
, Iop_QandSQRsh64x2
,
1731 /* VECTOR x VECTOR BIDIRECTIONAL (& MAYBE ROUNDING) SHIFT */
1732 /* All of type (V128, V128) -> V128 */
1733 /* The least significant 8 bits of each lane of the second
1734 operand are used as the shift amount, and interpreted signedly.
1735 Positive values mean a shift left, negative a shift right.
1736 There are also rounding variants, which add 2^(shift_amount-1)
1737 to the value before shifting, but only in the shift-right case.
1739 For left shifts, the vacated places are filled with zeroes.
1740 For right shifts, the vacated places are filled with zeroes
1741 for the U variants and sign bits for the S variants. */
1742 // Signed and unsigned, non-rounding
1743 Iop_Sh8Sx16
, Iop_Sh16Sx8
, Iop_Sh32Sx4
, Iop_Sh64Sx2
,
1744 Iop_Sh8Ux16
, Iop_Sh16Ux8
, Iop_Sh32Ux4
, Iop_Sh64Ux2
,
1746 // Signed and unsigned, rounding
1747 Iop_Rsh8Sx16
, Iop_Rsh16Sx8
, Iop_Rsh32Sx4
, Iop_Rsh64Sx2
,
1748 Iop_Rsh8Ux16
, Iop_Rsh16Ux8
, Iop_Rsh32Ux4
, Iop_Rsh64Ux2
,
1750 /* The least significant 8 bits of each lane of the second
1751 operand are used as the shift amount, and interpreted signedly.
1752 Positive values mean a shift left, negative a shift right. The
1753 result is signedly or unsignedly saturated. There are also
1754 rounding variants, which add 2^(shift_amount-1) to the value before
1755 shifting, but only in the shift-right case. Vacated positions
1756 are filled with zeroes. IOW, it's either SHR or SHL, but not SAR.
1759 /* VECTOR x SCALAR SATURATING (& MAYBE ROUNDING) NARROWING SHIFT RIGHT */
1760 /* All of type (V128, I8) -> V128 */
1761 /* The first argument is shifted right, then narrowed to half the width
1762 by saturating it. The second argument is a scalar shift amount that
1763 applies to all lanes, and must be a value in the range 1 to lane_width.
1764 The shift may be done signedly (Sar variants) or unsignedly (Shr
1765 variants). The saturation is done according to the two signedness
1766 indicators at the end of the name. For example 64Sto32U means a
1767 signed 64 bit value is saturated into an unsigned 32 bit value.
1768 Additionally, the QRS variants do rounding, that is, they add the
1769 value (1 << (shift_amount-1)) to each source lane before shifting.
1771 These operations return 65 bits: one bit ("Q") indicating whether
1772 saturation occurred, and the shift result. The result type is V128,
1773 of which the lower half is the shift result, and Q occupies the
1774 least significant bit of the upper half. All other bits of the
1775 upper half are zero. */
1776 // No rounding, sat U->U
1777 Iop_QandQShrNnarrow16Uto8Ux8
,
1778 Iop_QandQShrNnarrow32Uto16Ux4
, Iop_QandQShrNnarrow64Uto32Ux2
,
1779 // No rounding, sat S->S
1780 Iop_QandQSarNnarrow16Sto8Sx8
,
1781 Iop_QandQSarNnarrow32Sto16Sx4
, Iop_QandQSarNnarrow64Sto32Sx2
,
1782 // No rounding, sat S->U
1783 Iop_QandQSarNnarrow16Sto8Ux8
,
1784 Iop_QandQSarNnarrow32Sto16Ux4
, Iop_QandQSarNnarrow64Sto32Ux2
,
1786 // Rounding, sat U->U
1787 Iop_QandQRShrNnarrow16Uto8Ux8
,
1788 Iop_QandQRShrNnarrow32Uto16Ux4
, Iop_QandQRShrNnarrow64Uto32Ux2
,
1789 // Rounding, sat S->S
1790 Iop_QandQRSarNnarrow16Sto8Sx8
,
1791 Iop_QandQRSarNnarrow32Sto16Sx4
, Iop_QandQRSarNnarrow64Sto32Sx2
,
1792 // Rounding, sat S->U
1793 Iop_QandQRSarNnarrow16Sto8Ux8
,
1794 Iop_QandQRSarNnarrow32Sto16Ux4
, Iop_QandQRSarNnarrow64Sto32Ux2
,
1796 /* NARROWING (binary)
1797 -- narrow 2xV128 into 1xV128, hi half from left arg */
1798 /* See comments above w.r.t. U vs S issues in saturated narrowing. */
1799 Iop_QNarrowBin16Sto8Ux16
, Iop_QNarrowBin32Sto16Ux8
,
1800 Iop_QNarrowBin16Sto8Sx16
, Iop_QNarrowBin32Sto16Sx8
,
1801 Iop_QNarrowBin16Uto8Ux16
, Iop_QNarrowBin32Uto16Ux8
,
1802 Iop_NarrowBin16to8x16
, Iop_NarrowBin32to16x8
,
1803 Iop_QNarrowBin64Sto32Sx4
, Iop_QNarrowBin64Uto32Ux4
,
1804 Iop_NarrowBin64to32x4
,
1806 /* NARROWING (unary) -- narrow V128 into I64 */
1807 Iop_NarrowUn16to8x8
, Iop_NarrowUn32to16x4
, Iop_NarrowUn64to32x2
,
1808 /* Saturating narrowing from signed source to signed/unsigned
1810 Iop_QNarrowUn16Sto8Sx8
, Iop_QNarrowUn32Sto16Sx4
, Iop_QNarrowUn64Sto32Sx2
,
1811 Iop_QNarrowUn16Sto8Ux8
, Iop_QNarrowUn32Sto16Ux4
, Iop_QNarrowUn64Sto32Ux2
,
1812 /* Saturating narrowing from unsigned source to unsigned destination */
1813 Iop_QNarrowUn16Uto8Ux8
, Iop_QNarrowUn32Uto16Ux4
, Iop_QNarrowUn64Uto32Ux2
,
1815 /* WIDENING -- sign or zero extend each element of the argument
1816 vector to the twice original size. The resulting vector consists of
1817 the same number of elements but each element and the vector itself
1819 All operations are I64->V128.
1821 Iop_Widen32Sto64x2( [a, b] ) = [c, d]
1822 where c = Iop_32Sto64(a) and d = Iop_32Sto64(b) */
1823 Iop_Widen8Uto16x8
, Iop_Widen16Uto32x4
, Iop_Widen32Uto64x2
,
1824 Iop_Widen8Sto16x8
, Iop_Widen16Sto32x4
, Iop_Widen32Sto64x2
,
1827 /* Interleave lanes from low or high halves of
1828 operands. Most-significant result lane is from the left
1830 Iop_InterleaveHI8x16
, Iop_InterleaveHI16x8
,
1831 Iop_InterleaveHI32x4
, Iop_InterleaveHI64x2
,
1832 Iop_InterleaveLO8x16
, Iop_InterleaveLO16x8
,
1833 Iop_InterleaveLO32x4
, Iop_InterleaveLO64x2
,
1834 /* Interleave odd/even lanes of operands. Most-significant result lane
1835 is from the left arg. */
1836 Iop_InterleaveOddLanes8x16
, Iop_InterleaveEvenLanes8x16
,
1837 Iop_InterleaveOddLanes16x8
, Iop_InterleaveEvenLanes16x8
,
1838 Iop_InterleaveOddLanes32x4
, Iop_InterleaveEvenLanes32x4
,
1840 /* Pack even/odd lanes. */
1841 Iop_PackOddLanes8x16
, Iop_PackEvenLanes8x16
,
1842 Iop_PackOddLanes16x8
, Iop_PackEvenLanes16x8
,
1843 Iop_PackOddLanes32x4
, Iop_PackEvenLanes32x4
,
1845 /* CONCATENATION -- build a new value by concatenating either
1846 the even or odd lanes of both operands. Note that
1847 Cat{Odd,Even}Lanes64x2 are identical to Interleave{HI,LO}64x2
1848 and so are omitted. */
1849 Iop_CatOddLanes8x16
, Iop_CatOddLanes16x8
, Iop_CatOddLanes32x4
,
1850 Iop_CatEvenLanes8x16
, Iop_CatEvenLanes16x8
, Iop_CatEvenLanes32x4
,
1852 /* GET elements of VECTOR
1853 GET is binop (V128, I8) -> I<elem_size>
1854 SET is triop (V128, I8, I<elem_size>) -> V128 */
1855 /* Note: the arm back-end handles only constant second argument. */
1856 Iop_GetElem8x16
, Iop_GetElem16x8
, Iop_GetElem32x4
, Iop_GetElem64x2
,
1857 Iop_SetElem8x16
, Iop_SetElem16x8
, Iop_SetElem32x4
, Iop_SetElem64x2
,
1859 /* DUPLICATING -- copy value to all lanes */
1860 Iop_Dup8x16
, Iop_Dup16x8
, Iop_Dup32x4
,
1862 /* SLICE -- produces the lowest 128 bits of (arg1:arg2) >> (8 * arg3).
1863 arg3 is a shift amount in bytes and may be between 0 and 16
1864 inclusive. When 0, the result is arg2; when 16, the result is arg1.
1865 Not all back ends handle all values. The arm64 back
1866 end handles only immediate arg3 values. */
1867 Iop_SliceV128
, // (V128, V128, I8) -> V128
1869 /* REVERSE the order of chunks in vector lanes. Chunks must be
1870 smaller than the vector lanes (obviously) and so may be 8-,
1871 16- and 32-bit in size. See definitions of 64-bit SIMD
1872 versions above for examples. */
1873 Iop_Reverse8sIn16_x8
,
1874 Iop_Reverse8sIn32_x4
, Iop_Reverse16sIn32_x4
,
1875 Iop_Reverse8sIn64_x2
, Iop_Reverse16sIn64_x2
, Iop_Reverse32sIn64_x2
,
1876 Iop_Reverse1sIn8_x16
, /* Reverse bits in each byte lane. */
1878 /* PERMUTING -- copy src bytes to dst,
1879 as indexed by control vector bytes:
1880 for i in 0 .. 15 . result[i] = argL[ argR[i] ]
1881 argR[i] values may only be in the range 0 .. 15, else behaviour
1882 is undefined. That is, argR[i][7:4] must be zero. */
1884 Iop_Perm32x4
, /* ditto, except argR values are restricted to 0 .. 3 */
1886 /* PERMUTING with optional zeroing:
1887 for i in 0 .. 15 . result[i] = if argR[i] bit 7 is set
1888 then zero else argL[ argR[i] ]
1889 argR[i][6:4] must be zero, else behaviour is undefined.
1893 /* same, but Triop (argL consists of two 128-bit parts) */
1894 /* correct range for argR values is 0..31 */
1895 /* (V128, V128, V128) -> V128 */
1896 /* (ArgL_first, ArgL_second, ArgR) -> result */
1899 /* MISC CONVERSION -- get high bits of each byte lane, a la
1900 x86/amd64 pmovmskb */
1901 Iop_GetMSBs8x16
, /* V128 -> I16 */
1903 /* Vector Reciprocal Estimate and Vector Reciprocal Square Root Estimate
1904 See floating-point equivalents for details. */
1905 Iop_RecipEst32Ux4
, Iop_RSqrtEst32Ux4
,
1907 /* 128-bit multipy by 10 instruction, result is lower 128-bits */
1910 /* 128-bit multipy by 10 instruction, result is carry out from the MSB */
1911 Iop_MulI128by10Carry
,
1913 /* 128-bit multipy by 10 instruction, result is lower 128-bits of the
1914 * source times 10 plus the carry in
1918 /* 128-bit multipy by 10 instruction, result is carry out from the MSB
1919 * of the source times 10 plus the carry in
1921 Iop_MulI128by10ECarry
,
1923 /* ------------------ 256-bit SIMD Integer. ------------------ */
1926 Iop_V256to64_0
, // V256 -> I64, extract least significant lane
1929 Iop_V256to64_3
, // V256 -> I64, extract most significant lane
1931 Iop_64x4toV256
, // (I64,I64,I64,I64)->V256
1932 // first arg is most significant lane
1934 Iop_V256toV128_0
, // V256 -> V128, less significant lane
1935 Iop_V256toV128_1
, // V256 -> V128, more significant lane
1936 Iop_V128HLtoV256
, // (V128,V128)->V256, first arg is most signif
1943 /* MISC (vector integer cmp != 0) */
1944 Iop_CmpNEZ8x32
, Iop_CmpNEZ16x16
, Iop_CmpNEZ32x8
, Iop_CmpNEZ64x4
,
1946 Iop_Add8x32
, Iop_Add16x16
, Iop_Add32x8
, Iop_Add64x4
,
1947 Iop_Sub8x32
, Iop_Sub16x16
, Iop_Sub32x8
, Iop_Sub64x4
,
1949 Iop_CmpEQ8x32
, Iop_CmpEQ16x16
, Iop_CmpEQ32x8
, Iop_CmpEQ64x4
,
1950 Iop_CmpGT8Sx32
, Iop_CmpGT16Sx16
, Iop_CmpGT32Sx8
, Iop_CmpGT64Sx4
,
1952 Iop_ShlN16x16
, Iop_ShlN32x8
, Iop_ShlN64x4
,
1953 Iop_ShrN16x16
, Iop_ShrN32x8
, Iop_ShrN64x4
,
1954 Iop_SarN16x16
, Iop_SarN32x8
,
1956 Iop_Max8Sx32
, Iop_Max16Sx16
, Iop_Max32Sx8
,
1957 Iop_Max8Ux32
, Iop_Max16Ux16
, Iop_Max32Ux8
,
1958 Iop_Min8Sx32
, Iop_Min16Sx16
, Iop_Min32Sx8
,
1959 Iop_Min8Ux32
, Iop_Min16Ux16
, Iop_Min32Ux8
,
1961 Iop_Mul16x16
, Iop_Mul32x8
,
1962 Iop_MulHi16Ux16
, Iop_MulHi16Sx16
,
1964 Iop_QAdd8Ux32
, Iop_QAdd16Ux16
,
1965 Iop_QAdd8Sx32
, Iop_QAdd16Sx16
,
1966 Iop_QSub8Ux32
, Iop_QSub16Ux16
,
1967 Iop_QSub8Sx32
, Iop_QSub16Sx16
,
1969 Iop_Avg8Ux32
, Iop_Avg16Ux16
,
1973 /* (V128, V128) -> V128 */
1974 Iop_CipherV128
, Iop_CipherLV128
, Iop_CipherSV128
,
1975 Iop_NCipherV128
, Iop_NCipherLV128
,
1977 /* Hash instructions, Federal Information Processing Standards
1978 * Publication 180-3 Secure Hash Standard. */
1979 /* (V128, I8) -> V128; The I8 input arg is (ST | SIX), where ST and
1980 * SIX are fields from the insn. See ISA 2.07 description of
1981 * vshasigmad and vshasigmaw insns.*/
1982 Iop_SHA512
, Iop_SHA256
,
1984 /* ------------------ 256-bit SIMD FP. ------------------ */
1986 /* ternary :: IRRoundingMode(I32) x V256 x V256 -> V256 */
1987 Iop_Add64Fx4
, Iop_Sub64Fx4
, Iop_Mul64Fx4
, Iop_Div64Fx4
,
1988 Iop_Add32Fx8
, Iop_Sub32Fx8
, Iop_Mul32Fx8
, Iop_Div32Fx8
,
1990 Iop_I32StoF32x8
, /* IRRoundingMode(I32) x V256 -> V256 */
1991 Iop_F32toI32Sx8
, /* IRRoundingMode(I32) x V256 -> V256 */
1993 Iop_F32toF16x8
, /* IRRoundingMode(I32) x V256 -> V128 */
1994 Iop_F16toF32x8
, /* F16x8(==V128) -> F32x8(==V256) */
2001 Iop_Max32Fx8
, Iop_Min32Fx8
,
2002 Iop_Max64Fx4
, Iop_Min64Fx4
,
2003 Iop_Rotx32
, Iop_Rotx64
,
2004 Iop_LAST
/* must be the last enumerator */
2008 /* Pretty-print an op. */
2009 extern void ppIROp ( IROp
);
2011 /* For a given operand return the types of its arguments and its result. */
2012 extern void typeOfPrimop ( IROp op
,
2013 /*OUTs*/ IRType
* t_dst
, IRType
* t_arg1
,
2014 IRType
* t_arg2
, IRType
* t_arg3
, IRType
* t_arg4
);
2016 /* Might the given primop trap (eg, attempt integer division by zero)? If in
2017 doubt returns True. However, the vast majority of primops will never
2019 extern Bool
primopMightTrap ( IROp op
);
2021 /* Encoding of IEEE754-specified rounding modes.
2022 Note, various front and back ends rely on the actual numerical
2023 values of these, so do not change them. */
2026 Irrm_NEAREST
= 0, // Round to nearest, ties to even
2027 Irrm_NegINF
= 1, // Round to negative infinity
2028 Irrm_PosINF
= 2, // Round to positive infinity
2029 Irrm_ZERO
= 3, // Round toward zero
2030 Irrm_NEAREST_TIE_AWAY_0
= 4, // Round to nearest, ties away from 0
2031 Irrm_PREPARE_SHORTER
= 5, // Round to prepare for shorter
2033 Irrm_AWAY_FROM_ZERO
= 6, // Round to away from 0
2034 Irrm_NEAREST_TIE_TOWARD_0
= 7 // Round to nearest, ties towards 0
2038 /* Binary floating point comparison result values.
2039 This is also derived from what IA32 does. */
2049 typedef IRCmpFResult IRCmpF32Result
;
2050 typedef IRCmpFResult IRCmpF64Result
;
2051 typedef IRCmpFResult IRCmpF128Result
;
2053 /* Decimal floating point result values. */
2054 typedef IRCmpFResult IRCmpDResult
;
2055 typedef IRCmpDResult IRCmpD64Result
;
2056 typedef IRCmpDResult IRCmpD128Result
;
2058 /* ------------------ Expressions ------------------ */
2060 typedef struct _IRQop IRQop
; /* forward declaration */
2061 typedef struct _IRTriop IRTriop
; /* forward declaration */
2064 /* The different kinds of expressions. Their meaning is explained below
2065 in the comments for IRExpr. */
2085 /* An expression. Stored as a tagged union. 'tag' indicates what kind
2086 of expression this is. 'Iex' is the union that holds the fields. If
2087 an IRExpr 'e' has e.tag equal to Iex_Load, then it's a load
2088 expression, and the fields can be accessed with
2089 'e.Iex.Load.<fieldname>'.
2091 For each kind of expression, we show what it looks like when
2092 pretty-printed with ppIRExpr().
2101 /* Used only in pattern matching within Vex. Should not be seen
2107 /* Read a guest register, at a fixed offset in the guest state.
2108 ppIRExpr output: GET:<ty>(<offset>), eg. GET:I32(0)
2111 Int offset
; /* Offset into the guest state */
2112 IRType ty
; /* Type of the value being read */
2115 /* Read a guest register at a non-fixed offset in the guest
2116 state. This allows circular indexing into parts of the guest
2117 state, which is essential for modelling situations where the
2118 identity of guest registers is not known until run time. One
2119 example is the x87 FP register stack.
2121 The part of the guest state to be treated as a circular array
2122 is described in the IRRegArray 'descr' field. It holds the
2123 offset of the first element in the array, the type of each
2124 element, and the number of elements.
2126 The array index is indicated rather indirectly, in a way
2127 which makes optimisation easy: as the sum of variable part
2128 (the 'ix' field) and a constant offset (the 'bias' field).
2130 Since the indexing is circular, the actual array index to use
2131 is computed as (ix + bias) % num-of-elems-in-the-array.
2133 Here's an example. The description
2137 describes an array of 8 F64-typed values, the
2138 guest-state-offset of the first being 96. This array is
2139 being indexed at (t39 - 7) % 8.
2141 It is important to get the array size/type exactly correct
2142 since IR optimisation looks closely at such info in order to
2143 establish aliasing/non-aliasing between seperate GetI and
2144 PutI events, which is used to establish when they can be
2145 reordered, etc. Putting incorrect info in will lead to
2146 obscure IR optimisation bugs.
2148 ppIRExpr output: GETI<descr>[<ix>,<bias]
2149 eg. GETI(128:8xI8)[t1,0]
2152 IRRegArray
* descr
; /* Part of guest state treated as circular */
2153 IRExpr
* ix
; /* Variable part of index into array */
2154 Int bias
; /* Constant offset part of index into array */
2157 /* The value held by a temporary.
2158 ppIRExpr output: t<tmp>, eg. t1
2161 IRTemp tmp
; /* The temporary number */
2164 /* A quaternary operation.
2165 ppIRExpr output: <op>(<arg1>, <arg2>, <arg3>, <arg4>),
2166 eg. MAddF64r32(t1, t2, t3, t4)
2172 /* A ternary operation.
2173 ppIRExpr output: <op>(<arg1>, <arg2>, <arg3>),
2174 eg. MulF64(1, 2.0, 3.0)
2180 /* A binary operation.
2181 ppIRExpr output: <op>(<arg1>, <arg2>), eg. Add32(t1,t2)
2184 IROp op
; /* op-code */
2185 IRExpr
* arg1
; /* operand 1 */
2186 IRExpr
* arg2
; /* operand 2 */
2189 /* A unary operation.
2190 ppIRExpr output: <op>(<arg>), eg. Neg8(t1)
2193 IROp op
; /* op-code */
2194 IRExpr
* arg
; /* operand */
2197 /* A load from memory -- a normal load, not a load-linked.
2198 Load-Linkeds (and Store-Conditionals) are instead represented
2199 by IRStmt.LLSC since Load-Linkeds have side effects and so
2200 are not semantically valid IRExpr's.
2201 ppIRExpr output: LD<end>:<ty>(<addr>), eg. LDle:I32(t1)
2204 IREndness end
; /* Endian-ness of the load */
2205 IRType ty
; /* Type of the loaded value */
2206 IRExpr
* addr
; /* Address being loaded from */
2209 /* A constant-valued expression.
2210 ppIRExpr output: <con>, eg. 0x4:I32
2213 IRConst
* con
; /* The constant itself */
2216 /* A call to a pure (no side-effects) helper C function.
2218 With the 'cee' field, 'name' is the function's name. It is
2219 only used for pretty-printing purposes. The address to call
2220 (host address, of course) is stored in the 'addr' field
2223 The 'args' field is a NULL-terminated array of arguments.
2224 The stated return IRType, and the implied argument types,
2225 must match that of the function being called well enough so
2226 that the back end can actually generate correct code for the
2229 The called function **must** satisfy the following:
2231 * no side effects -- must be a pure function, the result of
2232 which depends only on the passed parameters.
2234 * it may not look at, nor modify, any of the guest state
2235 since that would hide guest state transitions from
2238 * it may not access guest memory, since that would hide
2239 guest memory transactions from the instrumenters
2241 * it must not assume that arguments are being evaluated in a
2242 particular order. The oder of evaluation is unspecified.
2244 This is restrictive, but makes the semantics clean, and does
2245 not interfere with IR optimisation.
2247 If you want to call a helper which can mess with guest state
2248 and/or memory, instead use Ist_Dirty. This is a lot more
2249 flexible, but you have to give a bunch of details about what
2250 the helper does (and you better be telling the truth,
2251 otherwise any derived instrumentation will be wrong). Also
2252 Ist_Dirty inhibits various IR optimisations and so can cause
2253 quite poor code to be generated. Try to avoid it.
2255 In principle it would be allowable to have the arg vector
2256 contain an IRExpr_VECRET(), although not IRExpr_GSPTR(). However,
2257 at the moment there is no requirement for clean helper calls to
2258 be able to return V128 or V256 values. Hence this is not allowed.
2260 ppIRExpr output: <cee>(<args>):<retty>
2261 eg. foo{0x80489304}(t1, t2):I32
2264 IRCallee
* cee
; /* Function to call. */
2265 IRType retty
; /* Type of return value. */
2266 IRExpr
** args
; /* Vector of argument expressions. */
2269 /* A ternary if-then-else operator. It returns iftrue if cond is
2270 nonzero, iffalse otherwise. Note that it is STRICT, ie. both
2271 iftrue and iffalse are evaluated in all cases.
2273 ppIRExpr output: ITE(<cond>,<iftrue>,<iffalse>),
2277 IRExpr
* cond
; /* Condition */
2278 IRExpr
* iftrue
; /* True expression */
2279 IRExpr
* iffalse
; /* False expression */
2284 /* Expression auxiliaries: a ternary expression. */
2286 IROp op
; /* op-code */
2287 IRExpr
* arg1
; /* operand 1 */
2288 IRExpr
* arg2
; /* operand 2 */
2289 IRExpr
* arg3
; /* operand 3 */
2292 /* Expression auxiliaries: a quarternary expression. */
2294 IROp op
; /* op-code */
2295 IRExpr
* arg1
; /* operand 1 */
2296 IRExpr
* arg2
; /* operand 2 */
2297 IRExpr
* arg3
; /* operand 3 */
2298 IRExpr
* arg4
; /* operand 4 */
2302 /* Two special kinds of IRExpr, which can ONLY be used in
2303 argument lists for dirty helper calls (IRDirty.args) and in NO
2304 OTHER PLACES. And then only in very limited ways. */
2306 /* Denotes an argument which (in the helper) takes a pointer to a
2307 (naturally aligned) V128 or V256, into which the helper is expected
2308 to write its result. Use of IRExpr_VECRET() is strictly
2309 controlled. If the helper returns a V128 or V256 value then
2310 IRExpr_VECRET() must appear exactly once in the arg list, although
2311 it can appear anywhere, and the helper must have a C 'void' return
2312 type. If the helper returns any other type, IRExpr_VECRET() may
2313 not appear in the argument list. */
2315 /* Denotes an void* argument which is passed to the helper, which at
2316 run time will point to the thread's guest state area. This can
2317 only appear at most once in an argument list, and it may not appear
2318 at all in argument lists for clean helper calls. */
2320 static inline Bool
is_IRExpr_VECRET_or_GSPTR ( const IRExpr
* e
) {
2321 return e
->tag
== Iex_VECRET
|| e
->tag
== Iex_GSPTR
;
2325 /* Expression constructors. */
2326 extern IRExpr
* IRExpr_Binder ( Int binder
);
2327 extern IRExpr
* IRExpr_Get ( Int off
, IRType ty
);
2328 extern IRExpr
* IRExpr_GetI ( IRRegArray
* descr
, IRExpr
* ix
, Int bias
);
2329 extern IRExpr
* IRExpr_RdTmp ( IRTemp tmp
);
2330 extern IRExpr
* IRExpr_Qop ( IROp op
, IRExpr
* arg1
, IRExpr
* arg2
,
2331 IRExpr
* arg3
, IRExpr
* arg4
);
2332 extern IRExpr
* IRExpr_Triop ( IROp op
, IRExpr
* arg1
,
2333 IRExpr
* arg2
, IRExpr
* arg3
);
2334 extern IRExpr
* IRExpr_Binop ( IROp op
, IRExpr
* arg1
, IRExpr
* arg2
);
2335 extern IRExpr
* IRExpr_Unop ( IROp op
, IRExpr
* arg
);
2336 extern IRExpr
* IRExpr_Load ( IREndness end
, IRType ty
, IRExpr
* addr
);
2337 extern IRExpr
* IRExpr_Const ( IRConst
* con
);
2338 extern IRExpr
* IRExpr_CCall ( IRCallee
* cee
, IRType retty
, IRExpr
** args
);
2339 extern IRExpr
* IRExpr_ITE ( IRExpr
* cond
, IRExpr
* iftrue
, IRExpr
* iffalse
);
2340 extern IRExpr
* IRExpr_VECRET ( void );
2341 extern IRExpr
* IRExpr_GSPTR ( void );
2343 /* Deep-copy an IRExpr. */
2344 extern IRExpr
* deepCopyIRExpr ( const IRExpr
* );
2346 /* Pretty-print an IRExpr. */
2347 extern void ppIRExpr ( const IRExpr
* );
2349 /* NULL-terminated IRExpr vector constructors, suitable for
2350 use as arg lists in clean/dirty helper calls. */
2351 extern IRExpr
** mkIRExprVec_0 ( void );
2352 extern IRExpr
** mkIRExprVec_1 ( IRExpr
* );
2353 extern IRExpr
** mkIRExprVec_2 ( IRExpr
*, IRExpr
* );
2354 extern IRExpr
** mkIRExprVec_3 ( IRExpr
*, IRExpr
*, IRExpr
* );
2355 extern IRExpr
** mkIRExprVec_4 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
* );
2356 extern IRExpr
** mkIRExprVec_5 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2358 extern IRExpr
** mkIRExprVec_6 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2360 extern IRExpr
** mkIRExprVec_7 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2361 IRExpr
*, IRExpr
*, IRExpr
* );
2362 extern IRExpr
** mkIRExprVec_8 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2363 IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
* );
2364 extern IRExpr
** mkIRExprVec_9 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2365 IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
* );
2366 extern IRExpr
** mkIRExprVec_13 ( IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2367 IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*,
2368 IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
*, IRExpr
* );
2371 - shallowCopy: shallow-copy (ie. create a new vector that shares the
2372 elements with the original).
2373 - deepCopy: deep-copy (ie. create a completely new vector). */
2374 extern IRExpr
** shallowCopyIRExprVec ( IRExpr
** );
2375 extern IRExpr
** deepCopyIRExprVec ( IRExpr
*const * );
2377 /* Make a constant expression from the given host word taking into
2378 account (of course) the host word size. */
2379 extern IRExpr
* mkIRExpr_HWord ( HWord
);
2381 /* Convenience function for constructing clean helper calls. */
2383 IRExpr
* mkIRExprCCall ( IRType retty
,
2384 Int regparms
, const HChar
* name
, void* addr
,
2388 /* Convenience functions for atoms (IRExprs which are either Iex_Tmp or
2390 static inline Bool
isIRAtom ( const IRExpr
* e
) {
2391 return e
->tag
== Iex_RdTmp
|| e
->tag
== Iex_Const
;
2394 /* Are these two IR atoms identical? Causes an assertion
2395 failure if they are passed non-atoms. */
2396 extern Bool
eqIRAtom ( const IRExpr
*, const IRExpr
* );
2399 /* ------------------ Jump kinds ------------------ */
2401 /* This describes hints which can be passed to the dispatcher at guest
2402 control-flow transfer points.
2404 Re Ijk_InvalICache and Ijk_FlushDCache: the guest state _must_ have
2405 two pseudo-registers, guest_CMSTART and guest_CMLEN, which specify
2406 the start and length of the region to be invalidated. CM stands
2407 for "Cache Management". These are both the size of a guest word.
2408 It is the responsibility of the relevant toIR.c to ensure that
2409 these are filled in with suitable values before issuing a jump of
2410 kind Ijk_InvalICache or Ijk_FlushDCache.
2412 Ijk_InvalICache requests invalidation of translations taken from
2413 the requested range. Ijk_FlushDCache requests flushing of the D
2414 cache for the specified range.
2416 Re Ijk_EmWarn and Ijk_EmFail: the guest state must have a
2417 pseudo-register guest_EMNOTE, which is 32-bits regardless of the
2418 host or guest word size. That register should be made to hold a
2419 VexEmNote value to indicate the reason for the exit.
2421 In the case of Ijk_EmFail, the exit is fatal (Vex-generated code
2422 cannot continue) and so the jump destination can be anything.
2424 Re Ijk_Sys_ (syscall jumps): the guest state must have a
2425 pseudo-register guest_IP_AT_SYSCALL, which is the size of a guest
2426 word. Front ends should set this to be the IP at the most recently
2427 executed kernel-entering (system call) instruction. This makes it
2428 very much easier (viz, actually possible at all) to back up the
2429 guest to restart a syscall that has been interrupted by a signal.
2434 Ijk_Boring
, /* not interesting; just goto next */
2435 Ijk_Call
, /* guest is doing a call */
2436 Ijk_Ret
, /* guest is doing a return */
2437 Ijk_ClientReq
, /* do guest client req before continuing */
2438 Ijk_Yield
, /* client is yielding to thread scheduler */
2439 Ijk_EmWarn
, /* report emulation warning before continuing */
2440 Ijk_EmFail
, /* emulation critical (FATAL) error; give up */
2441 Ijk_NoDecode
, /* current instruction cannot be decoded */
2442 Ijk_MapFail
, /* Vex-provided address translation failed */
2443 Ijk_InvalICache
, /* Inval icache for range [CMSTART, +CMLEN) */
2444 Ijk_FlushDCache
, /* Flush dcache for range [CMSTART, +CMLEN) */
2445 Ijk_NoRedir
, /* Jump to un-redirected guest addr */
2446 Ijk_SigILL
, /* current instruction synths SIGILL */
2447 Ijk_SigTRAP
, /* current instruction synths SIGTRAP */
2448 Ijk_SigSEGV
, /* current instruction synths SIGSEGV */
2449 Ijk_SigBUS
, /* current instruction synths SIGBUS */
2450 Ijk_SigFPE
, /* current instruction synths generic SIGFPE */
2451 Ijk_SigFPE_IntDiv
, /* current instruction synths SIGFPE - IntDiv */
2452 Ijk_SigFPE_IntOvf
, /* current instruction synths SIGFPE - IntOvf */
2453 /* Unfortunately, various guest-dependent syscall kinds. They
2454 all mean: do a syscall before continuing. */
2455 Ijk_Sys_syscall
, /* amd64/x86 'syscall', ppc 'sc', arm 'svc #0' */
2456 Ijk_Sys_int32
, /* amd64/x86 'int $0x20' */
2457 Ijk_Sys_int128
, /* amd64/x86 'int $0x80' */
2458 Ijk_Sys_int129
, /* amd64/x86 'int $0x81' */
2459 Ijk_Sys_int130
, /* amd64/x86 'int $0x82' */
2460 Ijk_Sys_int145
, /* amd64/x86 'int $0x91' */
2461 Ijk_Sys_int210
, /* amd64/x86 'int $0xD2' */
2462 Ijk_Sys_sysenter
/* x86 'sysenter'. guest_EIP becomes
2463 invalid at the point this happens. */
2467 extern void ppIRJumpKind ( IRJumpKind
);
2470 /* ------------------ Dirty helper calls ------------------ */
2472 /* A dirty call is a flexible mechanism for calling (possibly
2473 conditionally) a helper function or procedure. The helper function
2474 may read, write or modify client memory, and may read, write or
2475 modify client state. It can take arguments and optionally return a
2476 value. It may return different results and/or do different things
2477 when called repeatedly with the same arguments, by means of storing
2480 If a value is returned, it is assigned to the nominated return
2483 Dirty calls are statements rather than expressions for obvious
2484 reasons. If a dirty call is marked as writing guest state, any
2485 pre-existing values derived from the written parts of the guest
2486 state are invalid. Similarly, if the dirty call is stated as
2487 writing memory, any pre-existing loaded values are invalidated by
2490 In order that instrumentation is possible, the call must state, and
2493 * Whether it reads, writes or modifies memory, and if so where.
2495 * Whether it reads, writes or modifies guest state, and if so which
2496 pieces. Several pieces may be stated, and their extents must be
2497 known at translation-time. Each piece is allowed to repeat some
2498 number of times at a fixed interval, if required.
2500 Normally, code is generated to pass just the args to the helper.
2501 However, if IRExpr_GSPTR() is present in the argument list (at most
2502 one instance is allowed), then the guest state pointer is passed for
2503 that arg, so that the callee can access the guest state. It is
2504 invalid for .nFxState to be zero but IRExpr_GSPTR() to be present,
2505 since .nFxState==0 is a claim that the call does not access guest
2508 IMPORTANT NOTE re GUARDS: Dirty calls are strict, very strict. The
2509 arguments and 'mFx' are evaluated REGARDLESS of the guard value.
2510 The order of argument evaluation is unspecified. The guard
2511 expression is evaluated AFTER the arguments and 'mFx' have been
2512 evaluated. 'mFx' is expected (by Memcheck) to be a defined value
2513 even if the guard evaluates to false.
2516 #define VEX_N_FXSTATE 7 /* enough for FXSAVE/FXRSTOR on x86 */
2518 /* Effects on resources (eg. registers, memory locations) */
2521 Ifx_None
=0x1B00, /* no effect */
2522 Ifx_Read
, /* reads the resource */
2523 Ifx_Write
, /* writes the resource */
2524 Ifx_Modify
, /* modifies the resource */
2528 /* Pretty-print an IREffect */
2529 extern void ppIREffect ( IREffect
);
2533 /* What to call, and details of args/results. .guard must be
2534 non-NULL. If .tmp is not IRTemp_INVALID, then the call
2535 returns a result which is placed in .tmp. If at runtime the
2536 guard evaluates to false, .tmp has an 0x555..555 bit pattern
2537 written to it. Hence conditional calls that assign .tmp are
2539 IRCallee
* cee
; /* where to call */
2540 IRExpr
* guard
; /* :: Ity_Bit. Controls whether call happens */
2541 /* The args vector may contain IRExpr_GSPTR() and/or
2542 IRExpr_VECRET(), in both cases, at most once. */
2543 IRExpr
** args
; /* arg vector, ends in NULL. */
2544 IRTemp tmp
; /* to assign result to, or IRTemp_INVALID if none */
2546 /* Mem effects; we allow only one R/W/M region to be stated */
2547 IREffect mFx
; /* indicates memory effects, if any */
2548 IRExpr
* mAddr
; /* of access, or NULL if mFx==Ifx_None */
2549 Int mSize
; /* of access, or zero if mFx==Ifx_None */
2551 /* Guest state effects; up to N allowed */
2552 Int nFxState
; /* must be 0 .. VEX_N_FXSTATE */
2554 IREffect fx
:16; /* read, write or modify? Ifx_None is invalid. */
2559 } fxState
[VEX_N_FXSTATE
];
2560 /* The access can be repeated, as specified by nRepeats and
2561 repeatLen. To describe only a single access, nRepeats and
2562 repeatLen should be zero. Otherwise, repeatLen must be a
2563 multiple of size and greater than size. */
2564 /* Overall, the parts of the guest state denoted by (offset,
2565 size, nRepeats, repeatLen) is
2567 and, if nRepeats > 0,
2568 for (i = 1; i <= nRepeats; i++)
2569 [offset + i * repeatLen, +size)
2570 A convenient way to enumerate all segments is therefore
2571 for (i = 0; i < 1 + nRepeats; i++)
2572 [offset + i * repeatLen, +size)
2577 /* Pretty-print a dirty call */
2578 extern void ppIRDirty ( const IRDirty
* );
2580 /* Allocate an uninitialised dirty call */
2581 extern IRDirty
* emptyIRDirty ( void );
2583 /* Deep-copy a dirty call */
2584 extern IRDirty
* deepCopyIRDirty ( const IRDirty
* );
2586 /* A handy function which takes some of the tedium out of constructing
2587 dirty helper calls. The called function impliedly does not return
2588 any value and has a constant-True guard. The call is marked as
2589 accessing neither guest state nor memory (hence the "unsafe"
2590 designation) -- you can change this marking later if need be. A
2591 suitable IRCallee is constructed from the supplied bits. */
2593 IRDirty
* unsafeIRDirty_0_N ( Int regparms
, const HChar
* name
, void* addr
,
2596 /* Similarly, make a zero-annotation dirty call which returns a value,
2597 and assign that to the given temp. */
2599 IRDirty
* unsafeIRDirty_1_N ( IRTemp dst
,
2600 Int regparms
, const HChar
* name
, void* addr
,
2604 /* --------------- Memory Bus Events --------------- */
2609 /* Needed only on ARM. It cancels a reservation made by a
2610 preceding Linked-Load, and needs to be handed through to the
2611 back end, just as LL and SC themselves are. */
2612 Imbe_CancelReservation
2616 extern void ppIRMBusEvent ( IRMBusEvent
);
2619 /* --------------- Compare and Swap --------------- */
2621 /* This denotes an atomic compare and swap operation, either
2622 a single-element one or a double-element one.
2624 In the single-element case:
2626 .addr is the memory address.
2627 .end is the endianness with which memory is accessed
2629 If .addr contains the same value as .expdLo, then .dataLo is
2630 written there, else there is no write. In both cases, the
2631 original value at .addr is copied into .oldLo.
2633 Types: .expdLo, .dataLo and .oldLo must all have the same type.
2634 It may be any integral type, viz: I8, I16, I32 or, for 64-bit
2637 .oldHi must be IRTemp_INVALID, and .expdHi and .dataHi must
2640 In the double-element case:
2642 .addr is the memory address.
2643 .end is the endianness with which memory is accessed
2645 The operation is the same:
2647 If .addr contains the same value as .expdHi:.expdLo, then
2648 .dataHi:.dataLo is written there, else there is no write. In
2649 both cases the original value at .addr is copied into
2652 Types: .expdHi, .expdLo, .dataHi, .dataLo, .oldHi, .oldLo must
2653 all have the same type, which may be any integral type, viz: I8,
2654 I16, I32 or, for 64-bit guests, I64.
2656 The double-element case is complicated by the issue of
2657 endianness. In all cases, the two elements are understood to be
2658 located adjacently in memory, starting at the address .addr.
2660 If .end is Iend_LE, then the .xxxLo component is at the lower
2661 address and the .xxxHi component is at the higher address, and
2662 each component is itself stored little-endianly.
2664 If .end is Iend_BE, then the .xxxHi component is at the lower
2665 address and the .xxxLo component is at the higher address, and
2666 each component is itself stored big-endianly.
2668 This allows representing more cases than most architectures can
2669 handle. For example, x86 cannot do DCAS on 8- or 16-bit elements.
2671 How to know if the CAS succeeded?
2673 * if .oldLo == .expdLo (resp. .oldHi:.oldLo == .expdHi:.expdLo),
2674 then the CAS succeeded, .dataLo (resp. .dataHi:.dataLo) is now
2675 stored at .addr, and the original value there was .oldLo (resp
2678 * if .oldLo != .expdLo (resp. .oldHi:.oldLo != .expdHi:.expdLo),
2679 then the CAS failed, and the original value at .addr was .oldLo
2680 (resp. .oldHi:.oldLo).
2682 Hence it is easy to know whether or not the CAS succeeded.
2686 IRTemp oldHi
; /* old value of *addr is written here */
2688 IREndness end
; /* endianness of the data in memory */
2689 IRExpr
* addr
; /* store address */
2690 IRExpr
* expdHi
; /* expected old value at *addr */
2692 IRExpr
* dataHi
; /* new value for *addr */
2697 extern void ppIRCAS ( const IRCAS
* cas
);
2699 extern IRCAS
* mkIRCAS ( IRTemp oldHi
, IRTemp oldLo
,
2700 IREndness end
, IRExpr
* addr
,
2701 IRExpr
* expdHi
, IRExpr
* expdLo
,
2702 IRExpr
* dataHi
, IRExpr
* dataLo
);
2704 extern IRCAS
* deepCopyIRCAS ( const IRCAS
* );
2707 /* ------------------ Circular Array Put ------------------ */
2711 IRRegArray
* descr
; /* Part of guest state treated as circular */
2712 IRExpr
* ix
; /* Variable part of index into array */
2713 Int bias
; /* Constant offset part of index into array */
2714 IRExpr
* data
; /* The value to write */
2717 extern void ppIRPutI ( const IRPutI
* puti
);
2719 extern IRPutI
* mkIRPutI ( IRRegArray
* descr
, IRExpr
* ix
,
2720 Int bias
, IRExpr
* data
);
2722 extern IRPutI
* deepCopyIRPutI ( const IRPutI
* );
2725 /* --------------- Guarded loads and stores --------------- */
2727 /* Conditional stores are straightforward. They are the same as
2728 normal stores, with an extra 'guard' field :: Ity_I1 that
2729 determines whether or not the store actually happens. If not,
2730 memory is unmodified.
2732 The semantics of this is that 'addr' and 'data' are fully evaluated
2733 even in the case where 'guard' evaluates to zero (false).
2737 IREndness end
; /* Endianness of the store */
2738 IRExpr
* addr
; /* store address */
2739 IRExpr
* data
; /* value to write */
2740 IRExpr
* guard
; /* Guarding value */
2744 /* Conditional loads are a little more complex. 'addr' is the
2745 address, 'guard' is the guarding condition. If the load takes
2746 place, the loaded value is placed in 'dst'. If it does not take
2747 place, 'alt' is copied to 'dst'. However, the loaded value is not
2748 placed directly in 'dst' -- it is first subjected to the conversion
2751 For example, imagine doing a conditional 8-bit load, in which the
2752 loaded value is zero extended to 32 bits. Hence:
2753 * 'dst' and 'alt' must have type I32
2754 * 'cvt' must be a unary op which converts I8 to I32. In this
2755 example, it would be ILGop_8Uto32.
2757 There is no explicit indication of the type at which the load is
2758 done, since that is inferrable from the arg type of 'cvt'. Note
2759 that the types of 'alt' and 'dst' and the result type of 'cvt' must
2762 Semantically, 'addr' is evaluated even in the case where 'guard'
2763 evaluates to zero (false), and 'alt' is evaluated even when 'guard'
2764 evaluates to one (true). That is, 'addr' and 'alt' are always
2769 ILGop_INVALID
=0x1D00,
2770 ILGop_IdentV128
, /* 128 bit vector, no conversion */
2771 ILGop_Ident64
, /* 64 bit, no conversion */
2772 ILGop_Ident32
, /* 32 bit, no conversion */
2773 ILGop_16Uto32
, /* 16 bit load, Z-widen to 32 */
2774 ILGop_16Sto32
, /* 16 bit load, S-widen to 32 */
2775 ILGop_8Uto32
, /* 8 bit load, Z-widen to 32 */
2776 ILGop_8Sto32
/* 8 bit load, S-widen to 32 */
2782 IREndness end
; /* Endianness of the load */
2783 IRLoadGOp cvt
; /* Conversion to apply to the loaded value */
2784 IRTemp dst
; /* Destination (LHS) of assignment */
2785 IRExpr
* addr
; /* Address being loaded from */
2786 IRExpr
* alt
; /* Value if load is not done. */
2787 IRExpr
* guard
; /* Guarding value */
2791 extern void ppIRStoreG ( const IRStoreG
* sg
);
2793 extern void ppIRLoadGOp ( IRLoadGOp cvt
);
2795 extern void ppIRLoadG ( const IRLoadG
* lg
);
2797 extern IRStoreG
* mkIRStoreG ( IREndness end
,
2798 IRExpr
* addr
, IRExpr
* data
,
2801 extern IRLoadG
* mkIRLoadG ( IREndness end
, IRLoadGOp cvt
,
2802 IRTemp dst
, IRExpr
* addr
, IRExpr
* alt
,
2806 /* ------------------ Statements ------------------ */
2808 /* The different kinds of statements. Their meaning is explained
2809 below in the comments for IRStmt.
2811 Those marked META do not represent code, but rather extra
2812 information about the code. These statements can be removed
2813 without affecting the functional behaviour of the code, however
2814 they are required by some IR consumers such as tools that
2815 instrument the code.
2821 Ist_IMark
, /* META */
2822 Ist_AbiHint
, /* META */
2837 /* A statement. Stored as a tagged union. 'tag' indicates what kind
2838 of expression this is. 'Ist' is the union that holds the fields.
2839 If an IRStmt 'st' has st.tag equal to Iex_Store, then it's a store
2840 statement, and the fields can be accessed with
2841 'st.Ist.Store.<fieldname>'.
2843 For each kind of statement, we show what it looks like when
2844 pretty-printed with ppIRStmt().
2850 /* A no-op (usually resulting from IR optimisation). Can be
2851 omitted without any effect.
2853 ppIRStmt output: IR-NoOp
2858 /* META: instruction mark. Marks the start of the statements
2859 that represent a single machine instruction (the end of
2860 those statements is marked by the next IMark or the end of
2861 the IRSB). Contains the address and length of the
2864 It also contains a delta value. The delta must be
2865 subtracted from a guest program counter value before
2866 attempting to establish, by comparison with the address
2867 and length values, whether or not that program counter
2868 value refers to this instruction. For x86, amd64, ppc32,
2869 ppc64 and arm, the delta value is zero. For Thumb
2870 instructions, the delta value is one. This is because, on
2871 Thumb, guest PC values (guest_R15T) are encoded using the
2872 top 31 bits of the instruction address and a 1 in the lsb;
2873 hence they appear to be (numerically) 1 past the start of
2874 the instruction they refer to. IOW, guest_R15T on ARM
2875 holds a standard ARM interworking address.
2877 ppIRStmt output: ------ IMark(<addr>, <len>, <delta>) ------,
2878 eg. ------ IMark(0x4000792, 5, 0) ------,
2881 Addr addr
; /* instruction address */
2882 UInt len
; /* instruction length */
2883 UChar delta
; /* addr = program counter as encoded in guest state
2887 /* META: An ABI hint, which says something about this
2890 At the moment, the only AbiHint is one which indicates
2891 that a given chunk of address space, [base .. base+len-1],
2892 has become undefined. This is used on amd64-linux and
2893 some ppc variants to pass stack-redzoning hints to whoever
2894 wants to see them. It also indicates the address of the
2895 next (dynamic) instruction that will be executed. This is
2896 to help Memcheck to origin tracking.
2898 ppIRStmt output: ====== AbiHint(<base>, <len>, <nia>) ======
2899 eg. ====== AbiHint(t1, 16, t2) ======
2902 IRExpr
* base
; /* Start of undefined chunk */
2903 Int len
; /* Length of undefined chunk */
2904 IRExpr
* nia
; /* Address of next (guest) insn */
2907 /* Write a guest register, at a fixed offset in the guest state.
2908 ppIRStmt output: PUT(<offset>) = <data>, eg. PUT(60) = t1
2911 Int offset
; /* Offset into the guest state */
2912 IRExpr
* data
; /* The value to write */
2915 /* Write a guest register, at a non-fixed offset in the guest
2916 state. See the comment for GetI expressions for more
2919 ppIRStmt output: PUTI<descr>[<ix>,<bias>] = <data>,
2920 eg. PUTI(64:8xF64)[t5,0] = t1
2926 /* Assign a value to a temporary. Note that SSA rules require
2927 each tmp is only assigned to once. IR sanity checking will
2928 reject any block containing a temporary which is not assigned
2931 ppIRStmt output: t<tmp> = <data>, eg. t1 = 3
2934 IRTemp tmp
; /* Temporary (LHS of assignment) */
2935 IRExpr
* data
; /* Expression (RHS of assignment) */
2938 /* Write a value to memory. This is a normal store, not a
2939 Store-Conditional. To represent a Store-Conditional,
2940 instead use IRStmt.LLSC.
2941 ppIRStmt output: ST<end>(<addr>) = <data>, eg. STle(t1) = t2
2944 IREndness end
; /* Endianness of the store */
2945 IRExpr
* addr
; /* store address */
2946 IRExpr
* data
; /* value to write */
2949 /* Guarded store. Note that this is defined to evaluate all
2950 expression fields (addr, data) even if the guard evaluates
2953 if (<guard>) ST<end>(<addr>) = <data> */
2958 /* Guarded load. Note that this is defined to evaluate all
2959 expression fields (addr, alt) even if the guard evaluates
2962 t<tmp> = if (<guard>) <cvt>(LD<end>(<addr>)) else <alt> */
2967 /* Do an atomic compare-and-swap operation. Semantics are
2968 described above on a comment at the definition of IRCAS.
2971 t<tmp> = CAS<end>(<addr> :: <expected> -> <new>)
2973 t1 = CASle(t2 :: t3->Add32(t3,1))
2974 which denotes a 32-bit atomic increment
2975 of a value at address t2
2977 A double-element CAS may also be denoted, in which case <tmp>,
2978 <expected> and <new> are all pairs of items, separated by
2985 /* Either Load-Linked or Store-Conditional, depending on
2988 If STOREDATA is NULL then this is a Load-Linked, meaning
2989 that data is loaded from memory as normal, but a
2990 'reservation' for the address is also lodged in the
2993 result = Load-Linked(addr, end)
2995 The data transfer type is the type of RESULT (I32, I64,
2996 etc). ppIRStmt output:
2998 result = LD<end>-Linked(<addr>), eg. LDbe-Linked(t1)
3000 If STOREDATA is not NULL then this is a Store-Conditional,
3003 result = Store-Conditional(addr, storedata, end)
3005 The data transfer type is the type of STOREDATA and RESULT
3006 has type Ity_I1. The store may fail or succeed depending
3007 on the state of a previously lodged reservation on this
3008 address. RESULT is written 1 if the store succeeds and 0
3009 if it fails. eg ppIRStmt output:
3011 result = ( ST<end>-Cond(<addr>) = <storedata> )
3012 eg t3 = ( STbe-Cond(t1, t2) )
3014 In all cases, the address must be naturally aligned for
3015 the transfer type -- any misaligned addresses should be
3016 caught by a dominating IR check and side exit. This
3017 alignment restriction exists because on at least some
3018 LL/SC platforms (ppc), stwcx. etc will trap w/ SIGBUS on
3019 misaligned addresses, and we have to actually generate
3020 stwcx. on the host, and we don't want it trapping on the
3023 Summary of rules for transfer type:
3024 STOREDATA == NULL (LL):
3025 transfer type = type of RESULT
3026 STOREDATA != NULL (SC):
3027 transfer type = type of STOREDATA, and RESULT :: Ity_I1
3033 IRExpr
* storedata
; /* NULL => LL, non-NULL => SC */
3036 /* Call (possibly conditionally) a C function that has side
3037 effects (ie. is "dirty"). See the comments above the
3038 IRDirty type declaration for more information.
3041 t<tmp> = DIRTY <guard> <effects>
3042 ::: <callee>(<args>)
3044 t1 = DIRTY t27 RdFX-gst(16,4) RdFX-gst(60,4)
3045 ::: foo{0x380035f4}(t2)
3051 /* A memory bus event - a fence, or acquisition/release of the
3052 hardware bus lock. IR optimisation treats all these as fences
3053 across which no memory references may be moved.
3054 ppIRStmt output: MBusEvent-Fence,
3055 MBusEvent-BusLock, MBusEvent-BusUnlock.
3061 /* Conditional exit from the middle of an IRSB.
3062 ppIRStmt output: if (<guard>) goto {<jk>} <dst>
3063 eg. if (t69) goto {Boring} 0x4000AAA:I32
3064 If <guard> is true, the guest state is also updated by
3065 PUT-ing <dst> at <offsIP>. This is done because a
3066 taken exit must update the guest program counter.
3069 IRExpr
* guard
; /* Conditional expression */
3070 IRConst
* dst
; /* Jump target (constant only) */
3071 IRJumpKind jk
; /* Jump kind */
3072 Int offsIP
; /* Guest state offset for IP */
3078 /* Statement constructors. */
3079 extern IRStmt
* IRStmt_NoOp ( void );
3080 extern IRStmt
* IRStmt_IMark ( Addr addr
, UInt len
, UChar delta
);
3081 extern IRStmt
* IRStmt_AbiHint ( IRExpr
* base
, Int len
, IRExpr
* nia
);
3082 extern IRStmt
* IRStmt_Put ( Int off
, IRExpr
* data
);
3083 extern IRStmt
* IRStmt_PutI ( IRPutI
* details
);
3084 extern IRStmt
* IRStmt_WrTmp ( IRTemp tmp
, IRExpr
* data
);
3085 extern IRStmt
* IRStmt_Store ( IREndness end
, IRExpr
* addr
, IRExpr
* data
);
3086 extern IRStmt
* IRStmt_StoreG ( IREndness end
, IRExpr
* addr
, IRExpr
* data
,
3088 extern IRStmt
* IRStmt_LoadG ( IREndness end
, IRLoadGOp cvt
, IRTemp dst
,
3089 IRExpr
* addr
, IRExpr
* alt
, IRExpr
* guard
);
3090 extern IRStmt
* IRStmt_CAS ( IRCAS
* details
);
3091 extern IRStmt
* IRStmt_LLSC ( IREndness end
, IRTemp result
,
3092 IRExpr
* addr
, IRExpr
* storedata
);
3093 extern IRStmt
* IRStmt_Dirty ( IRDirty
* details
);
3094 extern IRStmt
* IRStmt_MBE ( IRMBusEvent event
);
3095 extern IRStmt
* IRStmt_Exit ( IRExpr
* guard
, IRJumpKind jk
, IRConst
* dst
,
3098 /* Deep-copy an IRStmt. */
3099 extern IRStmt
* deepCopyIRStmt ( const IRStmt
* );
3101 /* Pretty-print an IRStmt. */
3102 extern void ppIRStmt ( const IRStmt
* );
3105 /* ------------------ Basic Blocks ------------------ */
3107 /* Type environments: a bunch of statements, expressions, etc, are
3108 incomplete without an environment indicating the type of each
3109 IRTemp. So this provides one. IR temporaries are really just
3110 unsigned ints and so this provides an array, 0 .. n_types_used-1 of
3121 /* Obtain a new IRTemp */
3122 extern IRTemp
newIRTemp ( IRTypeEnv
*, IRType
);
3124 /* Deep-copy a type environment */
3125 extern IRTypeEnv
* deepCopyIRTypeEnv ( const IRTypeEnv
* );
3127 /* Pretty-print a type environment */
3128 extern void ppIRTypeEnv ( const IRTypeEnv
* );
3131 /* Code blocks, which in proper compiler terminology are superblocks
3132 (single entry, multiple exit code sequences) contain:
3134 - A table giving a type for each temp (the "type environment")
3135 - An expandable array of statements
3136 - An expression of type 32 or 64 bits, depending on the
3137 guest's word size, indicating the next destination if the block
3138 executes all the way to the end, without a side exit
3139 - An indication of any special actions (JumpKind) needed
3140 for this final jump.
3141 - Offset of the IP field in the guest state. This will be
3142 updated before the final jump is done.
3144 "IRSB" stands for "IR Super Block".
3153 IRJumpKind jumpkind
;
3158 /* Allocate a new, uninitialised IRSB */
3159 extern IRSB
* emptyIRSB ( void );
3161 /* Deep-copy an IRSB */
3162 extern IRSB
* deepCopyIRSB ( const IRSB
* );
3164 /* Deep-copy an IRSB, except for the statements list, which set to be
3165 a new, empty, list of statements. */
3166 extern IRSB
* deepCopyIRSBExceptStmts ( const IRSB
* );
3168 /* Pretty-print an IRSB */
3169 extern void ppIRSB ( const IRSB
* );
3171 /* Append an IRStmt to an IRSB */
3172 extern void addStmtToIRSB ( IRSB
*, IRStmt
* );
3175 /*---------------------------------------------------------------*/
3176 /*--- Helper functions for the IR ---*/
3177 /*---------------------------------------------------------------*/
3179 /* For messing with IR type environments */
3180 extern IRTypeEnv
* emptyIRTypeEnv ( void );
3182 /* What is the type of this expression? */
3183 extern IRType
typeOfIRConst ( const IRConst
* );
3184 extern IRType
typeOfIRTemp ( const IRTypeEnv
*, IRTemp
);
3185 extern IRType
typeOfIRExpr ( const IRTypeEnv
*, const IRExpr
* );
3187 /* What are the arg and result type for this IRLoadGOp? */
3188 extern void typeOfIRLoadGOp ( IRLoadGOp cvt
,
3189 /*OUT*/IRType
* t_res
,
3190 /*OUT*/IRType
* t_arg
);
3192 /* Sanity check a BB of IR */
3193 extern void sanityCheckIRSB ( const IRSB
* bb
,
3194 const HChar
* caller
,
3195 Bool require_flatness
,
3196 IRType guest_word_size
);
3197 extern Bool
isFlatIRStmt ( const IRStmt
* );
3198 extern Bool
isFlatIRSB ( const IRSB
* );
3200 /* Is this any value actually in the enumeration 'IRType' ? */
3201 extern Bool
isPlausibleIRType ( IRType ty
);
3204 /*---------------------------------------------------------------*/
3205 /*--- IR injection ---*/
3206 /*---------------------------------------------------------------*/
3208 void vex_inject_ir(IRSB
*, IREndness
);
3211 #endif /* ndef __LIBVEX_IR_H */
3213 /*---------------------------------------------------------------*/
3214 /*--- libvex_ir.h ---*/
3215 /*---------------------------------------------------------------*/