Correct an Altivec configure think-o.
[valgrind.git] / memcheck / mc_leakcheck.c
blob6d1854edf7c64396cbe905bf2f8cab06b6bfaeb0
2 /*--------------------------------------------------------------------*/
3 /*--- The leak checker. mc_leakcheck.c ---*/
4 /*--------------------------------------------------------------------*/
6 /*
7 This file is part of MemCheck, a heavyweight Valgrind tool for
8 detecting memory errors.
10 Copyright (C) 2000-2015 Julian Seward
11 jseward@acm.org
13 This program is free software; you can redistribute it and/or
14 modify it under the terms of the GNU General Public License as
15 published by the Free Software Foundation; either version 2 of the
16 License, or (at your option) any later version.
18 This program is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26 02111-1307, USA.
28 The GNU General Public License is contained in the file COPYING.
31 #include "pub_tool_basics.h"
32 #include "pub_tool_vki.h"
33 #include "pub_tool_aspacehl.h"
34 #include "pub_tool_aspacemgr.h"
35 #include "pub_tool_execontext.h"
36 #include "pub_tool_hashtable.h"
37 #include "pub_tool_libcbase.h"
38 #include "pub_tool_libcassert.h"
39 #include "pub_tool_libcprint.h"
40 #include "pub_tool_libcsignal.h"
41 #include "pub_tool_machine.h"
42 #include "pub_tool_mallocfree.h"
43 #include "pub_tool_options.h"
44 #include "pub_tool_oset.h"
45 #include "pub_tool_poolalloc.h"
46 #include "pub_tool_signals.h" // Needed for mc_include.h
47 #include "pub_tool_libcsetjmp.h" // setjmp facilities
48 #include "pub_tool_tooliface.h" // Needed for mc_include.h
50 #include "mc_include.h"
52 /*------------------------------------------------------------*/
53 /*--- An overview of leak checking. ---*/
54 /*------------------------------------------------------------*/
56 // Leak-checking is a directed-graph traversal problem. The graph has
57 // two kinds of nodes:
58 // - root-set nodes:
59 // - GP registers of all threads;
60 // - valid, aligned, pointer-sized data words in valid client memory,
61 // including stacks, but excluding words within client heap-allocated
62 // blocks (they are excluded so that later on we can differentiate
63 // between heap blocks that are indirectly leaked vs. directly leaked).
64 // - heap-allocated blocks. A block is a mempool chunk or a malloc chunk
65 // that doesn't contain a mempool chunk. Nb: the terms "blocks" and
66 // "chunks" are used interchangeably below.
68 // There are two kinds of edges:
69 // - start-pointers, i.e. pointers to the start of a block;
70 // - interior-pointers, i.e. pointers to the interior of a block.
72 // We use "pointers" rather than "edges" below.
74 // Root set nodes only point to blocks. Blocks only point to blocks;
75 // a block can point to itself.
77 // The aim is to traverse the graph and determine the status of each block.
79 // There are 9 distinct cases. See memcheck/docs/mc-manual.xml for details.
80 // Presenting all nine categories to the user is probably too much.
81 // Currently we do this:
82 // - definitely lost: case 3
83 // - indirectly lost: case 4, 9
84 // - possibly lost: cases 5..8
85 // - still reachable: cases 1, 2
86 //
87 // It's far from clear that this is the best possible categorisation; it's
88 // accreted over time without any central guiding principle.
90 /*------------------------------------------------------------*/
91 /*--- XXX: Thoughts for improvement. ---*/
92 /*------------------------------------------------------------*/
94 // From the user's point of view:
95 // - If they aren't using interior-pointers, they just have to fix the
96 // directly lost blocks, and the indirectly lost ones will be fixed as
97 // part of that. Any possibly lost blocks will just be due to random
98 // pointer garbage and can be ignored.
99 //
100 // - If they are using interior-pointers, the fact that they currently are not
101 // being told which ones might be directly lost vs. indirectly lost makes
102 // it hard to know where to begin.
104 // All this makes me wonder if new option is warranted:
105 // --follow-interior-pointers. By default it would be off, the leak checker
106 // wouldn't follow interior-pointers and there would only be 3 categories:
107 // R, DL, IL.
109 // If turned on, then it would show 7 categories (R, DL, IL, DR/DL, IR/IL,
110 // IR/IL/DL, IL/DL). That output is harder to understand but it's your own
111 // damn fault for using interior-pointers...
113 // ----
115 // Also, why are two blank lines printed between each loss record?
116 // [bug 197930]
118 // ----
120 // Also, --show-reachable is a bad name because it also turns on the showing
121 // of indirectly leaked blocks(!) It would be better named --show-all or
122 // --show-all-heap-blocks, because that's the end result.
123 // We now have the option --show-leak-kinds=... which allows to specify =all.
125 // ----
127 // Also, the VALGRIND_LEAK_CHECK and VALGRIND_QUICK_LEAK_CHECK aren't great
128 // names. VALGRIND_FULL_LEAK_CHECK and VALGRIND_SUMMARY_LEAK_CHECK would be
129 // better.
131 // ----
133 // Also, VALGRIND_COUNT_LEAKS and VALGRIND_COUNT_LEAK_BLOCKS aren't great as
134 // they combine direct leaks and indirect leaks into one. New, more precise
135 // ones (they'll need new names) would be good. If more categories are
136 // used, as per the --follow-interior-pointers option, they should be
137 // updated accordingly. And they should use a struct to return the values.
139 // ----
141 // Also, for this case:
143 // (4) p4 BBB ---> AAA
145 // BBB is definitely directly lost. AAA is definitely indirectly lost.
146 // Here's the relevant loss records printed for a full check (each block is
147 // 16 bytes):
149 // ==20397== 16 bytes in 1 blocks are indirectly lost in loss record 9 of 15
150 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177)
151 // ==20397== by 0x400521: mk (leak-cases.c:49)
152 // ==20397== by 0x400578: main (leak-cases.c:72)
154 // ==20397== 32 (16 direct, 16 indirect) bytes in 1 blocks are definitely
155 // lost in loss record 14 of 15
156 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177)
157 // ==20397== by 0x400521: mk (leak-cases.c:49)
158 // ==20397== by 0x400580: main (leak-cases.c:72)
160 // The first one is fine -- it describes AAA.
162 // The second one is for BBB. It's correct in that 16 bytes in 1 block are
163 // directly lost. It's also correct that 16 are indirectly lost as a result,
164 // but it means that AAA is being counted twice in the loss records. (It's
165 // not, thankfully, counted twice in the summary counts). Argh.
167 // This would be less confusing for the second one:
169 // ==20397== 16 bytes in 1 blocks are definitely lost in loss record 14
170 // of 15 (and 16 bytes in 1 block are indirectly lost as a result; they
171 // are mentioned elsewhere (if --show-reachable=yes or indirect is given
172 // in --show-leak-kinds=... !))
173 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177)
174 // ==20397== by 0x400521: mk (leak-cases.c:49)
175 // ==20397== by 0x400580: main (leak-cases.c:72)
177 // But ideally we'd present the loss record for the directly lost block and
178 // then the resultant indirectly lost blocks and make it clear the
179 // dependence. Double argh.
181 /*------------------------------------------------------------*/
182 /*--- The actual algorithm. ---*/
183 /*------------------------------------------------------------*/
185 // - Find all the blocks (a.k.a. chunks) to check. Mempool chunks require
186 // some special treatment because they can be within malloc'd blocks.
187 // - Scan every word in the root set (GP registers and valid
188 // non-heap memory words).
189 // - First, we skip if it doesn't point to valid memory.
190 // - Then, we see if it points to the start or interior of a block. If
191 // so, we push the block onto the mark stack and mark it as having been
192 // reached.
193 // - Then, we process the mark stack, repeating the scanning for each block;
194 // this can push more blocks onto the mark stack. We repeat until the
195 // mark stack is empty. Each block is marked as definitely or possibly
196 // reachable, depending on whether interior-pointers were required to
197 // reach it.
198 // - At this point we know for every block if it's reachable or not.
199 // - We then push each unreached block onto the mark stack, using the block
200 // number as the "clique" number.
201 // - We process the mark stack again, this time grouping blocks into cliques
202 // in order to facilitate the directly/indirectly lost categorisation.
203 // - We group blocks by their ExeContexts and categorisation, and print them
204 // if --leak-check=full. We also print summary numbers.
206 // A note on "cliques":
207 // - A directly lost block is one with no pointers to it. An indirectly
208 // lost block is one that is pointed to by a directly or indirectly lost
209 // block.
210 // - Each directly lost block has zero or more indirectly lost blocks
211 // hanging off it. All these blocks together form a "clique". The
212 // directly lost block is called the "clique leader". The clique number
213 // is the number (in lc_chunks[]) of the clique leader.
214 // - Actually, a directly lost block may be pointed to if it's part of a
215 // cycle. In that case, there may be more than one choice for the clique
216 // leader, and the choice is arbitrary. Eg. if you have A-->B and B-->A
217 // either A or B could be the clique leader.
218 // - Cliques cannot overlap, and will be truncated to avoid this. Eg. if we
219 // have A-->C and B-->C, the two cliques will be {A,C} and {B}, or {A} and
220 // {B,C} (again the choice is arbitrary). This is because we don't want
221 // to count a block as indirectly lost more than once.
223 // A note on 'is_prior_definite':
224 // - This is a boolean used in various places that indicates if the chain
225 // up to the prior node (prior to the one being considered) is definite.
226 // - In the clique == -1 case:
227 // - if True it means that the prior node is a root-set node, or that the
228 // prior node is a block which is reachable from the root-set via
229 // start-pointers.
230 // - if False it means that the prior node is a block that is only
231 // reachable from the root-set via a path including at least one
232 // interior-pointer.
233 // - In the clique != -1 case, currently it's always True because we treat
234 // start-pointers and interior-pointers the same for direct/indirect leak
235 // checking. If we added a PossibleIndirectLeak state then this would
236 // change.
239 // Define to debug the memory-leak-detector.
240 #define VG_DEBUG_FIND_CHUNK 0
241 #define VG_DEBUG_LEAKCHECK 0
242 #define VG_DEBUG_CLIQUE 0
245 /*------------------------------------------------------------*/
246 /*--- Getting the initial chunks, and searching them. ---*/
247 /*------------------------------------------------------------*/
249 // Compare the MC_Chunks by 'data' (i.e. the address of the block).
250 static Int compare_MC_Chunks(const void* n1, const void* n2)
252 const MC_Chunk* mc1 = *(const MC_Chunk *const *)n1;
253 const MC_Chunk* mc2 = *(const MC_Chunk *const *)n2;
254 if (mc1->data < mc2->data) return -1;
255 if (mc1->data > mc2->data) return 1;
256 return 0;
259 #if VG_DEBUG_FIND_CHUNK
260 // Used to sanity-check the fast binary-search mechanism.
261 static
262 Int find_chunk_for_OLD ( Addr ptr,
263 MC_Chunk** chunks,
264 Int n_chunks )
267 Int i;
268 Addr a_lo, a_hi;
269 PROF_EVENT(MCPE_FIND_CHUNK_FOR_OLD);
270 for (i = 0; i < n_chunks; i++) {
271 PROF_EVENT(MCPE_FIND_CHUNK_FOR_OLD_LOOP);
272 a_lo = chunks[i]->data;
273 a_hi = ((Addr)chunks[i]->data) + chunks[i]->szB;
274 if (a_lo == a_hi)
275 a_hi++; // Special case for szB 0. See find_chunk_for.
276 if (a_lo <= ptr && ptr < a_hi)
277 return i;
279 return -1;
281 #endif
283 // Find the i such that ptr points at or inside the block described by
284 // chunks[i]. Return -1 if none found. This assumes that chunks[]
285 // has been sorted on the 'data' field.
286 static
287 Int find_chunk_for ( Addr ptr,
288 MC_Chunk** chunks,
289 Int n_chunks )
291 Addr a_mid_lo, a_mid_hi;
292 Int lo, mid, hi, retVal;
293 // VG_(printf)("find chunk for %p = ", ptr);
294 retVal = -1;
295 lo = 0;
296 hi = n_chunks-1;
297 while (True) {
298 // Invariant: current unsearched space is from lo to hi, inclusive.
299 if (lo > hi) break; // not found
301 mid = (lo + hi) / 2;
302 a_mid_lo = chunks[mid]->data;
303 a_mid_hi = chunks[mid]->data + chunks[mid]->szB;
304 // Extent of block 'mid' is [a_mid_lo .. a_mid_hi).
305 // Special-case zero-sized blocks - treat them as if they had
306 // size 1. Not doing so causes them to not cover any address
307 // range at all and so will never be identified as the target of
308 // any pointer, which causes them to be incorrectly reported as
309 // definitely leaked.
310 if (chunks[mid]->szB == 0)
311 a_mid_hi++;
313 if (ptr < a_mid_lo) {
314 hi = mid-1;
315 continue;
317 if (ptr >= a_mid_hi) {
318 lo = mid+1;
319 continue;
321 tl_assert(ptr >= a_mid_lo && ptr < a_mid_hi);
322 retVal = mid;
323 break;
326 # if VG_DEBUG_FIND_CHUNK
327 tl_assert(retVal == find_chunk_for_OLD ( ptr, chunks, n_chunks ));
328 # endif
329 // VG_(printf)("%d\n", retVal);
330 return retVal;
334 static MC_Chunk**
335 find_active_chunks(Int* pn_chunks)
337 // Our goal is to construct a set of chunks that includes every
338 // mempool chunk, and every malloc region that *doesn't* contain a
339 // mempool chunk.
340 MC_Mempool *mp;
341 MC_Chunk **mallocs, **chunks, *mc;
342 UInt n_mallocs, n_chunks, m, s;
343 Bool *malloc_chunk_holds_a_pool_chunk;
345 // First we collect all the malloc chunks into an array and sort it.
346 // We do this because we want to query the chunks by interior
347 // pointers, requiring binary search.
348 mallocs = (MC_Chunk**) VG_(HT_to_array)( MC_(malloc_list), &n_mallocs );
349 if (n_mallocs == 0) {
350 tl_assert(mallocs == NULL);
351 *pn_chunks = 0;
352 return NULL;
354 VG_(ssort)(mallocs, n_mallocs, sizeof(VgHashNode*), compare_MC_Chunks);
356 // Then we build an array containing a Bool for each malloc chunk,
357 // indicating whether it contains any mempools.
358 malloc_chunk_holds_a_pool_chunk = VG_(calloc)( "mc.fas.1",
359 n_mallocs, sizeof(Bool) );
360 n_chunks = n_mallocs;
362 // Then we loop over the mempool tables. For each chunk in each
363 // pool, we set the entry in the Bool array corresponding to the
364 // malloc chunk containing the mempool chunk.
365 VG_(HT_ResetIter)(MC_(mempool_list));
366 while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
367 VG_(HT_ResetIter)(mp->chunks);
368 while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
370 // We'll need to record this chunk.
371 n_chunks++;
373 // Possibly invalidate the malloc holding the beginning of this chunk.
374 m = find_chunk_for(mc->data, mallocs, n_mallocs);
375 if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
376 tl_assert(n_chunks > 0);
377 n_chunks--;
378 malloc_chunk_holds_a_pool_chunk[m] = True;
381 // Possibly invalidate the malloc holding the end of this chunk.
382 if (mc->szB > 1) {
383 m = find_chunk_for(mc->data + (mc->szB - 1), mallocs, n_mallocs);
384 if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
385 tl_assert(n_chunks > 0);
386 n_chunks--;
387 malloc_chunk_holds_a_pool_chunk[m] = True;
392 tl_assert(n_chunks > 0);
394 // Create final chunk array.
395 chunks = VG_(malloc)("mc.fas.2", sizeof(VgHashNode*) * (n_chunks));
396 s = 0;
398 // Copy the mempool chunks and the non-marked malloc chunks into a
399 // combined array of chunks.
400 VG_(HT_ResetIter)(MC_(mempool_list));
401 while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
402 VG_(HT_ResetIter)(mp->chunks);
403 while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
404 tl_assert(s < n_chunks);
405 chunks[s++] = mc;
408 for (m = 0; m < n_mallocs; ++m) {
409 if (!malloc_chunk_holds_a_pool_chunk[m]) {
410 tl_assert(s < n_chunks);
411 chunks[s++] = mallocs[m];
414 tl_assert(s == n_chunks);
416 // Free temporaries.
417 VG_(free)(mallocs);
418 VG_(free)(malloc_chunk_holds_a_pool_chunk);
420 *pn_chunks = n_chunks;
422 return chunks;
425 /*------------------------------------------------------------*/
426 /*--- The leak detector proper. ---*/
427 /*------------------------------------------------------------*/
429 // Holds extra info about each block during leak checking.
430 typedef
431 struct {
432 UInt state:2; // Reachedness.
433 UInt pending:1; // Scan pending.
434 UInt heuristic: (sizeof(UInt)*8)-3;
435 // Heuristic with which this block was considered reachable.
436 // LchNone if state != Reachable or no heuristic needed to
437 // consider it reachable.
439 union {
440 SizeT indirect_szB;
441 // If Unreached, how many bytes are unreachable from here.
442 SizeT clique;
443 // if IndirectLeak, clique leader to which it belongs.
444 } IorC;
446 LC_Extra;
448 // An array holding pointers to every chunk we're checking. Sorted by address.
449 // lc_chunks is initialised during leak search. It is kept after leak search
450 // to support printing the list of blocks belonging to a loss record.
451 // lc_chunk array can only be used validly till the next "free" operation
452 // (as a free operation potentially destroys one or more chunks).
453 // To detect lc_chunk is valid, we store the nr of frees operations done
454 // when lc_chunk was build : lc_chunks (and lc_extras) stays valid as
455 // long as no free operations has been done since lc_chunks building.
456 static MC_Chunk** lc_chunks;
457 // How many chunks we're dealing with.
458 static Int lc_n_chunks;
459 static SizeT lc_chunks_n_frees_marker;
460 // This has the same number of entries as lc_chunks, and each entry
461 // in lc_chunks corresponds with the entry here (ie. lc_chunks[i] and
462 // lc_extras[i] describe the same block).
463 static LC_Extra* lc_extras;
465 // chunks will be converted and merged in loss record, maintained in lr_table
466 // lr_table elements are kept from one leak_search to another to implement
467 // the "print new/changed leaks" client request
468 static OSet* lr_table;
469 // Array of sorted loss record (produced during last leak search).
470 static LossRecord** lr_array;
472 // Value of the heuristics parameter used in the current (or last) leak check.
473 static UInt detect_memory_leaks_last_heuristics;
475 // DeltaMode used the last time we called detect_memory_leaks.
476 // The recorded leak errors are output using a logic based on this delta_mode.
477 // The below avoids replicating the delta_mode in each LossRecord.
478 LeakCheckDeltaMode MC_(detect_memory_leaks_last_delta_mode);
480 // Each leak search run increments the below generation counter.
481 // A used suppression during a leak search will contain this
482 // generation number.
483 UInt MC_(leak_search_gen);
485 // Records chunks that are currently being processed. Each element in the
486 // stack is an index into lc_chunks and lc_extras. Its size is
487 // 'lc_n_chunks' because in the worst case that's how many chunks could be
488 // pushed onto it (actually I think the maximum is lc_n_chunks-1 but let's
489 // be conservative).
490 static Int* lc_markstack;
491 // The index of the top element of the stack; -1 if the stack is empty, 0 if
492 // the stack has one element, 1 if it has two, etc.
493 static Int lc_markstack_top;
495 // Keeps track of how many bytes of memory we've scanned, for printing.
496 // (Nb: We don't keep track of how many register bytes we've scanned.)
497 static SizeT lc_scanned_szB;
498 // Keeps track of how many bytes we have not scanned due to read errors that
499 // caused a signal such as SIGSEGV.
500 static SizeT lc_sig_skipped_szB;
503 SizeT MC_(bytes_leaked) = 0;
504 SizeT MC_(bytes_indirect) = 0;
505 SizeT MC_(bytes_dubious) = 0;
506 SizeT MC_(bytes_reachable) = 0;
507 SizeT MC_(bytes_suppressed) = 0;
509 SizeT MC_(blocks_leaked) = 0;
510 SizeT MC_(blocks_indirect) = 0;
511 SizeT MC_(blocks_dubious) = 0;
512 SizeT MC_(blocks_reachable) = 0;
513 SizeT MC_(blocks_suppressed) = 0;
515 // Subset of MC_(bytes_reachable) and MC_(blocks_reachable) which
516 // are considered reachable due to the corresponding heuristic.
517 static SizeT MC_(bytes_heuristically_reachable)[N_LEAK_CHECK_HEURISTICS]
518 = {0,0,0,0};
519 static SizeT MC_(blocks_heuristically_reachable)[N_LEAK_CHECK_HEURISTICS]
520 = {0,0,0,0};
522 // Determines if a pointer is to a chunk. Returns the chunk number et al
523 // via call-by-reference.
524 static Bool
525 lc_is_a_chunk_ptr(Addr ptr, Int* pch_no, MC_Chunk** pch, LC_Extra** pex)
527 Int ch_no;
528 MC_Chunk* ch;
529 LC_Extra* ex;
531 // Quick filter. Note: implemented with am, not with get_vabits2
532 // as ptr might be random data pointing anywhere. On 64 bit
533 // platforms, getting va bits for random data can be quite costly
534 // due to the secondary map.
535 if (!VG_(am_is_valid_for_client)(ptr, 1, VKI_PROT_READ)) {
536 return False;
537 } else {
538 ch_no = find_chunk_for(ptr, lc_chunks, lc_n_chunks);
539 tl_assert(ch_no >= -1 && ch_no < lc_n_chunks);
541 if (ch_no == -1) {
542 return False;
543 } else {
544 // Ok, we've found a pointer to a chunk. Get the MC_Chunk and its
545 // LC_Extra.
546 ch = lc_chunks[ch_no];
547 ex = &(lc_extras[ch_no]);
549 tl_assert(ptr >= ch->data);
550 tl_assert(ptr < ch->data + ch->szB + (ch->szB==0 ? 1 : 0));
552 if (VG_DEBUG_LEAKCHECK)
553 VG_(printf)("ptr=%#lx -> block %d\n", ptr, ch_no);
555 *pch_no = ch_no;
556 *pch = ch;
557 *pex = ex;
559 return True;
564 // Push a chunk (well, just its index) onto the mark stack.
565 static void lc_push(Int ch_no, MC_Chunk* ch)
567 if (!lc_extras[ch_no].pending) {
568 if (0) {
569 VG_(printf)("pushing %#lx-%#lx\n", ch->data, ch->data + ch->szB);
571 lc_markstack_top++;
572 tl_assert(lc_markstack_top < lc_n_chunks);
573 lc_markstack[lc_markstack_top] = ch_no;
574 tl_assert(!lc_extras[ch_no].pending);
575 lc_extras[ch_no].pending = True;
579 // Return the index of the chunk on the top of the mark stack, or -1 if
580 // there isn't one.
581 static Bool lc_pop(Int* ret)
583 if (-1 == lc_markstack_top) {
584 return False;
585 } else {
586 tl_assert(0 <= lc_markstack_top && lc_markstack_top < lc_n_chunks);
587 *ret = lc_markstack[lc_markstack_top];
588 lc_markstack_top--;
589 tl_assert(lc_extras[*ret].pending);
590 lc_extras[*ret].pending = False;
591 return True;
595 static const HChar* pp_heuristic(LeakCheckHeuristic h)
597 switch(h) {
598 case LchNone: return "none";
599 case LchStdString: return "stdstring";
600 case LchLength64: return "length64";
601 case LchNewArray: return "newarray";
602 case LchMultipleInheritance: return "multipleinheritance";
603 default: return "???invalid heuristic???";
607 // True if ptr looks like the address of a vtable, i.e. if ptr
608 // points to an array of pointers to functions.
609 // It is assumed the only caller of this function is heuristic_reachedness
610 // which must check that ptr is aligned and above page 0.
611 // Checking that ptr is above page 0 is an optimisation : it is assumed
612 // that no vtable is located in the page 0. So, all small integer values
613 // encountered during the scan will not incur the cost of calling this
614 // function.
615 static Bool aligned_ptr_above_page0_is_vtable_addr(Addr ptr)
617 // ??? If performance problem:
618 // ??? maybe implement a cache (array indexed by ptr % primenr)
619 // ??? of "I am a vtable ptr" ???
621 // ??? Maybe the debug info could (efficiently?) be used to detect vtables ?
623 // We consider ptr as a vtable ptr if it points to a table
624 // where we find only NULL pointers or pointers pointing at an
625 // executable region. We must find at least 2 non NULL pointers
626 // before considering ptr as a vtable pointer.
627 // We scan a maximum of VTABLE_MAX_CHECK words for these 2 non NULL
628 // pointers.
629 #define VTABLE_MAX_CHECK 20
631 NSegment const *seg;
632 UInt nr_fn_ptrs = 0;
633 Addr scan;
634 Addr scan_max;
636 // First verify ptr points inside a client mapped file section.
637 // ??? is a vtable always in a file mapped readable section ?
638 seg = VG_(am_find_nsegment) (ptr);
639 if (seg == NULL
640 || seg->kind != SkFileC
641 || !seg->hasR)
642 return False;
644 // Check potential function pointers, up to a maximum of VTABLE_MAX_CHECK.
645 scan_max = ptr + VTABLE_MAX_CHECK*sizeof(Addr);
646 // If ptr is near the end of seg, avoid scan_max exceeding the end of seg:
647 if (scan_max > seg->end - sizeof(Addr))
648 scan_max = seg->end - sizeof(Addr);
649 for (scan = ptr; scan <= scan_max; scan+=sizeof(Addr)) {
650 Addr pot_fn = *((Addr *)scan);
651 if (pot_fn == 0)
652 continue; // NULL fn pointer. Seems it can happen in vtable.
653 seg = VG_(am_find_nsegment) (pot_fn);
654 #if defined(VGA_ppc64be)
655 // ppc64BE uses a thunk table (function descriptors), so we have one
656 // more level of indirection to follow.
657 if (seg == NULL
658 || seg->kind != SkFileC
659 || !seg->hasR
660 || !seg->hasW)
661 return False; // ptr to nowhere, or not a ptr to thunks.
662 pot_fn = *((Addr *)pot_fn);
663 if (pot_fn == 0)
664 continue; // NULL fn pointer. Seems it can happen in vtable.
665 seg = VG_(am_find_nsegment) (pot_fn);
666 #endif
667 if (seg == NULL
668 || seg->kind != SkFileC
669 || !seg->hasT)
670 return False; // ptr to nowhere, or not a fn ptr.
671 nr_fn_ptrs++;
672 if (nr_fn_ptrs == 2)
673 return True;
676 return False;
679 // true if a is properly aligned and points to 64bits of valid memory
680 static Bool is_valid_aligned_ULong ( Addr a )
682 if (sizeof(Word) == 8)
683 return MC_(is_valid_aligned_word)(a);
685 return MC_(is_valid_aligned_word)(a)
686 && MC_(is_valid_aligned_word)(a + 4);
689 /* The below leak_search_fault_catcher is used to catch memory access
690 errors happening during leak_search. During the scan, we check
691 with aspacemgr and/or VA bits that each page or dereferenced location is
692 readable and belongs to the client. However, we still protect
693 against SIGSEGV and SIGBUS e.g. in case aspacemgr is desynchronised
694 with the real page mappings. Such a desynchronisation could happen
695 due to an aspacemgr bug. Note that if the application is using
696 mprotect(NONE), then a page can be unreadable but have addressable
697 and defined VA bits (see mc_main.c function mc_new_mem_mprotect).
698 Currently, 2 functions are dereferencing client memory during leak search:
699 heuristic_reachedness and lc_scan_memory.
700 Each such function has its own fault catcher, that will call
701 leak_search_fault_catcher with the proper 'who' and jmpbuf parameters. */
702 static volatile Addr bad_scanned_addr;
703 static
704 void leak_search_fault_catcher ( Int sigNo, Addr addr,
705 const HChar *who, VG_MINIMAL_JMP_BUF(jmpbuf) )
707 vki_sigset_t sigmask;
709 if (0)
710 VG_(printf)("OUCH! sig=%d addr=%#lx who=%s\n", sigNo, addr, who);
712 /* Signal handler runs with the signal masked.
713 Unmask the handled signal before longjmp-ing or return-ing.
714 Note that during leak search, we expect only SIGSEGV or SIGBUS
715 and we do not expect another occurence until we longjmp-ed!return-ed
716 to resume the leak search. So, it is safe to unmask the signal
717 here. */
718 /* First get current mask (by passing NULL as first arg) */
719 VG_(sigprocmask)(VKI_SIG_SETMASK, NULL, &sigmask);
720 /* Then set a new sigmask, with this signal removed from the mask. */
721 VG_(sigdelset)(&sigmask, sigNo);
722 VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL);
724 if (sigNo == VKI_SIGSEGV || sigNo == VKI_SIGBUS) {
725 bad_scanned_addr = addr;
726 VG_MINIMAL_LONGJMP(jmpbuf);
727 } else {
728 /* ??? During leak search, we are not supposed to receive any
729 other sync signal that these 2.
730 In theory, we should not call VG_(umsg) in a signal handler,
731 but better (try to) report this unexpected behaviour. */
732 VG_(umsg)("leak_search_fault_catcher:"
733 " unexpected signal %d, catcher %s ???\n",
734 sigNo, who);
738 // jmpbuf and fault_catcher used during heuristic_reachedness
739 static VG_MINIMAL_JMP_BUF(heuristic_reachedness_jmpbuf);
740 static
741 void heuristic_reachedness_fault_catcher ( Int sigNo, Addr addr )
743 leak_search_fault_catcher (sigNo, addr,
744 "heuristic_reachedness_fault_catcher",
745 heuristic_reachedness_jmpbuf);
748 // If ch is heuristically reachable via an heuristic member of heur_set,
749 // returns this heuristic.
750 // If ch cannot be considered reachable using one of these heuristics,
751 // return LchNone.
752 // This should only be called when ptr is an interior ptr to ch.
753 // The StdString/NewArray/MultipleInheritance heuristics are directly
754 // inspired from DrMemory:
755 // see http://www.burningcutlery.com/derek/docs/drmem-CGO11.pdf [section VI,C]
756 // and bug 280271.
757 static LeakCheckHeuristic heuristic_reachedness (Addr ptr,
758 MC_Chunk *ch, LC_Extra *ex,
759 UInt heur_set)
762 fault_catcher_t prev_catcher;
764 prev_catcher = VG_(set_fault_catcher)(heuristic_reachedness_fault_catcher);
766 // See leak_search_fault_catcher
767 if (VG_MINIMAL_SETJMP(heuristic_reachedness_jmpbuf) != 0) {
768 VG_(set_fault_catcher) (prev_catcher);
769 return LchNone;
772 if (HiS(LchStdString, heur_set)) {
773 // Detects inner pointers to Std::String for layout being
774 // length capacity refcount char_array[] \0
775 // where ptr points to the beginning of the char_array.
776 // Note: we check definedness for length and capacity but
777 // not for refcount, as refcount size might be smaller than
778 // a SizeT, giving a uninitialised hole in the first 3 SizeT.
779 if ( ptr == ch->data + 3 * sizeof(SizeT)
780 && MC_(is_valid_aligned_word)(ch->data + sizeof(SizeT))) {
781 const SizeT capacity = *((SizeT*)(ch->data + sizeof(SizeT)));
782 if (3 * sizeof(SizeT) + capacity + 1 == ch->szB
783 && MC_(is_valid_aligned_word)(ch->data)) {
784 const SizeT length = *((SizeT*)ch->data);
785 if (length <= capacity) {
786 // ??? could check there is no null byte from ptr to ptr+length-1
787 // ??? and that there is a null byte at ptr+length.
788 // ???
789 // ??? could check that ch->allockind is MC_AllocNew ???
790 // ??? probably not a good idea, as I guess stdstring
791 // ??? allocator can be done via custom allocator
792 // ??? or even a call to malloc ????
793 VG_(set_fault_catcher) (prev_catcher);
794 return LchStdString;
800 if (HiS(LchLength64, heur_set)) {
801 // Detects inner pointers that point at 64bit offset (8 bytes) into a
802 // block following the length of the remaining as 64bit number
803 // (=total block size - 8).
804 // This is used e.g. by sqlite for tracking the total size of allocated
805 // memory.
806 // Note that on 64bit platforms, a block matching LchLength64 will
807 // also be matched by LchNewArray.
808 if ( ptr == ch->data + sizeof(ULong)
809 && is_valid_aligned_ULong(ch->data)) {
810 const ULong size = *((ULong*)ch->data);
811 if (size > 0 && (ch->szB - sizeof(ULong)) == size) {
812 VG_(set_fault_catcher) (prev_catcher);
813 return LchLength64;
818 if (HiS(LchNewArray, heur_set)) {
819 // Detects inner pointers at second word of new[] array, following
820 // a plausible nr of elements.
821 // Such inner pointers are used for arrays of elements
822 // having a destructor, as the delete[] of the array must know
823 // how many elements to destroy.
825 // We have a strange/wrong case for 'ptr = new MyClass[0];' :
826 // For such a case, the returned ptr points just outside the
827 // allocated chunk. This chunk is then seen as a definite
828 // leak by Valgrind, as it is not considered an interior pointer.
829 // It is the c++ equivalent of bug 99923 (malloc(0) wrongly considered
830 // as definitely leaked). See the trick in find_chunk_for handling
831 // 0-sized block. This trick does not work for 'new MyClass[0]'
832 // because a chunk "word-sized" is allocated to store the (0) nr
833 // of elements.
834 if ( ptr == ch->data + sizeof(SizeT)
835 && MC_(is_valid_aligned_word)(ch->data)) {
836 const SizeT nr_elts = *((SizeT*)ch->data);
837 if (nr_elts > 0 && (ch->szB - sizeof(SizeT)) % nr_elts == 0) {
838 // ??? could check that ch->allockind is MC_AllocNewVec ???
839 VG_(set_fault_catcher) (prev_catcher);
840 return LchNewArray;
845 if (HiS(LchMultipleInheritance, heur_set)) {
846 // Detect inner pointer used for multiple inheritance.
847 // Assumption is that the vtable pointers are before the object.
848 if (VG_IS_WORD_ALIGNED(ptr)
849 && MC_(is_valid_aligned_word)(ptr)) {
850 Addr first_addr;
851 Addr inner_addr;
853 // Avoid the call to is_vtable_addr when the addr is not
854 // aligned or points in the page0, as it is unlikely
855 // a vtable is located in this page. This last optimisation
856 // avoids to call aligned_ptr_above_page0_is_vtable_addr
857 // for all small integers.
858 // Note: we could possibly also avoid calling this function
859 // for small negative integers, as no vtable should be located
860 // in the last page.
861 inner_addr = *((Addr*)ptr);
862 if (VG_IS_WORD_ALIGNED(inner_addr)
863 && inner_addr >= (Addr)VKI_PAGE_SIZE
864 && MC_(is_valid_aligned_word)(ch->data)) {
865 first_addr = *((Addr*)ch->data);
866 if (VG_IS_WORD_ALIGNED(first_addr)
867 && first_addr >= (Addr)VKI_PAGE_SIZE
868 && aligned_ptr_above_page0_is_vtable_addr(inner_addr)
869 && aligned_ptr_above_page0_is_vtable_addr(first_addr)) {
870 // ??? could check that ch->allockind is MC_AllocNew ???
871 VG_(set_fault_catcher) (prev_catcher);
872 return LchMultipleInheritance;
878 VG_(set_fault_catcher) (prev_catcher);
879 return LchNone;
883 // If 'ptr' is pointing to a heap-allocated block which hasn't been seen
884 // before, push it onto the mark stack.
885 static void
886 lc_push_without_clique_if_a_chunk_ptr(Addr ptr, Bool is_prior_definite)
888 Int ch_no;
889 MC_Chunk* ch;
890 LC_Extra* ex;
891 Reachedness ch_via_ptr; // Is ch reachable via ptr, and how ?
893 if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) )
894 return;
896 if (ex->state == Reachable) {
897 if (ex->heuristic && ptr == ch->data)
898 // If block was considered reachable via an heuristic, and it is now
899 // directly reachable via ptr, clear the heuristic field.
900 ex->heuristic = LchNone;
901 return;
904 // Possibly upgrade the state, ie. one of:
905 // - Unreached --> Possible
906 // - Unreached --> Reachable
907 // - Possible --> Reachable
909 if (ptr == ch->data)
910 ch_via_ptr = Reachable;
911 else if (detect_memory_leaks_last_heuristics) {
912 ex->heuristic
913 = heuristic_reachedness (ptr, ch, ex,
914 detect_memory_leaks_last_heuristics);
915 if (ex->heuristic)
916 ch_via_ptr = Reachable;
917 else
918 ch_via_ptr = Possible;
919 } else
920 ch_via_ptr = Possible;
922 if (ch_via_ptr == Reachable && is_prior_definite) {
923 // 'ptr' points to the start of the block or is to be considered as
924 // pointing to the start of the block, and the prior node is
925 // definite, which means that this block is definitely reachable.
926 ex->state = Reachable;
928 // State has changed to Reachable so (re)scan the block to make
929 // sure any blocks it points to are correctly marked.
930 lc_push(ch_no, ch);
932 } else if (ex->state == Unreached) {
933 // Either 'ptr' is a interior-pointer, or the prior node isn't definite,
934 // which means that we can only mark this block as possibly reachable.
935 ex->state = Possible;
937 // State has changed to Possible so (re)scan the block to make
938 // sure any blocks it points to are correctly marked.
939 lc_push(ch_no, ch);
943 static void
944 lc_push_if_a_chunk_ptr_register(ThreadId tid, const HChar* regname, Addr ptr)
946 lc_push_without_clique_if_a_chunk_ptr(ptr, /*is_prior_definite*/True);
949 // If ptr is pointing to a heap-allocated block which hasn't been seen
950 // before, push it onto the mark stack. Clique is the index of the
951 // clique leader.
952 static void
953 lc_push_with_clique_if_a_chunk_ptr(Addr ptr, Int clique, Int cur_clique)
955 Int ch_no;
956 MC_Chunk* ch;
957 LC_Extra* ex;
959 tl_assert(0 <= clique && clique < lc_n_chunks);
961 if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) )
962 return;
964 // If it's not Unreached, it's already been handled so ignore it.
965 // If ch_no==clique, it's the clique leader, which means this is a cyclic
966 // structure; again ignore it because it's already been handled.
967 if (ex->state == Unreached && ch_no != clique) {
968 // Note that, unlike reachable blocks, we currently don't distinguish
969 // between start-pointers and interior-pointers here. We probably
970 // should, though.
971 lc_push(ch_no, ch);
973 // Add the block to the clique, and add its size to the
974 // clique-leader's indirect size. Also, if the new block was
975 // itself a clique leader, it isn't any more, so add its
976 // indirect_szB to the new clique leader.
977 if (VG_DEBUG_CLIQUE) {
978 if (ex->IorC.indirect_szB > 0)
979 VG_(printf)(" clique %d joining clique %d adding %lu+%lu\n",
980 ch_no, clique, (SizeT)ch->szB, ex->IorC.indirect_szB);
981 else
982 VG_(printf)(" block %d joining clique %d adding %lu\n",
983 ch_no, clique, (SizeT)ch->szB);
986 lc_extras[clique].IorC.indirect_szB += ch->szB;
987 lc_extras[clique].IorC.indirect_szB += ex->IorC.indirect_szB;
988 ex->state = IndirectLeak;
989 ex->IorC.clique = (SizeT) cur_clique;
993 static void
994 lc_push_if_a_chunk_ptr(Addr ptr,
995 Int clique, Int cur_clique, Bool is_prior_definite)
997 if (-1 == clique)
998 lc_push_without_clique_if_a_chunk_ptr(ptr, is_prior_definite);
999 else
1000 lc_push_with_clique_if_a_chunk_ptr(ptr, clique, cur_clique);
1004 static VG_MINIMAL_JMP_BUF(lc_scan_memory_jmpbuf);
1005 static
1006 void lc_scan_memory_fault_catcher ( Int sigNo, Addr addr )
1008 leak_search_fault_catcher (sigNo, addr,
1009 "lc_scan_memory_fault_catcher",
1010 lc_scan_memory_jmpbuf);
1013 // lc_scan_memory has 2 modes:
1015 // 1. Leak check mode (searched == 0).
1016 // -----------------------------------
1017 // Scan a block of memory between [start, start+len). This range may
1018 // be bogus, inaccessible, or otherwise strange; we deal with it. For each
1019 // valid aligned word we assume it's a pointer to a chunk a push the chunk
1020 // onto the mark stack if so.
1021 // clique is the "highest level clique" in which indirectly leaked blocks have
1022 // to be collected. cur_clique is the current "lower" level clique through which
1023 // the memory to be scanned has been found.
1024 // Example: in the below tree if A is leaked, the top level clique will
1025 // be A, while lower level cliques will be B and C.
1030 / \ / \
1031 D E F G
1033 // Proper handling of top and lowest level clique allows block_list of a loss
1034 // record to describe the hierarchy of indirectly leaked blocks.
1036 // 2. Search ptr mode (searched != 0).
1037 // -----------------------------------
1038 // In this mode, searches for pointers to a specific address range
1039 // In such a case, lc_scan_memory just scans [start..start+len[ for pointers
1040 // to searched and outputs the places where searched is found.
1041 // It does not recursively scans the found memory.
1042 static void
1043 lc_scan_memory(Addr start, SizeT len, Bool is_prior_definite,
1044 Int clique, Int cur_clique,
1045 Addr searched, SizeT szB)
1047 /* memory scan is based on the assumption that valid pointers are aligned
1048 on a multiple of sizeof(Addr). So, we can (and must) skip the begin and
1049 end portions of the block if they are not aligned on sizeof(Addr):
1050 These cannot be a valid pointer, and calls to MC_(is_valid_aligned_word)
1051 will assert for a non aligned address. */
1052 #if defined(VGA_s390x)
1053 // Define ptr as volatile, as on this platform, the value of ptr
1054 // is read in code executed via a longjmp.
1055 volatile
1056 #endif
1057 Addr ptr = VG_ROUNDUP(start, sizeof(Addr));
1058 const Addr end = VG_ROUNDDN(start+len, sizeof(Addr));
1059 fault_catcher_t prev_catcher;
1061 if (VG_DEBUG_LEAKCHECK)
1062 VG_(printf)("scan %#lx-%#lx (%lu)\n", start, end, len);
1064 prev_catcher = VG_(set_fault_catcher)(lc_scan_memory_fault_catcher);
1066 /* Optimisation: the loop below will check for each begin
1067 of SM chunk if the chunk is fully unaddressable. The idea is to
1068 skip efficiently such fully unaddressable SM chunks.
1069 So, we preferably start the loop on a chunk boundary.
1070 If the chunk is not fully unaddressable, we might be in
1071 an unaddressable page. Again, the idea is to skip efficiently
1072 such unaddressable page : this is the "else" part.
1073 We use an "else" so that two consecutive fully unaddressable
1074 SM chunks will be skipped efficiently: first one is skipped
1075 by this piece of code. The next SM chunk will be skipped inside
1076 the loop. */
1077 if ( ! MC_(is_within_valid_secondary)(ptr) ) {
1078 // Skip an invalid SM chunk till the beginning of the next SM Chunk.
1079 ptr = VG_ROUNDUP(ptr+1, SM_SIZE);
1080 } else if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) {
1081 // else we are in a (at least partially) valid SM chunk.
1082 // We might be in the middle of an unreadable page.
1083 // Do a cheap check to see if it's valid;
1084 // if not, skip onto the next page.
1085 ptr = VG_PGROUNDUP(ptr+1); // First page is bad - skip it.
1087 /* The above optimisation and below loop is based on some relationships
1088 between VKI_PAGE_SIZE, SM_SIZE and sizeof(Addr) which are asserted in
1089 MC_(detect_memory_leaks). */
1091 // See leak_search_fault_catcher
1092 if (VG_MINIMAL_SETJMP(lc_scan_memory_jmpbuf) != 0) {
1093 // Catch read error ...
1094 # if defined(VGA_s390x)
1095 // For a SIGSEGV, s390 delivers the page address of the bad address.
1096 // For a SIGBUS, old s390 kernels deliver a NULL address.
1097 // bad_scanned_addr can thus not be used.
1098 // So, on this platform, we always skip a full page from ptr.
1099 // The below implies to mark ptr as volatile, as we read the value
1100 // after a longjmp to here.
1101 lc_sig_skipped_szB += VKI_PAGE_SIZE;
1102 ptr = ptr + VKI_PAGE_SIZE; // Unaddressable, - skip it.
1103 # else
1104 // On other platforms, just skip one Addr.
1105 lc_sig_skipped_szB += sizeof(Addr);
1106 tl_assert(bad_scanned_addr >= VG_ROUNDUP(start, sizeof(Addr)));
1107 tl_assert(bad_scanned_addr < VG_ROUNDDN(start+len, sizeof(Addr)));
1108 ptr = bad_scanned_addr + sizeof(Addr); // Unaddressable, - skip it.
1109 #endif
1111 while (ptr < end) {
1112 Addr addr;
1114 // Skip invalid chunks.
1115 if (UNLIKELY((ptr % SM_SIZE) == 0)) {
1116 if (! MC_(is_within_valid_secondary)(ptr) ) {
1117 ptr = VG_ROUNDUP(ptr+1, SM_SIZE);
1118 continue;
1122 // Look to see if this page seems reasonable.
1123 if (UNLIKELY((ptr % VKI_PAGE_SIZE) == 0)) {
1124 if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) {
1125 ptr += VKI_PAGE_SIZE; // Bad page - skip it.
1126 continue;
1130 if ( MC_(is_valid_aligned_word)(ptr) ) {
1131 lc_scanned_szB += sizeof(Addr);
1132 // If the below read fails, we will longjmp to the loop begin.
1133 addr = *(Addr *)ptr;
1134 // If we get here, the scanned word is in valid memory. Now
1135 // let's see if its contents point to a chunk.
1136 if (UNLIKELY(searched)) {
1137 if (addr >= searched && addr < searched + szB) {
1138 if (addr == searched) {
1139 VG_(umsg)("*%#lx points at %#lx\n", ptr, searched);
1140 MC_(pp_describe_addr) (ptr);
1141 } else {
1142 Int ch_no;
1143 MC_Chunk *ch;
1144 LC_Extra *ex;
1145 VG_(umsg)("*%#lx interior points at %lu bytes inside %#lx\n",
1146 ptr, (long unsigned) addr - searched, searched);
1147 MC_(pp_describe_addr) (ptr);
1148 if (lc_is_a_chunk_ptr(addr, &ch_no, &ch, &ex) ) {
1149 Int h;
1150 for (h = LchStdString; h < N_LEAK_CHECK_HEURISTICS; h++) {
1151 if (heuristic_reachedness(addr, ch, ex, H2S(h)) == h) {
1152 VG_(umsg)("block at %#lx considered reachable "
1153 "by ptr %#lx using %s heuristic\n",
1154 ch->data, addr, pp_heuristic(h));
1157 // Verify the loop above has properly scanned all
1158 // heuristics. If the below fails, it probably means the
1159 // LeakCheckHeuristic enum is not in sync anymore with the
1160 // above loop and/or with N_LEAK_CHECK_HEURISTICS.
1161 tl_assert (h == N_LEAK_CHECK_HEURISTICS);
1165 } else {
1166 lc_push_if_a_chunk_ptr(addr, clique, cur_clique, is_prior_definite);
1168 } else if (0 && VG_DEBUG_LEAKCHECK) {
1169 VG_(printf)("%#lx not valid\n", ptr);
1171 ptr += sizeof(Addr);
1174 VG_(set_fault_catcher)(prev_catcher);
1178 // Process the mark stack until empty.
1179 static void lc_process_markstack(Int clique)
1181 Int top = -1; // shut gcc up
1182 Bool is_prior_definite;
1184 while (lc_pop(&top)) {
1185 tl_assert(top >= 0 && top < lc_n_chunks);
1187 // See comment about 'is_prior_definite' at the top to understand this.
1188 is_prior_definite = ( Possible != lc_extras[top].state );
1190 lc_scan_memory(lc_chunks[top]->data, lc_chunks[top]->szB,
1191 is_prior_definite, clique, (clique == -1 ? -1 : top),
1192 /*searched*/ 0, 0);
1196 static Word cmp_LossRecordKey_LossRecord(const void* key, const void* elem)
1198 const LossRecordKey* a = key;
1199 const LossRecordKey* b = &(((const LossRecord*)elem)->key);
1201 // Compare on states first because that's fast.
1202 if (a->state < b->state) return -1;
1203 if (a->state > b->state) return 1;
1204 // Ok, the states are equal. Now compare the locations, which is slower.
1205 if (VG_(eq_ExeContext)(
1206 MC_(clo_leak_resolution), a->allocated_at, b->allocated_at))
1207 return 0;
1208 // Different locations. Ordering is arbitrary, just use the ec pointer.
1209 if (a->allocated_at < b->allocated_at) return -1;
1210 if (a->allocated_at > b->allocated_at) return 1;
1211 VG_(tool_panic)("bad LossRecord comparison");
1214 static Int cmp_LossRecords(const void* va, const void* vb)
1216 const LossRecord* lr_a = *(const LossRecord *const *)va;
1217 const LossRecord* lr_b = *(const LossRecord *const *)vb;
1218 SizeT total_szB_a = lr_a->szB + lr_a->indirect_szB;
1219 SizeT total_szB_b = lr_b->szB + lr_b->indirect_szB;
1221 // First compare by sizes.
1222 if (total_szB_a < total_szB_b) return -1;
1223 if (total_szB_a > total_szB_b) return 1;
1224 // If size are equal, compare by states.
1225 if (lr_a->key.state < lr_b->key.state) return -1;
1226 if (lr_a->key.state > lr_b->key.state) return 1;
1227 // If they're still equal here, it doesn't matter that much, but we keep
1228 // comparing other things so that regtests are as deterministic as
1229 // possible. So: compare num_blocks.
1230 if (lr_a->num_blocks < lr_b->num_blocks) return -1;
1231 if (lr_a->num_blocks > lr_b->num_blocks) return 1;
1232 // Finally, compare ExeContext addresses... older ones are likely to have
1233 // lower addresses.
1234 if (lr_a->key.allocated_at < lr_b->key.allocated_at) return -1;
1235 if (lr_a->key.allocated_at > lr_b->key.allocated_at) return 1;
1236 return 0;
1239 // allocates or reallocates lr_array, and set its elements to the loss records
1240 // contains in lr_table.
1241 static UInt get_lr_array_from_lr_table(void) {
1242 UInt i, n_lossrecords;
1243 LossRecord* lr;
1245 n_lossrecords = VG_(OSetGen_Size)(lr_table);
1247 // (re-)create the array of pointers to the loss records.
1248 // lr_array is kept to allow producing the block list from gdbserver.
1249 if (lr_array != NULL)
1250 VG_(free)(lr_array);
1251 lr_array = VG_(malloc)("mc.pr.2", n_lossrecords * sizeof(LossRecord*));
1252 i = 0;
1253 VG_(OSetGen_ResetIter)(lr_table);
1254 while ( (lr = VG_(OSetGen_Next)(lr_table)) ) {
1255 lr_array[i++] = lr;
1257 tl_assert(i == n_lossrecords);
1258 return n_lossrecords;
1262 static void get_printing_rules(LeakCheckParams* lcp,
1263 LossRecord* lr,
1264 Bool* count_as_error,
1265 Bool* print_record)
1267 // Rules for printing:
1268 // - We don't show suppressed loss records ever (and that's controlled
1269 // within the error manager).
1270 // - We show non-suppressed loss records that are specified in
1271 // --show-leak-kinds=... if --leak-check=yes.
1273 Bool delta_considered;
1275 switch (lcp->deltamode) {
1276 case LCD_Any:
1277 delta_considered = lr->num_blocks > 0;
1278 break;
1279 case LCD_Increased:
1280 delta_considered
1281 = lr->szB > lr->old_szB
1282 || lr->indirect_szB > lr->old_indirect_szB
1283 || lr->num_blocks > lr->old_num_blocks;
1284 break;
1285 case LCD_Changed:
1286 delta_considered = lr->szB != lr->old_szB
1287 || lr->indirect_szB != lr->old_indirect_szB
1288 || lr->num_blocks != lr->old_num_blocks;
1289 break;
1290 default:
1291 tl_assert(0);
1294 *print_record = lcp->mode == LC_Full && delta_considered
1295 && RiS(lr->key.state,lcp->show_leak_kinds);
1296 // We don't count a leaks as errors with lcp->mode==LC_Summary.
1297 // Otherwise you can get high error counts with few or no error
1298 // messages, which can be confusing. Otherwise, we count as errors
1299 // the leak kinds requested by --errors-for-leak-kinds=...
1300 *count_as_error = lcp->mode == LC_Full && delta_considered
1301 && RiS(lr->key.state,lcp->errors_for_leak_kinds);
1304 static void print_results(ThreadId tid, LeakCheckParams* lcp)
1306 Int i, n_lossrecords, start_lr_output_scan;
1307 LossRecord* lr;
1308 Bool is_suppressed;
1309 /* old_* variables are used to report delta in summary. */
1310 SizeT old_bytes_leaked = MC_(bytes_leaked);
1311 SizeT old_bytes_indirect = MC_(bytes_indirect);
1312 SizeT old_bytes_dubious = MC_(bytes_dubious);
1313 SizeT old_bytes_reachable = MC_(bytes_reachable);
1314 SizeT old_bytes_suppressed = MC_(bytes_suppressed);
1315 SizeT old_blocks_leaked = MC_(blocks_leaked);
1316 SizeT old_blocks_indirect = MC_(blocks_indirect);
1317 SizeT old_blocks_dubious = MC_(blocks_dubious);
1318 SizeT old_blocks_reachable = MC_(blocks_reachable);
1319 SizeT old_blocks_suppressed = MC_(blocks_suppressed);
1321 SizeT old_bytes_heuristically_reachable[N_LEAK_CHECK_HEURISTICS];
1322 SizeT old_blocks_heuristically_reachable[N_LEAK_CHECK_HEURISTICS];
1324 for (i = 0; i < N_LEAK_CHECK_HEURISTICS; i++) {
1325 old_bytes_heuristically_reachable[i]
1326 = MC_(bytes_heuristically_reachable)[i];
1327 MC_(bytes_heuristically_reachable)[i] = 0;
1328 old_blocks_heuristically_reachable[i]
1329 = MC_(blocks_heuristically_reachable)[i];
1330 MC_(blocks_heuristically_reachable)[i] = 0;
1333 if (lr_table == NULL)
1334 // Create the lr_table, which holds the loss records.
1335 // If the lr_table already exists, it means it contains
1336 // loss_records from the previous leak search. The old_*
1337 // values in these records are used to implement the
1338 // leak check delta mode
1339 lr_table =
1340 VG_(OSetGen_Create)(offsetof(LossRecord, key),
1341 cmp_LossRecordKey_LossRecord,
1342 VG_(malloc), "mc.pr.1",
1343 VG_(free));
1345 // If we have loss records from a previous search, reset values to have
1346 // proper printing of the deltas between previous search and this search.
1347 n_lossrecords = get_lr_array_from_lr_table();
1348 for (i = 0; i < n_lossrecords; i++) {
1349 if (lr_array[i]->num_blocks == 0) {
1350 // remove from lr_table the old loss_records with 0 bytes found
1351 VG_(OSetGen_Remove) (lr_table, &lr_array[i]->key);
1352 VG_(OSetGen_FreeNode)(lr_table, lr_array[i]);
1353 } else {
1354 // move the leak sizes to old_* and zero the current sizes
1355 // for next leak search
1356 lr_array[i]->old_szB = lr_array[i]->szB;
1357 lr_array[i]->old_indirect_szB = lr_array[i]->indirect_szB;
1358 lr_array[i]->old_num_blocks = lr_array[i]->num_blocks;
1359 lr_array[i]->szB = 0;
1360 lr_array[i]->indirect_szB = 0;
1361 lr_array[i]->num_blocks = 0;
1364 // lr_array now contains "invalid" loss records => free it.
1365 // lr_array will be re-created below with the kept and new loss records.
1366 VG_(free) (lr_array);
1367 lr_array = NULL;
1369 // Convert the chunks into loss records, merging them where appropriate.
1370 for (i = 0; i < lc_n_chunks; i++) {
1371 MC_Chunk* ch = lc_chunks[i];
1372 LC_Extra* ex = &(lc_extras)[i];
1373 LossRecord* old_lr;
1374 LossRecordKey lrkey;
1375 lrkey.state = ex->state;
1376 lrkey.allocated_at = MC_(allocated_at)(ch);
1378 if (ex->heuristic) {
1379 MC_(bytes_heuristically_reachable)[ex->heuristic] += ch->szB;
1380 MC_(blocks_heuristically_reachable)[ex->heuristic]++;
1381 if (VG_DEBUG_LEAKCHECK)
1382 VG_(printf)("heuristic %s %#lx len %lu\n",
1383 pp_heuristic(ex->heuristic),
1384 ch->data, (SizeT)ch->szB);
1387 old_lr = VG_(OSetGen_Lookup)(lr_table, &lrkey);
1388 if (old_lr) {
1389 // We found an existing loss record matching this chunk. Update the
1390 // loss record's details in-situ. This is safe because we don't
1391 // change the elements used as the OSet key.
1392 old_lr->szB += ch->szB;
1393 if (ex->state == Unreached)
1394 old_lr->indirect_szB += ex->IorC.indirect_szB;
1395 old_lr->num_blocks++;
1396 } else {
1397 // No existing loss record matches this chunk. Create a new loss
1398 // record, initialise it from the chunk, and insert it into lr_table.
1399 lr = VG_(OSetGen_AllocNode)(lr_table, sizeof(LossRecord));
1400 lr->key = lrkey;
1401 lr->szB = ch->szB;
1402 if (ex->state == Unreached)
1403 lr->indirect_szB = ex->IorC.indirect_szB;
1404 else
1405 lr->indirect_szB = 0;
1406 lr->num_blocks = 1;
1407 lr->old_szB = 0;
1408 lr->old_indirect_szB = 0;
1409 lr->old_num_blocks = 0;
1410 VG_(OSetGen_Insert)(lr_table, lr);
1414 // (re-)create the array of pointers to the (new) loss records.
1415 n_lossrecords = get_lr_array_from_lr_table ();
1416 tl_assert(VG_(OSetGen_Size)(lr_table) == n_lossrecords);
1418 // Sort the array by loss record sizes.
1419 VG_(ssort)(lr_array, n_lossrecords, sizeof(LossRecord*),
1420 cmp_LossRecords);
1422 // Zero totals.
1423 MC_(blocks_leaked) = MC_(bytes_leaked) = 0;
1424 MC_(blocks_indirect) = MC_(bytes_indirect) = 0;
1425 MC_(blocks_dubious) = MC_(bytes_dubious) = 0;
1426 MC_(blocks_reachable) = MC_(bytes_reachable) = 0;
1427 MC_(blocks_suppressed) = MC_(bytes_suppressed) = 0;
1429 // If there is a maximum nr of loss records we can output, then first
1430 // compute from where the output scan has to start.
1431 // By default, start from the first loss record. Compute a higher
1432 // value if there is a maximum to respect. We need to print the last
1433 // records, as the one with the biggest sizes are more interesting.
1434 start_lr_output_scan = 0;
1435 if (lcp->mode == LC_Full && lcp->max_loss_records_output < n_lossrecords) {
1436 Int nr_printable_records = 0;
1437 for (i = n_lossrecords - 1; i >= 0 && start_lr_output_scan == 0; i--) {
1438 Bool count_as_error, print_record;
1439 lr = lr_array[i];
1440 get_printing_rules (lcp, lr, &count_as_error, &print_record);
1441 // Do not use get_printing_rules results for is_suppressed, as we
1442 // only want to check if the record would be suppressed.
1443 is_suppressed =
1444 MC_(record_leak_error) ( tid, i+1, n_lossrecords, lr,
1445 False /* print_record */,
1446 False /* count_as_error */);
1447 if (print_record && !is_suppressed) {
1448 nr_printable_records++;
1449 if (nr_printable_records == lcp->max_loss_records_output)
1450 start_lr_output_scan = i;
1455 // Print the loss records (in size order) and collect summary stats.
1456 for (i = start_lr_output_scan; i < n_lossrecords; i++) {
1457 Bool count_as_error, print_record;
1458 lr = lr_array[i];
1459 get_printing_rules(lcp, lr, &count_as_error, &print_record);
1460 is_suppressed =
1461 MC_(record_leak_error) ( tid, i+1, n_lossrecords, lr, print_record,
1462 count_as_error );
1464 if (is_suppressed) {
1465 MC_(blocks_suppressed) += lr->num_blocks;
1466 MC_(bytes_suppressed) += lr->szB;
1468 } else if (Unreached == lr->key.state) {
1469 MC_(blocks_leaked) += lr->num_blocks;
1470 MC_(bytes_leaked) += lr->szB;
1472 } else if (IndirectLeak == lr->key.state) {
1473 MC_(blocks_indirect) += lr->num_blocks;
1474 MC_(bytes_indirect) += lr->szB;
1476 } else if (Possible == lr->key.state) {
1477 MC_(blocks_dubious) += lr->num_blocks;
1478 MC_(bytes_dubious) += lr->szB;
1480 } else if (Reachable == lr->key.state) {
1481 MC_(blocks_reachable) += lr->num_blocks;
1482 MC_(bytes_reachable) += lr->szB;
1484 } else {
1485 VG_(tool_panic)("unknown loss mode");
1489 if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) {
1490 HChar d_bytes[31];
1491 HChar d_blocks[31];
1492 # define DBY(new,old) \
1493 MC_(snprintf_delta) (d_bytes, sizeof(d_bytes), (new), (old), \
1494 lcp->deltamode)
1495 # define DBL(new,old) \
1496 MC_(snprintf_delta) (d_blocks, sizeof(d_blocks), (new), (old), \
1497 lcp->deltamode)
1499 VG_(umsg)("LEAK SUMMARY:\n");
1500 VG_(umsg)(" definitely lost: %'lu%s bytes in %'lu%s blocks\n",
1501 MC_(bytes_leaked),
1502 DBY (MC_(bytes_leaked), old_bytes_leaked),
1503 MC_(blocks_leaked),
1504 DBL (MC_(blocks_leaked), old_blocks_leaked));
1505 VG_(umsg)(" indirectly lost: %'lu%s bytes in %'lu%s blocks\n",
1506 MC_(bytes_indirect),
1507 DBY (MC_(bytes_indirect), old_bytes_indirect),
1508 MC_(blocks_indirect),
1509 DBL (MC_(blocks_indirect), old_blocks_indirect));
1510 VG_(umsg)(" possibly lost: %'lu%s bytes in %'lu%s blocks\n",
1511 MC_(bytes_dubious),
1512 DBY (MC_(bytes_dubious), old_bytes_dubious),
1513 MC_(blocks_dubious),
1514 DBL (MC_(blocks_dubious), old_blocks_dubious));
1515 VG_(umsg)(" still reachable: %'lu%s bytes in %'lu%s blocks\n",
1516 MC_(bytes_reachable),
1517 DBY (MC_(bytes_reachable), old_bytes_reachable),
1518 MC_(blocks_reachable),
1519 DBL (MC_(blocks_reachable), old_blocks_reachable));
1520 for (i = 0; i < N_LEAK_CHECK_HEURISTICS; i++)
1521 if (old_blocks_heuristically_reachable[i] > 0
1522 || MC_(blocks_heuristically_reachable)[i] > 0) {
1523 VG_(umsg)(" of which "
1524 "reachable via heuristic:\n");
1525 break;
1527 for (i = 0; i < N_LEAK_CHECK_HEURISTICS; i++)
1528 if (old_blocks_heuristically_reachable[i] > 0
1529 || MC_(blocks_heuristically_reachable)[i] > 0)
1530 VG_(umsg)(" %-19s: "
1531 "%'lu%s bytes in %'lu%s blocks\n",
1532 pp_heuristic(i),
1533 MC_(bytes_heuristically_reachable)[i],
1534 DBY (MC_(bytes_heuristically_reachable)[i],
1535 old_bytes_heuristically_reachable[i]),
1536 MC_(blocks_heuristically_reachable)[i],
1537 DBL (MC_(blocks_heuristically_reachable)[i],
1538 old_blocks_heuristically_reachable[i]));
1539 VG_(umsg)(" suppressed: %'lu%s bytes in %'lu%s blocks\n",
1540 MC_(bytes_suppressed),
1541 DBY (MC_(bytes_suppressed), old_bytes_suppressed),
1542 MC_(blocks_suppressed),
1543 DBL (MC_(blocks_suppressed), old_blocks_suppressed));
1544 if (lcp->mode != LC_Full &&
1545 (MC_(blocks_leaked) + MC_(blocks_indirect) +
1546 MC_(blocks_dubious) + MC_(blocks_reachable)) > 0) {
1547 if (lcp->requested_by_monitor_command)
1548 VG_(umsg)("To see details of leaked memory, "
1549 "give 'full' arg to leak_check\n");
1550 else
1551 VG_(umsg)("Rerun with --leak-check=full to see details "
1552 "of leaked memory\n");
1554 if (lcp->mode == LC_Full &&
1555 MC_(blocks_reachable) > 0 && !RiS(Reachable,lcp->show_leak_kinds)) {
1556 VG_(umsg)("Reachable blocks (those to which a pointer "
1557 "was found) are not shown.\n");
1558 if (lcp->requested_by_monitor_command)
1559 VG_(umsg)("To see them, add 'reachable any' args to leak_check\n");
1560 else
1561 VG_(umsg)("To see them, rerun with: --leak-check=full "
1562 "--show-leak-kinds=all\n");
1564 VG_(umsg)("\n");
1565 #undef DBL
1566 #undef DBY
1570 // print recursively all indirectly leaked blocks collected in clique.
1571 // Printing stops when *remaining reaches 0.
1572 static void print_clique (Int clique, UInt level, UInt *remaining)
1574 Int ind;
1575 UInt i, n_lossrecords;
1577 n_lossrecords = VG_(OSetGen_Size)(lr_table);
1579 for (ind = 0; ind < lc_n_chunks && *remaining > 0; ind++) {
1580 LC_Extra* ind_ex = &(lc_extras)[ind];
1581 if (ind_ex->state == IndirectLeak
1582 && ind_ex->IorC.clique == (SizeT) clique) {
1583 MC_Chunk* ind_ch = lc_chunks[ind];
1584 LossRecord* ind_lr;
1585 LossRecordKey ind_lrkey;
1586 UInt lr_i;
1587 ind_lrkey.state = ind_ex->state;
1588 ind_lrkey.allocated_at = MC_(allocated_at)(ind_ch);
1589 ind_lr = VG_(OSetGen_Lookup)(lr_table, &ind_lrkey);
1590 for (lr_i = 0; lr_i < n_lossrecords; lr_i++)
1591 if (ind_lr == lr_array[lr_i])
1592 break;
1593 for (i = 0; i < level; i++)
1594 VG_(umsg)(" ");
1595 VG_(umsg)("%p[%lu] indirect loss record %u\n",
1596 (void *)ind_ch->data, (SizeT)ind_ch->szB,
1597 lr_i+1); // lr_i+1 for user numbering.
1598 (*remaining)--;
1599 if (lr_i >= n_lossrecords)
1600 VG_(umsg)
1601 ("error: no indirect loss record found for %p[%lu]?????\n",
1602 (void *)ind_ch->data, (SizeT)ind_ch->szB);
1603 print_clique(ind, level+1, remaining);
1608 Bool MC_(print_block_list) ( UInt loss_record_nr_from,
1609 UInt loss_record_nr_to,
1610 UInt max_blocks,
1611 UInt heuristics)
1613 UInt loss_record_nr;
1614 UInt i, n_lossrecords;
1615 LossRecord* lr;
1616 Bool lr_printed;
1617 UInt remaining = max_blocks;
1619 if (lr_table == NULL || lc_chunks == NULL || lc_extras == NULL) {
1620 VG_(umsg)("Can't print block list : no valid leak search result\n");
1621 return False;
1624 if (lc_chunks_n_frees_marker != MC_(get_cmalloc_n_frees)()) {
1625 VG_(umsg)("Can't print obsolete block list : redo a leak search first\n");
1626 return False;
1629 n_lossrecords = VG_(OSetGen_Size)(lr_table);
1630 if (loss_record_nr_from >= n_lossrecords)
1631 return False; // Invalid starting loss record nr.
1633 if (loss_record_nr_to >= n_lossrecords)
1634 loss_record_nr_to = n_lossrecords - 1;
1636 tl_assert (lr_array);
1638 for (loss_record_nr = loss_record_nr_from;
1639 loss_record_nr <= loss_record_nr_to && remaining > 0;
1640 loss_record_nr++) {
1641 lr = lr_array[loss_record_nr];
1642 lr_printed = False;
1644 /* If user asks to print a specific loss record, we print
1645 the block details, even if no block will be shown for this lr.
1646 If user asks to print a range of lr, we only print lr details
1647 when at least one block is shown. */
1648 if (loss_record_nr_from == loss_record_nr_to) {
1649 /* (+1 on loss_record_nr as user numbering for loss records
1650 starts at 1). */
1651 MC_(pp_LossRecord)(loss_record_nr+1, n_lossrecords, lr);
1652 lr_printed = True;
1655 // Match the chunks with loss records.
1656 for (i = 0; i < lc_n_chunks && remaining > 0; i++) {
1657 MC_Chunk* ch = lc_chunks[i];
1658 LC_Extra* ex = &(lc_extras)[i];
1659 LossRecord* old_lr;
1660 LossRecordKey lrkey;
1661 lrkey.state = ex->state;
1662 lrkey.allocated_at = MC_(allocated_at)(ch);
1664 old_lr = VG_(OSetGen_Lookup)(lr_table, &lrkey);
1665 if (old_lr) {
1666 // We found an existing loss record matching this chunk.
1667 // If this is the loss record we are looking for, output the
1668 // pointer.
1669 if (old_lr == lr_array[loss_record_nr]
1670 && (heuristics == 0 || HiS(ex->heuristic, heuristics))) {
1671 if (!lr_printed) {
1672 MC_(pp_LossRecord)(loss_record_nr+1, n_lossrecords, lr);
1673 lr_printed = True;
1676 if (ex->heuristic)
1677 VG_(umsg)("%p[%lu] (found via heuristic %s)\n",
1678 (void *)ch->data, (SizeT)ch->szB,
1679 pp_heuristic (ex->heuristic));
1680 else
1681 VG_(umsg)("%p[%lu]\n",
1682 (void *)ch->data, (SizeT)ch->szB);
1683 remaining--;
1684 if (ex->state != Reachable) {
1685 // We can print the clique in all states, except Reachable.
1686 // In Unreached state, lc_chunk[i] is the clique leader.
1687 // In IndirectLeak, lc_chunk[i] might have been a clique
1688 // leader which was later collected in another clique.
1689 // For Possible, lc_chunk[i] might be the top of a clique
1690 // or an intermediate clique.
1691 print_clique(i, 1, &remaining);
1694 } else {
1695 // No existing loss record matches this chunk ???
1696 VG_(umsg)("error: no loss record found for %p[%lu]?????\n",
1697 (void *)ch->data, (SizeT)ch->szB);
1701 return True;
1704 // If searched = 0, scan memory root set, pushing onto the mark stack the blocks
1705 // encountered.
1706 // Otherwise (searched != 0), scan the memory root set searching for ptr
1707 // pointing inside [searched, searched+szB[.
1708 static void scan_memory_root_set(Addr searched, SizeT szB)
1710 Int i;
1711 Int n_seg_starts;
1712 Addr* seg_starts = VG_(get_segment_starts)( SkFileC | SkAnonC | SkShmC,
1713 &n_seg_starts );
1715 tl_assert(seg_starts && n_seg_starts > 0);
1717 lc_scanned_szB = 0;
1718 lc_sig_skipped_szB = 0;
1720 // VG_(am_show_nsegments)( 0, "leakcheck");
1721 for (i = 0; i < n_seg_starts; i++) {
1722 SizeT seg_size;
1723 NSegment const* seg = VG_(am_find_nsegment)( seg_starts[i] );
1724 tl_assert(seg);
1725 tl_assert(seg->kind == SkFileC || seg->kind == SkAnonC ||
1726 seg->kind == SkShmC);
1728 if (!(seg->hasR && seg->hasW)) continue;
1729 if (seg->isCH) continue;
1731 // Don't poke around in device segments as this may cause
1732 // hangs. Include /dev/zero just in case someone allocated
1733 // memory by explicitly mapping /dev/zero.
1734 if (seg->kind == SkFileC
1735 && (VKI_S_ISCHR(seg->mode) || VKI_S_ISBLK(seg->mode))) {
1736 const HChar* dev_name = VG_(am_get_filename)( seg );
1737 if (dev_name && 0 == VG_(strcmp)(dev_name, "/dev/zero")) {
1738 // Don't skip /dev/zero.
1739 } else {
1740 // Skip this device mapping.
1741 continue;
1745 if (0)
1746 VG_(printf)("ACCEPT %2d %#lx %#lx\n", i, seg->start, seg->end);
1748 // Scan the segment. We use -1 for the clique number, because this
1749 // is a root-set.
1750 seg_size = seg->end - seg->start + 1;
1751 if (VG_(clo_verbosity) > 2) {
1752 VG_(message)(Vg_DebugMsg,
1753 " Scanning root segment: %#lx..%#lx (%lu)\n",
1754 seg->start, seg->end, seg_size);
1756 lc_scan_memory(seg->start, seg_size, /*is_prior_definite*/True,
1757 /*clique*/-1, /*cur_clique*/-1,
1758 searched, szB);
1760 VG_(free)(seg_starts);
1763 /*------------------------------------------------------------*/
1764 /*--- Top-level entry point. ---*/
1765 /*------------------------------------------------------------*/
1767 void MC_(detect_memory_leaks) ( ThreadId tid, LeakCheckParams* lcp)
1769 Int i, j;
1771 tl_assert(lcp->mode != LC_Off);
1773 // Verify some assertions which are used in lc_scan_memory.
1774 tl_assert((VKI_PAGE_SIZE % sizeof(Addr)) == 0);
1775 tl_assert((SM_SIZE % sizeof(Addr)) == 0);
1776 // Above two assertions are critical, while below assertion
1777 // ensures that the optimisation in the loop is done in the
1778 // correct order : the loop checks for (big) SM chunk skipping
1779 // before checking for (smaller) page skipping.
1780 tl_assert((SM_SIZE % VKI_PAGE_SIZE) == 0);
1782 MC_(leak_search_gen)++;
1783 MC_(detect_memory_leaks_last_delta_mode) = lcp->deltamode;
1784 detect_memory_leaks_last_heuristics = lcp->heuristics;
1786 // Get the chunks, stop if there were none.
1787 if (lc_chunks) {
1788 VG_(free)(lc_chunks);
1789 lc_chunks = NULL;
1791 lc_chunks = find_active_chunks(&lc_n_chunks);
1792 lc_chunks_n_frees_marker = MC_(get_cmalloc_n_frees)();
1793 if (lc_n_chunks == 0) {
1794 tl_assert(lc_chunks == NULL);
1795 if (lr_table != NULL) {
1796 // forget the previous recorded LossRecords as next leak search
1797 // can in any case just create new leaks.
1798 // Maybe it would be better to rather call print_result ?
1799 // (at least when leak decreases are requested)
1800 // This will then output all LossRecords with a size decreasing to 0
1801 VG_(OSetGen_Destroy) (lr_table);
1802 lr_table = NULL;
1804 if (VG_(clo_verbosity) >= 1 && !VG_(clo_xml)) {
1805 VG_(umsg)("All heap blocks were freed -- no leaks are possible\n");
1806 VG_(umsg)("\n");
1808 return;
1811 // Sort the array so blocks are in ascending order in memory.
1812 VG_(ssort)(lc_chunks, lc_n_chunks, sizeof(VgHashNode*), compare_MC_Chunks);
1814 // Sanity check -- make sure they're in order.
1815 for (i = 0; i < lc_n_chunks-1; i++) {
1816 tl_assert( lc_chunks[i]->data <= lc_chunks[i+1]->data);
1819 // Sanity check -- make sure they don't overlap. The one exception is that
1820 // we allow a MALLOCLIKE block to sit entirely within a malloc() block.
1821 // This is for bug 100628. If this occurs, we ignore the malloc() block
1822 // for leak-checking purposes. This is a hack and probably should be done
1823 // better, but at least it's consistent with mempools (which are treated
1824 // like this in find_active_chunks). Mempools have a separate VgHashTable
1825 // for mempool chunks, but if custom-allocated blocks are put in a separate
1826 // table from normal heap blocks it makes free-mismatch checking more
1827 // difficult.
1829 // If this check fails, it probably means that the application
1830 // has done something stupid with VALGRIND_MALLOCLIKE_BLOCK client
1831 // requests, eg. has made overlapping requests (which are
1832 // nonsensical), or used VALGRIND_MALLOCLIKE_BLOCK for stack locations;
1833 // again nonsensical.
1835 for (i = 0; i < lc_n_chunks-1; i++) {
1836 MC_Chunk* ch1 = lc_chunks[i];
1837 MC_Chunk* ch2 = lc_chunks[i+1];
1839 Addr start1 = ch1->data;
1840 Addr start2 = ch2->data;
1841 Addr end1 = ch1->data + ch1->szB - 1;
1842 Addr end2 = ch2->data + ch2->szB - 1;
1843 Bool isCustom1 = ch1->allockind == MC_AllocCustom;
1844 Bool isCustom2 = ch2->allockind == MC_AllocCustom;
1846 if (end1 < start2) {
1847 // Normal case - no overlap.
1849 // We used to allow exact duplicates, I'm not sure why. --njn
1850 //} else if (start1 == start2 && end1 == end2) {
1851 // Degenerate case: exact duplicates.
1853 } else if (start1 >= start2 && end1 <= end2 && isCustom1 && !isCustom2) {
1854 // Block i is MALLOCLIKE and entirely within block i+1.
1855 // Remove block i+1.
1856 for (j = i+1; j < lc_n_chunks-1; j++) {
1857 lc_chunks[j] = lc_chunks[j+1];
1859 lc_n_chunks--;
1861 } else if (start2 >= start1 && end2 <= end1 && isCustom2 && !isCustom1) {
1862 // Block i+1 is MALLOCLIKE and entirely within block i.
1863 // Remove block i.
1864 for (j = i; j < lc_n_chunks-1; j++) {
1865 lc_chunks[j] = lc_chunks[j+1];
1867 lc_n_chunks--;
1869 } else {
1870 VG_(umsg)("Block 0x%lx..0x%lx overlaps with block 0x%lx..0x%lx\n",
1871 start1, end1, start2, end2);
1872 VG_(umsg)("Blocks allocation contexts:\n"),
1873 VG_(pp_ExeContext)( MC_(allocated_at)(ch1));
1874 VG_(umsg)("\n"),
1875 VG_(pp_ExeContext)( MC_(allocated_at)(ch2));
1876 VG_(umsg)("This is usually caused by using VALGRIND_MALLOCLIKE_BLOCK");
1877 VG_(umsg)("in an inappropriate way.\n");
1878 tl_assert (0);
1882 // Initialise lc_extras.
1883 if (lc_extras) {
1884 VG_(free)(lc_extras);
1885 lc_extras = NULL;
1887 lc_extras = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(LC_Extra) );
1888 for (i = 0; i < lc_n_chunks; i++) {
1889 lc_extras[i].state = Unreached;
1890 lc_extras[i].pending = False;
1891 lc_extras[i].heuristic = LchNone;
1892 lc_extras[i].IorC.indirect_szB = 0;
1895 // Initialise lc_markstack.
1896 lc_markstack = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(Int) );
1897 for (i = 0; i < lc_n_chunks; i++) {
1898 lc_markstack[i] = -1;
1900 lc_markstack_top = -1;
1902 // Verbosity.
1903 if (VG_(clo_verbosity) > 1 && !VG_(clo_xml)) {
1904 VG_(umsg)( "Searching for pointers to %'d not-freed blocks\n",
1905 lc_n_chunks );
1908 // Scan the memory root-set, pushing onto the mark stack any blocks
1909 // pointed to.
1910 scan_memory_root_set(/*searched*/0, 0);
1912 // Scan GP registers for chunk pointers.
1913 VG_(apply_to_GP_regs)(lc_push_if_a_chunk_ptr_register);
1915 // Process the pushed blocks. After this, every block that is reachable
1916 // from the root-set has been traced.
1917 lc_process_markstack(/*clique*/-1);
1919 if (VG_(clo_verbosity) > 1 && !VG_(clo_xml)) {
1920 VG_(umsg)("Checked %'lu bytes\n", lc_scanned_szB);
1921 if (lc_sig_skipped_szB > 0)
1922 VG_(umsg)("Skipped %'lu bytes due to read errors\n",
1923 lc_sig_skipped_szB);
1924 VG_(umsg)( "\n" );
1927 // Trace all the leaked blocks to determine which are directly leaked and
1928 // which are indirectly leaked. For each Unreached block, push it onto
1929 // the mark stack, and find all the as-yet-Unreached blocks reachable
1930 // from it. These form a clique and are marked IndirectLeak, and their
1931 // size is added to the clique leader's indirect size. If one of the
1932 // found blocks was itself a clique leader (from a previous clique), then
1933 // the cliques are merged.
1934 for (i = 0; i < lc_n_chunks; i++) {
1935 MC_Chunk* ch = lc_chunks[i];
1936 LC_Extra* ex = &(lc_extras[i]);
1938 if (VG_DEBUG_CLIQUE)
1939 VG_(printf)("cliques: %d at %#lx -> Loss state %d\n",
1940 i, ch->data, ex->state);
1942 tl_assert(lc_markstack_top == -1);
1944 if (ex->state == Unreached) {
1945 if (VG_DEBUG_CLIQUE)
1946 VG_(printf)("%d: gathering clique %#lx\n", i, ch->data);
1948 // Push this Unreached block onto the stack and process it.
1949 lc_push(i, ch);
1950 lc_process_markstack(/*clique*/i);
1952 tl_assert(lc_markstack_top == -1);
1953 tl_assert(ex->state == Unreached);
1957 print_results( tid, lcp);
1959 VG_(free) ( lc_markstack );
1960 lc_markstack = NULL;
1961 // lc_chunks, lc_extras, lr_array and lr_table are kept (needed if user
1962 // calls MC_(print_block_list)). lr_table also used for delta leak reporting
1963 // between this leak search and the next leak search.
1966 static Addr searched_wpa;
1967 static SizeT searched_szB;
1968 static void
1969 search_address_in_GP_reg(ThreadId tid, const HChar* regname, Addr addr_in_reg)
1971 if (addr_in_reg >= searched_wpa
1972 && addr_in_reg < searched_wpa + searched_szB) {
1973 if (addr_in_reg == searched_wpa)
1974 VG_(umsg)
1975 ("tid %u register %s pointing at %#lx\n",
1976 tid, regname, searched_wpa);
1977 else
1978 VG_(umsg)
1979 ("tid %u register %s interior pointing %lu bytes inside %#lx\n",
1980 tid, regname, (long unsigned) addr_in_reg - searched_wpa,
1981 searched_wpa);
1985 void MC_(who_points_at) ( Addr address, SizeT szB)
1987 MC_Chunk** chunks;
1988 Int n_chunks;
1989 Int i;
1991 if (szB == 1)
1992 VG_(umsg) ("Searching for pointers to %#lx\n", address);
1993 else
1994 VG_(umsg) ("Searching for pointers pointing in %lu bytes from %#lx\n",
1995 szB, address);
1997 chunks = find_active_chunks(&n_chunks);
1999 // Scan memory root-set, searching for ptr pointing in address[szB]
2000 scan_memory_root_set(address, szB);
2002 // Scan active malloc-ed chunks
2003 for (i = 0; i < n_chunks; i++) {
2004 lc_scan_memory(chunks[i]->data, chunks[i]->szB,
2005 /*is_prior_definite*/True,
2006 /*clique*/-1, /*cur_clique*/-1,
2007 address, szB);
2009 VG_(free) ( chunks );
2011 // Scan GP registers for pointers to address range.
2012 searched_wpa = address;
2013 searched_szB = szB;
2014 VG_(apply_to_GP_regs)(search_address_in_GP_reg);
2018 /*--------------------------------------------------------------------*/
2019 /*--- end ---*/
2020 /*--------------------------------------------------------------------*/