1 //--------------------------------------------------------------------//
2 //--- Massif: a heap profiling tool. ms_main.c ---//
3 //--------------------------------------------------------------------//
6 This file is part of Massif, a Valgrind tool for profiling memory
9 Copyright (C) 2003-2017 Nicholas Nethercote
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, see <http://www.gnu.org/licenses/>.
25 The GNU General Public License is contained in the file COPYING.
28 //---------------------------------------------------------------------------
30 //---------------------------------------------------------------------------
31 // Todo -- nice, but less critical:
32 // - do a graph-drawing test
33 // - make file format more generic. Obstacles:
34 // - unit prefixes are not generic
35 // - preset column widths for stats are not generic
36 // - preset column headers are not generic
37 // - "Massif arguments:" line is not generic
38 // - do snapshots on some specific client requests
39 // - "show me the extra allocations since the last snapshot"
40 // - "start/stop logging" (eg. quickly skip boring bits)
41 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
42 // Give each graph a title. (try to do it generically!)
43 // - make --show-below-main=no work
44 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
45 // don't work in a .valgrindrc file or in $VALGRIND_OPTS.
46 // m_commandline.c:add_args_from_string() needs to respect single quotes.
47 // - With --stack=yes, want to add a stack trace for detailed snapshots so
48 // it's clear where/why the peak is occurring. (Mattieu Castet) Also,
49 // possibly useful even with --stack=no? (Andi Yin)
52 // - To run the benchmarks:
54 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
55 // time valgrind --tool=massif --depth=100 konqueror
57 // The other benchmarks don't do much allocation, and so give similar speeds
60 // Timing results on 'nevermore' (njn's machine) as of r7013:
62 // heap 0.53s ma:12.4s (23.5x, -----)
63 // tinycc 0.46s ma: 4.9s (10.7x, -----)
64 // many-xpts 0.08s ma: 2.0s (25.0x, -----)
65 // konqueror 29.6s real 0:21.0s user
67 // [Introduction of --time-unit=i as the default slowed things down by
70 // Todo -- low priority:
71 // - In each XPt, record both bytes and the number of allocations, and
72 // possibly the global number of allocations.
73 // - (Andy Lin) Give a stack trace on detailed snapshots?
74 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
75 // than a certain size! Because: "linux's malloc allows to set a
76 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
77 // be handled directly by the kernel, and are guaranteed to be returned to
78 // the system when freed. So we needed to profile only blocks below this
81 // File format working notes:
84 desc
: --heap
-admin
=foo
103 n1
: 5 (heap allocation functions
) malloc
/new/new[], --alloc
-fns
, etc
.
104 n1
: 5 0x27F6E0: _nl_normalize_codeset (in
/lib
/libc
-2.3.5.so
)
105 n1
: 5 0x279DE6: _nl_load_locale_from_archive (in
/lib
/libc
-2.3.5.so
)
106 n1
: 5 0x278E97: _nl_find_locale (in
/lib
/libc
-2.3.5.so
)
107 n1
: 5 0x278871: setlocale (in
/lib
/libc
-2.3.5.so
)
108 n1
: 5 0x8049821: (within
/bin
/date
)
109 n0
: 5 0x26ED5E: (below main
) (in
/lib
/libc
-2.3.5.so
)
112 n_events
: n
time(ms
) total(B
) useful
-heap(B
) admin
-heap(B
) stacks(B
)
120 - each snapshot specifies an x
-axis value
and one
or more y
-axis values
.
121 - can display the y
-axis values separately
if you like
122 - can completely separate connection between snapshots
and trees
.
125 - how to specify
and scale
/abbreviate units on axes
?
126 - how to combine multiple values into the y
-axis
?
128 --------------------------------------------------------------------------------Command
: date
129 Massif arguments
: --heap
-admin
=foo
130 ms_print arguments
: massif
.out
131 --------------------------------------------------------------------------------
136 | ::@
:@
:@
:@
:::# :: : ::::
137 0 +-----------------------------------@
---@
---@
-----@
--@
---#-------------->ms 0 713
139 Number of snapshots
: 50
140 Detailed snapshots
: [2, 11, 13, 19, 25, 32 (peak
)]
141 -------------------------------------------------------------------------------- n
time(ms
) total(B
) useful
-heap(B
) admin
-heap(B
) stacks(B
)
142 -------------------------------------------------------------------------------- 0 0 0 0 0 0
145 100.00% (5B
) (heap allocation functions
) malloc
/new/new[], --alloc
-fns
, etc
.
146 ->100.00% (5B
) 0x27F6E0: _nl_normalize_codeset (in
/lib
/libc
-2.3.5.so
)
149 //---------------------------------------------------------------------------
151 #include "pub_tool_basics.h"
152 #include "pub_tool_vki.h"
153 #include "pub_tool_aspacemgr.h"
154 #include "pub_tool_debuginfo.h"
155 #include "pub_tool_hashtable.h"
156 #include "pub_tool_libcbase.h"
157 #include "pub_tool_libcassert.h"
158 #include "pub_tool_libcfile.h"
159 #include "pub_tool_libcprint.h"
160 #include "pub_tool_libcproc.h"
161 #include "pub_tool_machine.h"
162 #include "pub_tool_mallocfree.h"
163 #include "pub_tool_options.h"
164 #include "pub_tool_poolalloc.h"
165 #include "pub_tool_replacemalloc.h"
166 #include "pub_tool_stacktrace.h"
167 #include "pub_tool_threadstate.h"
168 #include "pub_tool_tooliface.h"
169 #include "pub_tool_xarray.h"
170 #include "pub_tool_xtree.h"
171 #include "pub_tool_xtmemory.h"
172 #include "pub_tool_clientstate.h"
173 #include "pub_tool_gdbserver.h"
175 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK
177 //------------------------------------------------------------*/
178 //--- Overview of operation ---*/
179 //------------------------------------------------------------*/
181 // The size of the stacks and heap is tracked. The heap is tracked in a lot
182 // of detail, enough to tell how many bytes each line of code is responsible
183 // for, more or less. The main data structure is an xtree maintaining the
184 // call tree beneath all the allocation functions like malloc().
185 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
186 // the page level, and each page is treated much like a heap block. We use
187 // "heap" throughout below to cover this case because the concepts are all the
190 // "Snapshots" are recordings of the memory usage. There are two basic
192 // - Normal: these record the current time, total memory size, total heap
193 // size, heap admin size and stack size.
194 // - Detailed: these record those things in a normal snapshot, plus a very
195 // detailed XTree (see below) indicating how the heap is structured.
197 // Snapshots are taken every so often. There are two storage classes of
199 // - Temporary: Massif does a temporary snapshot every so often. The idea
200 // is to always have a certain number of temporary snapshots around. So
201 // we take them frequently to begin with, but decreasingly often as the
202 // program continues to run. Also, we remove some old ones after a while.
203 // Overall it's a kind of exponential decay thing. Most of these are
204 // normal snapshots, a small fraction are detailed snapshots.
205 // - Permanent: Massif takes a permanent (detailed) snapshot in some
206 // circumstances. They are:
207 // - Peak snapshot: When the memory usage peak is reached, it takes a
208 // snapshot. It keeps this, unless the peak is subsequently exceeded,
209 // in which case it will overwrite the peak snapshot.
210 // - User-requested snapshots: These are done in response to client
211 // requests. They are always kept.
213 // Used for printing things when clo_verbosity > 1.
214 #define VERB(verb, format, args...) \
215 if (UNLIKELY(VG_(clo_verbosity) > verb)) { \
216 VG_(dmsg)("Massif: " format, ##args); \
219 //------------------------------------------------------------//
220 //--- Statistics ---//
221 //------------------------------------------------------------//
223 // Konqueror startup, to give an idea of the numbers involved with a biggish
224 // program, with default depth:
227 // - 310,000 allocations
229 // - 15,000 XPts 800,000 XPts
232 static UInt n_heap_allocs
= 0;
233 static UInt n_heap_reallocs
= 0;
234 static UInt n_heap_frees
= 0;
235 static UInt n_ignored_heap_allocs
= 0;
236 static UInt n_ignored_heap_frees
= 0;
237 static UInt n_ignored_heap_reallocs
= 0;
238 static UInt n_stack_allocs
= 0;
239 static UInt n_stack_frees
= 0;
241 static UInt n_skipped_snapshots
= 0;
242 static UInt n_real_snapshots
= 0;
243 static UInt n_detailed_snapshots
= 0;
244 static UInt n_peak_snapshots
= 0;
245 static UInt n_cullings
= 0;
247 //------------------------------------------------------------//
249 //------------------------------------------------------------//
251 // Number of guest instructions executed so far. Only used with
253 static Long guest_instrs_executed
= 0;
255 static SizeT heap_szB
= 0; // Live heap size
256 static SizeT heap_extra_szB
= 0; // Live heap extra size -- slop + admin bytes
257 static SizeT stacks_szB
= 0; // Live stacks size
259 // This is the total size from the current peak snapshot, or 0 if no peak
260 // snapshot has been taken yet.
261 static SizeT peak_snapshot_total_szB
= 0;
263 // Incremented every time memory is allocated/deallocated, by the
264 // allocated/deallocated amount; includes heap, heap-admin and stack
265 // memory. An alternative to milliseconds as a unit of program "time".
266 static ULong total_allocs_deallocs_szB
= 0;
268 // When running with --heap=yes --pages-as-heap=no, we don't start taking
269 // snapshots until the first basic block is executed, rather than doing it in
270 // ms_post_clo_init (which is the obvious spot), for two reasons.
271 // - It lets us ignore stack events prior to that, because they're not
272 // really proper ones and just would screw things up.
273 // - Because there's still some core initialisation to do, and so there
274 // would be an artificial time gap between the first and second snapshots.
276 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
277 // earlier due to new_mem_startup so this isn't relevant.
279 static Bool have_started_executing_code
= False
;
281 //------------------------------------------------------------//
282 //--- Alloc fns ---//
283 //------------------------------------------------------------//
285 // alloc_fns is not used for detecting allocations
286 // it is used when checking for ignore functions in the callstack
288 // allocation detection uses the usual coregrind reaplace malloc
289 // mechanism which calls ms_malloc etc. here and in the end
290 // everything goes through alloc_and_record_block
291 static XArray
* alloc_fns
;
292 static XArray
* ignore_fns
;
294 static void init_alloc_fns(void)
296 // Create the list, and add the default elements.
297 alloc_fns
= VG_(newXA
)(VG_(malloc
), "ms.main.iaf.1",
298 VG_(free
), sizeof(HChar
*));
299 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
301 // Ordered roughly according to (presumed) frequency.
302 // Nb: The C++ "operator new*" ones are overloadable. We include them
303 // always anyway, because even if they're overloaded, it would be a
304 // prodigiously stupid overloading that caused them to not allocate
307 // PJF: the above comment is a bit wide of the mark.
308 // See https://en.cppreference.com/w/cpp/memory/new/operator_new
309 // There are two "non-allocating placement allocation functions"
311 // Because of the above we can't use wildcards.
313 // XXX: because we don't look at the first stack entry (unless it's a
314 // custom allocation) there's not much point to having all these alloc
315 // functions here -- they should never appear anywhere (I think?) other
316 // than the top stack entry. The only exceptions are those that in
317 // vg_replace_malloc.c are partly or fully implemented in terms of another
318 // alloc function: realloc (which uses malloc); valloc,
319 // malloc_zone_valloc, posix_memalign and memalign_common (which use
323 DO("__builtin_new" );
324 # if VG_WORDSIZE == 4
325 DO("operator new(unsigned)" );
327 DO("operator new(unsigned long)" );
329 DO("__builtin_vec_new" );
330 # if VG_WORDSIZE == 4
331 DO("operator new[](unsigned)" );
333 DO("operator new[](unsigned long)" );
336 DO("aligned_alloc" );
339 DO("posix_memalign" );
341 # if VG_WORDSIZE == 4
342 DO("operator new(unsigned, std::nothrow_t const&)" );
343 DO("operator new[](unsigned, std::nothrow_t const&)" );
344 DO("operator new(unsigned, std::align_val_t)" );
345 DO("operator new[](unsigned, std::align_val_t)" );
346 DO("operator new(unsigned, std::align_val_t, std::nothrow_t const&)" );
347 DO("operator new[](unsigned, std::align_val_t, std::nothrow_t const&)" );
349 DO("operator new(unsigned long, std::nothrow_t const&)" );
350 DO("operator new[](unsigned long, std::nothrow_t const&)");
351 DO("operator new(unsigned long, std::align_val_t)" );
352 DO("operator new[](unsigned long, std::align_val_t)" );
353 DO("operator new(unsigned long, std::align_val_t, std::nothrow_t const&)" );
354 DO("operator new[](unsigned long, std::align_val_t, std::nothrow_t const&)" );
356 #if defined(VGO_darwin)
357 DO("malloc_zone_malloc" );
358 DO("malloc_zone_calloc" );
359 DO("malloc_zone_realloc" );
360 DO("malloc_zone_memalign" );
361 DO("malloc_zone_valloc" );
365 static void init_ignore_fns(void)
367 // Create the (empty) list.
368 ignore_fns
= VG_(newXA
)(VG_(malloc
), "ms.main.iif.1",
369 VG_(free
), sizeof(HChar
*));
372 //------------------------------------------------------------//
373 //--- Command line args ---//
374 //------------------------------------------------------------//
376 #define MAX_DEPTH 200
378 typedef enum { TimeI
, TimeMS
, TimeB
} TimeUnit
;
380 static const HChar
* TimeUnit_to_string(TimeUnit time_unit
)
383 case TimeI
: return "i";
384 case TimeMS
: return "ms";
385 case TimeB
: return "B";
386 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
390 static Bool clo_heap
= True
;
391 // clo_heap_admin is deliberately a word-sized type. At one point it was
392 // a UInt, but this caused problems on 64-bit machines when it was
393 // multiplied by a small negative number and then promoted to a
394 // word-sized type -- it ended up with a value of 4.2 billion. Sigh.
395 static SSizeT clo_heap_admin
= 8;
396 static Bool clo_pages_as_heap
= False
;
397 static Bool clo_stacks
= False
;
398 static Int clo_depth
= 30;
399 static double clo_threshold
= 1.0; // percentage
400 static double clo_peak_inaccuracy
= 1.0; // percentage
401 static Int clo_time_unit
= TimeI
;
402 static Int clo_detailed_freq
= 10;
403 static Int clo_max_snapshots
= 100;
404 static const HChar
* clo_massif_out_file
= "massif.out.%p";
406 static XArray
* args_for_massif
;
408 static Bool
ms_process_cmd_line_option(const HChar
* arg
)
410 const HChar
* tmp_str
;
412 // Remember the arg for later use.
413 VG_(addToXA
)(args_for_massif
, &arg
);
415 if VG_BOOL_CLO(arg
, "--heap", clo_heap
) {}
416 else if VG_BINT_CLO(arg
, "--heap-admin", clo_heap_admin
, 0, 1024) {}
418 else if VG_BOOL_CLO(arg
, "--stacks", clo_stacks
) {}
420 else if VG_BOOL_CLO(arg
, "--pages-as-heap", clo_pages_as_heap
) {}
422 else if VG_BINT_CLO(arg
, "--depth", clo_depth
, 1, MAX_DEPTH
) {}
424 else if VG_STR_CLO(arg
, "--alloc-fn", tmp_str
) {
425 VG_(addToXA
)(alloc_fns
, &tmp_str
);
427 else if VG_STR_CLO(arg
, "--ignore-fn", tmp_str
) {
428 VG_(addToXA
)(ignore_fns
, &tmp_str
);
431 else if VG_DBL_CLO(arg
, "--threshold", clo_threshold
) {
432 if (clo_threshold
< 0 || clo_threshold
> 100) {
433 VG_(fmsg_bad_option
)(arg
,
434 "--threshold must be between 0.0 and 100.0\n");
438 else if VG_DBL_CLO(arg
, "--peak-inaccuracy", clo_peak_inaccuracy
) {}
440 else if VG_XACT_CLO(arg
, "--time-unit=i", clo_time_unit
, TimeI
) {}
441 else if VG_XACT_CLO(arg
, "--time-unit=ms", clo_time_unit
, TimeMS
) {}
442 else if VG_XACT_CLO(arg
, "--time-unit=B", clo_time_unit
, TimeB
) {}
444 else if VG_BINT_CLO(arg
, "--detailed-freq", clo_detailed_freq
, 1, 1000000) {}
446 else if VG_BINT_CLO(arg
, "--max-snapshots", clo_max_snapshots
, 10, 1000) {}
448 else if VG_STR_CLO(arg
, "--massif-out-file", clo_massif_out_file
) {}
451 return VG_(replacement_malloc_process_cmd_line_option
)(arg
);
456 static void ms_print_usage(void)
459 " --heap=no|yes profile heap blocks [yes]\n"
460 " --heap-admin=<size> average admin bytes per heap block;\n"
461 " ignored if --heap=no [8]\n"
462 " --stacks=no|yes profile stack(s) [no]\n"
463 " --pages-as-heap=no|yes profile memory at the page level [no]\n"
464 " --depth=<number> depth of contexts [30]\n"
465 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n"
466 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n"
467 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n"
468 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n"
469 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n"
470 " or heap bytes alloc'd/dealloc'd [i]\n"
471 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n"
472 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n"
473 " --massif-out-file=<file> output file name [massif.out.%%p]\n"
477 static void ms_print_debug_usage(void)
485 //------------------------------------------------------------//
487 //------------------------------------------------------------//
489 // The details of the heap are represented by a single XTree.
490 // This XTree maintains the nr of allocated bytes for each
491 // stacktrace/execontext.
493 // The root of the Xtree will be output as a top node 'alloc functions',
494 // which represents all allocation functions, eg:
495 // - malloc/calloc/realloc/memalign/new/new[];
496 // - user-specified allocation functions (using --alloc-fn);
497 // - custom allocation (MALLOCLIKE) points
498 static XTree
* heap_xt
;
499 /* heap_xt contains a SizeT: the nr of allocated bytes by this execontext. */
500 static void init_szB(void* value
)
502 *((SizeT
*)value
) = 0;
504 static void add_szB(void* to
, const void* value
)
506 *((SizeT
*)to
) += *((const SizeT
*)value
);
508 static void sub_szB(void* from
, const void* value
)
510 *((SizeT
*)from
) -= *((const SizeT
*)value
);
512 static ULong
alloc_szB(const void* value
)
514 return (ULong
)*((const SizeT
*)value
);
518 //------------------------------------------------------------//
519 //--- XTree Operations ---//
520 //------------------------------------------------------------//
522 // This is the limit on the number of filtered alloc-fns that can be in a
523 // single stacktrace.
524 #define MAX_OVERESTIMATE 50
525 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE)
527 // filtering out uninteresting entries:
528 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
529 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
530 // becomes: a / b / main
531 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
532 // as an alloc-fn. This is ok.
534 void filter_IPs (Addr
* ips
, Int n_ips
,
535 UInt
* top
, UInt
* n_ips_sel
)
538 Bool top_has_fnname
= False
;
539 Bool is_alloc_fn
= False
;
540 Bool is_inline_fn
= False
;
546 // Advance *top as long as we find alloc functions
547 // PW Nov 2016 xtree work:
548 // old massif code was doing something really strange(?buggy):
549 // 'sliding' a bunch of functions without names by removing an
550 // alloc function 'inside' a stacktrace e.g.
551 // 0x1 0x2 0x3 alloc func1 main
552 // became 0x1 0x2 0x3 func1 main
553 const DiEpoch ep
= VG_(current_DiEpoch
)();
554 InlIPCursor
*iipc
= NULL
;
556 for (i
= *top
; i
< n_ips
; ++i
) {
557 iipc
= VG_(new_IIPC
)(ep
, ips
[i
]);
559 top_has_fnname
= VG_(get_fnname_inl
)(ep
, ips
[i
], &fnname
, iipc
);
560 is_alloc_fn
= top_has_fnname
&& VG_(strIsMemberXA
)(alloc_fns
, fnname
);
561 is_inline_fn
= VG_(next_IIPC
)(iipc
);
562 if (is_alloc_fn
&& is_inline_fn
) {
563 VERB(4, "filtering inline alloc fn %s\n", fnname
);
565 } while (is_alloc_fn
&& is_inline_fn
);
566 VG_(delete_IIPC
)(iipc
);
569 VERB(4, "filtering alloc fn %s\n", fnname
);
577 // filter the whole stacktrace if this allocation has to be ignored.
578 if (*n_ips_sel
> 0 && VG_(sizeXA
)(ignore_fns
) > 0) {
579 if (!top_has_fnname
) {
580 // top has no fnname => search for the first entry that has a fnname
581 for (i
= *top
; i
< n_ips
&& !top_has_fnname
; ++i
) {
582 iipc
= VG_(new_IIPC
)(ep
, ips
[i
]);
584 top_has_fnname
= VG_(get_fnname_inl
)(ep
, ips
[i
], &fnname
, iipc
);
585 if (top_has_fnname
) {
588 } while (VG_(next_IIPC
)(iipc
));
589 VG_(delete_IIPC
)(iipc
);
592 if (top_has_fnname
&& VG_(strIsMemberXA
)(ignore_fns
, fnname
)) {
593 VERB(4, "ignored allocation from fn %s\n", fnname
);
599 if (!VG_(clo_show_below_main
) && *n_ips_sel
> 0 ) {
600 // Technically, it would be better to use the 'real' epoch that
601 // was used to capture ips/n_ips. However, this searches
602 // for a main or below_main function. It is technically possible
603 // but unlikely that main or below main fn is in a dlclose-d library,
604 // so current epoch is reasonable enough, even if not perfect.
605 // FIXME PW EPOCH: would be better to also use the real ips epoch here,
606 // once m_xtree.c massif output format properly supports epoch.
607 const DiEpoch cur_ep
= VG_(current_DiEpoch
)();
608 Int mbm
= VG_(XT_offset_main_or_below_main
)(cur_ep
, ips
, n_ips
);
611 // Special case: the first main (or below main) function is an
614 VERB(4, "main/below main: keeping 1 fn\n");
616 *n_ips_sel
-= n_ips
- mbm
- 1;
617 VERB(4, "main/below main: filtering %d\n", n_ips
- mbm
- 1);
621 // filter the frames if we have more than clo_depth
622 if (*n_ips_sel
> clo_depth
) {
623 VERB(4, "filtering IPs above clo_depth\n");
624 *n_ips_sel
= clo_depth
;
628 // Capture a stacktrace, and make an ec of it, without the first entry
629 // if exclude_first_entry is True.
630 static ExeContext
* make_ec(ThreadId tid
, Bool exclude_first_entry
)
632 static Addr ips
[MAX_IPS
];
634 // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
635 Int n_ips
= VG_(get_StackTrace
)( tid
, ips
, clo_depth
+ MAX_OVERESTIMATE
,
636 NULL
/*array to dump SP values in*/,
637 NULL
/*array to dump FP values in*/,
638 0/*first_ip_delta*/ );
639 if (exclude_first_entry
) {
642 VERB(4, "removing top fn %s from stacktrace\n",
643 VG_(get_fnname
)(VG_(current_DiEpoch
)(), ips
[0], &fnname
)
645 return VG_(make_ExeContext_from_StackTrace
)(ips
+1, n_ips
-1);
647 VERB(4, "null execontext as removing top fn with n_ips %d\n", n_ips
);
648 return VG_(null_ExeContext
) ();
651 return VG_(make_ExeContext_from_StackTrace
)(ips
, n_ips
);
654 // Create (or update) in heap_xt an xec corresponding to the stacktrace of tid.
655 // req_szB is added to the xec (unless ec is fully filtered).
656 // Returns the correspding XTree xec.
657 // exclude_first_entry is an optimisation: if True, automatically removes
658 // the top level IP from the stacktrace. Should be set to True if it is known
659 // that this is an alloc fn. The top function presumably will be something like
660 // malloc or __builtin_new that we're sure to filter out).
661 static Xecu
add_heap_xt( ThreadId tid
, SizeT req_szB
, Bool exclude_first_entry
)
663 ExeContext
*ec
= make_ec(tid
, exclude_first_entry
);
665 if (UNLIKELY(VG_(clo_xtree_memory
) == Vg_XTMemory_Full
))
666 VG_(XTMemory_Full_alloc
)(req_szB
, ec
);
667 return VG_(XT_add_to_ec
) (heap_xt
, ec
, &req_szB
);
670 // Substract req_szB from the heap_xt where.
671 static void sub_heap_xt(Xecu where
, SizeT req_szB
, Bool exclude_first_entry
)
678 VG_(XT_sub_from_xecu
) (heap_xt
, where
, &req_szB
);
679 if (UNLIKELY(VG_(clo_xtree_memory
) == Vg_XTMemory_Full
)) {
680 ExeContext
*ec_free
= make_ec(VG_(get_running_tid
)(),
681 exclude_first_entry
);
682 VG_(XTMemory_Full_free
)(req_szB
,
683 VG_(XT_get_ec_from_xecu
)(heap_xt
, where
),
689 //------------------------------------------------------------//
690 //--- Snapshots ---//
691 //------------------------------------------------------------//
693 // Snapshots are done in a way so that we always have a reasonable number of
694 // them. We start by taking them quickly. Once we hit our limit, we cull
695 // some (eg. half), and start taking them more slowly. Once we hit the
696 // limit again, we again cull and then take them even more slowly, and so
699 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number.
714 SizeT heap_extra_szB
;// Heap slop + admin bytes.
716 XTree
* xt
; // Snapshot of heap_xt, if a detailed snapshot,
720 static UInt next_snapshot_i
= 0; // Index of where next snapshot will go.
721 static Snapshot
* snapshots
; // Array of snapshots.
723 static Bool
is_snapshot_in_use(Snapshot
* snapshot
)
725 if (Unused
== snapshot
->kind
) {
726 // If snapshot is unused, check all the fields are unset.
727 tl_assert(snapshot
->time
== UNUSED_SNAPSHOT_TIME
);
728 tl_assert(snapshot
->heap_extra_szB
== 0);
729 tl_assert(snapshot
->heap_szB
== 0);
730 tl_assert(snapshot
->stacks_szB
== 0);
731 tl_assert(snapshot
->xt
== NULL
);
734 tl_assert(snapshot
->time
!= UNUSED_SNAPSHOT_TIME
);
739 static Bool
is_detailed_snapshot(Snapshot
* snapshot
)
741 return (snapshot
->xt
? True
: False
);
744 static Bool
is_uncullable_snapshot(Snapshot
* snapshot
)
746 return &snapshots
[0] == snapshot
// First snapshot
747 || &snapshots
[next_snapshot_i
-1] == snapshot
// Last snapshot
748 || snapshot
->kind
== Peak
; // Peak snapshot
751 static void sanity_check_snapshot(Snapshot
* snapshot
)
753 // Not much we can sanity check.
754 tl_assert(snapshot
->xt
== NULL
|| snapshot
->kind
!= Unused
);
757 // All the used entries should look used, all the unused ones should be clear.
758 static void sanity_check_snapshots_array(void)
761 for (i
= 0; i
< next_snapshot_i
; i
++) {
762 tl_assert( is_snapshot_in_use( & snapshots
[i
] ));
764 for ( ; i
< clo_max_snapshots
; i
++) {
765 tl_assert(!is_snapshot_in_use( & snapshots
[i
] ));
769 // This zeroes all the fields in the snapshot, but does not free the xt
770 // XTree if present. It also does a sanity check unless asked not to; we
771 // can't sanity check at startup when clearing the initial snapshots because
772 // they're full of junk.
773 static void clear_snapshot(Snapshot
* snapshot
, Bool do_sanity_check
)
775 if (do_sanity_check
) sanity_check_snapshot(snapshot
);
776 snapshot
->kind
= Unused
;
777 snapshot
->time
= UNUSED_SNAPSHOT_TIME
;
778 snapshot
->heap_extra_szB
= 0;
779 snapshot
->heap_szB
= 0;
780 snapshot
->stacks_szB
= 0;
784 // This zeroes all the fields in the snapshot, and frees the heap XTree xt if
786 static void delete_snapshot(Snapshot
* snapshot
)
788 // Nb: if there's an XTree, we free it after calling clear_snapshot,
789 // because clear_snapshot does a sanity check which includes checking the
791 XTree
* tmp_xt
= snapshot
->xt
;
792 clear_snapshot(snapshot
, /*do_sanity_check*/True
);
794 VG_(XT_delete
)(tmp_xt
);
798 static void VERB_snapshot(Int verbosity
, const HChar
* prefix
, Int i
)
800 Snapshot
* snapshot
= &snapshots
[i
];
802 switch (snapshot
->kind
) {
803 case Peak
: suffix
= "p"; break;
804 case Normal
: suffix
= ( is_detailed_snapshot(snapshot
) ? "d" : "." ); break;
805 case Unused
: suffix
= "u"; break;
807 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot
->kind
);
809 VERB(verbosity
, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
813 snapshot
->heap_extra_szB
,
818 // Cull half the snapshots; we choose those that represent the smallest
819 // time-spans, because that gives us the most even distribution of snapshots
820 // over time. (It's possible to lose interesting spikes, however.)
822 // Algorithm for N snapshots: We find the snapshot representing the smallest
823 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone.
824 // We have to do this one snapshot at a time, rather than finding the (N/2)
825 // smallest snapshots in one hit, because when a snapshot is removed, its
826 // neighbours immediately cover greater timespans. So it's O(N^2), but N is
827 // small, and it's not done very often.
829 // Once we're done, we return the new smallest interval between snapshots.
830 // That becomes our minimum time interval.
831 static UInt
cull_snapshots(void)
833 Int i
, jp
, j
, jn
, min_timespan_i
;
839 // Sets j to the index of the first not-yet-removed snapshot at or after i
840 #define FIND_SNAPSHOT(i, j) \
842 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
845 VERB(2, "Culling...\n");
847 // First we remove enough snapshots by clearing them in-place. Once
848 // that's done, we can slide the remaining ones down.
849 for (i
= 0; i
< clo_max_snapshots
/2; i
++) {
850 // Find the snapshot representing the smallest timespan. The timespan
851 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
852 // snapshot A and B. We don't consider the first and last snapshots for
854 Snapshot
* min_snapshot
;
857 // Initial triple: (prev, curr, next) == (jp, j, jn)
858 // Initial min_timespan is the first one.
861 FIND_SNAPSHOT(j
+1, jn
);
862 min_timespan
= 0x7fffffffffffffffLL
;
864 while (jn
< clo_max_snapshots
) {
865 Time timespan
= snapshots
[jn
].time
- snapshots
[jp
].time
;
866 tl_assert(timespan
>= 0);
867 // Nb: We never cull the peak snapshot.
868 if (Peak
!= snapshots
[j
].kind
&& timespan
< min_timespan
) {
869 min_timespan
= timespan
;
872 // Move on to next triple
875 FIND_SNAPSHOT(jn
+1, jn
);
877 // We've found the least important snapshot, now delete it. First
878 // print it if necessary.
879 tl_assert(-1 != min_j
); // Check we found a minimum.
880 min_snapshot
= & snapshots
[ min_j
];
881 if (VG_(clo_verbosity
) > 1) {
882 HChar buf
[64]; // large enough
883 VG_(snprintf
)(buf
, 64, " %3d (t-span = %lld)", i
, min_timespan
);
884 VERB_snapshot(2, buf
, min_j
);
886 delete_snapshot(min_snapshot
);
890 // Slide down the remaining snapshots over the removed ones. First set i
891 // to point to the first empty slot, and j to the first full slot after
892 // i. Then slide everything down.
893 for (i
= 0; is_snapshot_in_use( &snapshots
[i
] ); i
++) { }
894 for (j
= i
; !is_snapshot_in_use( &snapshots
[j
] ); j
++) { }
895 for ( ; j
< clo_max_snapshots
; j
++) {
896 if (is_snapshot_in_use( &snapshots
[j
] )) {
897 snapshots
[i
++] = snapshots
[j
];
898 clear_snapshot(&snapshots
[j
], /*do_sanity_check*/True
);
903 // Check snapshots array looks ok after changes.
904 sanity_check_snapshots_array();
906 // Find the minimum timespan remaining; that will be our new minimum
907 // time interval. Note that above we were finding timespans by measuring
908 // two intervals around a snapshot that was under consideration for
909 // deletion. Here we only measure single intervals because all the
910 // deletions have occurred.
912 // But we have to be careful -- some snapshots (eg. snapshot 0, and the
913 // peak snapshot) are uncullable. If two uncullable snapshots end up
914 // next to each other, they'll never be culled (assuming the peak doesn't
915 // change), and the time gap between them will not change. However, the
916 // time between the remaining cullable snapshots will grow ever larger.
917 // This means that the min_timespan found will always be that between the
918 // two uncullable snapshots, and it will be much smaller than it should
919 // be. To avoid this problem, when computing the minimum timespan, we
920 // ignore any timespans between two uncullable snapshots.
921 tl_assert(next_snapshot_i
> 1);
922 min_timespan
= 0x7fffffffffffffffLL
;
924 for (i
= 1; i
< next_snapshot_i
; i
++) {
925 if (is_uncullable_snapshot(&snapshots
[i
]) &&
926 is_uncullable_snapshot(&snapshots
[i
-1]))
928 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i
-1, i
);
930 Time timespan
= snapshots
[i
].time
- snapshots
[i
-1].time
;
931 tl_assert(timespan
>= 0);
932 if (timespan
< min_timespan
) {
933 min_timespan
= timespan
;
938 tl_assert(-1 != min_timespan_i
); // Check we found a minimum.
940 // Print remaining snapshots, if necessary.
941 if (VG_(clo_verbosity
) > 1) {
942 VERB(2, "Finished culling (%3d of %3d deleted)\n",
943 n_deleted
, clo_max_snapshots
);
944 for (i
= 0; i
< next_snapshot_i
; i
++) {
945 VERB_snapshot(2, " post-cull", i
);
947 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
948 min_timespan
, min_timespan_i
-1, min_timespan_i
);
954 static Time
get_time(void)
956 // Get current time, in whatever time unit we're using.
957 if (clo_time_unit
== TimeI
) {
958 return guest_instrs_executed
;
959 } else if (clo_time_unit
== TimeMS
) {
960 // Some stuff happens between the millisecond timer being initialised
961 // to zero and us taking our first snapshot. We determine that time
962 // gap so we can subtract it from all subsequent times so that our
963 // first snapshot is considered to be at t = 0ms. Unfortunately, a
964 // bunch of symbols get read after the first snapshot is taken but
965 // before the second one (which is triggered by the first allocation),
966 // so when the time-unit is 'ms' we always have a big gap between the
967 // first two snapshots. But at least users won't have to wonder why
968 // the first snapshot isn't at t=0.
969 static Bool is_first_get_time
= True
;
970 static Time start_time_ms
;
971 if (is_first_get_time
) {
972 start_time_ms
= VG_(read_millisecond_timer
)();
973 is_first_get_time
= False
;
976 return VG_(read_millisecond_timer
)() - start_time_ms
;
978 } else if (clo_time_unit
== TimeB
) {
979 return total_allocs_deallocs_szB
;
981 tl_assert2(0, "bad --time-unit value");
985 // Take a snapshot, and only that -- decisions on whether to take a
986 // snapshot, or what kind of snapshot, are made elsewhere.
987 // Nb: we call the arg "my_time" because "time" shadows a global declaration
988 // in /usr/include/time.h on Darwin.
990 take_snapshot(Snapshot
* snapshot
, SnapshotKind kind
, Time my_time
,
993 tl_assert(!is_snapshot_in_use(snapshot
));
994 if (!clo_pages_as_heap
) {
995 tl_assert(have_started_executing_code
);
998 // Heap and heap admin.
1000 snapshot
->heap_szB
= heap_szB
;
1002 snapshot
->xt
= VG_(XT_snapshot
)(heap_xt
);
1004 snapshot
->heap_extra_szB
= heap_extra_szB
;
1009 snapshot
->stacks_szB
= stacks_szB
;
1012 // Rest of snapshot.
1013 snapshot
->kind
= kind
;
1014 snapshot
->time
= my_time
;
1015 sanity_check_snapshot(snapshot
);
1018 if (Peak
== kind
) n_peak_snapshots
++;
1019 if (is_detailed
) n_detailed_snapshots
++;
1024 // Take a snapshot, if it's time, or if we've hit a peak.
1026 maybe_take_snapshot(SnapshotKind kind
, const HChar
* what
)
1028 // 'min_time_interval' is the minimum time interval between snapshots.
1029 // If we try to take a snapshot and less than this much time has passed,
1030 // we don't take it. It gets larger as the program runs longer. It's
1031 // initialised to zero so that we begin by taking snapshots as quickly as
1033 static Time min_time_interval
= 0;
1034 // Zero allows startup snapshot.
1035 static Time earliest_possible_time_of_next_snapshot
= 0;
1036 static Int n_snapshots_since_last_detailed
= 0;
1037 static Int n_skipped_snapshots_since_last_snapshot
= 0;
1041 // Nb: we call this variable "my_time" because "time" shadows a global
1042 // declaration in /usr/include/time.h on Darwin.
1043 Time my_time
= get_time();
1047 // Only do a snapshot if it's time.
1048 if (my_time
< earliest_possible_time_of_next_snapshot
) {
1049 n_skipped_snapshots
++;
1050 n_skipped_snapshots_since_last_snapshot
++;
1053 is_detailed
= (clo_detailed_freq
-1 == n_snapshots_since_last_detailed
);
1057 // Because we're about to do a deallocation, we're coming down from a
1058 // local peak. If it is (a) actually a global peak, and (b) a certain
1059 // amount bigger than the previous peak, then we take a peak snapshot.
1060 // By not taking a snapshot for every peak, we save a lot of effort --
1061 // because many peaks remain peak only for a short time.
1062 SizeT total_szB
= heap_szB
+ heap_extra_szB
+ stacks_szB
;
1063 SizeT excess_szB_for_new_peak
=
1064 (SizeT
)((peak_snapshot_total_szB
* clo_peak_inaccuracy
) / 100);
1065 if (total_szB
<= peak_snapshot_total_szB
+ excess_szB_for_new_peak
) {
1073 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1076 // Take the snapshot.
1077 snapshot
= & snapshots
[next_snapshot_i
];
1078 take_snapshot(snapshot
, kind
, my_time
, is_detailed
);
1080 // Record if it was detailed.
1082 n_snapshots_since_last_detailed
= 0;
1084 n_snapshots_since_last_detailed
++;
1087 // Update peak data, if it's a Peak snapshot.
1089 Int i
, number_of_peaks_snapshots_found
= 0;
1091 // Sanity check the size, then update our recorded peak.
1092 SizeT snapshot_total_szB
=
1093 snapshot
->heap_szB
+ snapshot
->heap_extra_szB
+ snapshot
->stacks_szB
;
1094 tl_assert2(snapshot_total_szB
> peak_snapshot_total_szB
,
1095 "%ld, %ld\n", snapshot_total_szB
, peak_snapshot_total_szB
);
1096 peak_snapshot_total_szB
= snapshot_total_szB
;
1098 // Find the old peak snapshot, if it exists, and mark it as normal.
1099 for (i
= 0; i
< next_snapshot_i
; i
++) {
1100 if (Peak
== snapshots
[i
].kind
) {
1101 snapshots
[i
].kind
= Normal
;
1102 number_of_peaks_snapshots_found
++;
1105 tl_assert(number_of_peaks_snapshots_found
<= 1);
1108 // Finish up verbosity and stats stuff.
1109 if (n_skipped_snapshots_since_last_snapshot
> 0) {
1110 VERB(2, " (skipped %d snapshot%s)\n",
1111 n_skipped_snapshots_since_last_snapshot
,
1112 ( 1 == n_skipped_snapshots_since_last_snapshot
? "" : "s") );
1114 VERB_snapshot(2, what
, next_snapshot_i
);
1115 n_skipped_snapshots_since_last_snapshot
= 0;
1117 // Cull the entries, if our snapshot table is full.
1119 if (clo_max_snapshots
== next_snapshot_i
) {
1120 min_time_interval
= cull_snapshots();
1123 // Work out the earliest time when the next snapshot can happen.
1124 earliest_possible_time_of_next_snapshot
= my_time
+ min_time_interval
;
1128 //------------------------------------------------------------//
1129 //--- Sanity checking ---//
1130 //------------------------------------------------------------//
1132 static Bool
ms_cheap_sanity_check ( void )
1134 return True
; // Nothing useful we can cheaply check.
1137 static Bool
ms_expensive_sanity_check ( void )
1140 sanity_check_snapshots_array();
1145 //------------------------------------------------------------//
1146 //--- Heap management ---//
1147 //------------------------------------------------------------//
1149 // Metadata for heap blocks. Each one contains an Xecu,
1150 // which identifies the XTree ec at which it was allocated. From
1151 // HP_Chunks, XTree ec 'space' field is incremented (at allocation) and
1152 // decremented (at deallocation).
1154 // Nb: first two fields must match core's VgHashNode.
1157 struct _HP_Chunk
* next
;
1158 Addr data
; // Ptr to actual block
1159 SizeT req_szB
; // Size requested
1160 SizeT slop_szB
; // Extra bytes given above those requested
1161 Xecu where
; // Where allocated; XTree xecu from heap_xt
1165 /* Pool allocator for HP_Chunk. */
1166 static PoolAlloc
*HP_chunk_poolalloc
= NULL
;
1168 static VgHashTable
*malloc_list
= NULL
; // HP_Chunks
1170 static void update_alloc_stats(SSizeT szB_delta
)
1172 // Update total_allocs_deallocs_szB.
1173 if (szB_delta
< 0) szB_delta
= -szB_delta
;
1174 total_allocs_deallocs_szB
+= szB_delta
;
1177 static void update_heap_stats(SSizeT heap_szB_delta
, Int heap_extra_szB_delta
)
1179 if (heap_szB_delta
< 0)
1180 tl_assert(heap_szB
>= -heap_szB_delta
);
1181 if (heap_extra_szB_delta
< 0)
1182 tl_assert(heap_extra_szB
>= -heap_extra_szB_delta
);
1184 heap_extra_szB
+= heap_extra_szB_delta
;
1185 heap_szB
+= heap_szB_delta
;
1187 update_alloc_stats(heap_szB_delta
+ heap_extra_szB_delta
);
1191 void* record_block( ThreadId tid
, void* p
, SizeT req_szB
, SizeT slop_szB
,
1192 Bool exclude_first_entry
, Bool maybe_snapshot
)
1194 // Make new HP_Chunk node, add to malloc_list
1195 HP_Chunk
* hc
= VG_(allocEltPA
)(HP_chunk_poolalloc
);
1196 hc
->req_szB
= req_szB
;
1197 hc
->slop_szB
= slop_szB
;
1200 VG_(HT_add_node
)(malloc_list
, hc
);
1203 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB
, slop_szB
);
1205 hc
->where
= add_heap_xt( tid
, req_szB
, exclude_first_entry
);
1207 if (VG_(XT_n_ips_sel
)(heap_xt
, hc
->where
) > 0) {
1208 // Update statistics.
1211 // Update heap stats.
1212 update_heap_stats(req_szB
, clo_heap_admin
+ slop_szB
);
1214 // Maybe take a snapshot.
1215 if (maybe_snapshot
) {
1216 maybe_take_snapshot(Normal
, " alloc");
1220 // Ignored allocation.
1221 n_ignored_heap_allocs
++;
1223 VERB(3, "(ignored)\n");
1233 void* alloc_and_record_block ( ThreadId tid
, SizeT req_szB
, SizeT req_alignB
,
1236 SizeT actual_szB
, slop_szB
;
1239 if ((SSizeT
)req_szB
< 0) return NULL
;
1241 // Allocate and zero if necessary.
1242 p
= VG_(cli_malloc
)( req_alignB
, req_szB
);
1246 if (is_zeroed
) VG_(memset
)(p
, 0, req_szB
);
1247 actual_szB
= VG_(cli_malloc_usable_size
)(p
);
1248 tl_assert(actual_szB
>= req_szB
);
1249 slop_szB
= actual_szB
- req_szB
;
1252 record_block(tid
, p
, req_szB
, slop_szB
, /*exclude_first_entry*/True
,
1253 /*maybe_snapshot*/True
);
1259 void unrecord_block ( void* p
, Bool maybe_snapshot
, Bool exclude_first_entry
)
1261 // Remove HP_Chunk from malloc_list
1262 HP_Chunk
* hc
= VG_(HT_remove
)(malloc_list
, (UWord
)p
);
1264 return; // must have been a bogus free()
1268 VERB(3, "<<< unrecord_block\n");
1270 if (VG_(XT_n_ips_sel
)(heap_xt
, hc
->where
) > 0) {
1271 // Update statistics.
1274 // Maybe take a peak snapshot, since it's a deallocation.
1275 if (maybe_snapshot
) {
1276 maybe_take_snapshot(Peak
, "de-PEAK");
1279 // Update heap stats.
1280 update_heap_stats(-hc
->req_szB
, -clo_heap_admin
- hc
->slop_szB
);
1283 sub_heap_xt(hc
->where
, hc
->req_szB
, exclude_first_entry
);
1285 // Maybe take a snapshot.
1286 if (maybe_snapshot
) {
1287 maybe_take_snapshot(Normal
, "dealloc");
1291 n_ignored_heap_frees
++;
1293 VERB(3, "(ignored)\n");
1296 VERB(3, ">>> (-%lu, -%lu)\n", hc
->req_szB
, hc
->slop_szB
);
1299 // Actually free the chunk, and the heap block (if necessary)
1300 VG_(freeEltPA
) (HP_chunk_poolalloc
, hc
); hc
= NULL
;
1303 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was
1304 // ignored, but the realloc is not requested to be ignored, and we are
1305 // shrinking the block, then we have to ignore the realloc -- otherwise we
1306 // could end up with negative heap sizes. This isn't a danger if we are
1307 // growing such a block, but for consistency (it also simplifies things) we
1308 // ignore such reallocs as well.
1309 // PW Nov 2016 xtree work: why can't we just consider that a realloc of an
1310 // ignored alloc is just a new alloc (i.e. do not remove the old sz from the
1311 // stats). Then everything would be fine, and a non ignored realloc would be
1312 // counted properly.
1314 void* realloc_block ( ThreadId tid
, void* p_old
, SizeT new_req_szB
)
1318 SizeT old_req_szB
, old_slop_szB
, new_slop_szB
, new_actual_szB
;
1320 Bool is_ignored
= False
;
1322 if (p_old
== NULL
) {
1323 return alloc_and_record_block( tid
, new_req_szB
, VG_(clo_alignment
), /*is_zeroed*/False
);
1326 if (new_req_szB
== 0U) {
1327 if (VG_(clo_realloc_zero_bytes_frees
) == True
) {
1329 unrecord_block(p_old
, /*maybe_snapshot*/True
, /*exclude_first_entry*/True
);
1330 VG_(cli_free
)(p_old
);
1336 // Remove the old block
1337 hc
= VG_(HT_remove
)(malloc_list
, (UWord
)p_old
);
1339 return NULL
; // must have been a bogus realloc()
1342 old_req_szB
= hc
->req_szB
;
1343 old_slop_szB
= hc
->slop_szB
;
1345 tl_assert(!clo_pages_as_heap
); // Shouldn't be here if --pages-as-heap=yes.
1347 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB
);
1349 if (VG_(XT_n_ips_sel
)(heap_xt
, hc
->where
) > 0) {
1350 // Update statistics.
1353 // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1354 if (new_req_szB
< old_req_szB
) {
1355 maybe_take_snapshot(Peak
, "re-PEAK");
1358 // The original malloc was ignored, so we have to ignore the
1364 // Actually do the allocation, if necessary.
1365 if (new_req_szB
<= old_req_szB
+ old_slop_szB
) {
1366 // New size is smaller or same; block not moved.
1368 new_slop_szB
= old_slop_szB
+ (old_req_szB
- new_req_szB
);
1371 // New size is bigger; make new block, copy shared contents, free old.
1372 p_new
= VG_(cli_malloc
)(VG_(clo_alignment
), new_req_szB
);
1374 // Nb: if realloc fails, NULL is returned but the old block is not
1375 // touched. What an awful function.
1378 VG_(memcpy
)(p_new
, p_old
, old_req_szB
+ old_slop_szB
);
1379 VG_(cli_free
)(p_old
);
1380 new_actual_szB
= VG_(cli_malloc_usable_size
)(p_new
);
1381 tl_assert(new_actual_szB
>= new_req_szB
);
1382 new_slop_szB
= new_actual_szB
- new_req_szB
;
1387 hc
->data
= (Addr
)p_new
;
1388 hc
->req_szB
= new_req_szB
;
1389 hc
->slop_szB
= new_slop_szB
;
1390 old_where
= hc
->where
;
1395 hc
->where
= add_heap_xt( tid
, new_req_szB
,
1396 /*exclude_first_entry*/True
);
1397 if (!is_ignored
&& VG_(XT_n_ips_sel
)(heap_xt
, hc
->where
) > 0) {
1398 sub_heap_xt(old_where
, old_req_szB
, /*exclude_first_entry*/True
);
1400 // The realloc itself is ignored.
1403 /* XTREE??? hack to have something compatible with pre
1404 m_xtree massif: if the previous alloc/realloc was
1405 ignored, and this one is not ignored, then keep the
1406 previous where, to continue marking this memory as
1408 if (VG_(XT_n_ips_sel
)(heap_xt
, hc
->where
) > 0
1409 && VG_(XT_n_ips_sel
)(heap_xt
, old_where
) == 0)
1410 hc
->where
= old_where
;
1412 // Update statistics.
1413 n_ignored_heap_reallocs
++;
1418 // Now insert the new hc (with a possibly new 'data' field) into
1419 // malloc_list. If this realloc() did not increase the memory size, we
1420 // will have removed and then re-added hc unnecessarily. But that's ok
1421 // because shrinking a block with realloc() is (presumably) much rarer
1422 // than growing it, and this way simplifies the growing case.
1423 VG_(HT_add_node
)(malloc_list
, hc
);
1427 // Update heap stats.
1428 update_heap_stats(new_req_szB
- old_req_szB
,
1429 new_slop_szB
- old_slop_szB
);
1431 // Maybe take a snapshot.
1432 maybe_take_snapshot(Normal
, "realloc");
1435 VERB(3, "(ignored)\n");
1438 VERB(3, ">>> (%ld, %ld)\n",
1439 (SSizeT
)(new_req_szB
- old_req_szB
),
1440 (SSizeT
)(new_slop_szB
- old_slop_szB
));
1447 //------------------------------------------------------------//
1448 //--- malloc() et al replacement wrappers ---//
1449 //------------------------------------------------------------//
1451 static void* ms_malloc ( ThreadId tid
, SizeT szB
)
1453 return alloc_and_record_block( tid
, szB
, VG_(clo_alignment
), /*is_zeroed*/False
);
1456 static void* ms___builtin_new ( ThreadId tid
, SizeT szB
)
1458 return alloc_and_record_block( tid
, szB
, VG_(clo_alignment
), /*is_zeroed*/False
);
1461 static void* ms___builtin_new_aligned ( ThreadId tid
, SizeT szB
, SizeT alignB
, SizeT orig_alignB
)
1463 return alloc_and_record_block( tid
, szB
, alignB
, /*is_zeroed*/False
);
1466 static void* ms___builtin_vec_new ( ThreadId tid
, SizeT szB
)
1468 return alloc_and_record_block( tid
, szB
, VG_(clo_alignment
), /*is_zeroed*/False
);
1471 static void* ms___builtin_vec_new_aligned ( ThreadId tid
, SizeT szB
, SizeT alignB
, SizeT orig_alignB
)
1473 return alloc_and_record_block( tid
, szB
, alignB
, /*is_zeroed*/False
);
1476 static void* ms_calloc ( ThreadId tid
, SizeT m
, SizeT szB
)
1478 return alloc_and_record_block( tid
, m
*szB
, VG_(clo_alignment
), /*is_zeroed*/True
);
1481 static void *ms_memalign ( ThreadId tid
, SizeT alignB
, SizeT orig_alignB
, SizeT szB
)
1483 return alloc_and_record_block( tid
, szB
, alignB
, False
);
1486 static void ms_free ( ThreadId tid
__attribute__((unused
)), void* p
)
1488 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/True
);
1492 static void ms___builtin_delete ( ThreadId tid
, void* p
)
1494 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/True
);
1498 static void ms___builtin_delete_aligned ( ThreadId tid
, void* p
, SizeT align
)
1500 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/True
);
1504 static void ms___builtin_vec_delete ( ThreadId tid
, void* p
)
1506 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/True
);
1510 static void ms___builtin_vec_delete_aligned ( ThreadId tid
, void* p
, SizeT align
)
1512 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/True
);
1516 static void* ms_realloc ( ThreadId tid
, void* p_old
, SizeT new_szB
)
1518 return realloc_block(tid
, p_old
, new_szB
);
1521 static SizeT
ms_malloc_usable_size ( ThreadId tid
, void* p
)
1523 HP_Chunk
* hc
= VG_(HT_lookup
)( malloc_list
, (UWord
)p
);
1525 return ( hc
? hc
->req_szB
+ hc
->slop_szB
: 0 );
1528 //------------------------------------------------------------//
1529 //--- Page handling ---//
1530 //------------------------------------------------------------//
1533 void ms_record_page_mem ( Addr a
, SizeT len
)
1535 ThreadId tid
= VG_(get_running_tid
)();
1537 tl_assert(VG_IS_PAGE_ALIGNED(len
));
1538 tl_assert(len
>= VKI_PAGE_SIZE
);
1539 // Record the first N-1 pages as blocks, but don't do any snapshots.
1540 for (end
= a
+ len
- VKI_PAGE_SIZE
; a
< end
; a
+= VKI_PAGE_SIZE
) {
1541 record_block( tid
, (void*)a
, VKI_PAGE_SIZE
, /*slop_szB*/0,
1542 /*exclude_first_entry*/False
, /*maybe_snapshot*/False
);
1544 // Record the last page as a block, and maybe do a snapshot afterwards.
1545 record_block( tid
, (void*)a
, VKI_PAGE_SIZE
, /*slop_szB*/0,
1546 /*exclude_first_entry*/False
, /*maybe_snapshot*/True
);
1550 void ms_unrecord_page_mem( Addr a
, SizeT len
)
1553 tl_assert(VG_IS_PAGE_ALIGNED(len
));
1554 tl_assert(len
>= VKI_PAGE_SIZE
);
1555 // Unrecord the first page. This might be the peak, so do a snapshot.
1556 unrecord_block((void*)a
, /*maybe_snapshot*/True
,
1557 /*exclude_first_entry*/False
);
1559 // Then unrecord the remaining pages, but without snapshots.
1560 for (end
= a
+ len
- VKI_PAGE_SIZE
; a
< end
; a
+= VKI_PAGE_SIZE
) {
1561 unrecord_block((void*)a
, /*maybe_snapshot*/False
,
1562 /*exclude_first_entry*/False
);
1566 //------------------------------------------------------------//
1569 void ms_new_mem_mmap ( Addr a
, SizeT len
,
1570 Bool rr
, Bool ww
, Bool xx
, ULong di_handle
)
1572 tl_assert(VG_IS_PAGE_ALIGNED(len
));
1573 ms_record_page_mem(a
, len
);
1577 void ms_new_mem_startup( Addr a
, SizeT len
,
1578 Bool rr
, Bool ww
, Bool xx
, ULong di_handle
)
1580 // startup maps are always be page-sized, except the trampoline page is
1581 // marked by the core as only being the size of the trampoline itself,
1582 // which is something like 57 bytes. Round it up to page size.
1583 len
= VG_PGROUNDUP(len
);
1584 ms_record_page_mem(a
, len
);
1588 void ms_new_mem_brk ( Addr a
, SizeT len
, ThreadId tid
)
1590 // brk limit is not necessarily aligned on a page boundary.
1591 // If new memory being brk-ed implies to allocate a new page,
1592 // then call ms_record_page_mem with page aligned parameters
1593 // otherwise just ignore.
1594 Addr old_bottom_page
= VG_PGROUNDDN(a
- 1);
1595 Addr new_top_page
= VG_PGROUNDDN(a
+ len
- 1);
1596 if (old_bottom_page
!= new_top_page
)
1597 ms_record_page_mem(VG_PGROUNDDN(a
),
1598 (new_top_page
- old_bottom_page
));
1602 void ms_copy_mem_remap( Addr from
, Addr to
, SizeT len
)
1604 tl_assert(VG_IS_PAGE_ALIGNED(len
));
1605 ms_unrecord_page_mem(from
, len
);
1606 ms_record_page_mem(to
, len
);
1610 void ms_die_mem_munmap( Addr a
, SizeT len
)
1612 tl_assert(VG_IS_PAGE_ALIGNED(len
));
1613 ms_unrecord_page_mem(a
, len
);
1617 void ms_die_mem_brk( Addr a
, SizeT len
)
1619 // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1620 // See ms_new_mem_brk for more details.
1621 Addr new_bottom_page
= VG_PGROUNDDN(a
- 1);
1622 Addr old_top_page
= VG_PGROUNDDN(a
+ len
- 1);
1623 if (old_top_page
!= new_bottom_page
)
1624 ms_unrecord_page_mem(VG_PGROUNDDN(a
),
1625 (old_top_page
- new_bottom_page
));
1629 //------------------------------------------------------------//
1631 //------------------------------------------------------------//
1633 // We really want the inlining to occur...
1634 #define INLINE inline __attribute__((always_inline))
1636 static void update_stack_stats(SSizeT stack_szB_delta
)
1638 if (stack_szB_delta
< 0) tl_assert(stacks_szB
>= -stack_szB_delta
);
1639 stacks_szB
+= stack_szB_delta
;
1641 update_alloc_stats(stack_szB_delta
);
1644 static INLINE
void new_mem_stack_2(SizeT len
, const HChar
* what
)
1646 if (have_started_executing_code
) {
1647 if (UNLIKELY(VG_(clo_verbosity
) > 3)) {
1648 const ThreadId cur_tid
= VG_(get_running_tid
) ();
1649 const Addr cur_IP
= VG_(get_IP
) (cur_tid
);
1650 VERB(3, "<<< new_mem_stack (%lu) tid %u IP %s\n",
1652 VG_(describe_IP
)(VG_(current_DiEpoch
)(), cur_IP
, NULL
));
1655 update_stack_stats(len
);
1656 maybe_take_snapshot(Normal
, what
);
1661 static INLINE
void die_mem_stack_2(SizeT len
, const HChar
* what
)
1663 if (have_started_executing_code
) {
1664 VERB(3, "<<< die_mem_stack (-%lu)\n", len
);
1666 maybe_take_snapshot(Peak
, "stkPEAK");
1667 update_stack_stats(-len
);
1668 maybe_take_snapshot(Normal
, what
);
1673 static void new_mem_stack(Addr a
, SizeT len
)
1675 new_mem_stack_2(len
, "stk-new");
1678 static void die_mem_stack(Addr a
, SizeT len
)
1680 die_mem_stack_2(len
, "stk-die");
1683 static void new_mem_stack_signal(Addr a
, SizeT len
, ThreadId tid
)
1685 new_mem_stack_2(len
, "sig-new");
1688 static void die_mem_stack_signal(Addr a
, SizeT len
)
1690 die_mem_stack_2(len
, "sig-die");
1694 //------------------------------------------------------------//
1695 //--- Client Requests ---//
1696 //------------------------------------------------------------//
1698 static void print_monitor_help ( void )
1702 "massif monitor commands:\n"
1703 " snapshot [<filename>]\n"
1704 " detailed_snapshot [<filename>]\n"
1705 " takes a snapshot (or a detailed snapshot)\n"
1706 " and saves it in <filename>\n"
1707 " default <filename> is massif.vgdb.out\n"
1708 " all_snapshots [<filename>]\n"
1709 " saves all snapshot(s) taken so far in <filename>\n"
1710 " default <filename> is massif.vgdb.out\n"
1711 " xtmemory [<filename>]\n"
1712 " dump xtree memory profile in <filename> (default xtmemory.kcg.%%p.%%n)\n"
1717 /* Forward declaration.
1718 return True if request recognised, False otherwise */
1719 static Bool
handle_gdb_monitor_command (ThreadId tid
, HChar
*req
);
1720 static Bool
ms_handle_client_request ( ThreadId tid
, UWord
* argv
, UWord
* ret
)
1723 case VG_USERREQ__MALLOCLIKE_BLOCK
: {
1724 void* p
= (void*)argv
[1];
1725 SizeT szB
= argv
[2];
1726 record_block( tid
, p
, szB
, /*slop_szB*/0, /*exclude_first_entry*/False
,
1727 /*maybe_snapshot*/True
);
1731 case VG_USERREQ__RESIZEINPLACE_BLOCK
: {
1732 void* p
= (void*)argv
[1];
1733 SizeT newSizeB
= argv
[3];
1735 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/False
);
1736 record_block(tid
, p
, newSizeB
, /*slop_szB*/0,
1737 /*exclude_first_entry*/False
, /*maybe_snapshot*/True
);
1740 case VG_USERREQ__FREELIKE_BLOCK
: {
1741 void* p
= (void*)argv
[1];
1742 unrecord_block(p
, /*maybe_snapshot*/True
, /*exclude_first_entry*/False
);
1746 case VG_USERREQ__GDB_MONITOR_COMMAND
: {
1747 Bool handled
= handle_gdb_monitor_command (tid
, (HChar
*)argv
[1]);
1761 //------------------------------------------------------------//
1762 //--- Instrumentation ---//
1763 //------------------------------------------------------------//
1765 static void add_counter_update(IRSB
* sbOut
, Int n
)
1767 #if defined(VG_BIGENDIAN)
1768 # define END Iend_BE
1769 #elif defined(VG_LITTLEENDIAN)
1770 # define END Iend_LE
1772 # error "Unknown endianness"
1774 // Add code to increment 'guest_instrs_executed' by 'n', like this:
1775 // WrTmp(t1, Load64(&guest_instrs_executed))
1776 // WrTmp(t2, Add64(RdTmp(t1), Const(n)))
1777 // Store(&guest_instrs_executed, t2)
1778 IRTemp t1
= newIRTemp(sbOut
->tyenv
, Ity_I64
);
1779 IRTemp t2
= newIRTemp(sbOut
->tyenv
, Ity_I64
);
1780 IRExpr
* counter_addr
= mkIRExpr_HWord( (HWord
)&guest_instrs_executed
);
1782 IRStmt
* st1
= IRStmt_WrTmp(t1
, IRExpr_Load(END
, Ity_I64
, counter_addr
));
1785 IRExpr_Binop(Iop_Add64
, IRExpr_RdTmp(t1
),
1786 IRExpr_Const(IRConst_U64(n
))));
1787 IRStmt
* st3
= IRStmt_Store(END
, counter_addr
, IRExpr_RdTmp(t2
));
1789 addStmtToIRSB( sbOut
, st1
);
1790 addStmtToIRSB( sbOut
, st2
);
1791 addStmtToIRSB( sbOut
, st3
);
1794 static IRSB
* ms_instrument2( IRSB
* sbIn
)
1799 // We increment the instruction count in two places:
1800 // - just before any Ist_Exit statements;
1801 // - just before the IRSB's end.
1802 // In the former case, we zero 'n' and then continue instrumenting.
1804 sbOut
= deepCopyIRSBExceptStmts(sbIn
);
1806 for (i
= 0; i
< sbIn
->stmts_used
; i
++) {
1807 IRStmt
* st
= sbIn
->stmts
[i
];
1809 if (!st
|| st
->tag
== Ist_NoOp
) continue;
1811 if (st
->tag
== Ist_IMark
) {
1813 } else if (st
->tag
== Ist_Exit
) {
1815 // Add an increment before the Exit statement, then reset 'n'.
1816 add_counter_update(sbOut
, n
);
1820 addStmtToIRSB( sbOut
, st
);
1824 // Add an increment before the SB end.
1825 add_counter_update(sbOut
, n
);
1831 IRSB
* ms_instrument ( VgCallbackClosure
* closure
,
1833 const VexGuestLayout
* layout
,
1834 const VexGuestExtents
* vge
,
1835 const VexArchInfo
* archinfo_host
,
1836 IRType gWordTy
, IRType hWordTy
)
1838 if (! have_started_executing_code
) {
1839 // Do an initial sample to guarantee that we have at least one.
1840 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
1841 // 'maybe_take_snapshot's internal static variables are initialised.
1842 have_started_executing_code
= True
;
1843 maybe_take_snapshot(Normal
, "startup");
1846 if (clo_time_unit
== TimeI
) { return ms_instrument2(sbIn
); }
1847 else if (clo_time_unit
== TimeMS
) { return sbIn
; }
1848 else if (clo_time_unit
== TimeB
) { return sbIn
; }
1849 else { tl_assert2(0, "bad --time-unit value"); }
1853 //------------------------------------------------------------//
1854 //--- Writing snapshots ---//
1855 //------------------------------------------------------------//
1857 static void pp_snapshot(MsFile
*fp
, Snapshot
* snapshot
, Int snapshot_n
)
1859 const Massif_Header header
= (Massif_Header
) {
1860 .snapshot_n
= snapshot_n
,
1861 .time
= snapshot
->time
,
1862 .sz_B
= snapshot
->heap_szB
,
1863 .extra_B
= snapshot
->heap_extra_szB
,
1864 .stacks_B
= snapshot
->stacks_szB
,
1865 .detailed
= is_detailed_snapshot(snapshot
),
1866 .peak
= Peak
== snapshot
->kind
,
1867 .top_node_desc
= clo_pages_as_heap
?
1868 "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
1869 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc.",
1870 .sig_threshold
= clo_threshold
1873 sanity_check_snapshot(snapshot
);
1875 VG_(XT_massif_print
)(fp
, snapshot
->xt
, &header
, alloc_szB
);
1878 static void write_snapshots_to_file(const HChar
* massif_out_file
,
1879 Snapshot snapshots_array
[],
1885 fp
= VG_(XT_massif_open
)(massif_out_file
,
1888 TimeUnit_to_string(clo_time_unit
));
1890 return; // Error reported by VG_(XT_massif_open)
1892 for (i
= 0; i
< nr_elements
; i
++) {
1893 Snapshot
* snapshot
= & snapshots_array
[i
];
1894 pp_snapshot(fp
, snapshot
, i
); // Detailed snapshot!
1896 VG_(XT_massif_close
) (fp
);
1899 static void write_snapshots_array_to_file(void)
1901 // Setup output filename. Nb: it's important to do this now, ie. as late
1902 // as possible. If we do it at start-up and the program forks and the
1903 // output file format string contains a %p (pid) specifier, both the
1904 // parent and child will incorrectly write to the same file; this
1905 // happened in 3.3.0.
1906 HChar
* massif_out_file
=
1907 VG_(expand_file_name
)("--massif-out-file", clo_massif_out_file
);
1908 write_snapshots_to_file (massif_out_file
, snapshots
, next_snapshot_i
);
1909 VG_(free
)(massif_out_file
);
1912 static void handle_snapshot_monitor_command (const HChar
*filename
,
1917 if (!clo_pages_as_heap
&& !have_started_executing_code
) {
1918 // See comments of variable have_started_executing_code.
1920 ("error: cannot take snapshot before execution has started\n");
1924 clear_snapshot(&snapshot
, /* do_sanity_check */ False
);
1925 take_snapshot(&snapshot
, Normal
, get_time(), detailed
);
1926 write_snapshots_to_file ((filename
== NULL
) ?
1927 "massif.vgdb.out" : filename
,
1930 delete_snapshot(&snapshot
);
1933 static void handle_all_snapshots_monitor_command (const HChar
*filename
)
1935 if (!clo_pages_as_heap
&& !have_started_executing_code
) {
1936 // See comments of variable have_started_executing_code.
1938 ("error: cannot take snapshot before execution has started\n");
1942 write_snapshots_to_file ((filename
== NULL
) ?
1943 "massif.vgdb.out" : filename
,
1944 snapshots
, next_snapshot_i
);
1947 static void xtmemory_report_next_block(XT_Allocs
* xta
, ExeContext
** ec_alloc
)
1949 const HP_Chunk
* hc
= VG_(HT_Next
)(malloc_list
);
1951 xta
->nbytes
= hc
->req_szB
;
1953 *ec_alloc
= VG_(XT_get_ec_from_xecu
)(heap_xt
, hc
->where
);
1957 static void ms_xtmemory_report ( const HChar
* filename
, Bool fini
)
1959 // Make xtmemory_report_next_block ready to be called.
1960 VG_(HT_ResetIter
)(malloc_list
);
1961 VG_(XTMemory_report
)(filename
, fini
, xtmemory_report_next_block
,
1962 VG_(XT_filter_maybe_below_main
));
1963 /* As massif already filters one top function, use as filter
1964 VG_(XT_filter_maybe_below_main). */
1967 static Bool
handle_gdb_monitor_command (ThreadId tid
, HChar
*req
)
1970 HChar s
[VG_(strlen
)(req
) + 1]; /* copy for strtok_r */
1973 VG_(strcpy
) (s
, req
);
1975 wcmd
= VG_(strtok_r
) (s
, " ", &ssaveptr
);
1976 switch (VG_(keyword_id
) ("help snapshot detailed_snapshot all_snapshots"
1978 wcmd
, kwd_report_duplicated_matches
)) {
1979 case -2: /* multiple matches */
1981 case -1: /* not found */
1984 print_monitor_help();
1986 case 1: { /* snapshot */
1988 filename
= VG_(strtok_r
) (NULL
, " ", &ssaveptr
);
1989 handle_snapshot_monitor_command (filename
, False
/* detailed */);
1992 case 2: { /* detailed_snapshot */
1994 filename
= VG_(strtok_r
) (NULL
, " ", &ssaveptr
);
1995 handle_snapshot_monitor_command (filename
, True
/* detailed */);
1998 case 3: { /* all_snapshots */
2000 filename
= VG_(strtok_r
) (NULL
, " ", &ssaveptr
);
2001 handle_all_snapshots_monitor_command (filename
);
2004 case 4: { /* xtmemory */
2006 filename
= VG_(strtok_r
) (NULL
, " ", &ssaveptr
);
2007 ms_xtmemory_report (filename
, False
);
2016 static void ms_print_stats (void)
2018 #define STATS(format, args...) \
2019 VG_(dmsg)("Massif: " format, ##args)
2021 STATS("heap allocs: %u\n", n_heap_allocs
);
2022 STATS("heap reallocs: %u\n", n_heap_reallocs
);
2023 STATS("heap frees: %u\n", n_heap_frees
);
2024 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs
);
2025 STATS("ignored heap frees: %u\n", n_ignored_heap_frees
);
2026 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs
);
2027 STATS("stack allocs: %u\n", n_stack_allocs
);
2028 STATS("skipped snapshots: %u\n", n_skipped_snapshots
);
2029 STATS("real snapshots: %u\n", n_real_snapshots
);
2030 STATS("detailed snapshots: %u\n", n_detailed_snapshots
);
2031 STATS("peak snapshots: %u\n", n_peak_snapshots
);
2032 STATS("cullings: %u\n", n_cullings
);
2037 //------------------------------------------------------------//
2038 //--- Finalisation ---//
2039 //------------------------------------------------------------//
2041 static void ms_fini(Int exit_status
)
2043 ms_xtmemory_report(VG_(clo_xtree_memory_file
), True
);
2046 write_snapshots_array_to_file();
2053 //------------------------------------------------------------//
2054 //--- Initialisation ---//
2055 //------------------------------------------------------------//
2057 static void ms_post_clo_init(void)
2060 HChar
* LD_PRELOAD_val
;
2062 /* We will record execontext up to clo_depth + overestimate and
2063 we will store this as ec => we need to increase the backtrace size
2064 if smaller than what we will store. */
2065 if (VG_(clo_backtrace_size
) < clo_depth
+ MAX_OVERESTIMATE
)
2066 VG_(clo_backtrace_size
) = clo_depth
+ MAX_OVERESTIMATE
;
2069 if (clo_pages_as_heap
) {
2071 VG_(fmsg_bad_option
)("--pages-as-heap=yes",
2072 "Cannot be used together with --stacks=yes");
2076 clo_pages_as_heap
= False
;
2079 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we
2080 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2081 // platform-equivalent). This is a bit of a hack, but LD_PRELOAD is setup
2082 // well before tool initialisation, so this seems the best way to do it.
2083 if (clo_pages_as_heap
) {
2087 clo_heap_admin
= 0; // No heap admin on pages.
2089 LD_PRELOAD_val
= VG_(getenv
)( VG_(LD_PRELOAD_var_name
) );
2090 tl_assert(LD_PRELOAD_val
);
2092 VERB(2, "clo_pages_as_heap orig LD_PRELOAD '%s'\n", LD_PRELOAD_val
);
2094 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2095 s1
= VG_(strstr
)(LD_PRELOAD_val
, "vgpreload_core");
2098 // Now find the vgpreload_massif-$PLATFORM entry.
2099 s1
= VG_(strstr
)(LD_PRELOAD_val
, "vgpreload_massif");
2103 // Position s1 on the previous ':', which must be there because
2104 // of the preceding vgpreload_core-$PLATFORM entry.
2105 for (; *s1
!= ':'; s1
--)
2108 // Position s2 on the next ':' or \0
2109 for (; *s2
!= ':' && *s2
!= '\0'; s2
++)
2112 // Move all characters from s2 to s1
2113 while ((*s1
++ = *s2
++))
2116 VERB(2, "clo_pages_as_heap cleaned LD_PRELOAD '%s'\n", LD_PRELOAD_val
);
2119 // Print alloc-fns and ignore-fns, if necessary.
2120 if (VG_(clo_verbosity
) > 1) {
2121 VERB(1, "alloc-fns:\n");
2122 for (i
= 0; i
< VG_(sizeXA
)(alloc_fns
); i
++) {
2123 HChar
** fn_ptr
= VG_(indexXA
)(alloc_fns
, i
);
2124 VERB(1, " %s\n", *fn_ptr
);
2127 VERB(1, "ignore-fns:\n");
2128 if (0 == VG_(sizeXA
)(ignore_fns
)) {
2129 VERB(1, " <empty>\n");
2131 for (i
= 0; i
< VG_(sizeXA
)(ignore_fns
); i
++) {
2132 HChar
** fn_ptr
= VG_(indexXA
)(ignore_fns
, i
);
2133 VERB(1, " %d: %s\n", i
, *fn_ptr
);
2139 VG_(track_new_mem_stack
) ( new_mem_stack
);
2140 VG_(track_die_mem_stack
) ( die_mem_stack
);
2141 VG_(track_new_mem_stack_signal
) ( new_mem_stack_signal
);
2142 VG_(track_die_mem_stack_signal
) ( die_mem_stack_signal
);
2145 if (clo_pages_as_heap
) {
2146 VG_(track_new_mem_startup
) ( ms_new_mem_startup
);
2147 VG_(track_new_mem_brk
) ( ms_new_mem_brk
);
2148 VG_(track_new_mem_mmap
) ( ms_new_mem_mmap
);
2150 VG_(track_copy_mem_remap
) ( ms_copy_mem_remap
);
2152 VG_(track_die_mem_brk
) ( ms_die_mem_brk
);
2153 VG_(track_die_mem_munmap
) ( ms_die_mem_munmap
);
2156 // Initialise snapshot array, and sanity-check it.
2157 snapshots
= VG_(malloc
)("ms.main.mpoci.1",
2158 sizeof(Snapshot
) * clo_max_snapshots
);
2159 // We don't want to do snapshot sanity checks here, because they're
2160 // currently uninitialised.
2161 for (i
= 0; i
< clo_max_snapshots
; i
++) {
2162 clear_snapshot( & snapshots
[i
], /*do_sanity_check*/False
);
2164 sanity_check_snapshots_array();
2166 if (VG_(clo_xtree_memory
) == Vg_XTMemory_Full
)
2167 // Activate full xtree memory profiling.
2168 // As massif already filters one top function, use as filter
2169 // VG_(XT_filter_maybe_below_main).
2170 VG_(XTMemory_Full_init
)(VG_(XT_filter_maybe_below_main
));
2174 static void ms_pre_clo_init(void)
2176 VG_(details_name
) ("Massif");
2177 VG_(details_version
) (NULL
);
2178 VG_(details_description
) ("a heap profiler");
2179 VG_(details_copyright_author
)(
2180 "Copyright (C) 2003-2024, and GNU GPL'd, by Nicholas Nethercote et al.");
2181 VG_(details_bug_reports_to
) (VG_BUGS_TO
);
2183 VG_(details_avg_translation_sizeB
) ( 330 );
2185 VG_(clo_vex_control
).iropt_register_updates_default
2186 = VG_(clo_px_file_backed
)
2187 = VexRegUpdSpAtMemAccess
; // overridable by the user.
2190 VG_(basic_tool_funcs
) (ms_post_clo_init
,
2195 VG_(needs_libc_freeres
)();
2196 VG_(needs_cxx_freeres
)();
2197 VG_(needs_command_line_options
)(ms_process_cmd_line_option
,
2199 ms_print_debug_usage
);
2200 VG_(needs_client_requests
) (ms_handle_client_request
);
2201 VG_(needs_sanity_checks
) (ms_cheap_sanity_check
,
2202 ms_expensive_sanity_check
);
2203 VG_(needs_print_stats
) (ms_print_stats
);
2204 VG_(needs_malloc_replacement
) (ms_malloc
,
2206 ms___builtin_new_aligned
,
2207 ms___builtin_vec_new
,
2208 ms___builtin_vec_new_aligned
,
2212 ms___builtin_delete
,
2213 ms___builtin_delete_aligned
,
2214 ms___builtin_vec_delete
,
2215 ms___builtin_vec_delete_aligned
,
2217 ms_malloc_usable_size
,
2221 HP_chunk_poolalloc
= VG_(newPA
)
2225 "massif MC_Chunk pool",
2227 malloc_list
= VG_(HT_construct
)( "Massif's malloc list" );
2230 heap_xt
= VG_(XT_create
)(VG_(malloc
),
2234 init_szB
, add_szB
, sub_szB
,
2237 // Initialise alloc_fns and ignore_fns.
2241 // Initialise args_for_massif.
2242 args_for_massif
= VG_(newXA
)(VG_(malloc
), "ms.main.mprci.1",
2243 VG_(free
), sizeof(HChar
*));
2246 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init
)
2248 //--------------------------------------------------------------------//
2250 //--------------------------------------------------------------------//