1 /* -*- mode: C; c-basic-offset: 3; -*- */
4 This file is part of MemCheck, a heavyweight Valgrind tool for
5 detecting memory errors.
7 Copyright (C) 2012-2017 Florian Krohm
9 This program is free software; you can redistribute it and/or
10 modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version.
14 This program is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, see <http://www.gnu.org/licenses/>.
22 The GNU General Public License is contained in the file COPYING.
25 #include <stdio.h> // fprintf
26 #include <assert.h> // assert
27 #if defined(__APPLE__)
28 #include <machine/endian.h>
29 #define __BYTE_ORDER BYTE_ORDER
30 #define __LITTLE_ENDIAN LITTLE_ENDIAN
32 #define __LITTLE_ENDIAN 1234
33 #define __BIG_ENDIAN 4321
34 # if defined(_LITTLE_ENDIAN)
35 # define __BYTE_ORDER __LITTLE_ENDIAN
37 # define __BYTE_ORDER __BIG_ENDIAN
39 #elif defined(__linux__)
42 #include <sys/endian.h>
43 #define __BYTE_ORDER BYTE_ORDER
44 #define __LITTLE_ENDIAN LITTLE_ENDIAN
50 #include "memcheck.h" // VALGRIND_MAKE_MEM_DEFINED
53 /* Return the bits of V if they fit into 64-bit. If V has fewer than
54 64 bits, the bit pattern is zero-extended to the left. */
59 case 1: return v
.bits
.u32
;
60 case 8: return v
.bits
.u8
;
61 case 16: return v
.bits
.u16
;
62 case 32: return v
.bits
.u32
;
63 case 64: return v
.bits
.u64
;
73 print_vbits(FILE *fp
, vbits_t v
)
76 case 1: fprintf(fp
, "%08x", v
.bits
.u32
); break;
77 case 8: fprintf(fp
, "%02x", v
.bits
.u8
); break;
78 case 16: fprintf(fp
, "%04x", v
.bits
.u16
); break;
79 case 32: fprintf(fp
, "%08x", v
.bits
.u32
); break;
80 case 64: fprintf(fp
, "%016"PRIx64
, v
.bits
.u64
); break;
82 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
83 fprintf(fp
, "%016"PRIx64
, v
.bits
.u128
[1]);
84 fprintf(fp
, "%016"PRIx64
, v
.bits
.u128
[0]);
86 fprintf(fp
, "%016"PRIx64
, v
.bits
.u128
[0]);
87 fprintf(fp
, "%016"PRIx64
, v
.bits
.u128
[1]);
91 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
92 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[3]);
93 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[2]);
94 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[1]);
95 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[0]);
97 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[0]);
98 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[1]);
99 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[2]);
100 fprintf(fp
, "%016"PRIx64
, v
.bits
.u256
[3]);
109 /* Return a value where all bits are set to undefined. */
111 undefined_vbits(unsigned num_bits
)
113 vbits_t
new = { .num_bits
= num_bits
};
116 case 1: new.bits
.u32
= 0x01; break;
117 case 8: new.bits
.u8
= 0xff; break;
118 case 16: new.bits
.u16
= 0xffff; break;
119 case 32: new.bits
.u32
= ~0; break;
120 case 64: new.bits
.u64
= ~0ull; break;
121 case 128: new.bits
.u128
[0] = ~0ull;
122 new.bits
.u128
[1] = ~0ull;
124 case 256: new.bits
.u256
[0] = ~0ull;
125 new.bits
.u256
[1] = ~0ull;
126 new.bits
.u256
[2] = ~0ull;
127 new.bits
.u256
[3] = ~0ull;
135 /* The following routines named undefined_vbits_BxE() return a 128-bit
136 * vector with E elements each of size bits. If any of the bits in an
137 * element is undefined, then return a value where all bits in that
138 * element are undefined.
141 undefined_vbits_BxE(unsigned int bits
, unsigned int elements
, vbits_t v
)
143 vbits_t
new = { .num_bits
= v
.num_bits
};
144 uint64_t mask
= ~0ull >> (64 - bits
);
147 assert ((elements
% 2) == 0);
150 for (i
= 0; i
<2; i
++) {
151 new.bits
.u128
[i
] = 0ull;
153 for (j
= 0; j
<elements
/2; j
++) {
154 if ((v
.bits
.u128
[i
] & (mask
<< (j
*bits
))) != 0)
155 new.bits
.u128
[i
] |= (mask
<< (j
*bits
));
161 /* The following routines named undefined_vbits_BxE_rotate() return a 128-bit
162 * vector with E elements each of size bits. The bits in v are rotated
163 * left by the amounts in the corresponding element of val. Specified rotate
164 * amount field is assumed to be at most 8-bits wide.
167 undefined_vbits_BxE_rotate(unsigned int bits
, unsigned int elements
,
168 vbits_t v
, value_t val
)
170 vbits_t
new = { .num_bits
= v
.num_bits
};
171 uint64_t mask
= ~0ull >> (64 - bits
);
172 uint64_t const shift_mask
= 0xFF;
176 assert ((elements
% 2) == 0);
179 for (i
= 0; i
<2; i
++) {
180 new.bits
.u128
[i
] = 0ull;
182 for (j
= 0; j
<elements
/2; j
++) {
183 element
= (v
.bits
.u128
[i
] >> (j
*bits
)) & mask
;
184 shift
= (int)((val
.u128
[i
] >> (j
*bits
)) & shift_mask
);
188 new.bits
.u128
[i
] = element
>> -shift
;
190 /* OR in the bits shifted out into the top of the element */
191 new.bits
.u128
[i
] |= element
<< (bits
+ shift
);
194 /* upper bits from shift */
195 new.bits
.u128
[i
] = element
<< shift
;
197 /* OR in the bits shifted out into the bottom of the element */
198 new.bits
.u128
[i
] |= element
>> (bits
- shift
);
205 /* Only the even elements of the input are used by the Iop*/
207 undefined_vbits_128_even_element(unsigned int bits
, unsigned int elements
,
212 unsigned int const element_width
= 128/elements
;
213 vbits_t
new = { .num_bits
= v
.num_bits
};
215 assert ((elements
% 2) == 0);
218 /* Create a 128-bit mask with the bits in the even numbered
219 * elements are all ones.
221 mask
= ~0ull >> (64 - bits
);
223 for (i
= 2; i
< elements
/2; i
=i
+2) {
224 mask
|= mask
<< (i
* element_width
);
227 new.bits
.u128
[0] = mask
& v
.bits
.u128
[0];
228 new.bits
.u128
[1] = mask
& v
.bits
.u128
[1];
233 /* Concatenate bit i from each byte j. Place concatenated 8 bit value into
234 * byte i of the result. Do for all i from 0 to 7 and j from 0 to 7 of each
238 undefined_vbits_64x2_transpose(vbits_t v
)
240 vbits_t
new = { .num_bits
= v
.num_bits
};
241 unsigned int bit
, byte
, element
;
242 uint64_t value
, new_value
, select_bit
;
244 for (element
= 0; element
< 2; element
++) {
245 value
= v
.bits
.u128
[element
];
247 for (byte
= 0; byte
< 8; byte
++) {
248 for (bit
= 0; bit
< 8; bit
++) {
249 select_bit
= 1ULL & (value
>> (bit
+ 8*byte
));
250 new_value
|= select_bit
<< (bit
*8 + byte
);
253 new.bits
.u128
[element
] = new_value
;
258 /* The routine takes a 256-bit vector value stored across the two 128-bit
259 * source operands src1 and src2. The size of each element in the input is
260 * src_num_bits. The elements are narrowed to result_num_bits and packed
261 * into the result. If saturate is True, then the all the result bits are
262 * set to 1 if the source element can not be represented in result_num_bits.
265 undefined_vbits_Narrow256_AtoB(unsigned int src_num_bits
,
266 unsigned int result_num_bits
,
267 vbits_t src1_v
, value_t src1_value
,
268 vbits_t src2_v
, value_t src2_value
,
272 vbits_t
new = { .num_bits
= src1_v
.num_bits
};
274 uint64_t vbits
, new_value
;
275 uint64_t const src_mask
= ~0x0ULL
>> (64 - src_num_bits
);
276 uint64_t const result_mask
= ~0x0ULL
>> (64 - result_num_bits
);
277 unsigned int num_elements_per_64_bits
= src_num_bits
/64;
282 * the saturated value is 0xFFFF for the vbit is in one of the lower
283 * 32-bits of the source. The saturated result is 0xFFFF0000 if the
284 * vbit is in the upper 32-bits of the source. Not sure what
285 * the saturated result is in general for a B-bit result.
287 * ONLY TESTED FOR 64 bit input, 32 bit result
289 uint64_t const saturated_result
= 0xFFFFULL
;
291 /* Source elements are split between the two source operands */
293 assert(src_num_bits
<= 64);
294 assert(result_num_bits
< 64);
295 assert(result_num_bits
< src_num_bits
);
297 /* Narrow the elements from src1 to the upper 64-bits of result.
298 * Do each of the 64 bit values that make up a u128
301 for (i
= 0; i
< num_elements_per_64_bits
; i
++) {
302 vbits
= src1_v
.bits
.u128
[0] >> (i
* src_num_bits
);
305 shift
= result_num_bits
* i
;
308 /* Value will not fit in B-bits, saturate the result as needed. */
309 if (vbits
>> (src_num_bits
/2))
310 /* vbit is upper half of the source */
311 new_value
|= saturated_result
<< ( shift
+ result_num_bits
/2);
313 new_value
|= saturated_result
<< shift
;
315 new_value
|= (vbits
& result_mask
) << shift
;
320 for (i
= 0; i
< num_elements_per_64_bits
; i
++) {
321 vbits
= src1_v
.bits
.u128
[1] >> (i
* src_num_bits
);
324 shift
= result_num_bits
* i
+ (num_elements_per_64_bits
328 /* Value will not fit in result_num_bits, saturate the result
331 if (vbits
>> (src_num_bits
/2))
332 /* vbit is upper half of the source */
333 new_value
|= saturated_result
<< (shift
+ result_num_bits
/2);
336 new_value
|= saturated_result
<< shift
;
339 new_value
|= (vbits
& result_mask
) << shift
;
343 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
344 new.bits
.u128
[1] = new_value
;
346 /* Big endian, swap the upper and lower 32-bits of new_value */
347 new.bits
.u128
[0] = (new_value
<< 32) | (new_value
>> 32);
350 /* Narrow the elements from src2 to the lower 64-bits of result.
351 * Do each of the 64 bit values that make up a u128
353 for (i
= 0; i
< num_elements_per_64_bits
; i
++) {
354 vbits
= src2_v
.bits
.u128
[0] >> (i
* src_num_bits
);
357 shift
= result_num_bits
* i
;
360 /* Value will not fit in result, saturate the result as needed. */
361 if (vbits
>> (src_num_bits
/2))
362 /* vbit is upper half of the source */
363 new_value
|= saturated_result
<< (shift
+ result_num_bits
/2);
365 new_value
|= saturated_result
<< shift
;
367 new_value
|= (vbits
& result_mask
) << shift
;
372 for (i
= 0; i
< num_elements_per_64_bits
; i
++) {
373 vbits
= src2_v
.bits
.u128
[1] >> (i
* src_num_bits
);
378 /* Value will not fit in result_num_bits, saturate the result
381 if (vbits
>> (src_num_bits
/2))
382 /* vbit is upper half of the source */
383 new_value
|= saturated_result
<< (result_num_bits
* i
385 + (num_elements_per_64_bits
388 new_value
|= saturated_result
<< (result_num_bits
* i
389 + (num_elements_per_64_bits
393 new_value
|= (vbits
& result_mask
) << (result_num_bits
* i
394 + (num_elements_per_64_bits
399 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
400 new.bits
.u128
[0] = new_value
;
402 /* Big endian, swap the upper and lower 32-bits of new_value */
403 new.bits
.u128
[1] = (new_value
<< 32) | (new_value
>> 32);
408 /* Return a value where all bits are set to defined. */
410 defined_vbits(unsigned num_bits
)
412 vbits_t
new = { .num_bits
= num_bits
};
415 case 1: new.bits
.u32
= 0x0; break;
416 case 8: new.bits
.u8
= 0x0; break;
417 case 16: new.bits
.u16
= 0x0; break;
418 case 32: new.bits
.u32
= 0x0; break;
419 case 64: new.bits
.u64
= 0x0; break;
420 case 128: new.bits
.u128
[0] = 0x0;
421 new.bits
.u128
[1] = 0x0;
423 case 256: new.bits
.u256
[0] = 0x0;
424 new.bits
.u256
[1] = 0x0;
425 new.bits
.u256
[2] = 0x0;
426 new.bits
.u256
[3] = 0x0;
435 /* Return 1, if equal. */
437 equal_vbits(vbits_t v1
, vbits_t v2
)
439 assert(v1
.num_bits
== v2
.num_bits
);
441 switch (v1
.num_bits
) {
442 case 1: return v1
.bits
.u32
== v2
.bits
.u32
;
443 case 8: return v1
.bits
.u8
== v2
.bits
.u8
;
444 case 16: return v1
.bits
.u16
== v2
.bits
.u16
;
445 case 32: return v1
.bits
.u32
== v2
.bits
.u32
;
446 case 64: return v1
.bits
.u64
== v2
.bits
.u64
;
447 case 128: return v1
.bits
.u128
[0] == v2
.bits
.u128
[0] &&
448 v1
.bits
.u128
[1] == v2
.bits
.u128
[1];
449 case 256: return v1
.bits
.u256
[0] == v2
.bits
.u256
[0] &&
450 v1
.bits
.u256
[1] == v2
.bits
.u256
[1] &&
451 v1
.bits
.u256
[2] == v2
.bits
.u256
[2] &&
452 v1
.bits
.u256
[3] == v2
.bits
.u256
[3];
459 /* Truncate the bit pattern in V1 to NUM_BITS bits */
461 truncate_vbits(vbits_t v
, unsigned num_bits
)
463 assert(num_bits
<= v
.num_bits
);
465 if (num_bits
== v
.num_bits
) return v
;
467 vbits_t
new = { .num_bits
= num_bits
};
469 if (num_bits
<= 64) {
472 if (v
.num_bits
<= 64)
473 bits
= get_bits64(v
);
474 else if (v
.num_bits
== 128)
475 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
476 bits
= v
.bits
.u128
[0];
478 bits
= v
.bits
.u128
[1];
479 else if (v
.num_bits
== 256)
480 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
481 bits
= v
.bits
.u256
[0];
483 bits
= v
.bits
.u256
[3];
488 case 1: new.bits
.u32
= bits
& 0x01; break;
489 case 8: new.bits
.u8
= bits
& 0xff; break;
490 case 16: new.bits
.u16
= bits
& 0xffff; break;
491 case 32: new.bits
.u32
= bits
& ~0u; break;
492 case 64: new.bits
.u64
= bits
& ~0ll; break;
499 if (num_bits
== 128) {
500 assert(v
.num_bits
== 256);
501 /* From 256 bits to 128 */
502 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
503 new.bits
.u128
[0] = v
.bits
.u256
[0];
504 new.bits
.u128
[1] = v
.bits
.u256
[1];
506 new.bits
.u128
[0] = v
.bits
.u256
[2];
507 new.bits
.u128
[1] = v
.bits
.u256
[3];
512 /* Cannot truncate to 256 bits from something larger */
517 /* Helper function to compute left_vbits */
527 left_vbits(vbits_t v
, unsigned num_bits
)
529 assert(num_bits
>= v
.num_bits
);
531 vbits_t
new = { .num_bits
= num_bits
};
533 if (v
.num_bits
<= 64) {
534 uint64_t bits
= left64(get_bits64(v
));
537 case 8: new.bits
.u8
= bits
& 0xff; break;
538 case 16: new.bits
.u16
= bits
& 0xffff; break;
539 case 32: new.bits
.u32
= bits
& ~0u; break;
540 case 64: new.bits
.u64
= bits
& ~0ll; break;
542 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
543 new.bits
.u128
[0] = bits
;
544 if (bits
& (1ull << 63)) { // MSB is set
545 new.bits
.u128
[1] = ~0ull;
547 new.bits
.u128
[1] = 0;
550 new.bits
.u128
[1] = bits
;
551 if (bits
& (1ull << 63)) { // MSB is set
552 new.bits
.u128
[0] = ~0ull;
554 new.bits
.u128
[0] = 0;
559 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
560 new.bits
.u256
[0] = bits
;
561 if (bits
& (1ull << 63)) { // MSB is set
562 new.bits
.u256
[1] = ~0ull;
563 new.bits
.u256
[2] = ~0ull;
564 new.bits
.u256
[3] = ~0ull;
566 new.bits
.u256
[1] = 0;
567 new.bits
.u256
[2] = 0;
568 new.bits
.u256
[3] = 0;
571 new.bits
.u256
[3] = bits
;
572 if (bits
& (1ull << 63)) { // MSB is set
573 new.bits
.u256
[0] = ~0ull;
574 new.bits
.u256
[1] = ~0ull;
575 new.bits
.u256
[2] = ~0ull;
577 new.bits
.u256
[0] = 0;
578 new.bits
.u256
[1] = 0;
579 new.bits
.u256
[2] = 0;
589 if (v
.num_bits
== 128) {
590 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
591 if (v
.bits
.u128
[1] != 0) {
592 new.bits
.u128
[0] = v
.bits
.u128
[0];
593 new.bits
.u128
[1] = left64(v
.bits
.u128
[1]);
595 new.bits
.u128
[0] = left64(v
.bits
.u128
[0]);
596 if (new.bits
.u128
[0] & (1ull << 63)) { // MSB is set
597 new.bits
.u128
[1] = ~0ull;
599 new.bits
.u128
[1] = 0;
603 if (v
.bits
.u128
[0] != 0) {
604 new.bits
.u128
[0] = left64(v
.bits
.u128
[0]);
605 new.bits
.u128
[1] = v
.bits
.u128
[1];
607 new.bits
.u128
[1] = left64(v
.bits
.u128
[1]);
608 if (new.bits
.u128
[1] & (1ull << 63)) { // MSB is set
609 new.bits
.u128
[0] = ~0ull;
611 new.bits
.u128
[0] = 0;
615 if (num_bits
== 128) return new;
617 assert(num_bits
== 256);
619 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
620 uint64_t b1
= new.bits
.u128
[1];
621 uint64_t b0
= new.bits
.u128
[0];
623 new.bits
.u256
[0] = b0
;
624 new.bits
.u256
[1] = b1
;
626 if (new.bits
.u256
[1] & (1ull << 63)) { // MSB is set
627 new.bits
.u256
[2] = ~0ull;
628 new.bits
.u256
[3] = ~0ull;
630 new.bits
.u256
[2] = 0;
631 new.bits
.u256
[3] = 0;
634 uint64_t b1
= new.bits
.u128
[0];
635 uint64_t b0
= new.bits
.u128
[1];
637 new.bits
.u256
[2] = b0
;
638 new.bits
.u256
[3] = b1
;
640 if (new.bits
.u256
[2] & (1ull << 63)) { // MSB is set
641 new.bits
.u256
[0] = ~0ull;
642 new.bits
.u256
[1] = ~0ull;
644 new.bits
.u256
[0] = 0;
645 new.bits
.u256
[1] = 0;
656 or_vbits(vbits_t v1
, vbits_t v2
)
658 assert(v1
.num_bits
== v2
.num_bits
);
660 vbits_t
new = { .num_bits
= v1
.num_bits
};
662 switch (v1
.num_bits
) {
663 case 1: new.bits
.u32
= (v1
.bits
.u32
| v2
.bits
.u32
) & 1; break;
664 case 8: new.bits
.u8
= v1
.bits
.u8
| v2
.bits
.u8
; break;
665 case 16: new.bits
.u16
= v1
.bits
.u16
| v2
.bits
.u16
; break;
666 case 32: new.bits
.u32
= v1
.bits
.u32
| v2
.bits
.u32
; break;
667 case 64: new.bits
.u64
= v1
.bits
.u64
| v2
.bits
.u64
; break;
668 case 128: new.bits
.u128
[0] = v1
.bits
.u128
[0] | v2
.bits
.u128
[0];
669 new.bits
.u128
[1] = v1
.bits
.u128
[1] | v2
.bits
.u128
[1];
671 case 256: new.bits
.u256
[0] = v1
.bits
.u256
[0] | v2
.bits
.u256
[0];
672 new.bits
.u256
[1] = v1
.bits
.u256
[1] | v2
.bits
.u256
[1];
673 new.bits
.u256
[2] = v1
.bits
.u256
[2] | v2
.bits
.u256
[2];
674 new.bits
.u256
[3] = v1
.bits
.u256
[3] | v2
.bits
.u256
[3];
685 and_vbits(vbits_t v1
, vbits_t v2
)
687 assert(v1
.num_bits
== v2
.num_bits
);
689 vbits_t
new = { .num_bits
= v1
.num_bits
};
691 switch (v1
.num_bits
) {
692 case 1: new.bits
.u32
= (v1
.bits
.u32
& v2
.bits
.u32
) & 1; break;
693 case 8: new.bits
.u8
= v1
.bits
.u8
& v2
.bits
.u8
; break;
694 case 16: new.bits
.u16
= v1
.bits
.u16
& v2
.bits
.u16
; break;
695 case 32: new.bits
.u32
= v1
.bits
.u32
& v2
.bits
.u32
; break;
696 case 64: new.bits
.u64
= v1
.bits
.u64
& v2
.bits
.u64
; break;
697 case 128: new.bits
.u128
[0] = v1
.bits
.u128
[0] & v2
.bits
.u128
[0];
698 new.bits
.u128
[1] = v1
.bits
.u128
[1] & v2
.bits
.u128
[1];
700 case 256: new.bits
.u256
[0] = v1
.bits
.u256
[0] & v2
.bits
.u256
[0];
701 new.bits
.u256
[1] = v1
.bits
.u256
[1] & v2
.bits
.u256
[1];
702 new.bits
.u256
[2] = v1
.bits
.u256
[2] & v2
.bits
.u256
[2];
703 new.bits
.u256
[3] = v1
.bits
.u256
[3] & v2
.bits
.u256
[3];
714 concat_vbits(vbits_t v1
, vbits_t v2
)
716 assert(v1
.num_bits
== v2
.num_bits
);
718 vbits_t
new = { .num_bits
= v1
.num_bits
* 2 };
720 switch (v1
.num_bits
) {
721 case 8: new.bits
.u16
= v1
.bits
.u8
;
722 new.bits
.u16
= (new.bits
.u16
<< 8) | v2
.bits
.u8
; break;
723 case 16: new.bits
.u32
= v1
.bits
.u16
;
724 new.bits
.u32
= (new.bits
.u32
<< 16) | v2
.bits
.u16
; break;
725 case 32: new.bits
.u64
= v1
.bits
.u32
;
726 new.bits
.u64
= (new.bits
.u64
<< 32) | v2
.bits
.u32
; break;
728 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
729 new.bits
.u128
[0] = v2
.bits
.u64
;
730 new.bits
.u128
[1] = v1
.bits
.u64
;
732 new.bits
.u128
[0] = v1
.bits
.u64
;
733 new.bits
.u128
[1] = v2
.bits
.u64
;
737 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
738 new.bits
.u256
[0] = v2
.bits
.u128
[0];
739 new.bits
.u256
[1] = v2
.bits
.u128
[1];
740 new.bits
.u256
[2] = v1
.bits
.u128
[0];
741 new.bits
.u256
[3] = v1
.bits
.u128
[1];
743 new.bits
.u256
[0] = v1
.bits
.u128
[0];
744 new.bits
.u256
[1] = v1
.bits
.u128
[1];
745 new.bits
.u256
[2] = v2
.bits
.u128
[0];
746 new.bits
.u256
[3] = v2
.bits
.u128
[1];
749 case 256: /* Fall through */
759 upper_vbits(vbits_t v
)
761 vbits_t
new = { .num_bits
= v
.num_bits
/ 2 };
763 switch (v
.num_bits
) {
764 case 16: new.bits
.u8
= v
.bits
.u16
>> 8; break;
765 case 32: new.bits
.u16
= v
.bits
.u32
>> 16; break;
766 case 64: new.bits
.u32
= v
.bits
.u64
>> 32; break;
768 if (__BYTE_ORDER
== __LITTLE_ENDIAN
)
769 new.bits
.u64
= v
.bits
.u128
[1];
771 new.bits
.u64
= v
.bits
.u128
[0];
774 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
775 new.bits
.u128
[0] = v
.bits
.u256
[2];
776 new.bits
.u128
[1] = v
.bits
.u256
[3];
778 new.bits
.u128
[0] = v
.bits
.u256
[0];
779 new.bits
.u128
[1] = v
.bits
.u256
[1];
792 zextend_vbits(vbits_t v
, unsigned num_bits
)
794 assert(num_bits
>= v
.num_bits
);
796 if (num_bits
== v
.num_bits
) return v
;
798 vbits_t
new = { .num_bits
= num_bits
};
800 if (v
.num_bits
<= 64) {
801 uint64_t bits
= get_bits64(v
);
804 case 8: new.bits
.u8
= bits
; break;
805 case 16: new.bits
.u16
= bits
; break;
806 case 32: new.bits
.u32
= bits
; break;
807 case 64: new.bits
.u64
= bits
; break;
809 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
810 new.bits
.u128
[0] = bits
;
811 new.bits
.u128
[1] = 0;
813 new.bits
.u128
[0] = 0;
814 new.bits
.u128
[1] = bits
;
818 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
819 new.bits
.u256
[0] = bits
;
820 new.bits
.u256
[1] = 0;
821 new.bits
.u256
[2] = 0;
822 new.bits
.u256
[3] = 0;
824 new.bits
.u256
[0] = 0;
825 new.bits
.u256
[1] = 0;
826 new.bits
.u256
[2] = 0;
827 new.bits
.u256
[3] = bits
;
836 if (v
.num_bits
== 128) {
837 assert(num_bits
== 256);
839 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
840 new.bits
.u256
[0] = v
.bits
.u128
[0];
841 new.bits
.u256
[1] = v
.bits
.u128
[1];
842 new.bits
.u256
[2] = 0;
843 new.bits
.u256
[3] = 0;
845 new.bits
.u256
[0] = 0;
846 new.bits
.u256
[1] = 0;
847 new.bits
.u256
[2] = v
.bits
.u128
[1];
848 new.bits
.u256
[3] = v
.bits
.u128
[0];
853 /* Cannot zero-extend a 256-bit value to something larger */
859 sextend_vbits(vbits_t v
, unsigned num_bits
)
861 assert(num_bits
>= v
.num_bits
);
865 switch (v
.num_bits
) {
866 case 8: if (v
.bits
.u8
== 0x80) sextend
= 1; break;
867 case 16: if (v
.bits
.u16
== 0x8000) sextend
= 1; break;
868 case 32: if (v
.bits
.u32
== 0x80000000) sextend
= 1; break;
869 case 64: if (v
.bits
.u64
== (1ull << 63)) sextend
= 1; break;
870 case 128: if (v
.bits
.u128
[1] == (1ull << 63)) sextend
= 1; break;
871 case 256: if (v
.bits
.u256
[3] == (1ull << 63)) sextend
= 1; break;
877 return sextend
? left_vbits(v
, num_bits
) : zextend_vbits(v
, num_bits
);
882 onehot_vbits(unsigned bitno
, unsigned num_bits
)
884 assert(bitno
< num_bits
);
886 vbits_t
new = { .num_bits
= num_bits
};
889 case 1: new.bits
.u32
= 1 << bitno
; break;
890 case 8: new.bits
.u8
= 1 << bitno
; break;
891 case 16: new.bits
.u16
= 1 << bitno
; break;
892 case 32: new.bits
.u32
= 1u << bitno
; break;
893 case 64: new.bits
.u64
= 1ull << bitno
; break;
895 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
897 new.bits
.u128
[0] = 1ull << bitno
;
898 new.bits
.u128
[1] = 0;
900 new.bits
.u128
[0] = 0;
901 new.bits
.u128
[1] = 1ull << (bitno
- 64);
905 new.bits
.u128
[0] = 0;
906 new.bits
.u128
[1] = 1ull << bitno
;
908 new.bits
.u128
[0] = 1ull << (bitno
- 64);
909 new.bits
.u128
[1] = 0;
914 if (__BYTE_ORDER
== __LITTLE_ENDIAN
) {
916 new.bits
.u256
[0] = 1ull << bitno
;
917 new.bits
.u256
[1] = 0;
918 new.bits
.u256
[2] = 0;
919 new.bits
.u256
[3] = 0;
920 } else if (bitno
< 128) {
921 new.bits
.u256
[0] = 0;
922 new.bits
.u256
[1] = 1ull << (bitno
- 64);
923 new.bits
.u256
[2] = 0;
924 new.bits
.u256
[3] = 0;
925 } else if (bitno
< 192) {
926 new.bits
.u256
[0] = 0;
927 new.bits
.u256
[1] = 0;
928 new.bits
.u256
[2] = 1ull << (bitno
- 128);
929 new.bits
.u256
[3] = 0;
931 new.bits
.u256
[0] = 0;
932 new.bits
.u256
[1] = 0;
933 new.bits
.u256
[2] = 0;
934 new.bits
.u256
[3] = 1ull << (bitno
- 192);
938 new.bits
.u256
[0] = 0;
939 new.bits
.u256
[1] = 0;
940 new.bits
.u256
[2] = 0;
941 new.bits
.u256
[3] = 1ull << bitno
;
942 } else if (bitno
< 128) {
943 new.bits
.u256
[0] = 0;
944 new.bits
.u256
[1] = 0;
945 new.bits
.u256
[2] = 1ull << (bitno
- 64);
946 new.bits
.u256
[3] = 0;
947 } else if (bitno
< 192) {
948 new.bits
.u256
[0] = 0;
949 new.bits
.u256
[1] = 1ull << (bitno
- 128);
950 new.bits
.u256
[2] = 0;
951 new.bits
.u256
[3] = 0;
953 new.bits
.u256
[0] = 1ull << (bitno
- 192);
954 new.bits
.u256
[1] = 0;
955 new.bits
.u256
[2] = 0;
956 new.bits
.u256
[3] = 0;
968 completely_defined_vbits(vbits_t v
)
970 return equal_vbits(v
, defined_vbits(v
.num_bits
));
975 shl_vbits(vbits_t v
, unsigned shift_amount
)
977 assert(shift_amount
< v
.num_bits
);
981 switch (v
.num_bits
) {
982 case 8: new.bits
.u8
<<= shift_amount
; break;
983 case 16: new.bits
.u16
<<= shift_amount
; break;
984 case 32: new.bits
.u32
<<= shift_amount
; break;
985 case 64: new.bits
.u64
<<= shift_amount
; break;
986 case 128: /* fall through */
987 case 256: /* fall through */
997 shr_vbits(vbits_t v
, unsigned shift_amount
)
999 assert(shift_amount
< v
.num_bits
);
1003 switch (v
.num_bits
) {
1004 case 8: new.bits
.u8
>>= shift_amount
; break;
1005 case 16: new.bits
.u16
>>= shift_amount
; break;
1006 case 32: new.bits
.u32
>>= shift_amount
; break;
1007 case 64: new.bits
.u64
>>= shift_amount
; break;
1008 case 128: /* fall through */
1009 case 256: /* fall through */
1019 sar_vbits(vbits_t v
, unsigned shift_amount
)
1021 assert(shift_amount
< v
.num_bits
);
1026 switch (v
.num_bits
) {
1028 new.bits
.u8
>>= shift_amount
;
1029 msb
= (v
.bits
.u8
& 0x80) != 0;
1032 new.bits
.u16
>>= shift_amount
;
1033 msb
= (v
.bits
.u16
& 0x8000) != 0;
1036 new.bits
.u32
>>= shift_amount
;
1037 msb
= (v
.bits
.u32
& (1u << 31)) != 0;
1040 new.bits
.u64
>>= shift_amount
;
1041 msb
= (v
.bits
.u64
& (1ull << 63)) != 0;
1043 case 128: /* fall through */
1044 case 256: /* fall through */
1050 new = left_vbits(new, new.num_bits
);
1054 /* Return a value for the POWER Iop_CmpORD class iops */
1056 cmpord_vbits(unsigned v1_num_bits
, unsigned v2_num_bits
)
1058 vbits_t
new = { .num_bits
= v1_num_bits
};
1060 /* Size of values being compared must be the same */
1061 assert( v1_num_bits
== v2_num_bits
);
1063 /* Comparison only produces 32-bit or 64-bit value where
1064 * the lower 3 bits are set to indicate, less than, equal and greater than.
1066 switch (v1_num_bits
) {
1083 /* Deal with precise integer EQ and NE. Needs some helpers. The helpers
1084 compute the result for 64-bit inputs, but can also be used for the
1085 32/16/8 bit cases, because we can zero extend both the vbits and values
1086 out to 64 bits and still get the correct result. */
1089 /* Get both vbits and values for a binary operation, that has args of the
1090 same size (type?), namely 8, 16, 32 or 64 bit. Unused bits are set to
1091 zero in both vbit_ and val_ cases. */
1093 void get_binary_vbits_and_vals64 ( /*OUT*/uint64_t* varg1
,
1094 /*OUT*/uint64_t* arg1
,
1095 /*OUT*/uint64_t* varg2
,
1096 /*OUT*/uint64_t* arg2
,
1097 vbits_t vbits1
, vbits_t vbits2
,
1098 value_t val1
, value_t val2
)
1100 assert(vbits1
.num_bits
== vbits2
.num_bits
);
1102 *varg1
= *arg1
= *varg2
= *arg2
= 0;
1104 switch (vbits1
.num_bits
) {
1105 case 8: *arg1
= (uint64_t)val1
.u8
; *arg2
= (uint64_t)val2
.u8
; break;
1106 case 16: *arg1
= (uint64_t)val1
.u16
; *arg2
= (uint64_t)val2
.u16
; break;
1107 case 32: *arg1
= (uint64_t)val1
.u32
; *arg2
= (uint64_t)val2
.u32
; break;
1108 case 64: *arg1
= val1
.u64
; *arg2
= val2
.u64
; break;
1109 default: panic(__func__
);
1112 *varg1
= get_bits64(vbits1
);
1113 *varg2
= get_bits64(vbits2
);
1116 static uint64_t uifu64 ( uint64_t x
, uint64_t y
) { return x
| y
; }
1118 /* Returns 0 (defined) or 1 (undefined). */
1119 static uint32_t ref_CmpEQ64_with_vbits ( uint64_t arg1
, uint64_t varg1
,
1120 uint64_t arg2
, uint64_t varg2
)
1122 uint64_t naive
= uifu64(varg1
, varg2
);
1124 return 0; /* defined */
1127 // Mark the two actual arguments as fully defined, else Memcheck will
1128 // complain about undefinedness in them, which is correct but confusing
1129 // (and pollutes the output of this test program.)
1130 VALGRIND_MAKE_MEM_DEFINED(&arg1
, sizeof(arg1
));
1131 VALGRIND_MAKE_MEM_DEFINED(&arg2
, sizeof(arg2
));
1133 // if any bit in naive is 1, then the result is undefined. Except,
1134 // if we can find two corresponding bits in arg1 and arg2 such that they
1135 // are different but both defined, then the overall result is defined
1136 // (because the two bits guarantee that the bit vectors arg1 and arg2
1139 for (i
= 0; i
< 64; i
++) {
1140 if ((arg1
& 1) != (arg2
& 1) && (varg1
& 1) == 0 && (varg2
& 1) == 0) {
1141 return 0; /* defined */
1143 arg1
>>= 1; arg2
>>= 1; varg1
>>= 1; varg2
>>= 1;
1146 return 1; /* undefined */
1151 cmp_eq_ne_vbits(vbits_t vbits1
, vbits_t vbits2
, value_t val1
, value_t val2
)
1153 uint64_t varg1
= 0, arg1
= 0, varg2
= 0, arg2
= 0;
1154 get_binary_vbits_and_vals64(&varg1
, &arg1
, &varg2
, &arg2
,
1155 vbits1
, vbits2
, val1
, val2
);
1157 vbits_t res
= { .num_bits
= 1 };
1158 res
.bits
.u32
= ref_CmpEQ64_with_vbits(arg1
, varg1
, arg2
, varg2
);
1163 /* Given unsigned vbits and value, return the minimum possible value. */
1164 uint64_t min_vbits(uint64_t vbits
, uint64_t value
)
1166 // This is derived from expensiveAddSub() in mc_translate.c.
1167 return value
& ~vbits
;
1170 /* Given unsigned vbits and value, return the maximum possible value. */
1171 uint64_t max_vbits(uint64_t vbits
, uint64_t value
)
1173 // This is derived from expensiveAddSub() in mc_translate.c.
1174 return value
| vbits
;
1177 /* Deal with precise integer ADD and SUB. */
1179 int_add_or_sub_vbits(int isAdd
,
1180 vbits_t vbits1
, vbits_t vbits2
, value_t val1
, value_t val2
)
1182 uint64_t vaa
= 0, aa
= 0, vbb
= 0, bb
= 0;
1183 get_binary_vbits_and_vals64(&vaa
, &aa
, &vbb
, &bb
,
1184 vbits1
, vbits2
, val1
, val2
);
1186 uint64_t a_min
= min_vbits(vaa
, aa
);
1187 uint64_t b_min
= min_vbits(vbb
, bb
);
1188 uint64_t a_max
= max_vbits(vaa
, aa
);
1189 uint64_t b_max
= max_vbits(vbb
, bb
);
1193 result
= (vaa
| vbb
) | ((a_min
+ b_min
) ^ (a_max
+ b_max
));
1195 result
= (vaa
| vbb
) | ((a_min
- b_max
) ^ (a_max
- b_min
));
1198 vbits_t res
= { .num_bits
= vbits1
.num_bits
};
1199 switch (res
.num_bits
) {
1200 case 8: res
.bits
.u8
= (uint8_t)result
; break;
1201 case 16: res
.bits
.u16
= (uint16_t)result
; break;
1202 case 32: res
.bits
.u32
= (uint32_t)result
; break;
1203 case 64: res
.bits
.u64
= (uint64_t)result
; break;
1204 default: panic(__func__
);
1210 /* Deal with precise CmpGTsbxe.
1212 * b is the number of bits per element and e is the number of elements. x is
1213 * either S for signed or U for unsigned.
1217 cmp_gt_vbits(int is_signed
, int bits_per_element
, int element_count
,
1218 vbits_t vbits1
, vbits_t vbits2
, value_t val1
, value_t val2
) {
1219 assert(vbits1
.num_bits
== vbits2
.num_bits
);
1220 assert(bits_per_element
*element_count
== vbits1
.num_bits
);
1221 assert(vbits1
.num_bits
== 128); // All the known variants are 128-bit.
1223 vbits_t res
= { .num_bits
= vbits1
.num_bits
, .bits
.u128
= {0,0} };
1224 for (int word
= 0; word
< 2; word
++) {
1225 for (int element_in_word
= 0; element_in_word
< element_count
/2; element_in_word
++) {
1226 // We don't have to worry about little-endian vs big-endian because the
1227 // max bits_per_element is 64 and fits in a word. Extract a word.
1228 uint64_t element1
= (val1
.u128
[word
] >> (bits_per_element
*element_in_word
)) & (((uint64_t) -1) >> (64 - bits_per_element
));
1229 uint64_t element2
= (val2
.u128
[word
] >> (bits_per_element
*element_in_word
)) & (((uint64_t) -1) >> (64 - bits_per_element
));
1230 uint64_t velement1
= (vbits1
.bits
.u128
[word
] >> (bits_per_element
*element_in_word
)) & (((uint64_t) -1) >> (64 - bits_per_element
));
1231 uint64_t velement2
= (vbits2
.bits
.u128
[word
] >> (bits_per_element
*element_in_word
)) & (((uint64_t) -1) >> (64 - bits_per_element
));
1233 // If we are doing a signed comparison then we add one to the MSB of
1234 // the element. This converts the signed value into an unsigned value
1235 // in such a way that the greater than operation continues to return
1236 // the same value when done in unsigned math. We don't want the
1237 // addition to overflow so we jsut use XOR instead.
1239 element1
^= (((uint64_t) 1) << (bits_per_element
-1));
1240 element2
^= (((uint64_t) 1) << (bits_per_element
-1));
1243 uint64_t min1
= min_vbits(velement1
, element1
);
1244 uint64_t min2
= min_vbits(velement2
, element2
);
1245 uint64_t max1
= max_vbits(velement1
, element1
);
1246 uint64_t max2
= max_vbits(velement2
, element2
);
1248 // If the minimum possible value of element1 is greater than the
1249 // maximum possible value of element2 then element1 is surely greater
1251 int is_definitely_greater
= min1
> max2
;
1252 // If the maximum value of element1 less than or equal to the minimum
1253 // value of element2 then there is no way that element1 is greater than
1255 int is_definitely_not_greater
= max1
<= min2
;
1256 int is_definite
= is_definitely_greater
|| is_definitely_not_greater
;
1257 // If the answer is definite then the vbits should indicate that all
1258 // bits are known, so 0. Otherwise, all 1s.
1260 res
.bits
.u128
[word
] |= (((uint64_t) -1) >> (64 - bits_per_element
)) << (bits_per_element
*element_in_word
);