1 // Voro++, a 3D cell-based Voronoi library
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
7 /** \file container_prd.cc
8 * \brief Function implementations for the container_periodic_base and
11 #include "container_prd.hh"
15 /** The class constructor sets up the geometry of container, initializing the
16 * minimum and maximum coordinates in each direction, and setting whether each
17 * direction is periodic or not. It divides the container into a rectangular
18 * grid of blocks, and allocates memory for each of these for storing particle
20 * \param[in] (bx_) The x coordinate of the first unit vector.
21 * \param[in] (bxy_,by_) The x and y coordinates of the second unit vector.
22 * \param[in] (bxz_,byz_,bz_) The x, y, and z coordinates of the third unit
24 * \param[in] (nx_,ny_,nz_) the number of grid blocks in each of the three
25 * coordinate directions.
26 * \param[in] init_mem_ the initial memory allocation for each block.
27 * \param[in] ps_ the number of floating point entries to store for each
29 container_periodic_base::container_periodic_base(double bx_
,double bxy_
,double by_
,
30 double bxz_
,double byz_
,double bz_
,int nx_
,int ny_
,int nz_
,int init_mem_
,int ps_
)
31 : unitcell(bx_
,bxy_
,by_
,bxz_
,byz_
,bz_
), voro_base(nx_
,ny_
,nz_
,bx_
/nx_
,by_
/ny_
,bz_
/nz_
),
32 ey(int(max_uv_y
*ysp
+1)), ez(int(max_uv_z
*zsp
+1)), wy(ny
+ey
), wz(nz
+ez
),
33 oy(ny
+2*ey
), oz(nz
+2*ez
), oxyz(nx
*oy
*oz
), id(new int*[oxyz
]), p(new double*[oxyz
]),
34 co(new int[oxyz
]), mem(new int[oxyz
]), img(new char[oxyz
]), init_mem(init_mem_
), ps(ps_
) {
37 // Clear the global arrays
38 int *pp
=co
;while(pp
<co
+oxyz
) *(pp
++)=0;
39 pp
=mem
;while(pp
<mem
+oxyz
) *(pp
++)=0;
40 char *cp
=img
;while(cp
<img
+oxyz
) *(cp
++)=0;
42 // Set up memory for the blocks in the primary domain
43 for(k
=ez
;k
<wz
;k
++) for(j
=ey
;j
<wy
;j
++) for(i
=0;i
<nx
;i
++) {
46 id
[l
]=new int[init_mem
];
47 p
[l
]=new double[ps
*init_mem
];
51 /** The container destructor frees the dynamically allocated memory. */
52 container_periodic_base::~container_periodic_base() {
58 for(int l
=oxyz
-1;l
>=0;l
--) if(mem
[l
]>0) {
64 /** The class constructor sets up the geometry of container.
65 * \param[in] (bx_) The x coordinate of the first unit vector.
66 * \param[in] (bxy_,by_) The x and y coordinates of the second unit vector.
67 * \param[in] (bxz_,byz_,bz_) The x, y, and z coordinates of the third unit
69 * \param[in] (nx_,ny_,nz_) the number of grid blocks in each of the three
70 * coordinate directions.
71 * \param[in] init_mem_ the initial memory allocation for each block. */
72 container_periodic::container_periodic(double bx_
,double bxy_
,double by_
,double bxz_
,double byz_
,double bz_
,
73 int nx_
,int ny_
,int nz_
,int init_mem_
)
74 : container_periodic_base(bx_
,bxy_
,by_
,bxz_
,byz_
,bz_
,nx_
,ny_
,nz_
,init_mem_
,3),
75 vc(*this,2*nx_
+1,2*ey
+1,2*ez
+1) {}
77 /** The class constructor sets up the geometry of container.
78 * \param[in] (bx_) The x coordinate of the first unit vector.
79 * \param[in] (bxy_,by_) The x and y coordinates of the second unit vector.
80 * \param[in] (bxz_,byz_,bz_) The x, y, and z coordinates of the third unit
82 * \param[in] (nx_,ny_,nz_) the number of grid blocks in each of the three
83 * coordinate directions.
84 * \param[in] init_mem_ the initial memory allocation for each block. */
85 container_periodic_poly::container_periodic_poly(double bx_
,double bxy_
,double by_
,double bxz_
,double byz_
,double bz_
,
86 int nx_
,int ny_
,int nz_
,int init_mem_
)
87 : container_periodic_base(bx_
,bxy_
,by_
,bxz_
,byz_
,bz_
,nx_
,ny_
,nz_
,init_mem_
,4),
88 vc(*this,2*nx_
+1,2*ey
+1,2*ez
+1) {ppr
=p
;}
90 /** Put a particle into the correct region of the container.
91 * \param[in] n the numerical ID of the inserted particle.
92 * \param[in] (x,y,z) the position vector of the inserted particle. */
93 void container_periodic::put(int n
,double x
,double y
,double z
) {
95 put_locate_block(ijk
,x
,y
,z
);
97 double *pp
=p
[ijk
]+3*co
[ijk
]++;
98 *(pp
++)=x
;*(pp
++)=y
;*pp
=z
;
101 /** Put a particle into the correct region of the container.
102 * \param[in] n the numerical ID of the inserted particle.
103 * \param[in] (x,y,z) the position vector of the inserted particle.
104 * \param[in] r the radius of the particle. */
105 void container_periodic_poly::put(int n
,double x
,double y
,double z
,double r
) {
107 put_locate_block(ijk
,x
,y
,z
);
109 double *pp
=p
[ijk
]+4*co
[ijk
]++;
110 *(pp
++)=x
;*(pp
++)=y
;*(pp
++)=z
;*pp
=r
;
111 if(max_radius
<r
) max_radius
=r
;
114 /** Put a particle into the correct region of the container.
115 * \param[in] n the numerical ID of the inserted particle.
116 * \param[in] (x,y,z) the position vector of the inserted particle.
117 * \param[out] (ai,aj,ak) the periodic image displacement that the particle is
118 * in, with (0,0,0) corresponding to the primary domain.
120 void container_periodic::put(int n
,double x
,double y
,double z
,int &ai
,int &aj
,int &ak
) {
122 put_locate_block(ijk
,x
,y
,z
,ai
,aj
,ak
);
124 double *pp
=p
[ijk
]+3*co
[ijk
]++;
125 *(pp
++)=x
;*(pp
++)=y
;*pp
=z
;
128 /** Put a particle into the correct region of the container.
129 * \param[in] n the numerical ID of the inserted particle.
130 * \param[in] (x,y,z) the position vector of the inserted particle.
131 * \param[in] r the radius of the particle.
132 * \param[out] (ai,aj,ak) the periodic image displacement that the particle is
133 * in, with (0,0,0) corresponding to the primary domain.
135 void container_periodic_poly::put(int n
,double x
,double y
,double z
,double r
,int &ai
,int &aj
,int &ak
) {
137 put_locate_block(ijk
,x
,y
,z
,ai
,aj
,ak
);
139 double *pp
=p
[ijk
]+4*co
[ijk
]++;
140 *(pp
++)=x
;*(pp
++)=y
;*(pp
++)=z
;*pp
=r
;
141 if(max_radius
<r
) max_radius
=r
;
144 /** Put a particle into the correct region of the container, also recording
145 * into which region it was stored.
146 * \param[in] vo the ordering class in which to record the region.
147 * \param[in] n the numerical ID of the inserted particle.
148 * \param[in] (x,y,z) the position vector of the inserted particle. */
149 void container_periodic::put(particle_order
&vo
,int n
,double x
,double y
,double z
) {
151 put_locate_block(ijk
,x
,y
,z
);
154 double *pp
=p
[ijk
]+3*co
[ijk
]++;
155 *(pp
++)=x
;*(pp
++)=y
;*pp
=z
;
158 /** Put a particle into the correct region of the container, also recording
159 * into which region it was stored.
160 * \param[in] vo the ordering class in which to record the region.
161 * \param[in] n the numerical ID of the inserted particle.
162 * \param[in] (x,y,z) the position vector of the inserted particle.
163 * \param[in] r the radius of the particle. */
164 void container_periodic_poly::put(particle_order
&vo
,int n
,double x
,double y
,double z
,double r
) {
166 put_locate_block(ijk
,x
,y
,z
);
169 double *pp
=p
[ijk
]+4*co
[ijk
]++;
170 *(pp
++)=x
;*(pp
++)=y
;*(pp
++)=z
;*pp
=r
;
171 if(max_radius
<r
) max_radius
=r
;
174 /** Takes a particle position vector and computes the region index into which
175 * it should be stored. If the container is periodic, then the routine also
176 * maps the particle position to ensure it is in the primary domain. If the
177 * container is not periodic, the routine bails out.
178 * \param[out] ijk the region index.
179 * \param[in,out] (x,y,z) the particle position, remapped into the primary
180 * domain if necessary.
181 * \return True if the particle can be successfully placed into the container,
182 * false otherwise. */
183 void container_periodic_base::put_locate_block(int &ijk
,double &x
,double &y
,double &z
) {
185 // Remap particle in the z direction if necessary
186 int k
=step_int(z
*zsp
);
188 int ak
=step_div(k
,nz
);
189 z
-=ak
*bz
;y
-=ak
*byz
;x
-=ak
*bxz
;k
-=ak
*nz
;
192 // Remap particle in the y direction if necessary
193 int j
=step_int(y
*ysp
);
195 int aj
=step_div(j
,ny
);
196 y
-=aj
*by
;x
-=aj
*bxy
;j
-=aj
*ny
;
199 // Remap particle in the x direction if necessary
202 int ai
=step_div(ijk
,nx
);
206 // Compute the block index and check memory allocation
209 if(co
[ijk
]==mem
[ijk
]) add_particle_memory(ijk
);
212 /** Takes a particle position vector and computes the region index into which
213 * it should be stored. If the container is periodic, then the routine also
214 * maps the particle position to ensure it is in the primary domain. If the
215 * container is not periodic, the routine bails out.
216 * \param[out] ijk the region index.
217 * \param[in,out] (x,y,z) the particle position, remapped into the primary
218 * domain if necessary.
219 * \param[out] (ai,aj,ak) the periodic image displacement that the particle is
220 * in, with (0,0,0) corresponding to the primary domain.
221 * \return True if the particle can be successfully placed into the container,
222 * false otherwise. */
223 void container_periodic_base::put_locate_block(int &ijk
,double &x
,double &y
,double &z
,int &ai
,int &aj
,int &ak
) {
225 // Remap particle in the z direction if necessary
226 int k
=step_int(z
*zsp
);
229 z
-=ak
*bz
;y
-=ak
*byz
;x
-=ak
*bxz
;k
-=ak
*nz
;
232 // Remap particle in the y direction if necessary
233 int j
=step_int(y
*ysp
);
236 y
-=aj
*by
;x
-=aj
*bxy
;j
-=aj
*ny
;
239 // Remap particle in the x direction if necessary
246 // Compute the block index and check memory allocation
249 if(co
[ijk
]==mem
[ijk
]) add_particle_memory(ijk
);
252 /** Takes a position vector and remaps it into the primary domain.
253 * \param[out] (ai,aj,ak) the periodic image displacement that the vector is in,
254 * with (0,0,0) corresponding to the primary domain.
255 * \param[out] (ci,cj,ck) the index of the block that the position vector is
256 * within, once it has been remapped.
257 * \param[in,out] (x,y,z) the position vector to consider, which is remapped
258 * into the primary domain during the routine.
259 * \param[out] ijk the block index that the vector is within. */
260 inline void container_periodic_base::remap(int &ai
,int &aj
,int &ak
,int &ci
,int &cj
,int &ck
,double &x
,double &y
,double &z
,int &ijk
) {
262 // Remap particle in the z direction if necessary
266 z
-=ak
*bz
;y
-=ak
*byz
;x
-=ak
*bxz
;ck
-=ak
*nz
;
269 // Remap particle in the y direction if necessary
273 y
-=aj
*by
;x
-=aj
*bxy
;cj
-=aj
*ny
;
276 // Remap particle in the x direction if necessary
284 ijk
=ci
+nx
*(cj
+oy
*ck
);
287 /** Takes a vector and finds the particle whose Voronoi cell contains that
288 * vector. This is equivalent to finding the particle which is nearest to the
290 * \param[in] (x,y,z) the vector to test.
291 * \param[out] (rx,ry,rz) the position of the particle whose Voronoi cell
292 * contains the vector. This may point to a particle in
293 * a periodic image of the primary domain.
294 * \param[out] pid the ID of the particle.
295 * \return True if a particle was found. If the container has no particles,
296 * then the search will not find a Voronoi cell and false is returned. */
297 bool container_periodic::find_voronoi_cell(double x
,double y
,double z
,double &rx
,double &ry
,double &rz
,int &pid
) {
298 int ai
,aj
,ak
,ci
,cj
,ck
,ijk
;
302 // Remap the vector into the primary domain and then search for the
303 // Voronoi cell that it is within
304 remap(ai
,aj
,ak
,ci
,cj
,ck
,x
,y
,z
,ijk
);
305 vc
.find_voronoi_cell(x
,y
,z
,ci
,cj
,ck
,ijk
,w
,mrs
);
309 // Assemble the position vector of the particle to be returned,
310 // applying a periodic remapping if necessary
311 ci
+=w
.di
;if(ci
<0||ci
>=nx
) ai
+=step_div(ci
,nx
);
312 rx
=p
[w
.ijk
][3*w
.l
]+ak
*bxz
+aj
*bxy
+ai
*bx
;
313 ry
=p
[w
.ijk
][3*w
.l
+1]+ak
*byz
+aj
*by
;
314 rz
=p
[w
.ijk
][3*w
.l
+2]+ak
*bz
;
321 /** Takes a vector and finds the particle whose Voronoi cell contains that
322 * vector. Additional wall classes are not considered by this routine.
323 * \param[in] (x,y,z) the vector to test.
324 * \param[out] (rx,ry,rz) the position of the particle whose Voronoi cell
325 * contains the vector. If the container is periodic,
326 * this may point to a particle in a periodic image of
327 * the primary domain.
328 * \param[out] pid the ID of the particle.
329 * \return True if a particle was found. If the container has no particles,
330 * then the search will not find a Voronoi cell and false is returned. */
331 bool container_periodic_poly::find_voronoi_cell(double x
,double y
,double z
,double &rx
,double &ry
,double &rz
,int &pid
) {
332 int ai
,aj
,ak
,ci
,cj
,ck
,ijk
;
336 // Remap the vector into the primary domain and then search for the
337 // Voronoi cell that it is within
338 remap(ai
,aj
,ak
,ci
,cj
,ck
,x
,y
,z
,ijk
);
339 vc
.find_voronoi_cell(x
,y
,z
,ci
,cj
,ck
,ijk
,w
,mrs
);
343 // Assemble the position vector of the particle to be returned,
344 // applying a periodic remapping if necessary
345 ci
+=w
.di
;if(ci
<0||ci
>=nx
) ai
+=step_div(ci
,nx
);
346 rx
=p
[w
.ijk
][4*w
.l
]+ak
*bxz
+aj
*bxy
+ai
*bx
;
347 ry
=p
[w
.ijk
][4*w
.l
+1]+ak
*byz
+aj
*by
;
348 rz
=p
[w
.ijk
][4*w
.l
+2]+ak
*bz
;
355 /** Increase memory for a particular region.
356 * \param[in] i the index of the region to reallocate. */
357 void container_periodic_base::add_particle_memory(int i
) {
359 // Handle the case when no memory has been allocated for this block
362 id
[i
]=new int[init_mem
];
363 p
[i
]=new double[ps
*init_mem
];
367 // Otherwise, double the memory allocation for this block. Carry out a
368 // check on the memory allocation size, and print a status message if
370 int l
,nmem(mem
[i
]<<1);
371 if(nmem
>max_particle_memory
)
372 voro_fatal_error("Absolute maximum memory allocation exceeded",VOROPP_MEMORY_ERROR
);
373 #if VOROPP_VERBOSE >=3
374 fprintf(stderr
,"Particle memory in region %d scaled up to %d\n",i
,nmem
);
377 // Allocate new memory and copy in the contents of the old arrays
378 int *idp
=new int[nmem
];
379 for(l
=0;l
<co
[i
];l
++) idp
[l
]=id
[i
][l
];
380 double *pp
=new double[ps
*nmem
];
381 for(l
=0;l
<ps
*co
[i
];l
++) pp
[l
]=p
[i
][l
];
383 // Update pointers and delete old arrays
385 delete [] id
[i
];id
[i
]=idp
;
386 delete [] p
[i
];p
[i
]=pp
;
389 /** Import a list of particles from an open file stream into the container.
390 * Entries of four numbers (Particle ID, x position, y position, z position)
391 * are searched for. If the file cannot be successfully read, then the routine
392 * causes a fatal error.
393 * \param[in] fp the file handle to read from. */
394 void container_periodic::import(FILE *fp
) {
397 while((j
=fscanf(fp
,"%d %lg %lg %lg",&i
,&x
,&y
,&z
))==4) put(i
,x
,y
,z
);
398 if(j
!=EOF
) voro_fatal_error("File import error",VOROPP_FILE_ERROR
);
401 /** Import a list of particles from an open file stream, also storing the order
402 * of that the particles are read. Entries of four numbers (Particle ID, x
403 * position, y position, z position) are searched for. If the file cannot be
404 * successfully read, then the routine causes a fatal error.
405 * \param[in,out] vo a reference to an ordering class to use.
406 * \param[in] fp the file handle to read from. */
407 void container_periodic::import(particle_order
&vo
,FILE *fp
) {
410 while((j
=fscanf(fp
,"%d %lg %lg %lg",&i
,&x
,&y
,&z
))==4) put(vo
,i
,x
,y
,z
);
411 if(j
!=EOF
) voro_fatal_error("File import error",VOROPP_FILE_ERROR
);
414 /** Import a list of particles from an open file stream into the container.
415 * Entries of five numbers (Particle ID, x position, y position, z position,
416 * radius) are searched for. If the file cannot be successfully read, then the
417 * routine causes a fatal error.
418 * \param[in] fp the file handle to read from. */
419 void container_periodic_poly::import(FILE *fp
) {
422 while((j
=fscanf(fp
,"%d %lg %lg %lg %lg",&i
,&x
,&y
,&z
,&r
))==5) put(i
,x
,y
,z
,r
);
423 if(j
!=EOF
) voro_fatal_error("File import error",VOROPP_FILE_ERROR
);
426 /** Import a list of particles from an open file stream, also storing the order
427 * of that the particles are read. Entries of four numbers (Particle ID, x
428 * position, y position, z position, radius) are searched for. If the file
429 * cannot be successfully read, then the routine causes a fatal error.
430 * \param[in,out] vo a reference to an ordering class to use.
431 * \param[in] fp the file handle to read from. */
432 void container_periodic_poly::import(particle_order
&vo
,FILE *fp
) {
435 while((j
=fscanf(fp
,"%d %lg %lg %lg %lg",&i
,&x
,&y
,&z
,&r
))==5) put(vo
,i
,x
,y
,z
,r
);
436 if(j
!=EOF
) voro_fatal_error("File import error",VOROPP_FILE_ERROR
);
439 /** Outputs the a list of all the container regions along with the number of
440 * particles stored within each. */
441 void container_periodic_base::region_count() {
443 for(k
=0;k
<nz
;k
++) for(j
=0;j
<ny
;j
++) for(i
=0;i
<nx
;i
++)
444 printf("Region (%d,%d,%d): %d particles\n",i
,j
,k
,*(cop
++));
447 /** Clears a container of particles. */
448 void container_periodic::clear() {
449 for(int *cop
=co
;cop
<co
+nxyz
;cop
++) *cop
=0;
452 /** Clears a container of particles, also clearing resetting the maximum radius
454 void container_periodic_poly::clear() {
455 for(int *cop
=co
;cop
<co
+nxyz
;cop
++) *cop
=0;
459 /** Computes all the Voronoi cells and saves customized information about them.
460 * \param[in] format the custom output string to use.
461 * \param[in] fp a file handle to write to. */
462 void container_periodic::print_custom(const char *format
,FILE *fp
) {
463 c_loop_all_periodic
vl(*this);
464 print_custom(vl
,format
,fp
);
467 /** Computes all the Voronoi cells and saves customized
468 * information about them.
469 * \param[in] format the custom output string to use.
470 * \param[in] fp a file handle to write to. */
471 void container_periodic_poly::print_custom(const char *format
,FILE *fp
) {
472 c_loop_all_periodic
vl(*this);
473 print_custom(vl
,format
,fp
);
476 /** Computes all the Voronoi cells and saves customized information about them.
477 * \param[in] format the custom output string to use.
478 * \param[in] filename the name of the file to write to. */
479 void container_periodic::print_custom(const char *format
,const char *filename
) {
480 FILE *fp
=safe_fopen(filename
,"w");
481 print_custom(format
,fp
);
485 /** Computes all the Voronoi cells and saves customized
486 * information about them
487 * \param[in] format the custom output string to use.
488 * \param[in] filename the name of the file to write to. */
489 void container_periodic_poly::print_custom(const char *format
,const char *filename
) {
490 FILE *fp
=safe_fopen(filename
,"w");
491 print_custom(format
,fp
);
495 /** Computes all of the Voronoi cells in the container, but does nothing
496 * with the output. It is useful for measuring the pure computation time
497 * of the Voronoi algorithm, without any additional calculations such as
498 * volume evaluation or cell output. */
499 void container_periodic::compute_all_cells() {
501 c_loop_all_periodic
vl(*this);
502 if(vl
.start()) do compute_cell(c
,vl
);
506 /** Computes all of the Voronoi cells in the container, but does nothing
507 * with the output. It is useful for measuring the pure computation time
508 * of the Voronoi algorithm, without any additional calculations such as
509 * volume evaluation or cell output. */
510 void container_periodic_poly::compute_all_cells() {
512 c_loop_all_periodic
vl(*this);
513 if(vl
.start()) do compute_cell(c
,vl
);while(vl
.inc());
516 /** Calculates all of the Voronoi cells and sums their volumes. In most cases
517 * without walls, the sum of the Voronoi cell volumes should equal the volume
518 * of the container to numerical precision.
519 * \return The sum of all of the computed Voronoi volumes. */
520 double container_periodic::sum_cell_volumes() {
523 c_loop_all_periodic
vl(*this);
524 if(vl
.start()) do if(compute_cell(c
,vl
)) vol
+=c
.volume();while(vl
.inc());
528 /** Calculates all of the Voronoi cells and sums their volumes. In most cases
529 * without walls, the sum of the Voronoi cell volumes should equal the volume
530 * of the container to numerical precision.
531 * \return The sum of all of the computed Voronoi volumes. */
532 double container_periodic_poly::sum_cell_volumes() {
535 c_loop_all_periodic
vl(*this);
536 if(vl
.start()) do if(compute_cell(c
,vl
)) vol
+=c
.volume();while(vl
.inc());
540 /** This routine creates all periodic images of the particles. It is meant for
541 * diagnostic purposes only, since usually periodic images are dynamically
542 * created in when they are referenced. */
543 void container_periodic_base::create_all_images() {
545 for(k
=0;k
<oz
;k
++) for(j
=0;j
<oy
;j
++) for(i
=0;i
<nx
;i
++) create_periodic_image(i
,j
,k
);
548 /** Checks that the particles within each block lie within that block's bounds.
549 * This is useful for diagnosing problems with periodic image computation. */
550 void container_periodic_base::check_compartmentalized() {
552 double mix
,miy
,miz
,max
,may
,maz
,*pp
;
553 for(k
=l
=0;k
<oz
;k
++) for(j
=0;j
<oy
;j
++) for(i
=0;i
<nx
;i
++,l
++) if(mem
[l
]>0) {
555 // Compute the block's bounds, adding in a small tolerance
556 mix
=i
*boxx
-tolerance
;max
=mix
+boxx
+tolerance
;
557 miy
=(j
-ey
)*boxy
-tolerance
;may
=miy
+boxy
+tolerance
;
558 miz
=(k
-ez
)*boxz
-tolerance
;maz
=miz
+boxz
+tolerance
;
560 // Print entries for any particles that lie outside the block's
562 for(pp
=p
[l
],c
=0;c
<co
[l
];c
++,pp
+=ps
) if(*pp
<mix
||*pp
>max
||pp
[1]<miy
||pp
[1]>may
||pp
[2]<miz
||pp
[2]>maz
)
563 printf("%d %d %d %d %f %f %f %f %f %f %f %f %f\n",
564 id
[l
][c
],i
,j
,k
,*pp
,pp
[1],pp
[2],mix
,max
,miy
,may
,miz
,maz
);
568 /** Creates particles within an image block that is aligned with the primary
569 * domain in the z axis. In this case, the image block may be comprised of
570 * particles from two primary blocks. The routine considers these two primary
571 * blocks, and adds the needed particles to the image. The remaining particles
572 * from the primary blocks are also filled into the neighboring images.
573 * \param[in] (di,dj,dk) the index of the block to consider. The z index must
574 * satisfy ez<=dk<wz. */
575 void container_periodic_base::create_side_image(int di
,int dj
,int dk
) {
576 int l
,dijk
=di
+nx
*(dj
+oy
*dk
),odijk
,ima
=step_div(dj
-ey
,ny
);
577 int qua
=di
+step_int(-ima
*bxy
*xsp
),quadiv
=step_div(qua
,nx
);
578 int fi
=qua
-quadiv
*nx
,fijk
=fi
+nx
*(dj
-ima
*ny
+oy
*dk
);
579 double dis
=ima
*bxy
+quadiv
*bx
,switchx
=di
*boxx
-ima
*bxy
-quadiv
*bx
,adis
;
581 // Left image computation
582 if((img
[dijk
]&1)==0) {
584 odijk
=dijk
-1;adis
=dis
;
586 odijk
=dijk
+nx
-1;adis
=dis
+bx
;
589 for(l
=0;l
<co
[fijk
];l
++) {
590 if(p
[fijk
][ps
*l
]>switchx
) put_image(dijk
,fijk
,l
,dis
,by
*ima
,0);
591 else put_image(odijk
,fijk
,l
,adis
,by
*ima
,0);
595 // Right image computation
596 if((img
[dijk
]&2)==0) {
598 fijk
+=1-nx
;switchx
+=(1-nx
)*boxx
;dis
+=bx
;
600 fijk
++;switchx
+=boxx
;
603 odijk
=dijk
-nx
+1;adis
=dis
-bx
;
605 odijk
=dijk
+1;adis
=dis
;
608 for(l
=0;l
<co
[fijk
];l
++) {
609 if(p
[fijk
][ps
*l
]<switchx
) put_image(dijk
,fijk
,l
,dis
,by
*ima
,0);
610 else put_image(odijk
,fijk
,l
,adis
,by
*ima
,0);
614 // All contributions to the block now added, so set both two bits of
615 // the image information
619 /** Creates particles within an image block that is not aligned with the
620 * primary domain in the z axis. In this case, the image block may be comprised
621 * of particles from four primary blocks. The routine considers these four
622 * primary blocks, and adds the needed particles to the image. The remaining
623 * particles from the primary blocks are also filled into the neighboring
625 * \param[in] (di,dj,dk) the index of the block to consider. The z index must
626 * satisfy dk<ez or dk>=wz. */
627 void container_periodic_base::create_vertical_image(int di
,int dj
,int dk
) {
628 int l
,dijk
=di
+nx
*(dj
+oy
*dk
),dijkl
,dijkr
,ima
=step_div(dk
-ez
,nz
);
629 int qj
=dj
+step_int(-ima
*byz
*ysp
),qjdiv
=step_div(qj
-ey
,ny
);
630 int qi
=di
+step_int((-ima
*bxz
-qjdiv
*bxy
)*xsp
),qidiv
=step_div(qi
,nx
);
631 int fi
=qi
-qidiv
*nx
,fj
=qj
-qjdiv
*ny
,fijk
=fi
+nx
*(fj
+oy
*(dk
-ima
*nz
)),fijk2
;
632 double disy
=ima
*byz
+qjdiv
*by
,switchy
=(dj
-ey
)*boxy
-ima
*byz
-qjdiv
*by
;
633 double disx
=ima
*bxz
+qjdiv
*bxy
+qidiv
*bx
,switchx
=di
*boxx
-ima
*bxz
-qjdiv
*bxy
-qidiv
*bx
;
634 double switchx2
,disxl
,disxr
,disx2
,disxr2
;
636 if(di
==0) {dijkl
=dijk
+nx
-1;disxl
=disx
+bx
;}
637 else {dijkl
=dijk
-1;disxl
=disx
;}
639 if(di
==nx
-1) {dijkr
=dijk
-nx
+1;disxr
=disx
-bx
;}
640 else {dijkr
=dijk
+1;disxr
=disx
;}
642 // Down-left image computation
644 if((img
[dijk
]&1)==0) {
650 for(l
=0;l
<co
[fijk
];l
++) {
651 if(p
[fijk
][ps
*l
+1]>switchy
) {
652 if(p
[fijk
][ps
*l
]>switchx
) put_image(dijk
,fijk
,l
,disx
,disy
,bz
*ima
);
653 else put_image(dijkl
,fijk
,l
,disxl
,disy
,bz
*ima
);
655 if(!y_exist
) continue;
656 if(p
[fijk
][ps
*l
]>switchx
) put_image(dijk
-nx
,fijk
,l
,disx
,disy
,bz
*ima
);
657 else put_image(dijkl
-nx
,fijk
,l
,disxl
,disy
,bz
*ima
);
662 // Down-right image computation
663 if((img
[dijk
]&2)==0) {
665 fijk2
=fijk
+1-nx
;switchx2
=switchx
+(1-nx
)*boxx
;disx2
=disx
+bx
;disxr2
=disxr
+bx
;
667 fijk2
=fijk
+1;switchx2
=switchx
+boxx
;disx2
=disx
;disxr2
=disxr
;
674 for(l
=0;l
<co
[fijk2
];l
++) {
675 if(p
[fijk2
][ps
*l
+1]>switchy
) {
676 if(p
[fijk2
][ps
*l
]>switchx2
) put_image(dijkr
,fijk2
,l
,disxr2
,disy
,bz
*ima
);
677 else put_image(dijk
,fijk2
,l
,disx2
,disy
,bz
*ima
);
679 if(!y_exist
) continue;
680 if(p
[fijk2
][ps
*l
]>switchx2
) put_image(dijkr
-nx
,fijk2
,l
,disxr2
,disy
,bz
*ima
);
681 else put_image(dijk
-nx
,fijk2
,l
,disx2
,disy
,bz
*ima
);
686 // Recomputation of some intermediate quantities for boundary cases
689 switchy
+=(1-ny
)*boxy
;
691 qi
=di
+step_int(-(ima
*bxz
+(qjdiv
+1)*bxy
)*xsp
);
692 int dqidiv
=step_div(qi
,nx
)-qidiv
;qidiv
+=dqidiv
;
696 disxl
+=bxy
+bx
*dqidiv
;
697 disxr
+=bxy
+bx
*dqidiv
;
698 switchx
-=bxy
+bx
*dqidiv
;
700 fijk
+=nx
;switchy
+=boxy
;
703 // Up-left image computation
705 if((img
[dijk
]&4)==0) {
711 for(l
=0;l
<co
[fijk
];l
++) {
712 if(p
[fijk
][ps
*l
+1]>switchy
) {
713 if(!y_exist
) continue;
714 if(p
[fijk
][ps
*l
]>switchx
) put_image(dijk
+nx
,fijk
,l
,disx
,disy
,bz
*ima
);
715 else put_image(dijkl
+nx
,fijk
,l
,disxl
,disy
,bz
*ima
);
717 if(p
[fijk
][ps
*l
]>switchx
) put_image(dijk
,fijk
,l
,disx
,disy
,bz
*ima
);
718 else put_image(dijkl
,fijk
,l
,disxl
,disy
,bz
*ima
);
723 // Up-right image computation
724 if((img
[dijk
]&8)==0) {
726 fijk2
=fijk
+1-nx
;switchx2
=switchx
+(1-nx
)*boxx
;disx2
=disx
+bx
;disxr2
=disxr
+bx
;
728 fijk2
=fijk
+1;switchx2
=switchx
+boxx
;disx2
=disx
;disxr2
=disxr
;
735 for(l
=0;l
<co
[fijk2
];l
++) {
736 if(p
[fijk2
][ps
*l
+1]>switchy
) {
737 if(!y_exist
) continue;
738 if(p
[fijk2
][ps
*l
]>switchx2
) put_image(dijkr
+nx
,fijk2
,l
,disxr2
,disy
,bz
*ima
);
739 else put_image(dijk
+nx
,fijk2
,l
,disx2
,disy
,bz
*ima
);
741 if(p
[fijk2
][ps
*l
]>switchx2
) put_image(dijkr
,fijk2
,l
,disxr2
,disy
,bz
*ima
);
742 else put_image(dijk
,fijk2
,l
,disx2
,disy
,bz
*ima
);
747 // All contributions to the block now added, so set all four bits of
748 // the image information
752 /** Copies a particle position from the primary domain into an image block.
753 * \param[in] reg the block index within the primary domain that the particle
755 * \param[in] fijk the index of the image block.
756 * \param[in] l the index of the particle entry within the primary block.
757 * \param[in] (dx,dy,dz) the displacement vector to add to the particle. */
758 void container_periodic_base::put_image(int reg
,int fijk
,int l
,double dx
,double dy
,double dz
) {
759 if(co
[reg
]==mem
[reg
]) add_particle_memory(reg
);
760 double *p1
=p
[reg
]+ps
*co
[reg
],*p2
=p
[fijk
]+ps
*l
;
764 if(ps
==4) *(++p1
)=*(++p2
);
765 id
[reg
][co
[reg
]++]=id
[fijk
][l
];