Strip extra spaces from code.
[voro++.git] / branches / exact / src / c_loops.hh
blob0a3fc09301f7859bac89b6209694fc04d04dcada
1 // Voro++, a 3D cell-based Voronoi library
2 //
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
7 /** \file c_loops.hh
8 * \brief Header file for the loop classes. */
10 #ifndef VOROPP_C_LOOPS_HH
11 #define VOROPP_C_LOOPS_HH
13 #include <cstdio>
14 #include <cstdlib>
15 #include <cmath>
16 #include <vector>
17 using namespace std;
19 #include "config.hh"
21 namespace voro {
23 /** A type associated with a c_loop_subset class, determining what type of
24 * geometrical region to loop over. */
25 enum c_loop_subset_mode {
26 sphere,
27 box,
28 no_check
31 /** \brief A class for storing ordering information when particles are added to
32 * a container.
34 * When particles are added to a container class, they are sorted into an
35 * internal computational grid of blocks. The particle_order class provides a
36 * mechanism for remembering which block particles were sorted into. The import
37 * and put routines in the container class have variants that also take a
38 * particle_order class. Each time they are called, they will store the block
39 * that the particle was sorted into, plus the position of the particle within
40 * the block. The particle_order class can used by the c_loop_order class to
41 * specifically loop over the particles that have their information stored
42 * within it. */
43 class particle_order {
44 public:
45 /** A pointer to the array holding the ordering. */
46 int *o;
47 /** A pointer to the next position in the ordering array in
48 * which to store an entry. */
49 int *op;
50 /** The current memory allocation for the class, set to the
51 * number of entries which can be stored. */
52 int size;
53 /** The particle_order constructor allocates memory to store the
54 * ordering information.
55 * \param[in] init_size the initial amount of memory to
56 * allocate. */
57 particle_order(int init_size=init_ordering_size)
58 : o(new int[init_size<<1]),op(o),size(init_size) {}
59 /** The particle_order destructor frees the dynamically allocated
60 * memory used to store the ordering information. */
61 ~particle_order() {
62 delete [] o;
64 /** Adds a record to the order, corresponding to the memory
65 * address of where a particle was placed into the container.
66 * \param[in] ijk the block into which the particle was placed.
67 * \param[in] q the position within the block where the
68 * particle was placed. */
69 inline void add(int ijk,int q) {
70 if(op==o+size) add_ordering_memory();
71 *(op++)=ijk;*(op++)=q;
73 private:
74 void add_ordering_memory();
77 /** \brief Base class for looping over particles in a container.
79 * This class forms the base of all classes that can loop over a subset of
80 * particles in a contaner in some order. When initialized, it stores constants
81 * about the corresponding container geometry. It also contains a number of
82 * routines for interrogating which particle currently being considered by the
83 * loop, which are common between all of the derived classes. */
84 class c_loop_base {
85 public:
86 /** The number of blocks in the x direction. */
87 const int nx;
88 /** The number of blocks in the y direction. */
89 const int ny;
90 /** The number of blocks in the z direction. */
91 const int nz;
92 /** A constant, set to the value of nx multiplied by ny, which
93 * is used in the routines that step through blocks in
94 * sequence. */
95 const int nxy;
96 /** A constant, set to the value of nx*ny*nz, which is used in
97 * the routines that step through blocks in sequence. */
98 const int nxyz;
99 /** The number of floating point numbers per particle in the
100 * associated container data structure. */
101 const int ps;
102 /** A pointer to the particle position information in the
103 * associated container data structure. */
104 double **p;
105 /** A pointer to the particle ID information in the associated
106 * container data structure. */
107 int **id;
108 /** A pointer to the particle counts in the associated
109 * container data structure. */
110 int *co;
111 /** The current x-index of the block under consideration by the
112 * loop. */
113 int i;
114 /** The current y-index of the block under consideration by the
115 * loop. */
116 int j;
117 /** The current z-index of the block under consideration by the
118 * loop. */
119 int k;
120 /** The current index of the block under consideration by the
121 * loop. */
122 int ijk;
123 /** The index of the particle under consideration within the current
124 * block. */
125 int q;
126 /** The constructor copies several necessary constants from the
127 * base container class.
128 * \param[in] con the container class to use. */
129 template<class c_class>
130 c_loop_base(c_class &con) : nx(con.nx), ny(con.ny), nz(con.nz),
131 nxy(con.nxy), nxyz(con.nxyz), ps(con.ps),
132 p(con.p), id(con.id), co(con.co) {}
133 /** Returns the position vector of the particle currently being
134 * considered by the loop.
135 * \param[out] (x,y,z) the position vector of the particle. */
136 inline void pos(double &x,double &y,double &z) {
137 double *pp=p[ijk]+ps*q;
138 x=*(pp++);y=*(pp++);z=*pp;
140 /** Returns the ID, position vector, and radius of the particle
141 * currently being considered by the loop.
142 * \param[out] pid the particle ID.
143 * \param[out] (x,y,z) the position vector of the particle.
144 * \param[out] r the radius of the particle. If no radius
145 * information is available the default radius
146 * value is returned. */
147 inline void pos(int &pid,double &x,double &y,double &z,double &r) {
148 pid=id[ijk][q];
149 double *pp=p[ijk]+ps*q;
150 x=*(pp++);y=*(pp++);z=*pp;
151 r=ps==3?default_radius:*(++pp);
153 /** Returns the x position of the particle currently being
154 * considered by the loop. */
155 inline double x() {return p[ijk][ps*q];}
156 /** Returns the y position of the particle currently being
157 * considered by the loop. */
158 inline double y() {return p[ijk][ps*q+1];}
159 /** Returns the z position of the particle currently being
160 * considered by the loop. */
161 inline double z() {return p[ijk][ps*q+2];}
162 /** Returns the ID of the particle currently being considered
163 * by the loop. */
164 inline int pid() {return id[ijk][q];}
167 /** \brief Class for looping over all of the particles in a container.
169 * This is one of the simplest loop classes, that scans the computational
170 * blocks in order, and scans all the particles within each block in order. */
171 class c_loop_all : public c_loop_base {
172 public:
173 /** The constructor copies several necessary constants from the
174 * base container class.
175 * \param[in] con the container class to use. */
176 template<class c_class>
177 c_loop_all(c_class &con) : c_loop_base(con) {}
178 /** Sets the class to consider the first particle.
179 * \return True if there is any particle to consider, false
180 * otherwise. */
181 inline bool start() {
182 i=j=k=ijk=q=0;
183 while(co[ijk]==0) if(!next_block()) return false;
184 return true;
186 /** Finds the next particle to test.
187 * \return True if there is another particle, false if no more
188 * particles are available. */
189 inline bool inc() {
190 q++;
191 if(q>=co[ijk]) {
192 q=0;
193 do {
194 if(!next_block()) return false;
195 } while(co[ijk]==0);
197 return true;
199 private:
200 /** Updates the internal variables to find the next
201 * computational block with any particles.
202 * \return True if another block is found, false if there are
203 * no more blocks. */
204 inline bool next_block() {
205 ijk++;
206 i++;
207 if(i==nx) {
208 i=0;j++;
209 if(j==ny) {
210 j=0;k++;
211 if(ijk==nxyz) return false;
214 return true;
218 /** \brief Class for looping over a subset of particles in a container.
220 * This class can loop over a subset of particles in a certain geometrical
221 * region within the container. The class can be set up to loop over a
222 * rectangular box or sphere. It can also rectangular group of internal
223 * computational blocks. */
224 class c_loop_subset : public c_loop_base {
225 public:
226 /** The current mode of operation, determining whether tests
227 * should be applied to particles to ensure they are within a
228 * certain geometrical object. */
229 c_loop_subset_mode mode;
230 /** The constructor copies several necessary constants from the
231 * base container class.
232 * \param[in] con the container class to use. */
233 template<class c_class>
234 c_loop_subset(c_class &con) : c_loop_base(con), ax(con.ax), ay(con.ay), az(con.az),
235 sx(con.bx-ax), sy(con.by-ay), sz(con.bz-az), xsp(con.xsp), ysp(con.ysp), zsp(con.zsp),
236 xperiodic(con.xperiodic), yperiodic(con.yperiodic), zperiodic(con.zperiodic) {}
237 void setup_sphere(double vx,double vy,double vz,double r,bool bounds_test=true);
238 void setup_box(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax,bool bounds_test=true);
239 void setup_intbox(int ai_,int bi_,int aj_,int bj_,int ak_,int bk_);
240 bool start();
241 /** Finds the next particle to test.
242 * \return True if there is another particle, false if no more
243 * particles are available. */
244 inline bool inc() {
245 do {
246 q++;
247 while(q>=co[ijk]) {q=0;if(!next_block()) return false;}
248 } while(mode!=no_check&&out_of_bounds());
249 return true;
251 private:
252 const double ax,ay,az,sx,sy,sz,xsp,ysp,zsp;
253 const bool xperiodic,yperiodic,zperiodic;
254 double px,py,pz,apx,apy,apz;
255 double v0,v1,v2,v3,v4,v5;
256 int ai,bi,aj,bj,ak,bk,s;
257 int ci,cj,ck,di,dj,dk,inc1,inc2;
258 inline int step_mod(int a,int b) {return a>=0?a%b:b-1-(b-1-a)%b;}
259 inline int step_div(int a,int b) {return a>=0?a/b:-1+(a+1)/b;}
260 inline int step_int(double a) {return a<0?int(a)-1:int(a);}
261 void setup_common();
262 bool next_block();
263 bool out_of_bounds();
266 /** \brief Class for looping over all of the particles specified in a
267 * pre-assembled particle_order class.
269 * The particle_order class can be used to create a specific order of particles
270 * within the container. This class can then loop over these particles in this
271 * order. The class is particularly useful in cases where the ordering of the
272 * output must match the ordering of particles as they were inserted into the
273 * container. */
274 class c_loop_order : public c_loop_base {
275 public:
276 /** A reference to the ordering class to use. */
277 particle_order &vo;
278 /** A pointer to the current position in the ordering class. */
279 int *cp;
280 /** A pointer to the end position in the ordering class. */
281 int *op;
282 /** The constructor copies several necessary constants from the
283 * base class, and sets up a reference to the ordering class to
284 * use.
285 * \param[in] con the container class to use.
286 * \param[in] vo_ the ordering class to use. */
287 template<class c_class>
288 c_loop_order(c_class &con,particle_order &vo_)
289 : c_loop_base(con), vo(vo_), nx(con.nx), nxy(con.nxy) {}
290 /** Sets the class to consider the first particle.
291 * \return True if there is any particle to consider, false
292 * otherwise. */
293 inline bool start() {
294 cp=vo.o;op=vo.op;
295 if(cp!=op) {
296 ijk=*(cp++);decode();
297 q=*(cp++);
298 return true;
299 } else return false;
301 /** Finds the next particle to test.
302 * \return True if there is another particle, false if no more
303 * particles are available. */
304 inline bool inc() {
305 if(cp==op) return false;
306 ijk=*(cp++);decode();
307 q=*(cp++);
308 return true;
310 private:
311 /** The number of computational blocks in the x direction. */
312 const int nx;
313 /** The number of computational blocks in a z-slice. */
314 const int nxy;
315 /** Takes the current block index and computes indices in the
316 * x, y, and z directions. */
317 inline void decode() {
318 k=ijk/nxy;
319 int ijkt=ijk-nxy*k;
320 j=ijkt/nx;
321 i=ijkt-j*nx;
325 /** \brief A class for looping over all particles in a container_periodic or
326 * container_periodic_poly class.
328 * Since the container_periodic and container_periodic_poly classes have a
329 * fundamentally different memory organization, the regular loop classes cannot
330 * be used with them. */
331 class c_loop_all_periodic : public c_loop_base {
332 public:
333 /** The constructor copies several necessary constants from the
334 * base periodic container class.
335 * \param[in] con the periodic container class to use. */
336 template<class c_class>
337 c_loop_all_periodic(c_class &con) : c_loop_base(con), ey(con.ey), ez(con.ez), wy(con.wy), wz(con.wz),
338 ijk0(nx*(ey+con.oy*ez)), inc2(2*nx*con.ey+1) {}
339 /** Sets the class to consider the first particle.
340 * \return True if there is any particle to consider, false
341 * otherwise. */
342 inline bool start() {
343 i=0;
344 j=ey;
345 k=ez;
346 ijk=ijk0;
347 q=0;
348 while(co[ijk]==0) if(!next_block()) return false;
349 return true;
351 /** Finds the next particle to test.
352 * \return True if there is another particle, false if no more
353 * particles are available. */
354 inline bool inc() {
355 q++;
356 if(q>=co[ijk]) {
357 q=0;
358 do {
359 if(!next_block()) return false;
360 } while(co[ijk]==0);
362 return true;
364 private:
365 /** The lower y index (inclusive) of the primary domain within
366 * the block structure. */
367 int ey;
368 /** The lower y index (inclusive) of the primary domain within
369 * the block structure. */
370 int ez;
371 /** The upper y index (exclusive) of the primary domain within
372 * the block structure. */
373 int wy;
374 /** The upper z index (exclusive) of the primary domain within
375 * the block structure. */
376 int wz;
377 /** The index of the (0,0,0) block within the block structure.
379 int ijk0;
380 /** A value to increase ijk by when the z index is increased.
382 int inc2;
383 /** Updates the internal variables to find the next
384 * computational block with any particles.
385 * \return True if another block is found, false if there are
386 * no more blocks. */
387 inline bool next_block() {
388 i++;
389 if(i==nx) {
390 i=0;j++;
391 if(j==wy) {
392 j=ey;k++;
393 if(k==wz) return false;
394 ijk+=inc2;
395 } else ijk++;
396 } else ijk++;
397 return true;
401 /** \brief Class for looping over all of the particles specified in a
402 * pre-assembled particle_order class, for use with container_periodic classes.
404 * The particle_order class can be used to create a specific order of particles
405 * within the container. This class can then loop over these particles in this
406 * order. The class is particularly useful in cases where the ordering of the
407 * output must match the ordering of particles as they were inserted into the
408 * container. */
409 class c_loop_order_periodic : public c_loop_base {
410 public:
411 /** A reference to the ordering class to use. */
412 particle_order &vo;
413 /** A pointer to the current position in the ordering class. */
414 int *cp;
415 /** A pointer to the end position in the ordering class. */
416 int *op;
417 /** The constructor copies several necessary constants from the
418 * base class, and sets up a reference to the ordering class to
419 * use.
420 * \param[in] con the container class to use.
421 * \param[in] vo_ the ordering class to use. */
422 template<class c_class>
423 c_loop_order_periodic(c_class &con,particle_order &vo_)
424 : c_loop_base(con), vo(vo_), nx(con.nx), oxy(con.nx*con.oy) {}
425 /** Sets the class to consider the first particle.
426 * \return True if there is any particle to consider, false
427 * otherwise. */
428 inline bool start() {
429 cp=vo.o;op=vo.op;
430 if(cp!=op) {
431 ijk=*(cp++);decode();
432 q=*(cp++);
433 return true;
434 } else return false;
436 /** Finds the next particle to test.
437 * \return True if there is another particle, false if no more
438 * particles are available. */
439 inline bool inc() {
440 if(cp==op) return false;
441 ijk=*(cp++);decode();
442 q=*(cp++);
443 return true;
445 private:
446 /** The number of computational blocks in the x direction. */
447 const int nx;
448 /** The number of computational blocks in a z-slice. */
449 const int oxy;
450 /** Takes the current block index and computes indices in the
451 * x, y, and z directions. */
452 inline void decode() {
453 k=ijk/oxy;
454 int ijkt=ijk-oxy*k;
455 j=ijkt/nx;
456 i=ijkt-j*nx;
462 #endif