Strip extra spaces from code.
[voro++.git] / branches / exact / src / unitcell.cc
blob389d73ace4804ec2936c86d63f65b484b8684bc3
1 // Voro++, a 3D cell-based Voronoi library
2 //
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
7 /** \file unitcell.cc
8 * \brief Function implementations for the unitcell class. */
10 #include <queue>
11 using namespace std;
13 #include "unitcell.hh"
14 #include "cell.hh"
16 namespace voro {
18 /** Initializes the unit cell class for a particular non-orthogonal periodic
19 * geometry, corresponding to a parallelepiped with sides given by three
20 * vectors. The class constructs the unit Voronoi cell corresponding to this
21 * geometry.
22 * \param[in] (bx_) The x coordinate of the first unit vector.
23 * \param[in] (bxy_,by_) The x and y coordinates of the second unit vector.
24 * \param[in] (bxz_,byz_,bz_) The x, y, and z coordinates of the third unit
25 * vector. */
26 unitcell::unitcell(double bx_,double bxy_,double by_,double bxz_,double byz_,double bz_)
27 : bx(bx_), bxy(bxy_), by(by_), bxz(bxz_), byz(byz_), bz(bz_) {
28 int i,j,l=1;
30 // Initialize the Voronoi cell to be a very large rectangular box
31 const double ucx=max_unit_voro_shells*bx,ucy=max_unit_voro_shells*by,ucz=max_unit_voro_shells*bz;
32 unit_voro.init(-ucx,ucx,-ucy,ucy,-ucz,ucz);
34 // Repeatedly cut the cell by shells of periodic image particles
35 while(l<2*max_unit_voro_shells) {
37 // Check to see if any of the planes from the current shell
38 // will cut the cell
39 if(unit_voro_intersect(l)) {
41 // If they do, apply the plane cuts from the current
42 // shell
43 unit_voro_apply(l,0,0);
44 for(i=1;i<l;i++) {
45 unit_voro_apply(l,i,0);
46 unit_voro_apply(-l,i,0);
48 for(i=-l;i<=l;i++) unit_voro_apply(i,l,0);
49 for(i=1;i<l;i++) for(j=-l+1;j<=l;j++) {
50 unit_voro_apply(l,j,i);
51 unit_voro_apply(-j,l,i);
52 unit_voro_apply(-l,-j,i);
53 unit_voro_apply(j,-l,i);
55 for(i=-l;i<=l;i++) for(j=-l;j<=l;j++) unit_voro_apply(i,j,l);
56 } else {
58 // Calculate a bound on the maximum y and z coordinates
59 // that could possibly cut the cell. This is based upon
60 // a geometric result that particles with z>l can't cut
61 // a cell lying within the paraboloid
62 // z<=(l*l-x*x-y*y)/(2*l). It is always a tighter bound
63 // than the one based on computing the maximum radius
64 // of a Voronoi cell vertex.
65 max_uv_y=max_uv_z=0;
66 double y,z,q,*pts=unit_voro.pts,*pp=pts;
67 while(pp<pts+3*unit_voro.p) {
68 q=*(pp++);y=*(pp++);z=*(pp++);q=sqrt(q*q+y*y+z*z);
69 if(y+q>max_uv_y) max_uv_y=y+q;
70 if(z+q>max_uv_z) max_uv_z=z+q;
72 max_uv_z*=0.5;
73 max_uv_y*=0.5;
74 return;
76 l++;
79 // If the routine makes it here, then the unit cell still hasn't been
80 // completely bounded by the plane cuts. Give the memory error code,
81 // because this is mainly a case of hitting a safe limit, than any
82 // inherent problem.
83 voro_fatal_error("Periodic cell computation failed",VOROPP_MEMORY_ERROR);
86 /** Applies a pair of opposing plane cuts from a periodic image point
87 * to the unit Voronoi cell.
88 * \param[in] (i,j,k) the index of the periodic image to consider. */
89 inline void unitcell::unit_voro_apply(int i,int j,int k) {
90 double x=i*bx+j*bxy+k*bxz,y=j*by+k*byz,z=k*bz;
91 unit_voro.plane(x,y,z);
92 unit_voro.plane(-x,-y,-z);
95 /** Calculates whether the unit Voronoi cell intersects a given periodic image
96 * of the domain.
97 * \param[in] (dx,dy,dz) the displacement of the periodic image.
98 * \param[out] vol the proportion of the unit cell volume within this image,
99 * only computed in the case that the two intersect.
100 * \return True if they intersect, false otherwise. */
101 bool unitcell::intersects_image(double dx,double dy,double dz,double &vol) {
102 const double bxinv=1/bx,byinv=1/by,bzinv=1/bz,ivol=bxinv*byinv*bzinv;
103 voronoicell c;
104 c=unit_voro;
105 dx*=2;dy*=2;dz*=2;
106 if(!c.plane(0,0,bzinv,dz+1)) return false;
107 if(!c.plane(0,0,-bzinv,-dz+1)) return false;
108 if(!c.plane(0,byinv,-byz*byinv*bzinv,dy+1)) return false;
109 if(!c.plane(0,-byinv,byz*byinv*bzinv,-dy+1)) return false;
110 if(!c.plane(bxinv,-bxy*bxinv*byinv,(bxy*byz-by*bxz)*ivol,dx+1)) return false;
111 if(!c.plane(-bxinv,bxy*bxinv*byinv,(-bxy*byz+by*bxz)*ivol,-dx+1)) return false;
112 vol=c.volume()*ivol;
113 return true;
116 /** Computes a list of periodic domain images that intersect the unit Voronoi cell.
117 * \param[out] vi a vector containing triplets (i,j,k) corresponding to domain
118 * images that intersect the unit Voronoi cell, when it is
119 * centered in the middle of the primary domain.
120 * \param[out] vd a vector containing the fraction of the Voronoi cell volume
121 * within each corresponding image listed in vi. */
122 void unitcell::images(vector<int> &vi,vector<double> &vd) {
123 const int ms2=max_unit_voro_shells*2+1,mss=ms2*ms2*ms2;
124 bool *a=new bool[mss],*ac=a+max_unit_voro_shells*(1+ms2*(1+ms2)),*ap=a;
125 int i,j,k;
126 double vol;
128 // Initialize mask
129 while(ap<ac) *(ap++)=true;
130 *(ap++)=false;
131 while(ap<a+mss) *(ap++)=true;
133 // Set up the queue and add (0,0,0) image to it
134 queue<int> q;
135 q.push(0);q.push(0);q.push(0);
137 while(!q.empty()) {
139 // Read the next entry on the queue
140 i=q.front();q.pop();
141 j=q.front();q.pop();
142 k=q.front();q.pop();
144 // Check intersection of this image
145 if(intersects_image(i,j,k,vol)) {
147 // Add this entry to the output vectors
148 vi.push_back(i);
149 vi.push_back(j);
150 vi.push_back(k);
151 vd.push_back(vol);
153 // Add neighbors to the queue if they have not been
154 // tested
155 ap=ac+i+ms2*(j+ms2*k);
156 if(k>-max_unit_voro_shells&&*(ap-ms2*ms2)) {q.push(i);q.push(j);q.push(k-1);*(ap-ms2*ms2)=false;}
157 if(j>-max_unit_voro_shells&&*(ap-ms2)) {q.push(i);q.push(j-1);q.push(k);*(ap-ms2)=false;}
158 if(i>-max_unit_voro_shells&&*(ap-1)) {q.push(i-1);q.push(j);q.push(k);*(ap-1)=false;}
159 if(i<max_unit_voro_shells&&*(ap+1)) {q.push(i+1);q.push(j);q.push(k);*(ap+1)=false;}
160 if(j<max_unit_voro_shells&&*(ap+ms2)) {q.push(i);q.push(j+1);q.push(k);*(ap+ms2)=false;}
161 if(k<max_unit_voro_shells&&*(ap+ms2*ms2)) {q.push(i);q.push(j);q.push(k+1);*(ap+ms2*ms2)=false;}
165 // Remove mask memory
166 delete [] a;
169 /** Tests to see if a shell of periodic images could possibly cut the periodic
170 * unit cell.
171 * \param[in] l the index of the shell to consider.
172 * \return True if a point in the shell cuts the cell, false otherwise. */
173 bool unitcell::unit_voro_intersect(int l) {
174 int i,j;
175 if(unit_voro_test(l,0,0)) return true;
176 for(i=1;i<l;i++) {
177 if(unit_voro_test(l,i,0)) return true;
178 if(unit_voro_test(-l,i,0)) return true;
180 for(i=-l;i<=l;i++) if(unit_voro_test(i,l,0)) return true;
181 for(i=1;i<l;i++) for(j=-l+1;j<=l;j++) {
182 if(unit_voro_test(l,j,i)) return true;
183 if(unit_voro_test(-j,l,i)) return true;
184 if(unit_voro_test(-l,-j,i)) return true;
185 if(unit_voro_test(j,-l,i)) return true;
187 for(i=-l;i<=l;i++) for(j=-l;j<=l;j++) if(unit_voro_test(i,j,l)) return true;
188 return false;
191 /** Tests to see if a plane cut from a particular periodic image will cut th
192 * unit Voronoi cell.
193 * \param[in] (i,j,k) the index of the periodic image to consider.
194 * \return True if the image cuts the cell, false otherwise. */
195 inline bool unitcell::unit_voro_test(int i,int j,int k) {
196 double x=i*bx+j*bxy+k*bxz,y=j*by+k*byz,z=k*bz;
197 double rsq=x*x+y*y+z*z;
198 return unit_voro.plane_intersects(x,y,z,rsq);
201 /** Draws the periodic domain in gnuplot format.
202 * \param[in] fp the file handle to write to. */
203 void unitcell::draw_domain_gnuplot(FILE *fp) {
204 fprintf(fp,"0 0 0\n%g 0 0\n%g %g 0\n%g %g 0\n",bx,bx+bxy,by,bxy,by);
205 fprintf(fp,"%g %g %g\n%g %g %g\n%g %g %g\n%g %g %g\n",bxy+bxz,by+byz,bz,bx+bxy+bxz,by+byz,bz,bx+bxz,byz,bz,bxz,byz,bz);
206 fprintf(fp,"0 0 0\n%g %g 0\n\n%g %g %g\n%g %g %g\n\n",bxy,by,bxz,byz,bz,bxy+bxz,by+byz,bz);
207 fprintf(fp,"%g 0 0\n%g %g %g\n\n%g %g 0\n%g %g %g\n\n",bx,bx+bxz,byz,bz,bx+bxy,by,bx+bxy+bxz,by+byz,bz);
210 /** Draws the periodic domain in POV-Ray format.
211 * \param[in] fp the file handle to write to. */
212 void unitcell::draw_domain_pov(FILE *fp) {
213 fprintf(fp,"cylinder{0,0,0>,<%g,0,0>,rr}\n"
214 "cylinder{<%g,%g,0>,<%g,%g,0>,rr}\n",bx,bxy,by,bx+bxy,by);
215 fprintf(fp,"cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n"
216 "cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n",bxz,byz,bz,bx+bxz,byz,bz,bxy+bxz,by+byz,bz,bx+bxy+bxz,by+byz,bz);
217 fprintf(fp,"cylinder{<0,0,0>,<%g,%g,0>,rr}\n"
218 "cylinder{<%g,0,0>,<%g,%g,0>,rr}\n",bxy,by,bx,bx+bxy,by);
219 fprintf(fp,"cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n"
220 "cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n",bxz,byz,bz,bxy+bxz,by+byz,bz,bx+bxz,byz,bz,bx+bxy+bxz,by+byz,bz);
221 fprintf(fp,"cylinder{<0,0,0>,<%g,%g,%g>,rr}\n"
222 "cylinder{<%g,0,0>,<%g,%g,%g>,rr}\n",bxz,byz,bz,bx,bx+bxz,byz,bz);
223 fprintf(fp,"cylinder{<%g,%g,0>,<%g,%g,%g>,rr}\n"
224 "cylinder{<%g,%g,0>,<%g,%g,%g>,rr}\n",bxy,by,bxy+bxz,by+byz,bz,bx+bxy,by,bx+bxy+bxz,by+byz,bz);
225 fprintf(fp,"sphere{<0,0,0>,rr}\nsphere{<%g,0,0>,rr}\n"
226 "sphere{<%g,%g,0>,rr}\nsphere{<%g,%g,0>,rr}\n",bx,bxy,by,bx+bxy,by);
227 fprintf(fp,"sphere{<%g,%g,%g>,rr}\nsphere{<%g,%g,%g>,rr}\n"
228 "sphere{<%g,%g,%g>,rr}\nsphere{<%g,%g,%g>,rr}\n",bxz,byz,bz,bx+bxz,byz,bz,bxy+bxz,by+byz,bz,bx+bxy+bxz,by+byz,bz);