Minkowski test code.
[voro++.git] / trunk / src / c_loops.cc
blob391215211de5e15c798a1296ee3bda3b88aedfca
1 // Voro++, a 3D cell-based Voronoi library
2 //
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
7 /** \file c_loops.cc
8 * \brief Function implementations for the loop classes. */
10 #include "c_loops.hh"
12 namespace voro {
14 /** Initializes a c_loop_subset object to scan over all particles within a
15 * given sphere.
16 * \param[in] (vx,vy,vz) the position vector of the center of the sphere.
17 * \param[in] r the radius of the sphere.
18 * \param[in] bounds_test whether to do detailed bounds checking. If this is
19 * false then the class will loop over all particles in
20 * blocks that overlap the given sphere. If it is true,
21 * the particle will only loop over the particles which
22 * actually lie within the sphere.
23 * \return True if there is any valid point to loop over, false otherwise. */
24 void c_loop_subset::setup_sphere(double vx,double vy,double vz,double r,bool bounds_test) {
25 if(bounds_test) {mode=sphere;v0=vx;v1=vy;v2=vz;v3=r*r;} else mode=no_check;
26 ai=step_int((vx-ax-r)*xsp);
27 bi=step_int((vx-ax+r)*xsp);
28 aj=step_int((vy-ay-r)*ysp);
29 bj=step_int((vy-ay+r)*ysp);
30 ak=step_int((vz-az-r)*zsp);
31 bk=step_int((vz-az+r)*zsp);
32 setup_common();
35 /** Initializes the class to loop over all particles in a rectangular subgrid
36 * of blocks.
37 * \param[in] (ai_,bi_) the subgrid range in the x-direction, inclusive of both
38 * ends.
39 * \param[in] (aj_,bj_) the subgrid range in the y-direction, inclusive of both
40 * ends.
41 * \param[in] (ak_,bk_) the subgrid range in the z-direction, inclusive of both
42 * ends.
43 * \return True if there is any valid point to loop over, false otherwise. */
44 void c_loop_subset::setup_intbox(int ai_,int bi_,int aj_,int bj_,int ak_,int bk_) {
45 ai=ai_;bi=bi_;aj=aj_;bj=bj_;ak=ak_;bk=bk_;
46 mode=no_check;
47 setup_common();
50 /** Sets up all of the common constants used for the loop.
51 * \return True if there is any valid point to loop over, false otherwise. */
52 void c_loop_subset::setup_common() {
53 if(!xperiodic) {
54 if(ai<0) {ai=0;if(bi<0) bi=0;}
55 if(bi>=nx) {bi=nx-1;if(ai>=nx) ai=nx-1;}
57 if(!yperiodic) {
58 if(aj<0) {aj=0;if(bj<0) bj=0;}
59 if(bj>=ny) {bj=ny-1;if(aj>=ny) aj=ny-1;}
61 if(!zperiodic) {
62 if(ak<0) {ak=0;if(bk<0) bk=0;}
63 if(bk>=nz) {bk=nz-1;if(ak>=nz) ak=nz-1;}
65 ci=ai;cj=aj;ck=ak;
66 di=i=step_mod(ci,nx);apx=px=step_div(ci,nx)*sx;
67 dj=j=step_mod(cj,ny);apy=py=step_div(cj,ny)*sy;
68 dk=k=step_mod(ck,nz);apz=pz=step_div(ck,nz)*sz;
69 inc1=di-step_mod(bi,nx);
70 inc2=nx*(ny+dj-step_mod(bj,ny))+inc1;
71 inc1+=nx;
72 ijk=di+nx*(dj+ny*dk);
73 q=0;
76 /** Starts the loop by finding the first particle within the container to
77 * consider.
78 * \return True if there is any particle to consider, false otherwise. */
79 bool c_loop_subset::start() {
80 while(co[ijk]==0) {if(!next_block()) return false;}
81 while(mode!=no_check&&out_of_bounds()) {
82 q++;
83 while(q>=co[ijk]) {q=0;if(!next_block()) return false;}
85 return true;
88 /** Initializes the class to loop over all particles in a rectangular box.
89 * \param[in] (xmin,xmax) the minimum and maximum x coordinates of the box.
90 * \param[in] (ymin,ymax) the minimum and maximum y coordinates of the box.
91 * \param[in] (zmin,zmax) the minimum and maximum z coordinates of the box.
92 * \param[in] bounds_test whether to do detailed bounds checking. If this is
93 * false then the class will loop over all particles in
94 * blocks that overlap the given box. If it is true, the
95 * particle will only loop over the particles which
96 * actually lie within the box.
97 * \return True if there is any valid point to loop over, false otherwise. */
98 void c_loop_subset::setup_box(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax,bool bounds_test) {
99 if(bounds_test) {mode=box;v0=xmin;v1=xmax;v2=ymin;v3=ymax;v4=zmin;v5=zmax;} else mode=no_check;
100 ai=step_int((xmin-ax)*xsp);
101 bi=step_int((xmax-ax)*xsp);
102 aj=step_int((ymin-ay)*ysp);
103 bj=step_int((ymax-ay)*ysp);
104 ak=step_int((zmin-az)*zsp);
105 bk=step_int((zmax-az)*zsp);
106 setup_common();
109 /** Computes whether the current point is out of bounds, relative to the
110 * current loop setup.
111 * \return True if the point is out of bounds, false otherwise. */
112 bool c_loop_subset::out_of_bounds() {
113 double *pp=p[ijk]+ps*q;
114 if(mode==sphere) {
115 double fx(*pp+px-v0),fy(pp[1]+py-v1),fz(pp[2]+pz-v2);
116 return fx*fx+fy*fy+fz*fz>v3;
117 } else {
118 double f(*pp+px);if(f<v0||f>v1) return true;
119 f=pp[1]+py;if(f<v2||f>v3) return true;
120 f=pp[2]+pz;return f<v4||f>v5;
124 /** Returns the next block to be tested in a loop, and updates the periodicity
125 * vector if necessary. */
126 bool c_loop_subset::next_block() {
127 if(i<bi) {
128 i++;
129 if(ci<nx-1) {ci++;ijk++;} else {ci=0;ijk+=1-nx;px+=sx;}
130 return true;
131 } else if(j<bj) {
132 i=ai;ci=di;px=apx;j++;
133 if(cj<ny-1) {cj++;ijk+=inc1;} else {cj=0;ijk+=inc1-nxy;py+=sy;}
134 return true;
135 } else if(k<bk) {
136 i=ai;ci=di;j=aj;cj=dj;px=apx;py=apy;k++;
137 if(ck<nz-1) {ck++;ijk+=inc2;} else {ck=0;ijk+=inc2-nxyz;pz+=sz;}
138 return true;
139 } else return false;
142 /** Extends the memory available for storing the ordering. */
143 void particle_order::add_ordering_memory() {
144 int *no=new int[size<<2],*nop=no,*opp=o;
145 while(opp<op) *(nop++)=*(opp++);
146 delete [] o;
147 size<<=1;o=no;op=nop;