Minkowski test code.
[voro++.git] / trunk / src / v_compute.cc
blob84991fd1ab3e419133c6b43e9e4d520d91ffb6c8
1 // Voro++, a 3D cell-based Voronoi library
2 //
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
7 /** \file v_compute.cc
8 * \brief Function implementantions for the voro_compute template. */
10 #include "worklist.hh"
11 #include "v_compute.hh"
12 #include "rad_option.hh"
13 #include "container.hh"
14 #include "container_prd.hh"
16 namespace voro {
18 /** The class constructor initializes constants from the container class, and
19 * sets up the mask and queue used for Voronoi computations.
20 * \param[in] con_ a reference to the container class to use.
21 * \param[in] (hx_,hy_,hz_) the size of the mask to use. */
22 template<class c_class>
23 voro_compute<c_class>::voro_compute(c_class &con_,int hx_,int hy_,int hz_) :
24 con(con_), boxx(con_.boxx), boxy(con_.boxy), boxz(con_.boxz),
25 xsp(con_.xsp), ysp(con_.ysp), zsp(con_.zsp),
26 hx(hx_), hy(hy_), hz(hz_), hxy(hx_*hy_), hxyz(hxy*hz_), ps(con_.ps),
27 id(con_.id), p(con_.p), co(con_.co), bxsq(boxx*boxx+boxy*boxy+boxz*boxz),
28 mv(0), qu_size(3*(3+hxy+hz*(hx+hy))), wl(con_.wl), mrad(con_.mrad),
29 mask(new unsigned int[hxyz]), qu(new int[qu_size]), qu_l(qu+qu_size) {
30 reset_mask();
33 /** Scans all of the particles within a block to see if any of them have a
34 * smaller distance to the given test vector. If one is found, the routine
35 * updates the minimum distance and store information about this particle.
36 * \param[in] ijk the index of the block.
37 * \param[in] (x,y,z) the test vector to consider (which may have already had a
38 * periodic displacement applied to it).
39 * \param[in] (di,dj,dk) the coordinates of the current block, to store if the
40 * particle record is updated.
41 * \param[in,out] w a reference to a particle record in which to store
42 * information about the particle whose Voronoi cell the
43 * vector is within.
44 * \param[in,out] mrs the current minimum distance, that may be updated if a
45 * closer particle is found. */
46 template<class c_class>
47 inline void voro_compute<c_class>::scan_all(int ijk,double x,double y,double z,int di,int dj,int dk,particle_record &w,double &mrs) {
48 double x1,y1,z1,rs;bool in_block=false;
49 for(int l=0;l<co[ijk];l++) {
50 x1=p[ijk][ps*l]-x;
51 y1=p[ijk][ps*l+1]-y;
52 z1=p[ijk][ps*l+2]-z;
53 rs=con.r_current_sub(x1*x1+y1*y1+z1*z1,ijk,l);
54 if(rs<mrs) {mrs=rs;w.l=l;in_block=true;}
56 if(in_block) {w.ijk=ijk;w.di=di;w.dj=dj,w.dk=dk;}
59 /** Finds the Voronoi cell that given vector is within. For containers that are
60 * not radially dependent, this corresponds to findig the particle that is
61 * closest to the vector; for the radical tessellation containers, this
62 * corresponds to a finding the minimum weighted distance.
63 * \param[in] (x,y,z) the vector to consider.
64 * \param[in] (ci,cj,ck) the coordinates of the block that the test particle is
65 * in relative to the container data structure.
66 * \param[in] ijk the index of the block that the test particle is in.
67 * \param[out] w a reference to a particle record in which to store information
68 * about the particle whose Voronoi cell the vector is within.
69 * \param[out] mrs the minimum computed distance. */
70 template<class c_class>
71 void voro_compute<c_class>::find_voronoi_cell(double x,double y,double z,int ci,int cj,int ck,int ijk,particle_record &w,double &mrs) {
72 double qx=0,qy=0,qz=0,rs;
73 int i,j,k,di,dj,dk,ei,ej,ek,f,g,disp;
74 double fx,fy,fz,mxs,mys,mzs,*radp;
75 unsigned int q,*e,*mijk;
77 // Init setup for parameters to return
78 w.ijk=-1;mrs=large_number;
80 con.initialize_search(ci,cj,ck,ijk,i,j,k,disp);
82 // Test all particles in the particle's local region first
83 scan_all(ijk,x,y,z,0,0,0,w,mrs);
85 // Now compute the fractional position of the particle within its
86 // region and store it in (fx,fy,fz). We use this to compute an index
87 // (di,dj,dk) of which subregion the particle is within.
88 unsigned int m1,m2;
89 con.frac_pos(x,y,z,ci,cj,ck,fx,fy,fz);
90 di=int(fx*xsp*wl_fgrid);dj=int(fy*ysp*wl_fgrid);dk=int(fz*zsp*wl_fgrid);
92 // The indices (di,dj,dk) tell us which worklist to use, to test the
93 // blocks in the optimal order. But we only store worklists for the
94 // eighth of the region where di, dj, and dk are all less than half the
95 // full grid. The rest of the cases are handled by symmetry. In this
96 // section, we detect for these cases, by reflecting high values of di,
97 // dj, and dk. For these cases, a mask is constructed in m1 and m2
98 // which is used to flip the worklist information when it is loaded.
99 if(di>=wl_hgrid) {
100 mxs=boxx-fx;
101 m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid-1-di;if(di<0) di=0;
102 } else {m1=m2=0;mxs=fx;}
103 if(dj>=wl_hgrid) {
104 mys=boxy-fy;
105 m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid-1-dj;if(dj<0) dj=0;
106 } else mys=fy;
107 if(dk>=wl_hgrid) {
108 mzs=boxz-fz;
109 m1|=(127<<14)+(3<<27);m2|=(1<<14)+(1<<27);dk=wl_fgrid-1-dk;if(dk<0) dk=0;
110 } else mzs=fz;
112 // Do a quick test to account for the case when the minimum radius is
113 // small enought that no other blocks need to be considered
114 rs=con.r_max_add(mrs);
115 if(mxs*mxs>rs&&mys*mys>rs&&mzs*mzs>rs) return;
117 // Now compute which worklist we are going to use, and set radp and e to
118 // point at the right offsets
119 ijk=di+wl_hgrid*(dj+wl_hgrid*dk);
120 radp=mrad+ijk*wl_seq_length;
121 e=(const_cast<unsigned int*> (wl))+ijk*wl_seq_length;
123 // Read in how many items in the worklist can be tested without having to
124 // worry about writing to the mask
125 f=e[0];g=0;
126 do {
128 // If mrs is less than the minimum distance to any untested
129 // block, then we are done
130 if(con.r_max_add(mrs)<radp[g]) return;
131 g++;
133 // Load in a block off the worklist, permute it with the
134 // symmetry mask, and decode its position. These are all
135 // integer bit operations so they should run very fast.
136 q=e[g];q^=m1;q+=m2;
137 di=q&127;di-=64;
138 dj=(q>>7)&127;dj-=64;
139 dk=(q>>14)&127;dk-=64;
141 // Check that the worklist position is in range
142 ei=di+i;if(ei<0||ei>=hx) continue;
143 ej=dj+j;if(ej<0||ej>=hy) continue;
144 ek=dk+k;if(ek<0||ek>=hz) continue;
146 // Call the compute_min_max_radius() function. This returns
147 // true if the minimum distance to the block is bigger than the
148 // current mrs, in which case we skip this block and move on.
149 // Otherwise, it computes the maximum distance to the block and
150 // returns it in crs.
151 if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue;
153 // Now compute which region we are going to loop over, adding a
154 // displacement for the periodic cases
155 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
157 // If mrs is bigger than the maximum distance to the block,
158 // then we have to test all particles in the block for
159 // intersections. Otherwise, we do additional checks and skip
160 // those particles which can't possibly intersect the block.
161 scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs);
162 } while(g<f);
164 // Update mask value and initialize queue
165 mv++;
166 if(mv==0) {reset_mask();mv=1;}
167 int *qu_s=qu,*qu_e=qu;
169 while(g<wl_seq_length-1) {
171 // If mrs is less than the minimum distance to any untested
172 // block, then we are done
173 if(con.r_max_add(mrs)<radp[g]) return;
174 g++;
176 // Load in a block off the worklist, permute it with the
177 // symmetry mask, and decode its position. These are all
178 // integer bit operations so they should run very fast.
179 q=e[g];q^=m1;q+=m2;
180 di=q&127;di-=64;
181 dj=(q>>7)&127;dj-=64;
182 dk=(q>>14)&127;dk-=64;
184 // Compute the position in the mask of the current block. If
185 // this lies outside the mask, then skip it. Otherwise, mark
186 // it.
187 ei=di+i;if(ei<0||ei>=hx) continue;
188 ej=dj+j;if(ej<0||ej>=hy) continue;
189 ek=dk+k;if(ek<0||ek>=hz) continue;
190 mijk=mask+ei+hx*(ej+hy*ek);
191 *mijk=mv;
193 // Skip this block if it is further away than the current
194 // minimum radius
195 if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue;
197 // Now compute which region we are going to loop over, adding a
198 // displacement for the periodic cases
199 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
200 scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs);
202 if(qu_e>qu_l-18) add_list_memory(qu_s,qu_e);
203 scan_bits_mask_add(q,mijk,ei,ej,ek,qu_e);
206 // Do a check to see if we've reached the radius cutoff
207 if(con.r_max_add(mrs)<radp[g]) return;
209 // We were unable to completely compute the cell based on the blocks in
210 // the worklist, so now we have to go block by block, reading in items
211 // off the list
212 while(qu_s!=qu_e) {
214 // Read the next entry of the queue
215 if(qu_s==qu_l) qu_s=qu;
216 ei=*(qu_s++);ej=*(qu_s++);ek=*(qu_s++);
217 di=ei-i;dj=ej-j;dk=ek-k;
218 if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue;
220 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
221 scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs);
223 // Test the neighbors of the current block, and add them to the
224 // block list if they haven't already been tested
225 if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e);
226 add_to_mask(ei,ej,ek,qu_e);
230 /** Scans the six orthogonal neighbors of a given block and adds them to the
231 * queue if they haven't been considered already. It assumes that the queue
232 * will definitely have enough memory to add six entries at the end.
233 * \param[in] (ei,ej,ek) the block to consider.
234 * \param[in,out] qu_e a pointer to the end of the queue. */
235 template<class c_class>
236 inline void voro_compute<c_class>::add_to_mask(int ei,int ej,int ek,int *&qu_e) {
237 unsigned int *mijk=mask+ei+hx*(ej+hy*ek);
238 if(ek>0) if(*(mijk-hxy)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek-1;}
239 if(ej>0) if(*(mijk-hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;*(qu_e++)=ek;}
240 if(ei>0) if(*(mijk-1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;*(qu_e++)=ek;}
241 if(ei<hx-1) if(*(mijk+1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;}
242 if(ej<hy-1) if(*(mijk+hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;}
243 if(ek<hz-1) if(*(mijk+hxy)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;}
246 /** Scans a worklist entry and adds any blocks to the queue
247 * \param[in] (ei,ej,ek) the block to consider.
248 * \param[in,out] qu_e a pointer to the end of the queue. */
249 template<class c_class>
250 inline void voro_compute<c_class>::scan_bits_mask_add(unsigned int q,unsigned int *mijk,int ei,int ej,int ek,int *&qu_e) {
251 const unsigned int b1=1<<21,b2=1<<22,b3=1<<24,b4=1<<25,b5=1<<27,b6=1<<28;
252 if((q&b2)==b2) {
253 if(ei>0) {*(mijk-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;*(qu_e++)=ek;}
254 if((q&b1)==0&&ei<hx-1) {*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;}
255 } else if((q&b1)==b1&&ei<hx-1) {*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;}
256 if((q&b4)==b4) {
257 if(ej>0) {*(mijk-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;*(qu_e++)=ek;}
258 if((q&b3)==0&&ej<hy-1) {*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;}
259 } else if((q&b3)==b3&&ej<hy-1) {*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;}
260 if((q&b6)==b6) {
261 if(ek>0) {*(mijk-hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek-1;}
262 if((q&b5)==0&&ek<hz-1) {*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;}
263 } else if((q&b5)==b5&&ek<hz-1) {*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;}
266 /** This routine computes a Voronoi cell for a single particle in the
267 * container. It can be called by the user, but is also forms the core part of
268 * several of the main functions, such as store_cell_volumes(), print_all(),
269 * and the drawing routines. The algorithm constructs the cell by testing over
270 * the neighbors of the particle, working outwards until it reaches those
271 * particles which could not possibly intersect the cell. For maximum
272 * efficiency, this algorithm is divided into three parts. In the first
273 * section, the algorithm tests over the blocks which are in the immediate
274 * vicinity of the particle, by making use of one of the precomputed worklists.
275 * The code then continues to test blocks on the worklist, but also begins to
276 * construct a list of neighboring blocks outside the worklist which may need
277 * to be test. In the third section, the routine starts testing these
278 * neighboring blocks, evaluating whether or not a particle in them could
279 * possibly intersect the cell. For blocks that intersect the cell, it tests
280 * the particles in that block, and then adds the block neighbors to the list
281 * of potential places to consider.
282 * \param[in,out] c a reference to a voronoicell object.
283 * \param[in] ijk the index of the block that the test particle is in.
284 * \param[in] s the index of the particle within the test block.
285 * \param[in] (ci,cj,ck) the coordinates of the block that the test particle is
286 * in relative to the container data structure.
287 * \return False if the Voronoi cell was completely removed during the
288 * computation and has zero volume, true otherwise. */
289 template<class c_class>
290 template<class v_cell>
291 bool voro_compute<c_class>::compute_cell(v_cell &c,int ijk,int s,int ci,int cj,int ck) {
292 static const int count_list[8]={7,11,15,19,26,35,45,59},*count_e=count_list+8;
293 double x,y,z,x1,y1,z1,qx=0,qy=0,qz=0;
294 double xlo,ylo,zlo,xhi,yhi,zhi,x2,y2,z2,rs;
295 int i,j,k,di,dj,dk,ei,ej,ek,f,g,l,disp;
296 double fx,fy,fz,gxs,gys,gzs,*radp;
297 unsigned int q,*e,*mijk;
299 if(!con.initialize_voronoicell(c,ijk,s,ci,cj,ck,i,j,k,x,y,z,disp)) return false;
300 con.r_init(ijk,s);
302 // Initialize the Voronoi cell to fill the entire container
303 double crs,mrs;
305 int next_count=3,*count_p=(const_cast<int*> (count_list));
307 // Test all particles in the particle's local region first
308 for(l=0;l<s;l++) {
309 x1=p[ijk][ps*l]-x;
310 y1=p[ijk][ps*l+1]-y;
311 z1=p[ijk][ps*l+2]-z;
312 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
313 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
315 l++;
316 while(l<co[ijk]) {
317 x1=p[ijk][ps*l]-x;
318 y1=p[ijk][ps*l+1]-y;
319 z1=p[ijk][ps*l+2]-z;
320 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
321 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
322 l++;
325 // Now compute the maximum distance squared from the cell center to a
326 // vertex. This is used to cut off the calculation since we only need
327 // to test out to twice this range.
328 mrs=c.max_radius_squared();
330 // Now compute the fractional position of the particle within its
331 // region and store it in (fx,fy,fz). We use this to compute an index
332 // (di,dj,dk) of which subregion the particle is within.
333 unsigned int m1,m2;
334 con.frac_pos(x,y,z,ci,cj,ck,fx,fy,fz);
335 di=int(fx*xsp*wl_fgrid);dj=int(fy*ysp*wl_fgrid);dk=int(fz*zsp*wl_fgrid);
337 // The indices (di,dj,dk) tell us which worklist to use, to test the
338 // blocks in the optimal order. But we only store worklists for the
339 // eighth of the region where di, dj, and dk are all less than half the
340 // full grid. The rest of the cases are handled by symmetry. In this
341 // section, we detect for these cases, by reflecting high values of di,
342 // dj, and dk. For these cases, a mask is constructed in m1 and m2
343 // which is used to flip the worklist information when it is loaded.
344 if(di>=wl_hgrid) {
345 gxs=fx;
346 m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid-1-di;if(di<0) di=0;
347 } else {m1=m2=0;gxs=boxx-fx;}
348 if(dj>=wl_hgrid) {
349 gys=fy;
350 m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid-1-dj;if(dj<0) dj=0;
351 } else gys=boxy-fy;
352 if(dk>=wl_hgrid) {
353 gzs=fz;
354 m1|=(127<<14)+(3<<27);m2|=(1<<14)+(1<<27);dk=wl_fgrid-1-dk;if(dk<0) dk=0;
355 } else gzs=boxz-fz;
356 gxs*=gxs;gys*=gys;gzs*=gzs;
358 // Now compute which worklist we are going to use, and set radp and e to
359 // point at the right offsets
360 ijk=di+wl_hgrid*(dj+wl_hgrid*dk);
361 radp=mrad+ijk*wl_seq_length;
362 e=(const_cast<unsigned int*> (wl))+ijk*wl_seq_length;
364 // Read in how many items in the worklist can be tested without having to
365 // worry about writing to the mask
366 f=e[0];g=0;
367 do {
369 // At the intervals specified by count_list, we recompute the
370 // maximum radius squared
371 if(g==next_count) {
372 mrs=c.max_radius_squared();
373 if(count_p!=count_e) next_count=*(count_p++);
376 // If mrs is less than the minimum distance to any untested
377 // block, then we are done
378 if(con.r_ctest(radp[g],mrs)) return true;
379 g++;
381 // Load in a block off the worklist, permute it with the
382 // symmetry mask, and decode its position. These are all
383 // integer bit operations so they should run very fast.
384 q=e[g];q^=m1;q+=m2;
385 di=q&127;di-=64;
386 dj=(q>>7)&127;dj-=64;
387 dk=(q>>14)&127;dk-=64;
389 // Check that the worklist position is in range
390 ei=di+i;if(ei<0||ei>=hx) continue;
391 ej=dj+j;if(ej<0||ej>=hy) continue;
392 ek=dk+k;if(ek<0||ek>=hz) continue;
394 // Call the compute_min_max_radius() function. This returns
395 // true if the minimum distance to the block is bigger than the
396 // current mrs, in which case we skip this block and move on.
397 // Otherwise, it computes the maximum distance to the block and
398 // returns it in crs.
399 if(compute_min_max_radius(di,dj,dk,fx,fy,fz,gxs,gys,gzs,crs,mrs)) continue;
401 // Now compute which region we are going to loop over, adding a
402 // displacement for the periodic cases
403 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
405 // If mrs is bigger than the maximum distance to the block,
406 // then we have to test all particles in the block for
407 // intersections. Otherwise, we do additional checks and skip
408 // those particles which can't possibly intersect the block.
409 if(co[ijk]>0) {
410 l=0;x2=x-qx;y2=y-qy;z2=z-qz;
411 if(!con.r_ctest(crs,mrs)) {
412 do {
413 x1=p[ijk][ps*l]-x2;
414 y1=p[ijk][ps*l+1]-y2;
415 z1=p[ijk][ps*l+2]-z2;
416 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
417 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
418 l++;
419 } while (l<co[ijk]);
420 } else {
421 do {
422 x1=p[ijk][ps*l]-x2;
423 y1=p[ijk][ps*l+1]-y2;
424 z1=p[ijk][ps*l+2]-z2;
425 rs=x1*x1+y1*y1+z1*z1;
426 if(con.r_scale_check(rs,mrs,ijk,l)&&!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
427 l++;
428 } while (l<co[ijk]);
431 } while(g<f);
433 // If we reach here, we were unable to compute the entire cell using
434 // the first part of the worklist. This section of the algorithm
435 // continues the worklist, but it now starts preparing the mask that we
436 // need if we end up going block by block. We do the same as before,
437 // but we put a mark down on the mask for every block that's tested.
438 // The worklist also contains information about which neighbors of each
439 // block are not also on the worklist, and we start storing those
440 // points in a list in case we have to go block by block. Update the
441 // mask counter, and if it wraps around then reset the whole mask; that
442 // will only happen once every 2^32 tries.
443 mv++;
444 if(mv==0) {reset_mask();mv=1;}
446 // Set the queue pointers
447 int *qu_s=qu,*qu_e=qu;
449 while(g<wl_seq_length-1) {
451 // At the intervals specified by count_list, we recompute the
452 // maximum radius squared
453 if(g==next_count) {
454 mrs=c.max_radius_squared();
455 if(count_p!=count_e) next_count=*(count_p++);
458 // If mrs is less than the minimum distance to any untested
459 // block, then we are done
460 if(con.r_ctest(radp[g],mrs)) return true;
461 g++;
463 // Load in a block off the worklist, permute it with the
464 // symmetry mask, and decode its position. These are all
465 // integer bit operations so they should run very fast.
466 q=e[g];q^=m1;q+=m2;
467 di=q&127;di-=64;
468 dj=(q>>7)&127;dj-=64;
469 dk=(q>>14)&127;dk-=64;
471 // Compute the position in the mask of the current block. If
472 // this lies outside the mask, then skip it. Otherwise, mark
473 // it.
474 ei=di+i;if(ei<0||ei>=hx) continue;
475 ej=dj+j;if(ej<0||ej>=hy) continue;
476 ek=dk+k;if(ek<0||ek>=hz) continue;
477 mijk=mask+ei+hx*(ej+hy*ek);
478 *mijk=mv;
480 // Call the compute_min_max_radius() function. This returns
481 // true if the minimum distance to the block is bigger than the
482 // current mrs, in which case we skip this block and move on.
483 // Otherwise, it computes the maximum distance to the block and
484 // returns it in crs.
485 if(compute_min_max_radius(di,dj,dk,fx,fy,fz,gxs,gys,gzs,crs,mrs)) continue;
487 // Now compute which region we are going to loop over, adding a
488 // displacement for the periodic cases
489 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
491 // If mrs is bigger than the maximum distance to the block,
492 // then we have to test all particles in the block for
493 // intersections. Otherwise, we do additional checks and skip
494 // those particles which can't possibly intersect the block.
495 if(co[ijk]>0) {
496 l=0;x2=x-qx;y2=y-qy;z2=z-qz;
497 if(!con.r_ctest(crs,mrs)) {
498 do {
499 x1=p[ijk][ps*l]-x2;
500 y1=p[ijk][ps*l+1]-y2;
501 z1=p[ijk][ps*l+2]-z2;
502 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
503 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
504 l++;
505 } while (l<co[ijk]);
506 } else {
507 do {
508 x1=p[ijk][ps*l]-x2;
509 y1=p[ijk][ps*l+1]-y2;
510 z1=p[ijk][ps*l+2]-z2;
511 rs=x1*x1+y1*y1+z1*z1;
512 if(con.r_scale_check(rs,mrs,ijk,l)&&!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
513 l++;
514 } while (l<co[ijk]);
518 // If there might not be enough memory on the list for these
519 // additions, then add more
520 if(qu_e>qu_l-18) add_list_memory(qu_s,qu_e);
522 // Test the parts of the worklist element which tell us what
523 // neighbors of this block are not on the worklist. Store them
524 // on the block list, and mark the mask.
525 scan_bits_mask_add(q,mijk,ei,ej,ek,qu_e);
528 // Do a check to see if we've reached the radius cutoff
529 if(con.r_ctest(radp[g],mrs)) return true;
531 // We were unable to completely compute the cell based on the blocks in
532 // the worklist, so now we have to go block by block, reading in items
533 // off the list
534 while(qu_s!=qu_e) {
536 // If we reached the end of the list memory loop back to the
537 // start
538 if(qu_s==qu_l) qu_s=qu;
540 // Read in a block off the list, and compute the upper and lower
541 // coordinates in each of the three dimensions
542 ei=*(qu_s++);ej=*(qu_s++);ek=*(qu_s++);
543 xlo=(ei-i)*boxx-fx;xhi=xlo+boxx;
544 ylo=(ej-j)*boxy-fy;yhi=ylo+boxy;
545 zlo=(ek-k)*boxz-fz;zhi=zlo+boxz;
547 // Carry out plane tests to see if any particle in this block
548 // could possibly intersect the cell
549 if(ei>i) {
550 if(ej>j) {
551 if(ek>k) {if(corner_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
552 else if(ek<k) {if(corner_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;}
553 else {if(edge_z_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
554 } else if(ej<j) {
555 if(ek>k) {if(corner_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;}
556 else if(ek<k) {if(corner_test(c,xlo,yhi,zhi,xhi,ylo,zlo)) continue;}
557 else {if(edge_z_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;}
558 } else {
559 if(ek>k) {if(edge_y_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
560 else if(ek<k) {if(edge_y_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;}
561 else {if(face_x_test(c,xlo,ylo,zlo,yhi,zhi)) continue;}
563 } else if(ei<i) {
564 if(ej>j) {
565 if(ek>k) {if(corner_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;}
566 else if(ek<k) {if(corner_test(c,xhi,ylo,zhi,xlo,yhi,zlo)) continue;}
567 else {if(edge_z_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;}
568 } else if(ej<j) {
569 if(ek>k) {if(corner_test(c,xhi,yhi,zlo,xlo,ylo,zhi)) continue;}
570 else if(ek<k) {if(corner_test(c,xhi,yhi,zhi,xlo,ylo,zlo)) continue;}
571 else {if(edge_z_test(c,xhi,yhi,zlo,xlo,ylo,zhi)) continue;}
572 } else {
573 if(ek>k) {if(edge_y_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;}
574 else if(ek<k) {if(edge_y_test(c,xhi,ylo,zhi,xlo,yhi,zlo)) continue;}
575 else {if(face_x_test(c,xhi,ylo,zlo,yhi,zhi)) continue;}
577 } else {
578 if(ej>j) {
579 if(ek>k) {if(edge_x_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
580 else if(ek<k) {if(edge_x_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;}
581 else {if(face_y_test(c,xlo,ylo,zlo,xhi,zhi)) continue;}
582 } else if(ej<j) {
583 if(ek>k) {if(edge_x_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;}
584 else if(ek<k) {if(edge_x_test(c,xlo,yhi,zhi,xhi,ylo,zlo)) continue;}
585 else {if(face_y_test(c,xlo,yhi,zlo,xhi,zhi)) continue;}
586 } else {
587 if(ek>k) {if(face_z_test(c,xlo,ylo,zlo,xhi,yhi)) continue;}
588 else if(ek<k) {if(face_z_test(c,xlo,ylo,zhi,xhi,yhi)) continue;}
589 else voro_fatal_error("Compute cell routine revisiting central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR);
593 // Now compute the region that we are going to test over, and
594 // set a displacement vector for the periodic cases
595 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
597 // Loop over all the elements in the block to test for cuts. It
598 // would be possible to exclude some of these cases by testing
599 // against mrs, but this will probably not save time.
600 if(co[ijk]>0) {
601 l=0;x2=x-qx;y2=y-qy;z2=z-qz;
602 do {
603 x1=p[ijk][ps*l]-x2;
604 y1=p[ijk][ps*l+1]-y2;
605 z1=p[ijk][ps*l+2]-z2;
606 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
607 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
608 l++;
609 } while (l<co[ijk]);
612 // If there's not much memory on the block list then add more
613 if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e);
615 // Test the neighbors of the current block, and add them to the
616 // block list if they haven't already been tested
617 add_to_mask(ei,ej,ek,qu_e);
620 return true;
623 /** This function checks to see whether a particular block can possibly have
624 * any intersection with a Voronoi cell, for the case when the closest point
625 * from the cell center to the block is at a corner.
626 * \param[in,out] c a reference to a Voronoi cell.
627 * \param[in] (xl,yl,zl) the relative coordinates of the corner of the block
628 * closest to the cell center.
629 * \param[in] (xh,yh,zh) the relative coordinates of the corner of the block
630 * furthest away from the cell center.
631 * \return False if the block may intersect, true if does not. */
632 template<class c_class>
633 template<class v_cell>
634 bool voro_compute<c_class>::corner_test(v_cell &c,double xl,double yl,double zl,double xh,double yh,double zh) {
635 con.r_prime(xl*xl+yl*yl+zl*zl);
636 if(c.plane_intersects_guess(xh,yl,zl,con.r_cutoff(xl*xh+yl*yl+zl*zl))) return false;
637 if(c.plane_intersects(xh,yh,zl,con.r_cutoff(xl*xh+yl*yh+zl*zl))) return false;
638 if(c.plane_intersects(xl,yh,zl,con.r_cutoff(xl*xl+yl*yh+zl*zl))) return false;
639 if(c.plane_intersects(xl,yh,zh,con.r_cutoff(xl*xl+yl*yh+zl*zh))) return false;
640 if(c.plane_intersects(xl,yl,zh,con.r_cutoff(xl*xl+yl*yl+zl*zh))) return false;
641 if(c.plane_intersects(xh,yl,zh,con.r_cutoff(xl*xh+yl*yl+zl*zh))) return false;
642 return true;
645 /** This function checks to see whether a particular block can possibly have
646 * any intersection with a Voronoi cell, for the case when the closest point
647 * from the cell center to the block is on an edge which points along the x
648 * direction.
649 * \param[in,out] c a reference to a Voronoi cell.
650 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
651 * block.
652 * \param[in] (yl,zl) the relative y and z coordinates of the corner of the
653 * block closest to the cell center.
654 * \param[in] (yh,zh) the relative y and z coordinates of the corner of the
655 * block furthest away from the cell center.
656 * \return False if the block may intersect, true if does not. */
657 template<class c_class>
658 template<class v_cell>
659 inline bool voro_compute<c_class>::edge_x_test(v_cell &c,double x0,double yl,double zl,double x1,double yh,double zh) {
660 con.r_prime(yl*yl+zl*zl);
661 if(c.plane_intersects_guess(x0,yl,zh,con.r_cutoff(yl*yl+zl*zh))) return false;
662 if(c.plane_intersects(x1,yl,zh,con.r_cutoff(yl*yl+zl*zh))) return false;
663 if(c.plane_intersects(x1,yl,zl,con.r_cutoff(yl*yl+zl*zl))) return false;
664 if(c.plane_intersects(x0,yl,zl,con.r_cutoff(yl*yl+zl*zl))) return false;
665 if(c.plane_intersects(x0,yh,zl,con.r_cutoff(yl*yh+zl*zl))) return false;
666 if(c.plane_intersects(x1,yh,zl,con.r_cutoff(yl*yh+zl*zl))) return false;
667 return true;
670 /** This function checks to see whether a particular block can possibly have
671 * any intersection with a Voronoi cell, for the case when the closest point
672 * from the cell center to the block is on an edge which points along the y
673 * direction.
674 * \param[in,out] c a reference to a Voronoi cell.
675 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
676 * block.
677 * \param[in] (xl,zl) the relative x and z coordinates of the corner of the
678 * block closest to the cell center.
679 * \param[in] (xh,zh) the relative x and z coordinates of the corner of the
680 * block furthest away from the cell center.
681 * \return False if the block may intersect, true if does not. */
682 template<class c_class>
683 template<class v_cell>
684 inline bool voro_compute<c_class>::edge_y_test(v_cell &c,double xl,double y0,double zl,double xh,double y1,double zh) {
685 con.r_prime(xl*xl+zl*zl);
686 if(c.plane_intersects_guess(xl,y0,zh,con.r_cutoff(xl*xl+zl*zh))) return false;
687 if(c.plane_intersects(xl,y1,zh,con.r_cutoff(xl*xl+zl*zh))) return false;
688 if(c.plane_intersects(xl,y1,zl,con.r_cutoff(xl*xl+zl*zl))) return false;
689 if(c.plane_intersects(xl,y0,zl,con.r_cutoff(xl*xl+zl*zl))) return false;
690 if(c.plane_intersects(xh,y0,zl,con.r_cutoff(xl*xh+zl*zl))) return false;
691 if(c.plane_intersects(xh,y1,zl,con.r_cutoff(xl*xh+zl*zl))) return false;
692 return true;
695 /** This function checks to see whether a particular block can possibly have
696 * any intersection with a Voronoi cell, for the case when the closest point
697 * from the cell center to the block is on an edge which points along the z
698 * direction.
699 * \param[in,out] c a reference to a Voronoi cell.
700 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the block.
701 * \param[in] (xl,yl) the relative x and y coordinates of the corner of the
702 * block closest to the cell center.
703 * \param[in] (xh,yh) the relative x and y coordinates of the corner of the
704 * block furthest away from the cell center.
705 * \return False if the block may intersect, true if does not. */
706 template<class c_class>
707 template<class v_cell>
708 inline bool voro_compute<c_class>::edge_z_test(v_cell &c,double xl,double yl,double z0,double xh,double yh,double z1) {
709 con.r_prime(xl*xl+yl*yl);
710 if(c.plane_intersects_guess(xl,yh,z0,con.r_cutoff(xl*xl+yl*yh))) return false;
711 if(c.plane_intersects(xl,yh,z1,con.r_cutoff(xl*xl+yl*yh))) return false;
712 if(c.plane_intersects(xl,yl,z1,con.r_cutoff(xl*xl+yl*yl))) return false;
713 if(c.plane_intersects(xl,yl,z0,con.r_cutoff(xl*xl+yl*yl))) return false;
714 if(c.plane_intersects(xh,yl,z0,con.r_cutoff(xl*xh+yl*yl))) return false;
715 if(c.plane_intersects(xh,yl,z1,con.r_cutoff(xl*xh+yl*yl))) return false;
716 return true;
719 /** This function checks to see whether a particular block can possibly have
720 * any intersection with a Voronoi cell, for the case when the closest point
721 * from the cell center to the block is on a face aligned with the x direction.
722 * \param[in,out] c a reference to a Voronoi cell.
723 * \param[in] xl the minimum distance from the cell center to the face.
724 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
725 * block.
726 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the
727 * block.
728 * \return False if the block may intersect, true if does not. */
729 template<class c_class>
730 template<class v_cell>
731 inline bool voro_compute<c_class>::face_x_test(v_cell &c,double xl,double y0,double z0,double y1,double z1) {
732 con.r_prime(xl*xl);
733 if(c.plane_intersects_guess(xl,y0,z0,con.r_cutoff(xl*xl))) return false;
734 if(c.plane_intersects(xl,y0,z1,con.r_cutoff(xl*xl))) return false;
735 if(c.plane_intersects(xl,y1,z1,con.r_cutoff(xl*xl))) return false;
736 if(c.plane_intersects(xl,y1,z0,con.r_cutoff(xl*xl))) return false;
737 return true;
740 /** This function checks to see whether a particular block can possibly have
741 * any intersection with a Voronoi cell, for the case when the closest point
742 * from the cell center to the block is on a face aligned with the y direction.
743 * \param[in,out] c a reference to a Voronoi cell.
744 * \param[in] yl the minimum distance from the cell center to the face.
745 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
746 * block.
747 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the
748 * block.
749 * \return False if the block may intersect, true if does not. */
750 template<class c_class>
751 template<class v_cell>
752 inline bool voro_compute<c_class>::face_y_test(v_cell &c,double x0,double yl,double z0,double x1,double z1) {
753 con.r_prime(yl*yl);
754 if(c.plane_intersects_guess(x0,yl,z0,con.r_cutoff(yl*yl))) return false;
755 if(c.plane_intersects(x0,yl,z1,con.r_cutoff(yl*yl))) return false;
756 if(c.plane_intersects(x1,yl,z1,con.r_cutoff(yl*yl))) return false;
757 if(c.plane_intersects(x1,yl,z0,con.r_cutoff(yl*yl))) return false;
758 return true;
761 /** This function checks to see whether a particular block can possibly have
762 * any intersection with a Voronoi cell, for the case when the closest point
763 * from the cell center to the block is on a face aligned with the z direction.
764 * \param[in,out] c a reference to a Voronoi cell.
765 * \param[in] zl the minimum distance from the cell center to the face.
766 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
767 * block.
768 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
769 * block.
770 * \return False if the block may intersect, true if does not. */
771 template<class c_class>
772 template<class v_cell>
773 inline bool voro_compute<c_class>::face_z_test(v_cell &c,double x0,double y0,double zl,double x1,double y1) {
774 con.r_prime(zl*zl);
775 if(c.plane_intersects_guess(x0,y0,zl,con.r_cutoff(zl*zl))) return false;
776 if(c.plane_intersects(x0,y1,zl,con.r_cutoff(zl*zl))) return false;
777 if(c.plane_intersects(x1,y1,zl,con.r_cutoff(zl*zl))) return false;
778 if(c.plane_intersects(x1,y0,zl,con.r_cutoff(zl*zl))) return false;
779 return true;
783 /** This routine checks to see whether a point is within a particular distance
784 * of a nearby region. If the point is within the distance of the region, then
785 * the routine returns true, and computes the maximum distance from the point
786 * to the region. Otherwise, the routine returns false.
787 * \param[in] (di,dj,dk) the position of the nearby region to be tested,
788 * relative to the region that the point is in.
789 * \param[in] (fx,fy,fz) the displacement of the point within its region.
790 * \param[in] (gxs,gys,gzs) the maximum squared distances from the point to the
791 * sides of its region.
792 * \param[out] crs a reference in which to return the maximum distance to the
793 * region (only computed if the routine returns false).
794 * \param[in] mrs the distance to be tested.
795 * \return True if the region is further away than mrs, false if the region in
796 * within mrs. */
797 template<class c_class>
798 bool voro_compute<c_class>::compute_min_max_radius(int di,int dj,int dk,double fx,double fy,double fz,double gxs,double gys,double gzs,double &crs,double mrs) {
799 double xlo,ylo,zlo;
800 if(di>0) {
801 xlo=di*boxx-fx;
802 crs=xlo*xlo;
803 if(dj>0) {
804 ylo=dj*boxy-fy;
805 crs+=ylo*ylo;
806 if(dk>0) {
807 zlo=dk*boxz-fz;
808 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
809 crs+=bxsq+2*(boxx*xlo+boxy*ylo+boxz*zlo);
810 } else if(dk<0) {
811 zlo=(dk+1)*boxz-fz;
812 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
813 crs+=bxsq+2*(boxx*xlo+boxy*ylo-boxz*zlo);
814 } else {
815 if(con.r_ctest(crs,mrs)) return true;
816 crs+=boxx*(2*xlo+boxx)+boxy*(2*ylo+boxy)+gzs;
818 } else if(dj<0) {
819 ylo=(dj+1)*boxy-fy;
820 crs+=ylo*ylo;
821 if(dk>0) {
822 zlo=dk*boxz-fz;
823 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
824 crs+=bxsq+2*(boxx*xlo-boxy*ylo+boxz*zlo);
825 } else if(dk<0) {
826 zlo=(dk+1)*boxz-fz;
827 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
828 crs+=bxsq+2*(boxx*xlo-boxy*ylo-boxz*zlo);
829 } else {
830 if(con.r_ctest(crs,mrs)) return true;
831 crs+=boxx*(2*xlo+boxx)+boxy*(-2*ylo+boxy)+gzs;
833 } else {
834 if(dk>0) {
835 zlo=dk*boxz-fz;
836 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
837 crs+=boxz*(2*zlo+boxz);
838 } else if(dk<0) {
839 zlo=(dk+1)*boxz-fz;
840 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
841 crs+=boxz*(-2*zlo+boxz);
842 } else {
843 if(con.r_ctest(crs,mrs)) return true;
844 crs+=gzs;
846 crs+=gys+boxx*(2*xlo+boxx);
848 } else if(di<0) {
849 xlo=(di+1)*boxx-fx;
850 crs=xlo*xlo;
851 if(dj>0) {
852 ylo=dj*boxy-fy;
853 crs+=ylo*ylo;
854 if(dk>0) {
855 zlo=dk*boxz-fz;
856 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
857 crs+=bxsq+2*(-boxx*xlo+boxy*ylo+boxz*zlo);
858 } else if(dk<0) {
859 zlo=(dk+1)*boxz-fz;
860 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
861 crs+=bxsq+2*(-boxx*xlo+boxy*ylo-boxz*zlo);
862 } else {
863 if(con.r_ctest(crs,mrs)) return true;
864 crs+=boxx*(-2*xlo+boxx)+boxy*(2*ylo+boxy)+gzs;
866 } else if(dj<0) {
867 ylo=(dj+1)*boxy-fy;
868 crs+=ylo*ylo;
869 if(dk>0) {
870 zlo=dk*boxz-fz;
871 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
872 crs+=bxsq+2*(-boxx*xlo-boxy*ylo+boxz*zlo);
873 } else if(dk<0) {
874 zlo=(dk+1)*boxz-fz;
875 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
876 crs+=bxsq+2*(-boxx*xlo-boxy*ylo-boxz*zlo);
877 } else {
878 if(con.r_ctest(crs,mrs)) return true;
879 crs+=boxx*(-2*xlo+boxx)+boxy*(-2*ylo+boxy)+gzs;
881 } else {
882 if(dk>0) {
883 zlo=dk*boxz-fz;
884 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
885 crs+=boxz*(2*zlo+boxz);
886 } else if(dk<0) {
887 zlo=(dk+1)*boxz-fz;
888 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
889 crs+=boxz*(-2*zlo+boxz);
890 } else {
891 if(con.r_ctest(crs,mrs)) return true;
892 crs+=gzs;
894 crs+=gys+boxx*(-2*xlo+boxx);
896 } else {
897 if(dj>0) {
898 ylo=dj*boxy-fy;
899 crs=ylo*ylo;
900 if(dk>0) {
901 zlo=dk*boxz-fz;
902 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
903 crs+=boxz*(2*zlo+boxz);
904 } else if(dk<0) {
905 zlo=(dk+1)*boxz-fz;
906 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
907 crs+=boxz*(-2*zlo+boxz);
908 } else {
909 if(con.r_ctest(crs,mrs)) return true;
910 crs+=gzs;
912 crs+=boxy*(2*ylo+boxy);
913 } else if(dj<0) {
914 ylo=(dj+1)*boxy-fy;
915 crs=ylo*ylo;
916 if(dk>0) {
917 zlo=dk*boxz-fz;
918 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
919 crs+=boxz*(2*zlo+boxz);
920 } else if(dk<0) {
921 zlo=(dk+1)*boxz-fz;
922 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
923 crs+=boxz*(-2*zlo+boxz);
924 } else {
925 if(con.r_ctest(crs,mrs)) return true;
926 crs+=gzs;
928 crs+=boxy*(-2*ylo+boxy);
929 } else {
930 if(dk>0) {
931 zlo=dk*boxz-fz;crs=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
932 crs+=boxz*(2*zlo+boxz);
933 } else if(dk<0) {
934 zlo=(dk+1)*boxz-fz;crs=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
935 crs+=boxz*(-2*zlo+boxz);
936 } else {
937 crs=0;
938 voro_fatal_error("Min/max radius function called for central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR);
940 crs+=gys;
942 crs+=gxs;
944 return false;
947 template<class c_class>
948 bool voro_compute<c_class>::compute_min_radius(int di,int dj,int dk,double fx,double fy,double fz,double mrs) {
949 double t,crs;
951 if(di>0) {t=di*boxx-fx;crs=t*t;}
952 else if(di<0) {t=(di+1)*boxx-fx;crs=t*t;}
953 else crs=0;
955 if(dj>0) {t=dj*boxy-fy;crs+=t*t;}
956 else if(dj<0) {t=(dj+1)*boxy-fy;crs+=t*t;}
958 if(dk>0) {t=dk*boxz-fz;crs+=t*t;}
959 else if(dk<0) {t=(dk+1)*boxz-fz;crs+=t*t;}
961 return crs>con.r_max_add(mrs);
964 /** Adds memory to the queue.
965 * \param[in,out] qu_s a reference to the queue start pointer.
966 * \param[in,out] qu_e a reference to the queue end pointer. */
967 template<class c_class>
968 inline void voro_compute<c_class>::add_list_memory(int*& qu_s,int*& qu_e) {
969 qu_size<<=1;
970 int *qu_n=new int[qu_size],*qu_c=qu_n;
971 #if VOROPP_VERBOSE >=2
972 fprintf(stderr,"List memory scaled up to %d\n",qu_size);
973 #endif
974 if(qu_s<=qu_e) {
975 while(qu_s<qu_e) *(qu_c++)=*(qu_s++);
976 } else {
977 while(qu_s<qu_l) *(qu_c++)=*(qu_s++);qu_s=qu;
978 while(qu_s<qu_e) *(qu_c++)=*(qu_s++);
980 delete [] qu;
981 qu_s=qu=qu_n;
982 qu_l=qu+qu_size;
983 qu_e=qu_c;
986 // Explicit template instantiation
987 template voro_compute<container>::voro_compute(container&,int,int,int);
988 template voro_compute<container_poly>::voro_compute(container_poly&,int,int,int);
989 template bool voro_compute<container>::compute_cell(voronoicell&,int,int,int,int,int);
990 template bool voro_compute<container>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
991 template void voro_compute<container>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
992 template bool voro_compute<container_poly>::compute_cell(voronoicell&,int,int,int,int,int);
993 template bool voro_compute<container_poly>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
994 template void voro_compute<container_poly>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
996 // Explicit template instantiation
997 template voro_compute<container_periodic>::voro_compute(container_periodic&,int,int,int);
998 template voro_compute<container_periodic_poly>::voro_compute(container_periodic_poly&,int,int,int);
999 template bool voro_compute<container_periodic>::compute_cell(voronoicell&,int,int,int,int,int);
1000 template bool voro_compute<container_periodic>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
1001 template void voro_compute<container_periodic>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
1002 template bool voro_compute<container_periodic_poly>::compute_cell(voronoicell&,int,int,int,int,int);
1003 template bool voro_compute<container_periodic_poly>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
1004 template void voro_compute<container_periodic_poly>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);