Bugfix in search_for_outside_edge routine.
[voro++.git] / branches / 2d / src / v_compute_2d.cc
blob8accc9e8f615ebc0747d4085828007fa926bedf5
1 // Voro++, a 3D cell-based Voronoi library
2 //
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
7 /** \file v_compute_2d.cc
8 * \brief Function implementantions for the 2D voro_compute class. */
10 #include "worklist_2d.hh"
11 #include "v_compute_2d.hh"
12 #include "rad_option.hh"
13 #include "container_2d.hh"
14 #include "ctr_boundary_2d.hh"
16 namespace voro {
18 /** The class constructor initializes constants from the container class, and
19 * sets up the mask and queue used for Voronoi computations.
20 * \param[in] con_ a reference to the container class to use.
21 * \param[in] (hx_,hy_) the size of the mask to use. */
22 template<class c_class_2d>
23 voro_compute_2d<c_class_2d>::voro_compute_2d(c_class_2d &con_,int hx_,int hy_) :
24 con(con_), boxx(con_.boxx), boxy(con_.boxy), xsp(con_.xsp),
25 ysp(con_.ysp), hx(hx_), hy(hy_), hxy(hx_*hy_), ps(con_.ps),
26 id(con_.id), p(con_.p), co(con_.co), bxsq(boxx*boxx+boxy*boxy),
27 mv(0), qu_size(2*(2+hx+hy)), wl(con_.wl), mrad(con_.mrad),
28 mask(new unsigned int[hxy]), qu(new int[qu_size]), qu_l(qu+qu_size) {
29 reset_mask();
32 /** Scans all of the particles within a block to see if any of them have a
33 * smaller distance to the given test vector. If one is found, the routine
34 * updates the minimum distance and store information about this particle.
35 * \param[in] ij the index of the block.
36 * \param[in] (x,y) the test vector to consider (which may have already had a
37 * periodic displacement applied to it).
38 * \param[in] (di,dj) the coordinates of the current block, to store if the
39 * particle record is updated.
40 * \param[in,out] w a reference to a particle record in which to store
41 * information about the particle whose Voronoi cell the
42 * vector is within.
43 * \param[in,out] mrs the current minimum distance, that may be updated if a
44 * closer particle is found. */
45 template<class c_class_2d>
46 inline void voro_compute_2d<c_class_2d>::scan_all(int ij,double x,double y,int di,int dj,particle_record_2d &w,double &mrs) {
47 double x1,y1,rs;bool in_block=false;
48 for(int l=0;l<co[ij];l++) {
49 x1=p[ij][ps*l]-x;
50 y1=p[ij][ps*l+1]-y;
51 rs=con.r_current_sub(x1*x1+y1*y1,ij,l);
52 if(rs<mrs) {mrs=rs;w.l=l;in_block=true;}
54 if(in_block) {w.ij=ij;w.di=di;w.dj=dj;}
57 /** Finds the Voronoi cell that given vector is within. For containers that are
58 * not radially dependent, this corresponds to findig the particle that is
59 * closest to the vector; for the radical tessellation containers, this
60 * corresponds to a finding the minimum weighted distance.
61 * \param[in] (x,y) the vector to consider.
62 * \param[in] (ci,cj) the coordinates of the block that the test particle is
63 * in relative to the container data structure.
64 * \param[in] ij the index of the block that the test particle is in.
65 * \param[out] w a reference to a particle record in which to store information
66 * about the particle whose Voronoi cell the vector is within.
67 * \param[out] mrs the minimum computed distance. */
68 template<class c_class_2d>
69 void voro_compute_2d<c_class_2d>::find_voronoi_cell(double x,double y,int ci,int cj,int ij,particle_record_2d &w,double &mrs) {
70 double qx=0,qy=0,rs;
71 int i,j,di,dj,ei,ej,f,g,disp;
72 double fx,fy,mxs,mys,*radp;
73 unsigned int q,*e,*mij;
75 // Init setup for parameters to return
76 w.ij=-1;mrs=large_number;
78 con.initialize_search(ci,cj,ij,i,j,disp);
80 // Test all particles in the particle's local region first
81 scan_all(ij,x,y,0,0,w,mrs);
83 // Now compute the fractional position of the particle within its
84 // region and store it in (fx,fy). We use this to compute an index
85 // (di,dj) of which subregion the particle is within.
86 unsigned int m1,m2;
87 con.frac_pos(x,y,ci,cj,fx,fy);
88 di=int(fx*xsp*wl_fgrid_2d);dj=int(fy*ysp*wl_fgrid_2d);
90 // The indices (di,dj) tell us which worklist to use, to test the
91 // blocks in the optimal order. But we only store worklists for the
92 // eighth of the region where di, dj, and dk are all less than half the
93 // full grid. The rest of the cases are handled by symmetry. In this
94 // section, we detect for these cases, by reflecting high values of di,
95 // dj. For these cases, a mask is constructed in m1 and m2
96 // which is used to flip the worklist information when it is loaded.
97 if(di>=wl_hgrid_2d) {
98 mxs=boxx-fx;
99 m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid_2d-1-di;if(di<0) di=0;
100 } else {m1=m2=0;mxs=fx;}
101 if(dj>=wl_hgrid_2d) {
102 mys=boxy-fy;
103 m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid_2d-1-dj;if(dj<0) dj=0;
104 } else mys=fy;
106 // Do a quick test to account for the case when the minimum radius is
107 // small enought that no other blocks need to be considered
108 rs=con.r_max_add(mrs);
109 if(mxs*mxs>rs&&mys*mys>rs) return;
111 // Now compute which worklist we are going to use, and set radp and e to
112 // point at the right offsets
113 ij=di+wl_hgrid_2d*dj;
114 radp=mrad+ij*wl_seq_length_2d;
115 e=(const_cast<unsigned int*> (wl))+ij*wl_seq_length_2d;
117 // Read in how many items in the worklist can be tested without having to
118 // worry about writing to the mask
119 f=e[0];g=0;
120 do {
122 // If mrs is less than the minimum distance to any untested
123 // block, then we are done
124 if(con.r_max_add(mrs)<radp[g]) return;
125 g++;
127 // Load in a block off the worklist, permute it with the
128 // symmetry mask, and decode its position. These are all
129 // integer bit operations so they should run very fast.
130 q=e[g];q^=m1;q+=m2;
131 di=q&127;di-=64;
132 dj=(q>>7)&127;dj-=64;
134 // Check that the worklist position is in range
135 ei=di+i;if(ei<0||ei>=hx) continue;
136 ej=dj+j;if(ej<0||ej>=hy) continue;
138 // Call the compute_min_max_radius() function. This returns
139 // true if the minimum distance to the block is bigger than the
140 // current mrs, in which case we skip this block and move on.
141 // Otherwise, it computes the maximum distance to the block and
142 // returns it in crs.
143 if(compute_min_radius(di,dj,fx,fy,mrs)) continue;
145 // Now compute which region we are going to loop over, adding a
146 // displacement for the periodic cases
147 ij=con.region_index(ci,cj,ei,ej,qx,qy,disp);
149 // If mrs is bigger than the maximum distance to the block,
150 // then we have to test all particles in the block for
151 // intersections. Otherwise, we do additional checks and skip
152 // those particles which can't possibly intersect the block.
153 scan_all(ij,x-qx,y-qy,di,dj,w,mrs);
154 } while(g<f);
156 // Update mask value and initialize queue
157 mv++;
158 if(mv==0) {reset_mask();mv=1;}
159 int *qu_s=qu,*qu_e=qu;
161 while(g<wl_seq_length_2d-1) {
163 // If mrs is less than the minimum distance to any untested
164 // block, then we are done
165 if(con.r_max_add(mrs)<radp[g]) return;
166 g++;
168 // Load in a block off the worklist, permute it with the
169 // symmetry mask, and decode its position. These are all
170 // integer bit operations so they should run very fast.
171 q=e[g];q^=m1;q+=m2;
172 di=q&127;di-=64;
173 dj=(q>>7)&127;dj-=64;
175 // Compute the position in the mask of the current block. If
176 // this lies outside the mask, then skip it. Otherwise, mark
177 // it.
178 ei=di+i;if(ei<0||ei>=hx) continue;
179 ej=dj+j;if(ej<0||ej>=hy) continue;
180 mij=mask+ei+hx*ej;
181 *mij=mv;
183 // Skip this block if it is further away than the current
184 // minimum radius
185 if(compute_min_radius(di,dj,fx,fy,mrs)) continue;
187 // Now compute which region we are going to loop over, adding a
188 // displacement for the periodic cases
189 ij=con.region_index(ci,cj,ei,ej,qx,qy,disp);
190 scan_all(ij,x-qx,y-qy,di,dj,w,mrs);
192 if(qu_e>qu_l-8) add_list_memory(qu_s,qu_e);
193 scan_bits_mask_add(q,mij,ei,ej,qu_e);
196 // Do a check to see if we've reached the radius cutoff
197 if(con.r_max_add(mrs)<radp[g]) return;
199 // We were unable to completely compute the cell based on the blocks in
200 // the worklist, so now we have to go block by block, reading in items
201 // off the list
202 while(qu_s!=qu_e) {
204 // Read the next entry of the queue
205 if(qu_s==qu_l) qu_s=qu;
206 ei=*(qu_s++);ej=*(qu_s++);
207 di=ei-i;dj=ej-j;
208 if(compute_min_radius(di,dj,fx,fy,mrs)) continue;
210 ij=con.region_index(ci,cj,ei,ej,qx,qy,disp);
212 scan_all(ij,x-qx,y-qy,di,dj,w,mrs);
214 // Test the neighbors of the current block, and add them to the
215 // block list if they haven't already been tested
216 if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e);
217 add_to_mask(ei,ej,qu_e);
221 /** Scans the six orthogonal neighbors of a given block and adds them to the
222 * queue if they haven't been considered already. It assumes that the queue
223 * will definitely have enough memory to add six entries at the end.
224 * \param[in] (ei,ej,ek) the block to consider.
225 * \param[in,out] qu_e a pointer to the end of the queue. */
226 template<class c_class_2d>
227 inline void voro_compute_2d<c_class_2d>::add_to_mask(int ei,int ej,int *&qu_e) {
228 unsigned int *mij=mask+ei+hx*ej;
229 if(ej>0) if(*(mij-hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mij-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;}
230 if(ei>0) if(*(mij-1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mij-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;}
231 if(ei<hx-1) if(*(mij+1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mij+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;}
232 if(ej<hy-1) if(*(mij+hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mij+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;}
235 /** Scans a worklist entry and adds any blocks to the queue
236 * \param[in] (ei,ej,ek) the block to consider.
237 * \param[in,out] qu_e a pointer to the end of the queue. */
238 template<class c_class_2d>
239 inline void voro_compute_2d<c_class_2d>::scan_bits_mask_add(unsigned int q,unsigned int *mij,int ei,int ej,int *&qu_e) {
240 const unsigned int b1=1<<21,b2=1<<22,b3=1<<24,b4=1<<25;
241 if((q&b2)==b2) {
242 if(ei>0) {*(mij-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;}
243 if((q&b1)==0&&ei<hx-1) {*(mij+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;}
244 } else if((q&b1)==b1&&ei<hx-1) {*(mij+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;}
245 if((q&b4)==b4) {
246 if(ej>0) {*(mij-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;}
247 if((q&b3)==0&&ej<hy-1) {*(mij+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;}
248 } else if((q&b3)==b3&&ej<hy-1) {*(mij+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;}
251 /** This routine computes a Voronoi cell for a single particle in the
252 * container. It can be called by the user, but is also forms the core part of
253 * several of the main functions, such as store_cell_volumes(), print_all(),
254 * and the drawing routines. The algorithm constructs the cell by testing over
255 * the neighbors of the particle, working outwards until it reaches those
256 * particles which could not possibly intersect the cell. For maximum
257 * efficiency, this algorithm is divided into three parts. In the first
258 * section, the algorithm tests over the blocks which are in the immediate
259 * vicinity of the particle, by making use of one of the precomputed worklists.
260 * The code then continues to test blocks on the worklist, but also begins to
261 * construct a list of neighboring blocks outside the worklist which may need
262 * to be test. In the third section, the routine starts testing these
263 * neighboring blocks, evaluating whether or not a particle in them could
264 * possibly intersect the cell. For blocks that intersect the cell, it tests
265 * the particles in that block, and then adds the block neighbors to the list
266 * of potential places to consider.
267 * \param[in,out] c a reference to a voronoicell object.
268 * \param[in] ij the index of the block that the test particle is in.
269 * \param[in] s the index of the particle within the test block.
270 * \param[in] (ci,cj) the coordinates of the block that the test particle is
271 * in relative to the container data structure.
272 * \return False if the Voronoi cell was completely removed during the
273 * computation and has zero volume, true otherwise. */
274 template<class c_class_2d>
275 template<class v_cell_2d>
276 bool voro_compute_2d<c_class_2d>::compute_cell(v_cell_2d &c,int ij,int s,int ci,int cj) {
277 static const int count_list[8]={7,11,15,19,26,35,45,59},*count_e=count_list+8;
278 double x,y,x1,y1,qx=0,qy=0;
279 double xlo,ylo,xhi,yhi,x2,y2,rs;
280 int i,j,di,dj,ei,ej,f,g,l,disp;
281 double fx,fy,gxs,gys,*radp;
282 unsigned int q,*e,*mij;
284 // Initialize the Voronoi cell to fill the entire container
285 if(!con.initialize_voronoicell(c,ij,s,ci,cj,i,j,x,y,disp)) return false;
286 con.r_init(ij,s);
287 if(!con.boundary_cuts(c,ij,x,y)) return false;
289 double crs,mrs;
290 int next_count=3,*count_p=(const_cast<int*> (count_list));
292 // Test all particles in the particle's local region first
293 for(l=0;l<s;l++) {
294 if(con.skip(ij,l,x,y)) continue;
295 x1=p[ij][ps*l]-x;
296 y1=p[ij][ps*l+1]-y;
297 rs=con.r_scale(x1*x1+y1*y1,ij,l);
298 if(!c.nplane(x1,y1,rs,id[ij][l])) return false;
300 l++;
301 while(l<co[ij]) {
302 if(con.skip(ij,l,x,y)) {l++;continue;}
303 x1=p[ij][ps*l]-x;
304 y1=p[ij][ps*l+1]-y;
305 rs=con.r_scale(x1*x1+y1*y1,ij,l);
306 if(!c.nplane(x1,y1,rs,id[ij][l])) return false;
307 l++;
310 // Now compute the maximum distance squared from the cell center to a
311 // vertex. This is used to cut off the calculation since we only need
312 // to test out to twice this range.
313 mrs=c.max_radius_squared();
315 // Now compute the fractional position of the particle within its
316 // region and store it in (fx,fy,fz). We use this to compute an index
317 // (di,dj,dk) of which subregion the particle is within.
318 unsigned int m1,m2;
319 con.frac_pos(x,y,ci,cj,fx,fy);
320 di=int(fx*xsp*wl_fgrid_2d);dj=int(fy*ysp*wl_fgrid_2d);
322 // The indices (di,dj,dk) tell us which worklist to use, to test the
323 // blocks in the optimal order. But we only store worklists for the
324 // eighth of the region where di, dj, and dk are all less than half the
325 // full grid. The rest of the cases are handled by symmetry. In this
326 // section, we detect for these cases, by reflecting high values of di,
327 // dj, and dk. For these cases, a mask is constructed in m1 and m2
328 // which is used to flip the worklist information when it is loaded.
329 if(di>=wl_hgrid_2d) {
330 gxs=fx;
331 m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid_2d-1-di;if(di<0) di=0;
332 } else {m1=m2=0;gxs=boxx-fx;}
333 if(dj>=wl_hgrid_2d) {
334 gys=fy;
335 m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid_2d-1-dj;if(dj<0) dj=0;
336 } else gys=boxy-fy;
337 gxs*=gxs;gys*=gys;
339 // Now compute which worklist we are going to use, and set radp and e to
340 // point at the right offsets
341 ij=di+wl_hgrid_2d*dj;
342 radp=mrad+ij*wl_seq_length_2d;
343 e=(const_cast<unsigned int*> (wl))+ij*wl_seq_length_2d;
345 // Read in how many items in the worklist can be tested without having to
346 // worry about writing to the mask
347 f=e[0];g=0;
348 do {
350 // At the intervals specified by count_list, we recompute the
351 // maximum radius squared
352 if(g==next_count) {
353 mrs=c.max_radius_squared();
354 if(count_p!=count_e) next_count=*(count_p++);
357 // If mrs is less than the minimum distance to any untested
358 // block, then we are done
359 if(con.r_ctest(radp[g],mrs)) return true;
360 g++;
362 // Load in a block off the worklist, permute it with the
363 // symmetry mask, and decode its position. These are all
364 // integer bit operations so they should run very fast.
365 q=e[g];q^=m1;q+=m2;
366 di=q&127;di-=64;
367 dj=(q>>7)&127;dj-=64;
369 // Check that the worklist position is in range
370 ei=di+i;if(ei<0||ei>=hx) continue;
371 ej=dj+j;if(ej<0||ej>=hy) continue;
373 // Call the compute_min_max_radius() function. This returns
374 // true if the minimum distance to the block is bigger than the
375 // current mrs, in which case we skip this block and move on.
376 // Otherwise, it computes the maximum distance to the block and
377 // returns it in crs.
378 if(compute_min_max_radius(di,dj,fx,fy,gxs,gys,crs,mrs)) continue;
380 // Now compute which region we are going to loop over, adding a
381 // displacement for the periodic cases
382 ij=con.region_index(ci,cj,ei,ej,qx,qy,disp);
383 if(!con.boundary_cuts(c,ij,x,y)) return false;
385 // If mrs is bigger than the maximum distance to the block,
386 // then we have to test all particles in the block for
387 // intersections. Otherwise, we do additional checks and skip
388 // those particles which can't possibly intersect the block.
389 if(co[ij]>0) {
390 l=0;x2=x-qx;y2=y-qy;
391 if(!con.r_ctest(crs,mrs)) {
392 do {
393 if(con.skip(ij,l,x,y)) {l++;continue;}
394 x1=p[ij][ps*l]-x2;
395 y1=p[ij][ps*l+1]-y2;
396 rs=con.r_scale(x1*x1+y1*y1,ij,l);
397 if(!c.nplane(x1,y1,rs,id[ij][l])) return false;
398 l++;
399 } while (l<co[ij]);
400 } else {
401 do {
402 if(con.skip(ij,l,x,y)) {l++;continue;}
403 x1=p[ij][ps*l]-x2;
404 y1=p[ij][ps*l+1]-y2;
405 rs=x1*x1+y1*y1;
406 if(con.r_scale_check(rs,mrs,ij,l)&&!c.nplane(x1,y1,rs,id[ij][l])) return false;
407 l++;
408 } while (l<co[ij]);
411 } while(g<f);
413 // If we reach here, we were unable to compute the entire cell using
414 // the first part of the worklist. This section of the algorithm
415 // continues the worklist, but it now starts preparing the mask that we
416 // need if we end up going block by block. We do the same as before,
417 // but we put a mark down on the mask for every block that's tested.
418 // The worklist also contains information about which neighbors of each
419 // block are not also on the worklist, and we start storing those
420 // points in a list in case we have to go block by block. Update the
421 // mask counter, and if it wraps around then reset the whole mask; that
422 // will only happen once every 2^32 tries.
423 mv++;
424 if(mv==0) {reset_mask();mv=1;}
426 // Set the queue pointers
427 int *qu_s=qu,*qu_e=qu;
429 while(g<wl_seq_length_2d-1) {
431 // At the intervals specified by count_list, we recompute the
432 // maximum radius squared
433 if(g==next_count) {
434 mrs=c.max_radius_squared();
435 if(count_p!=count_e) next_count=*(count_p++);
438 // If mrs is less than the minimum distance to any untested
439 // block, then we are done
440 if(con.r_ctest(radp[g],mrs)) return true;
441 g++;
443 // Load in a block off the worklist, permute it with the
444 // symmetry mask, and decode its position. These are all
445 // integer bit operations so they should run very fast.
446 q=e[g];q^=m1;q+=m2;
447 di=q&127;di-=64;
448 dj=(q>>7)&127;dj-=64;
450 // Compute the position in the mask of the current block. If
451 // this lies outside the mask, then skip it. Otherwise, mark
452 // it.
453 ei=di+i;if(ei<0||ei>=hx) continue;
454 ej=dj+j;if(ej<0||ej>=hy) continue;
455 mij=mask+ei+hx*ej;
456 *mij=mv;
458 // Call the compute_min_max_radius() function. This returns
459 // true if the minimum distance to the block is bigger than the
460 // current mrs, in which case we skip this block and move on.
461 // Otherwise, it computes the maximum distance to the block and
462 // returns it in crs.
463 if(compute_min_max_radius(di,dj,fx,fy,gxs,gys,crs,mrs)) continue;
465 // Now compute which region we are going to loop over, adding a
466 // displacement for the periodic cases
467 ij=con.region_index(ci,cj,ei,ej,qx,qy,disp);
468 if(!con.boundary_cuts(c,ij,x,y)) return false;
470 // If mrs is bigger than the maximum distance to the block,
471 // then we have to test all particles in the block for
472 // intersections. Otherwise, we do additional checks and skip
473 // those particles which can't possibly intersect the block.
474 if(co[ij]>0) {
475 l=0;x2=x-qx;y2=y-qy;
476 if(!con.r_ctest(crs,mrs)) {
477 do {
478 if(con.skip(ij,l,x,y)) {l++;continue;}
479 x1=p[ij][ps*l]-x2;
480 y1=p[ij][ps*l+1]-y2;
481 rs=con.r_scale(x1*x1+y1*y1,ij,l);
482 if(!c.nplane(x1,y1,rs,id[ij][l])) return false;
483 l++;
484 } while (l<co[ij]);
485 } else {
486 do {
487 if(con.skip(ij,l,x,y)) {l++;continue;}
488 x1=p[ij][ps*l]-x2;
489 y1=p[ij][ps*l+1]-y2;
490 rs=x1*x1+y1*y1;
491 if(con.r_scale_check(rs,mrs,ij,l)&&!c.nplane(x1,y1,rs,id[ij][l])) return false;
492 l++;
493 } while (l<co[ij]);
497 // If there might not be enough memory on the list for these
498 // additions, then add more
499 if(qu_e>qu_l-8) add_list_memory(qu_s,qu_e);
501 // Test the parts of the worklist element which tell us what
502 // neighbors of this block are not on the worklist. Store them
503 // on the block list, and mark the mask.
504 scan_bits_mask_add(q,mij,ei,ej,qu_e);
507 // Do a check to see if we've reached the radius cutoff
508 if(con.r_ctest(radp[g],mrs)) return true;
510 // We were unable to completely compute the cell based on the blocks in
511 // the worklist, so now we have to go block by block, reading in items
512 // off the list
513 while(qu_s!=qu_e) {
515 // If we reached the end of the list memory loop back to the
516 // start
517 if(qu_s==qu_l) qu_s=qu;
519 // Read in a block off the list, and compute the upper and lower
520 // coordinates in each of the three dimensions
521 ei=*(qu_s++);ej=*(qu_s++);
522 xlo=(ei-i)*boxx-fx;xhi=xlo+boxx;
523 ylo=(ej-j)*boxy-fy;yhi=ylo+boxy;
525 // Carry out plane tests to see if any particle in this block
526 // could possibly intersect the cell
527 if(ei>i) {
528 if(ej>j) {
529 if(corner_test(c,xlo,ylo,xhi,yhi)) continue;
530 } else if(ej<j) {
531 if(corner_test(c,xlo,yhi,xhi,ylo)) continue;
532 } else {
533 if(edge_x_test(c,xlo,ylo,yhi)) continue;
535 } else if(ei<i) {
536 if(ej>j) {
537 if(corner_test(c,xhi,ylo,xlo,yhi)) continue;
538 } else if(ej<j) {
539 if(corner_test(c,xhi,yhi,xlo,ylo)) continue;
540 } else {
541 if(edge_x_test(c,xhi,ylo,yhi)) continue;
543 } else {
544 if(ej>j) {
545 if(edge_y_test(c,xlo,ylo,xhi)) continue;
546 } else if(ej<j) {
547 if(edge_y_test(c,xlo,yhi,xhi)) continue;
548 } else voro_fatal_error("Compute cell routine revisiting central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR);
551 // Now compute the region that we are going to test over, and
552 // set a displacement vector for the periodic cases
553 ij=con.region_index(ci,cj,ei,ej,qx,qy,disp);
554 if(!con.boundary_cuts(c,ij,x,y)) return false;
556 // Loop over all the elements in the block to test for cuts. It
557 // would be possible to exclude some of these cases by testing
558 // against mrs, but this will probably not save time.
559 if(co[ij]>0) {
560 l=0;x2=x-qx;y2=y-qy;
561 do {
562 if(con.skip(ij,l,x,y)) {l++;continue;}
563 x1=p[ij][ps*l]-x2;
564 y1=p[ij][ps*l+1]-y2;
565 rs=con.r_scale(x1*x1+y1*y1,ij,l);
566 if(!c.nplane(x1,y1,rs,id[ij][l])) return false;
567 l++;
568 } while (l<co[ij]);
571 // If there's not much memory on the block list then add more
572 if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<8) add_list_memory(qu_s,qu_e);
574 // Test the neighbors of the current block, and add them to the
575 // block list if they haven't already been tested
576 add_to_mask(ei,ej,qu_e);
579 return true;
582 /** This function checks to see whether a particular block can possibly have
583 * any intersection with a Voronoi cell, for the case when the closest point
584 * from the cell center to the block is on an edge which points along the z
585 * direction.
586 * \param[in,out] c a reference to a Voronoi cell.
587 * \param[in] (xl,yl) the relative x and y coordinates of the corner of the
588 * block closest to the cell center.
589 * \param[in] (xh,yh) the relative x and y coordinates of the corner of the
590 * block furthest away from the cell center.
591 * \return False if the block may intersect, true if does not. */
592 template<class c_class_2d>
593 template<class v_cell_2d>
594 inline bool voro_compute_2d<c_class_2d>::corner_test(v_cell_2d &c,double xl,double yl,double xh,double yh) {
595 con.r_prime(xl*xl+yl*yl);
596 if(c.plane_intersects_guess(xl,yh,con.r_cutoff(xl*xl+yl*yh))) return false;
597 // if(c.plane_intersects(xl,yl,con.r_cutoff(xl*xl+yl*yl))) return false; XXX not needed?
598 if(c.plane_intersects(xh,yl,con.r_cutoff(xl*xh+yl*yl))) return false;
599 return true;
602 /** This function checks to see whether a particular block can possibly have
603 * any intersection with a Voronoi cell, for the case when the closest point
604 * from the cell center to the block is on a face aligned with the x direction.
605 * \param[in,out] c a reference to a Voronoi cell.
606 * \param[in] xl the minimum distance from the cell center to the face.
607 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
608 * block.
609 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the
610 * block.
611 * \return False if the block may intersect, true if does not. */
612 template<class c_class_2d>
613 template<class v_cell_2d>
614 inline bool voro_compute_2d<c_class_2d>::edge_x_test(v_cell_2d &c,double xl,double y0,double y1) {
615 con.r_prime(xl*xl);
616 if(c.plane_intersects_guess(xl,y0,con.r_cutoff(xl*xl))) return false;
617 if(c.plane_intersects(xl,y1,con.r_cutoff(xl*xl))) return false;
618 return true;
621 /** This function checks to see whether a particular block can possibly have
622 * any intersection with a Voronoi cell, for the case when the closest point
623 * from the cell center to the block is on a face aligned with the y direction.
624 * \param[in,out] c a reference to a Voronoi cell.
625 * \param[in] yl the minimum distance from the cell center to the face.
626 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
627 * block.
628 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the
629 * block.
630 * \return False if the block may intersect, true if does not. */
631 template<class c_class_2d>
632 template<class v_cell_2d>
633 inline bool voro_compute_2d<c_class_2d>::edge_y_test(v_cell_2d &c,double x0,double yl,double x1) {
634 con.r_prime(yl*yl);
635 if(c.plane_intersects_guess(x0,yl,con.r_cutoff(yl*yl))) return false;
636 if(c.plane_intersects(x1,yl,con.r_cutoff(yl*yl))) return false;
637 return true;
640 /** This routine checks to see whether a point is within a particular distance
641 * of a nearby region. If the point is within the distance of the region, then
642 * the routine returns true, and computes the maximum distance from the point
643 * to the region. Otherwise, the routine returns false.
644 * \param[in] (di,dj) the position of the nearby region to be tested,
645 * relative to the region that the point is in.
646 * \param[in] (fx,fy) the displacement of the point within its region.
647 * \param[in] (gxs,gys) the maximum squared distances from the point to the
648 * sides of its region.
649 * \param[out] crs a reference in which to return the maximum distance to the
650 * region (only computed if the routine returns positive).
651 * \param[in] mrs the distance to be tested.
652 * \return False if the region is further away than mrs, true if the region in
653 * within mrs.*/
654 template<class c_class_2d>
655 bool voro_compute_2d<c_class_2d>::compute_min_max_radius(int di,int dj,double fx,double fy,double gxs,double gys,double &crs,double mrs) {
656 double xlo,ylo;
657 if(di>0) {
658 xlo=di*boxx-fx;
659 crs=xlo*xlo;
660 if(dj>0) {
661 ylo=dj*boxy-fy;
662 crs+=ylo*ylo;
663 if(con.r_ctest(crs,mrs)) return true;
664 crs+=bxsq+2*xlo*boxx+2*ylo*boxy;
665 } else if(dj<0) {
666 ylo=(dj+1)*boxy-fy;
667 crs+=ylo*ylo;
668 if(con.r_ctest(crs,mrs)) return true;
669 crs+=bxsq+2*xlo*boxx-2*ylo*boxy;
670 } else {
671 if(con.r_ctest(crs,mrs)) return true;
672 crs+=gys+boxx*(2*xlo+boxx);
674 } else if(di<0) {
675 xlo=(di+1)*boxx-fx;
676 crs=xlo*xlo;
677 if(dj>0) {
678 ylo=dj*boxy-fy;
679 crs+=ylo*ylo;
680 if(con.r_ctest(crs,mrs)) return true;
681 crs+=bxsq-2*xlo*boxx+2*ylo*boxy;
682 } else if(dj<0) {
683 ylo=(dj+1)*boxy-fy;
684 crs+=ylo*ylo;
685 if(con.r_ctest(crs,mrs)) return true;
686 crs+=bxsq-2*xlo*boxx-2*ylo*boxy;
687 } else {
688 if(con.r_ctest(crs,mrs)) return true;
689 crs+=gys+boxx*(-2*xlo+boxx);
691 } else {
692 if(dj>0) {
693 ylo=dj*boxy-fy;
694 crs=ylo*ylo;
695 if(con.r_ctest(crs,mrs)) return true;
696 crs+=boxy*(2*ylo+boxy);
697 } else if(dj<0) {
698 ylo=(dj+1)*boxy-fy;
699 crs=ylo*ylo;
700 if(con.r_ctest(crs,mrs)) return true;
701 crs+=boxy*(-2*ylo+boxy);
702 } else voro_fatal_error("Min/max radius function called for central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR);
703 crs+=gxs;
705 return false;
708 template<class c_class_2d>
709 bool voro_compute_2d<c_class_2d>::compute_min_radius(int di,int dj,double fx,double fy,double mrs) {
710 double t,crs;
712 if(di>0) {t=di*boxx-fx;crs=t*t;}
713 else if(di<0) {t=(di+1)*boxx-fx;crs=t*t;}
714 else crs=0;
716 if(dj>0) {t=dj*boxy-fy;crs+=t*t;}
717 else if(dj<0) {t=(dj+1)*boxy-fy;crs+=t*t;}
719 return crs>con.r_max_add(mrs);
722 /** Adds memory to the queue.
723 * \param[in,out] qu_s a reference to the queue start pointer.
724 * \param[in,out] qu_e a reference to the queue end pointer. */
725 template<class c_class_2d>
726 inline void voro_compute_2d<c_class_2d>::add_list_memory(int*& qu_s,int*& qu_e) {
727 qu_size<<=1;
728 int *qu_n=new int[qu_size],*qu_c=qu_n;
729 #if VOROPP_VERBOSE >=2
730 fprintf(stderr,"List memory scaled up to %d\n",qu_size);
731 #endif
732 if(qu_s<=qu_e) {
733 while(qu_s<qu_e) *(qu_c++)=*(qu_s++);
734 } else {
735 while(qu_s<qu_l) *(qu_c++)=*(qu_s++);qu_s=qu;
736 while(qu_s<qu_e) *(qu_c++)=*(qu_s++);
738 delete [] qu;
739 qu_s=qu=qu_n;
740 qu_l=qu+qu_size;
741 qu_e=qu_c;
744 // Explicit template instantiation
745 template voro_compute_2d<container_2d>::voro_compute_2d(container_2d&,int,int);
746 template voro_compute_2d<container_poly_2d>::voro_compute_2d(container_poly_2d&,int,int);
747 template voro_compute_2d<container_boundary_2d>::voro_compute_2d(container_boundary_2d&,int,int);
748 template bool voro_compute_2d<container_2d>::compute_cell(voronoicell_2d&,int,int,int,int);
749 template bool voro_compute_2d<container_2d>::compute_cell(voronoicell_neighbor_2d&,int,int,int,int);
750 template void voro_compute_2d<container_2d>::find_voronoi_cell(double,double,int,int,int,particle_record_2d&,double&);
751 template bool voro_compute_2d<container_poly_2d>::compute_cell(voronoicell_2d&,int,int,int,int);
752 template bool voro_compute_2d<container_poly_2d>::compute_cell(voronoicell_neighbor_2d&,int,int,int,int);
753 template void voro_compute_2d<container_poly_2d>::find_voronoi_cell(double,double,int,int,int,particle_record_2d&,double&);
754 template bool voro_compute_2d<container_boundary_2d>::compute_cell(voronoicell_nonconvex_2d&,int,int,int,int);
755 template bool voro_compute_2d<container_boundary_2d>::compute_cell(voronoicell_nonconvex_neighbor_2d&,int,int,int,int);