Bugfix in search_for_outside_edge routine.
[voro++.git] / branches / 2d / src / v_connect / ctr_boundary_2d.cc
blob549577952b83ada4989c251f10adc779443a7e08
1 // Voro++, a cell-based Voronoi library
2 //
3 // Authors : Chris H. Rycroft (LBL / UC Berkeley)
4 // Cody Robert Dance (UC Berkeley)
5 // Email : chr@alum.mit.edu
6 // Date : August 30th 2011
8 /** \file ctr_boundary_2d.cc
9 * \brief Function implementations for the ctr_boundary_2d and related classes. */
11 #include "ctr_boundary_2d.hh"
13 namespace voro {
15 /** The class constructor sets up the geometry of container, initializing the
16 * minimum and maximum coordinates in each direction, and setting whether each
17 * direction is periodic or not. It divides the container into a rectangular
18 * grid of blocks, and allocates memory for each of these for storing particle
19 * positions and IDs.
20 * \param[in] (ax_,bx_) the minimum and maximum x coordinates.
21 * \param[in] (ay_,by_) the minimum and maximum y coordinates.
22 * \param[in] (nx_,ny_) the number of grid blocks in each of the three
23 * coordinate directions.
24 * \param[in] (xperiodic_,yperiodic_) flags setting whether the container is
25 * periodic in each coordinate direction.
26 * \param[in] init_mem the initial memory allocation for each block.
27 * \param[in] ps_ the number of floating point entries to store for each
28 * particle. */
29 container_boundary_2d::container_boundary_2d(double ax_,double bx_,double ay_,double by_,
30 int nx_,int ny_,bool xperiodic_,bool yperiodic_,int init_mem)
31 : voro_base_2d(nx_,ny_,(bx_-ax_)/nx_,(by_-ay_)/ny_),
32 ax(ax_), bx(bx_), ay(ay_), by(by_), xperiodic(xperiodic_), yperiodic(yperiodic_),
33 id(new int*[nxy]), p(new double*[nxy]), co(new int[nxy]), mem(new int[nxy]),
34 wid(new int*[nxy]), nlab(new int*[nxy]), plab(new int**[nxy]), bndpts(new int*[nxy]),
35 boundary_track(-1), edbc(0), edbm(init_boundary_size),
36 edb(new int[2*edbm]), bnds(new double[2*edbm]), ps(2), soi(NULL),
37 vc(*this,xperiodic_?2*nx_+1:nx_,yperiodic_?2*ny_+1:ny_) {
38 int l;
39 full_connect=false;
40 // totpar=0;
41 for(l=0;l<nxy;l++) co[l]=0;
42 for(l=0;l<nxy;l++) mem[l]=init_mem;
43 for(l=0;l<nxy;l++) id[l]=new int[init_mem];
44 for(l=0;l<nxy;l++) p[l]=new double[ps*init_mem];
45 for(l=0;l<nxy;l++) nlab[l]=new int[init_mem];
46 for(l=0;l<nxy;l++) plab[l]=new int*[init_mem];
47 for(l=0;l<nxy;l++) bndpts[l]=new int[init_mem];
49 for(l=0;l<nxy;l++) {wid[l]=new int[init_wall_tag_size+2];*(wid[l])=0;wid[l][1]=init_wall_tag_size;}
52 /** The container destructor frees the dynamically allocated memory. */
53 container_boundary_2d::~container_boundary_2d() {
54 int l;
56 // Clear "sphere of influence" array if it has been allocated
57 if(soi!=NULL) delete [] soi;
59 // Deallocate the block-level arrays
60 for(l=nxy-1;l>=0;l--) delete [] wid[l];
61 for(l=nxy-1;l>=0;l--) delete [] bndpts[l];
62 for(l=nxy-1;l>=0;l--) delete [] plab[l];
63 for(l=nxy-1;l>=0;l--) delete [] nlab[l];
64 for(l=nxy-1;l>=0;l--) delete [] p[l];
65 for(l=nxy-1;l>=0;l--) delete [] id[l];
67 // Delete the two-dimensional arrays
68 delete [] id;
69 delete [] p;
70 delete [] co;
71 delete [] mem;
75 /** Put a particle into the correct region of the container.
76 * \param[in] n the numerical ID of the inserted particle.
77 * \param[in] (x,y) the position vector of the inserted particle. */
78 void container_boundary_2d::put(int n,double x,double y) {
79 int ij;
80 if(put_locate_block(ij,x,y)) {
81 //totpar++;
82 id[ij][co[ij]]=n;
83 if(boundary_track!=-1) {
84 bndpts[ij][co[ij]]=edbc;
85 register_boundary(x,y);
86 } else bndpts[ij][co[ij]]=-1;
87 double *pp=p[ij]+2*co[ij]++;
88 *(pp++)=x;*pp=y;
92 /** Put a particle into the correct region of the container, also recording
93 * into which region it was stored.
94 * \param[in] vo the ordering class in which to record the region.
95 * \param[in] n the numerical ID of the inserted particle.
96 * \param[in] (x,y) the position vector of the inserted particle. */
97 void container_boundary_2d::put(particle_order &vo,int n,double x,double y) {
98 int ij;
99 if(put_locate_block(ij,x,y)) {
100 //totpar++;
101 id[ij][co[ij]]=n;
102 if(boundary_track!=-1) {
103 bndpts[ij][co[ij]]=edbc;
104 register_boundary(x,y);
105 } else bndpts[ij][co[ij]]=-1;
106 vo.add(ij,co[ij]);
107 double *pp=p[ij]+2*co[ij]++;
108 *(pp++)=x;*pp=y;
112 /** This routine takes a particle position vector, tries to remap it into the
113 * primary domain. If successful, it computes the region into which it can be
114 * stored and checks that there is enough memory within this region to store
115 * it.
116 * \param[out] ij the region index.
117 * \param[in,out] (x,y) the particle position, remapped into the primary
118 * domain if necessary.
119 * \return True if the particle can be successfully placed into the container,
120 * false otherwise. */
121 inline bool container_boundary_2d::put_locate_block(int &ij,double &x,double &y) {
122 if(put_remap(ij,x,y)) {
123 if(co[ij]==mem[ij]) add_particle_memory(ij);
124 return true;
126 #if VOROPP_REPORT_OUT_OF_BOUNDS ==1
127 fprintf(stderr,"Out of bounds: (x,y)=(%g,%g)\n",x,y);
128 #endif
129 return false;
132 /** Takes a particle position vector and computes the region index into which
133 * it should be stored. If the container is periodic, then the routine also
134 * maps the particle position to ensure it is in the primary domain. If the
135 * container is not periodic, the routine bails out.
136 * \param[out] ij the region index.
137 * \param[in,out] (x,y) the particle position, remapped into the primary domain
138 * if necessary.
139 * \return True if the particle can be successfully placed into the container,
140 * false otherwise. */
141 inline bool container_boundary_2d::put_remap(int &ij,double &x,double &y) {
142 int l;
144 ij=step_int((x-ax)*xsp);
145 if(xperiodic) {l=step_mod(ij,nx);x+=boxx*(l-ij);ij=l;}
146 else if(ij<0||ij>=nx) return false;
148 int j=step_int((y-ay)*ysp);
149 if(yperiodic) {l=step_mod(j,ny);y+=boxy*(l-j);j=l;}
150 else if(j<0||j>=ny) return false;
152 ij+=nx*j;
153 return true;
156 /** Increase memory for a particular region.
157 * \param[in] i the index of the region to reallocate. */
158 void container_boundary_2d::add_particle_memory(int i) {
159 int l,nmem=mem[i]<<1;
161 // Carry out a check on the memory allocation size, and
162 // print a status message if requested
163 if(nmem>max_particle_memory_2d)
164 voro_fatal_error("Absolute maximum memory allocation exceeded",VOROPP_MEMORY_ERROR);
165 #if VOROPP_VERBOSE >=3
166 fprintf(stderr,"Particle memory in region %d scaled up to %d\n",i,nmem);
167 #endif
169 // Allocate new memory and copy in the contents of the old arrays
170 int *idp=new int[nmem];
171 for(l=0;l<co[i];l++) idp[l]=id[i][l];
172 double *pp=new double[ps*nmem];
173 for(l=0;l<ps*co[i];l++) pp[l]=p[i][l];
174 int *nlabp=new int[nmem];
175 for(l=0;l<co[i];l++) nlabp[l]=nlab[i][l];
176 int **plabp=new int*[nmem];
177 for(l=0;l<co[i];l++) plabp[l]=plab[i][l];
178 int *bndptsp=new int[nmem];
179 for(l=0;l<co[i];l++) bndptsp[l]=bndpts[i][l];
181 // Update pointers and delete old arrays
182 mem[i]=nmem;
183 delete [] id[i];id[i]=idp;
184 delete [] p[i];p[i]=pp;
185 delete [] nlab[i];nlab[i]=nlabp;
186 delete [] plab[i];plab[i]=plabp;
187 delete [] bndpts[i];bndpts[i]=bndptsp;
190 /** Outputs the a list of all the container regions along with the number of
191 * particles stored within each. */
192 void container_boundary_2d::region_count() {
193 int i,j,*cop=co;
194 for(j=0;j<ny;j++) for(i=0;i<nx;i++)
195 printf("Region (%d,%d): %d particles\n",i,j,*(cop++));
198 /** Clears a container of particles. */
199 void container_boundary_2d::clear() {
200 for(int *cop=co;cop<co+nxy;cop++) *cop=0;
203 /** Computes all the Voronoi cells and saves customized information about them.
204 * \param[in] format the custom output string to use.
205 * \param[in] fp a file handle to write to. */
206 void container_boundary_2d::print_custom(const char *format,FILE *fp) {
207 c_loop_all_2d vl(*this);
208 print_custom(vl,format,fp);
211 /** Computes all the Voronoi cells and saves customized information about them.
212 * \param[in] format the custom output string to use.
213 * \param[in] filename the name of the file to write to. */
214 void container_boundary_2d::print_custom(const char *format,const char *filename) {
215 FILE *fp=safe_fopen(filename,"w");
216 print_custom(format,fp);
217 fclose(fp);
220 /** Computes all of the Voronoi cells in the container, but does nothing
221 * with the output. It is useful for measuring the pure computation time
222 * of the Voronoi algorithm, without any additional calculations such as
223 * volume evaluation or cell output. */
224 void container_boundary_2d::compute_all_cells() {
225 voronoicell_nonconvex_2d c;
226 c_loop_all_2d vl(*this);
227 if(vl.start()) do compute_cell(c,vl);
228 while(vl.inc());
231 /** Calculates all of the Voronoi cells and sums their volumes. In most cases
232 * without walls, the sum of the Voronoi cell volumes should equal the volume
233 * of the container to numerical precision.
234 * \return The sum of all of the computed Voronoi volumes. */
235 double container_boundary_2d::sum_cell_areas() {
236 voronoicell_nonconvex_2d c;
237 double area=0;
238 c_loop_all_2d vl(*this);
239 if(vl.start()) do if(compute_cell(c,vl)) area+=c.area();while(vl.inc());
240 return area;
243 /** Draws an outline of the domain in gnuplot format.
244 * \param[in] fp the file handle to write to. */
245 void container_boundary_2d::draw_domain_gnuplot(FILE *fp) {
246 fprintf(fp,"%g %g\n%g %g\n%g %g\n%g %g\n%g %g\n",ax,ay,bx,ay,bx,by,ax,by,ax,ay);
249 /** Draws an outline of the domain in POV-Ray format.
250 * \param[in] fp the file handle to write to. */
251 void container_boundary_2d::draw_domain_pov(FILE *fp) {
252 fprintf(fp,"cylinder{<%g,%g,0>,<%g,%g,0>,rr}\n"
253 "cylinder{<%g,%g,0>,<%g,%g,0>,rr}\n",ax,ay,bx,ay,ax,by,bx,by);
254 fprintf(fp,"cylinder{<%g,%g,0>,<%g,%g,0>,rr}\n"
255 "cylinder{<%g,%g,0>,<%g,%g,0>,rr}\n",ax,ay,ax,by,bx,ay,bx,by);
256 fprintf(fp,"sphere{<%g,%g,0>,rr}\nsphere{<%g,%g,0>,rr}\n"
257 "sphere{<%g,%g,0>,rr}\nsphere{<%g,%g,0>,rr}\n",ax,ay,bx,ay,ax,by,bx,by);
260 /** This does the additional set-up for non-convex containers. We assume that
261 * **p, **id, *co, *mem, *bnds, and edbc have already been setup. We then
262 * proceed to setup **wid, *soi, and THE PROBLEM POINTS BOOLEAN ARRAY.
263 * This algorithm keeps the importing seperate from the set-up */
264 void container_boundary_2d::setup(){
265 double lx,ly,cx,cy,nx,ny;//last (x,y),current (x,y),next (x,y)
266 int widl=1,maxwid=1,fwid=1,nwid,lwid;
267 bool first=true;
269 tmp=tmpp=new int[3*init_temp_label_size];
270 tmpe=tmp+3*init_temp_label_size;
272 while(widl!=edbc){
273 cx=bnds[2*widl];cy=bnds[2*widl+1];
274 nwid=edb[2*widl];lwid=edb[2*widl+1];
275 lx=bnds[lwid*2];ly=bnds[lwid*2+1];
276 nx=bnds[2*nwid];ny=bnds[2*nwid+1];
278 tag_walls(cx,cy,nx,ny,widl);
279 semi_circle_labeling(cx,cy,nx,ny,widl);
281 //make sure that the cos(angle)>1 and the angle points inward
282 //probpts=(lx-cx)*(nx-cx)+(ly-cy)*(ny-cy)>tolerance &&
283 // cross_product(lx-cx,ly-cy,nx-cx,ny-cy);
285 widl=edb[2*widl];
286 if(widl>maxwid) maxwid=widl;
287 if(widl==fwid){
288 widl=maxwid+1;
289 fwid=widl;
290 maxwid++;
291 first=false;
295 // The temporary array can now be used to set up the label table
296 create_label_table();
298 // Remove temporary array
299 delete [] tmp;
302 /** Given two points, tags all the computational boxes that the line segment
303 * specified by the two points
304 * goes through. param[in] (x1,y1) this is one point
305 * \param[in] (x2,y2) this is the other point.
306 * \param[in] wid this is the wall id bnds[2*wid] is the x index of the first
307 * vertex in the c-c direction. */
308 void container_boundary_2d::tag_walls(double x1,double y1,double x2,double y2,int wid_) {
310 // Find which boxes these points are within
311 int i1=int((x1-ax)*xsp),j1=int((y1-ay)*ysp);
312 int i2=int((x2-ax)*xsp),j2=int((y2-ay)*ysp),k,ij;
314 // Swap to ensure that i1 is smaller than i2
315 double q,yfac;
316 if(i2<i1) {
317 q=x1;x1=x2;x2=q;q=y1;y1=y2;y2=q;
318 k=i1;i1=i2;i2=k;k=j1;j1=j2;j2=k;
321 ij=i1+j1*nx;
322 if(j1<j2) {
323 yfac=1/(y2-y1);
324 do {
325 j1++;
326 q=ay+j1*boxy;
327 k=int((((q-y1)*x2+x1*(y2-q))*yfac-ax)*xsp);
328 if(k>=nx) k=nx-1;
329 tag_line(ij,(j1-1)*nx+k,wid_);
330 ij+=nx;
331 } while(j1<j2);
332 } else if(j1>j2) {
333 yfac=1/(y2-y1);
334 do {
335 q=ay+j1*boxy;
336 k=int((((q-y1)*x2+x1*(y2-q))*yfac-ax)*xsp);
337 if(k>=nx) k=nx-1;
338 tag_line(ij,j1*nx+k,wid_);
339 ij-=nx;
340 j1--;
341 } while(j1>j2);
343 tag_line(ij,i2+j2*nx,wid_);
346 void container_boundary_2d::tag_line(int &ij,int ije,int wid_) {
347 tag(ij,wid_);
348 while(ij<ije) {
349 ij++;
350 tag(ij,wid_);
354 inline void container_boundary_2d::tag(int ij,int wid_) {
355 int *&wp(wid[ij]);
356 if(*wp==wp[1]) {
357 int nws=wp[1]<<1;
358 if(nws>max_wall_tag_size) voro_fatal_error("Maximum wall tag memory exceeded",VOROPP_MEMORY_ERROR);
359 int *np=new int[nws+2];
360 *np=*wp;np[1]=nws;
361 for(int i=2;i<*wp+2;i++) np[i]=wp[i];
362 delete [] wp;
363 wp=np;
365 wp[2+(*wp)++]=wid_;
368 /* Tags particles that are within a semicircle (on the appropriate side) of a
369 * boundary.
370 * \param[in] (x1,y1) the start point of the wall segment, arranged so that it
371 * is the first point reached in the counter-clockwise
372 * direction.
373 * \param[in] (x2,y2) the end points of the wall segment. */
374 void container_boundary_2d::semi_circle_labeling(double x1,double y1,double x2,double y2,int bid) {
376 double radius=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))*0.5,
377 midx=(x1+x2)*0.5,midy=(y1+y2)*0.5,cpx,cpy;
378 int ai=int((midx-radius-ax)*xsp),
379 bi=int((midx+radius-ax)*xsp),
380 aj=int((midy-radius-ay)*ysp),
381 bj=int((midy+radius-ay)*ysp),i,j,ij,k;
382 if(ai<0) ai=0;if(ai>=nx) ai=nx-1;
383 if(bi<0) bi=0;if(bi>=nx) bi=nx-1;
384 if(aj<0) aj=0;if(aj>=ny) aj=ny-1;
385 if(bj<0) bj=0;if(bj>=ny) bj=ny-1;
387 // Now loop through all the particles in the boxes we found, tagging
388 // the ones that are within radius of (midx,midy) and are on the
389 // appropriate side of the wall
390 for(j=aj;j<=bj;j++) for(i=ai;i<=bi;i++) {
391 ij=i+nx*j;
392 for(k=0;k<co[ij];k++) {
393 cpx=p[ij][2*k];
394 cpy=p[ij][2*k+1];
395 if((midx-cpx)*(midx-cpx)+(midy-cpy)*(midy-cpy)<=radius*radius&&
396 cross_product((x1-x2),(y1-y2),(cpx-x2),(cpy-y2))&&
397 (cpx!=x1||cpy==y1)&&(cpx!=x2||cpy!=y2)) {
399 if(tmpp==tmpe) add_temporary_label_memory();
400 *(tmpp++)=ij;
401 *(tmpp++)=k;
402 *(tmpp++)=bid;
408 void container_boundary_2d::create_label_table() {
409 int ij,q,*pp,tlab=0;
411 // Clear label counters
412 for(ij=0;ij<nxy;ij++) for(q=0;q<co[ij];q++) nlab[ij][q]=0;
414 // Increment label counters
415 for(pp=tmp;pp<tmpp;pp+=3) {nlab[*pp][pp[1]]++;tlab++;}
417 // Check for case of no labels at all (which may be common)
418 if(tlab==0) {
419 #if VOROPP_VERBOSE >=2
421 #endif
422 return;
425 // If there was already a table from a previous call, remove it
426 if(soi!=NULL) delete [] soi;
428 // Allocate the label array, and set up pointers from each particle
429 // to the corresponding location
430 pp=soi=new int[tlab];
431 for(ij=0;ij<nxy;ij++) for(q=0;q<co[ij];pp+=nlab[ij][q++]) plab[ij][q]=pp;
433 // Fill in the label entries
434 for(pp=tmp;pp<tmpp;pp+=3) *(plab[*pp][pp[1]]++)=pp[2];
436 // Reset the label pointers
437 pp=soi;
438 for(ij=0;ij<nxy;ij++) for(q=0;q<co[ij];pp+=nlab[ij][q++]) plab[ij][q]=pp;
441 /** Draws the boundaries. (Note: this currently assumes that each boundary loop
442 * is a continuous block in the bnds array, which will be true for the import
443 * function. However, it may not be true in other cases, in which case this
444 * routine would have to be extended.) */
445 void container_boundary_2d::draw_boundary_gnuplot(FILE *fp) {
446 int i;
448 for(i=0;i<edbc;i++) {
449 fprintf(fp,"%g %g\n",bnds[2*i],bnds[2*i+1]);
451 // If a loop is detected, than complete the loop in the output file
452 // and insert a newline
453 if(edb[2*i]<i) fprintf(fp,"%g %g\n\n",bnds[2*edb[2*i]],bnds[2*edb[2*i]+1]);
457 bool container_boundary_2d::point_inside(double x,double y) {
458 int i=0,j,k=0;
459 bool sleft,left,nleft;
461 while(i<edbc) {
462 sleft=left=bnds[2*i]<x;
463 do {
464 j=edb[2*i];
465 nleft=j<i?sleft:bnds[2*j]<x;
466 if(nleft!=left) {
467 if(left) {
468 if(bnds[2*j+1]*(x-bnds[2*i])+bnds[2*i+1]*(bnds[2*j]-x)<y*(bnds[2*j]-bnds[2*i])) k++;
469 } else {
470 if(bnds[2*j+1]*(x-bnds[2*i])+bnds[2*i+1]*(bnds[2*j]-x)>y*(bnds[2*j]-bnds[2*i])) k--;
473 left=nleft;
474 i++;
475 } while(j==i);
478 #if VOROPP_VERBOSE >=2
479 if(k<0) fprintf(stderr,"Negative winding number of %d for (%g,%g)\n",j,x,y);
480 else if(k>1) fprintf(stderr,"Winding number of %d for (%g,%g)\n",j,x,y);
481 #endif
482 return k>0;
485 template<class v_cell_2d>
486 bool container_boundary_2d::boundary_cuts(v_cell_2d &c,int ij,double x,double y) {
487 int i,j,k;
488 double lx,ly,dx,dy,dr;
489 for(i=2;i<*(wid[ij])+2;i++) {
490 j=2*wid[ij][i];k=2*edb[j];
491 dx=bnds[k]-bnds[j];dy=bnds[k+1]-bnds[j+1];
492 dr=dy*(bnds[j]-x)-dx*(bnds[j+1]-y);
493 if(dr<tolerance) continue;
494 lx=bnds[j]+bnds[k]-2*x;
495 ly=bnds[j+1]+bnds[k+1]-2*y;
496 if(lx*lx+ly*ly>dx*dx+dy*dy) continue;
497 if(!c.plane(dy,-dx,2*dr)) return false;
499 return true;
502 bool container_boundary_2d::skip(int ij,int q,double x,double y) {
503 int j;
504 double wx1,wy1,wx2,wy2,dx,dy,lx,ly;
505 double cx=p[ij][ps*q],cy=p[ij][ps*q+1];
507 for(int i=0;i<nlab[ij][q];i++) {
508 j=2*plab[ij][q][i];
509 wx1=bnds[j];
510 wy1=bnds[j+1];
511 j=2*edb[j];
512 wx2=bnds[j];
513 wy2=bnds[j+1];
514 dx=wx1-wx2;
515 dy=wy1-wy2;
516 wx1-=x;wy1-=y;
517 if(dx*wy1-dy*wx1>tolerance) {
518 lx=cx-x;ly=cy-y;
519 if(wx1*ly-wy1*lx>tolerance&&lx*(wy2-y)-ly*(wx2-x)>tolerance) return true;
522 return false;
526 /** Imports a list of particles from an input stream.
527 * \param[in] fp a file handle to read from. */
528 void container_boundary_2d::import(FILE *fp) {
529 int i;
530 double x,y;
531 char *buf(new char[512]);
533 while(fgets(buf,512,fp)!=NULL) {
534 if(strcmp(buf,"#Start\n")==0||strcmp(buf,"# Start\n")==0) {
536 // Check that two consecutive start tokens haven't been
537 // encountered
538 if(boundary_track!=-1) voro_fatal_error("File import error - two consecutive start tokens found",VOROPP_FILE_ERROR);
539 start_boundary();
541 } else if(strcmp(buf,"#End\n")==0||strcmp(buf,"# End\n")==0||
542 strcmp(buf,"#End")==0||strcmp(buf,"# End")==0) {
544 // Check that two consecutive end tokens haven't been
545 // encountered
546 if(boundary_track==-1) voro_fatal_error("File import error - found end token without start token",VOROPP_FILE_ERROR);
547 end_boundary();
548 } else {
550 // Try and read three entries from the line
551 if(sscanf(buf,"%d %lg %lg",&i,&x,&y)!=3) voro_fatal_error("File import error - can't parse particle information",VOROPP_FILE_ERROR);
552 put(i,x,y);
555 if(boundary_track!=-1) voro_fatal_error("File import error - end of file reached without finding end token",VOROPP_FILE_ERROR);
557 if(!feof(fp)) voro_fatal_error("File import error - error reading string from file",VOROPP_FILE_ERROR);
558 delete [] buf;
561 void container_boundary_2d::end_boundary() {
562 if(boundary_track!=edbc) {
563 edb[2*boundary_track+1]=edbc-1;
564 edb[2*(edbc-1)]=boundary_track;
566 boundary_track=-1;
569 void container_boundary_2d::register_boundary(double x,double y) {
570 if(edbc==edbm) add_boundary_memory();
571 if(edbc!=boundary_track) {
572 edb[2*edbc-2]=edbc;
573 edb[2*edbc+1]=edbc-1;
575 bnds[2*edbc]=x;
576 bnds[2*(edbc++)+1]=y;
579 /** Increases the size of the temporary label memory. */
580 void container_boundary_2d::add_temporary_label_memory() {
581 int size(tmpe-tmp);
582 size<<=1;
583 if(size>3*max_temp_label_size)
584 voro_fatal_error("Absolute temporary label memory allocation exceeded",VOROPP_MEMORY_ERROR);
585 #if VOROPP_VERBOSE >=3
586 fprintf(stderr,"Temporary label memory in region scaled up to %d\n",size);
587 #endif
588 int *ntmp(new int[size]),*tp(tmp);tmpp=ntmp;
589 while(tp<tmpe) *(tmpp++)=*(tp++);
590 delete [] tmp;
591 tmp=ntmp;tmpe=tmp+size;
594 /** Increases the memory allocation for the boundary points. */
595 void container_boundary_2d::add_boundary_memory() {
596 int i;
597 edbm<<=1;
598 if(edbm>max_boundary_size)
599 voro_fatal_error("Absolute boundary memory allocation exceeded",VOROPP_MEMORY_ERROR);
600 #if VOROPP_VERBOSE >=3
601 fprintf(stderr,"Boundary memory scaled up to %d\n",size);
602 #endif
604 // Reallocate the boundary vertex information
605 double *nbnds(new double[2*edbm]);
606 for(i=0;i<2*edbc;i++) nbnds[i]=bnds[i];
607 delete [] nbnds;bnds=nbnds;
609 // Reallocate the edge information
610 int *nedb(new int[2*edbm]);
611 for(i=0;i<2*edbc;i++) nedb[i]=edb[i];
612 delete [] edb;edb=nedb;
619 // Explicit instantiation
620 template bool container_boundary_2d::boundary_cuts(voronoicell_nonconvex_2d&,int,double,double);
621 template bool container_boundary_2d::boundary_cuts(voronoicell_nonconvex_neighbor_2d&,int,double,double);