1 // Voro++, a 3D cell-based Voronoi library
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
8 * \brief Function implementations for the derived wall classes. */
14 /** Tests to see whether a point is inside the sphere wall object.
15 * \param[in,out] (x,y,z) the vector to test.
16 * \return True if the point is inside, false if the point is outside. */
17 bool wall_sphere::point_inside(double x
,double y
,double z
) {
18 return (x
-xc
)*(x
-xc
)+(y
-yc
)*(y
-yc
)+(z
-zc
)*(z
-zc
)<rc
*rc
;
21 /** Cuts a cell by the sphere wall object. The spherical wall is approximated by
22 * a single plane applied at the point on the sphere which is closest to the center
23 * of the cell. This works well for particle arrangements that are packed against
24 * the wall, but loses accuracy for sparse particle distributions.
25 * \param[in,out] c the Voronoi cell to be cut.
26 * \param[in] (x,y,z) the location of the Voronoi cell.
27 * \return True if the cell still exists, false if the cell is deleted. */
28 template<class v_cell
>
29 bool wall_sphere::cut_cell_base(v_cell
&c
,double x
,double y
,double z
) {
30 double xd
=x
-xc
,yd
=y
-yc
,zd
=z
-zc
,dq
=xd
*xd
+yd
*yd
+zd
*zd
;
32 dq
=2*(sqrt(dq
)*rc
-dq
);
33 return c
.nplane(xd
,yd
,zd
,dq
,w_id
);
38 /** Tests to see whether a point is inside the plane wall object.
39 * \param[in] (x,y,z) the vector to test.
40 * \return True if the point is inside, false if the point is outside. */
41 bool wall_plane::point_inside(double x
,double y
,double z
) {
42 return x
*xc
+y
*yc
+z
*zc
<ac
;
45 /** Cuts a cell by the plane wall object.
46 * \param[in,out] c the Voronoi cell to be cut.
47 * \param[in] (x,y,z) the location of the Voronoi cell.
48 * \return True if the cell still exists, false if the cell is deleted. */
49 template<class v_cell
>
50 bool wall_plane::cut_cell_base(v_cell
&c
,double x
,double y
,double z
) {
51 double dq
=2*(ac
-x
*xc
-y
*yc
-z
*zc
);
52 return c
.nplane(xc
,yc
,zc
,dq
,w_id
);
55 /** Tests to see whether a point is inside the cylindrical wall object.
56 * \param[in] (x,y,z) the vector to test.
57 * \return True if the point is inside, false if the point is outside. */
58 bool wall_cylinder::point_inside(double x
,double y
,double z
) {
59 double xd
=x
-xc
,yd
=y
-yc
,zd
=z
-zc
;
60 double pa
=(xd
*xa
+yd
*ya
+zd
*za
)*asi
;
61 xd
-=xa
*pa
;yd
-=ya
*pa
;zd
-=za
*pa
;
62 return xd
*xd
+yd
*yd
+zd
*zd
<rc
*rc
;
65 /** Cuts a cell by the cylindrical wall object. The cylindrical wall is
66 * approximated by a single plane applied at the point on the cylinder which is
67 * closest to the center of the cell. This works well for particle arrangements
68 * that are packed against the wall, but loses accuracy for sparse particle
70 * \param[in,out] c the Voronoi cell to be cut.
71 * \param[in] (x,y,z) the location of the Voronoi cell.
72 * \return True if the cell still exists, false if the cell is deleted. */
73 template<class v_cell
>
74 bool wall_cylinder::cut_cell_base(v_cell
&c
,double x
,double y
,double z
) {
75 double xd
=x
-xc
,yd
=y
-yc
,zd
=z
-zc
,pa
=(xd
*xa
+yd
*ya
+zd
*za
)*asi
;
76 xd
-=xa
*pa
;yd
-=ya
*pa
;zd
-=za
*pa
;
79 pa
=2*(sqrt(pa
)*rc
-pa
);
80 return c
.nplane(xd
,yd
,zd
,pa
,w_id
);
85 /** Tests to see whether a point is inside the cone wall object.
86 * \param[in] (x,y,z) the vector to test.
87 * \return True if the point is inside, false if the point is outside. */
88 bool wall_cone::point_inside(double x
,double y
,double z
) {
89 double xd
=x
-xc
,yd
=y
-yc
,zd
=z
-zc
,pa
=(xd
*xa
+yd
*ya
+zd
*za
)*asi
;
90 xd
-=xa
*pa
;yd
-=ya
*pa
;zd
-=za
*pa
;
92 if (pa
<0) return false;
94 return xd
*xd
+yd
*yd
+zd
*zd
<pa
;
97 /** Cuts a cell by the cone wall object. The conical wall is
98 * approximated by a single plane applied at the point on the cone which is
99 * closest to the center of the cell. This works well for particle arrangements
100 * that are packed against the wall, but loses accuracy for sparse particle
102 * \param[in,out] c the Voronoi cell to be cut.
103 * \param[in] (x,y,z) the location of the Voronoi cell.
104 * \return True if the cell still exists, false if the cell is deleted. */
105 template<class v_cell
>
106 bool wall_cone::cut_cell_base(v_cell
&c
,double x
,double y
,double z
) {
107 double xd
=x
-xc
,yd
=y
-yc
,zd
=z
-zc
,xf
,yf
,zf
,q
,pa
=(xd
*xa
+yd
*ya
+zd
*za
)*asi
;
108 xd
-=xa
*pa
;yd
-=ya
*pa
;zd
-=za
*pa
;
109 pa
=xd
*xd
+yd
*yd
+zd
*zd
;
113 xf
=-sang
*q
*xa
+cang
*pa
*xd
;
114 yf
=-sang
*q
*ya
+cang
*pa
*yd
;
115 zf
=-sang
*q
*za
+cang
*pa
*zd
;
116 pa
=2*(xf
*(xc
-x
)+yf
*(yc
-y
)+zf
*(zc
-z
));
117 return c
.nplane(xf
,yf
,zf
,pa
,w_id
);