1 // Voro++, a 3D cell-based Voronoi library
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : chr@alum.mit.edu
5 // Date : August 30th 2011
8 * \brief Header file for the voronoicell and related classes. */
10 #ifndef VOROPP_CELL_HH
11 #define VOROPP_CELL_HH
20 /** \brief A class representing a single Voronoi cell.
22 * This class represents a single Voronoi cell, as a collection of vertices
23 * that are connected by edges. The class contains routines for initializing
24 * the Voronoi cell to be simple shapes such as a box, tetrahedron, or octahedron.
25 * It the contains routines for recomputing the cell based on cutting it
26 * by a plane, which forms the key routine for the Voronoi cell computation.
27 * It contains numerous routine for computing statistics about the Voronoi cell,
28 * and it can output the cell in several formats.
30 * This class is not intended for direct use, but forms the base of the
31 * voronoicell and voronoicell_neighbor classes, which extend it based on
32 * whether neighboring particle ID information needs to be tracked. */
33 class voronoicell_base
{
35 /** This holds the current size of the arrays ed and nu, which
36 * hold the vertex information. If more vertices are created
37 * than can fit in this array, then it is dynamically extended
38 * using the add_memory_vertices routine. */
40 /** This holds the current maximum allowed order of a vertex,
41 * which sets the size of the mem, mep, and mec arrays. If a
42 * vertex is created with more vertices than this, the arrays
43 * are dynamically extended using the add_memory_vorder routine.
45 int current_vertex_order
;
46 /** This sets the size of the main delete stack. */
47 int current_delete_size
;
48 /** This sets the size of the auxiliary delete stack. */
49 int current_delete2_size
;
50 /** This sets the size of the extra search stack. */
51 int current_xsearch_size
;
52 /** This sets the total number of vertices in the current cell.
55 /** This is the index of particular point in the cell, which is
56 * used to start the tracing routines for plane intersection
57 * and cutting. These routines will work starting from any
58 * point, but it's often most efficient to start from the last
59 * point considered, since in many cases, the cell construction
60 * algorithm may consider many planes with similar vectors
63 /** This is a two dimensional array that holds information
64 * about the edge connections of the vertices that make up the
65 * cell. The two dimensional array is not allocated in the
66 * usual method. To account for the fact the different vertices
67 * have different orders, and thus require different amounts of
68 * storage, the elements of ed[i] point to one-dimensional
69 * arrays in the mep[] array of different sizes.
71 * More specifically, if vertex i has order m, then ed[i]
72 * points to a one-dimensional array in mep[m] that has 2*m+1
73 * entries. The first m elements hold the neighboring edges, so
74 * that the jth edge of vertex i is held in ed[i][j]. The next
75 * m elements hold a table of relations which is redundant but
76 * helps speed up the computation. It satisfies the relation
77 * ed[ed[i][j]][ed[i][m+j]]=i. The final entry holds a back
78 * pointer, so that ed[i+2*m]=i. The back pointers are used
79 * when rearranging the memory. */
81 /** This array holds the order of the vertices in the Voronoi
82 * cell. This array is dynamically allocated, with its current
83 * size held by current_vertices. */
86 /** This in an array with size 3*current_vertices for holding
87 * the positions of the vertices. */
92 voronoicell_base(double max_len_sq
);
94 void init_base(double xmin
,double xmax
,double ymin
,double ymax
,double zmin
,double zmax
);
95 void init_octahedron_base(double l
);
96 void init_tetrahedron_base(double x0
,double y0
,double z0
,double x1
,double y1
,double z1
,double x2
,double y2
,double z2
,double x3
,double y3
,double z3
);
97 void translate(double x
,double y
,double z
);
98 void draw_pov(double x
,double y
,double z
,FILE *fp
=stdout
);
99 /** Outputs the cell in POV-Ray format, using cylinders for edges
100 * and spheres for vertices, to a given file.
101 * \param[in] (x,y,z) a displacement to add to the cell's
103 * \param[in] filename the name of the file to write to. */
104 inline void draw_pov(double x
,double y
,double z
,const char *filename
) {
105 FILE *fp
=safe_fopen(filename
,"w");
109 void draw_pov_mesh(double x
,double y
,double z
,FILE *fp
=stdout
);
110 /** Outputs the cell in POV-Ray format as a mesh2 object to a
112 * \param[in] (x,y,z) a displacement to add to the cell's
114 * \param[in] filename the name of the file to write to. */
115 inline void draw_pov_mesh(double x
,double y
,double z
,const char *filename
) {
116 FILE *fp
=safe_fopen(filename
,"w");
117 draw_pov_mesh(x
,y
,z
,fp
);
120 void draw_gnuplot(double x
,double y
,double z
,FILE *fp
=stdout
);
121 /** Outputs the cell in Gnuplot format a given file.
122 * \param[in] (x,y,z) a displacement to add to the cell's
124 * \param[in] filename the name of the file to write to. */
125 inline void draw_gnuplot(double x
,double y
,double z
,const char *filename
) {
126 FILE *fp
=safe_fopen(filename
,"w");
127 draw_gnuplot(x
,y
,z
,fp
);
131 double max_radius_squared();
132 double total_edge_distance();
133 double surface_area();
134 void centroid(double &cx
,double &cy
,double &cz
);
135 int number_of_faces();
136 int number_of_edges();
137 void vertex_orders(std::vector
<int> &v
);
138 void output_vertex_orders(FILE *fp
=stdout
);
139 void vertices(std::vector
<double> &v
);
140 void output_vertices(FILE *fp
=stdout
);
141 void vertices(double x
,double y
,double z
,std::vector
<double> &v
);
142 void output_vertices(double x
,double y
,double z
,FILE *fp
=stdout
);
143 void face_areas(std::vector
<double> &v
);
144 void minkowski(double r
,double &ar
,double &vo
);
145 /** Outputs the areas of the faces.
146 * \param[in] fp the file handle to write to. */
147 inline void output_face_areas(FILE *fp
=stdout
) {
148 std::vector
<double> v
;face_areas(v
);
149 voro_print_vector(v
,fp
);
151 void face_orders(std::vector
<int> &v
);
152 /** Outputs a list of the number of sides of each face.
153 * \param[in] fp the file handle to write to. */
154 inline void output_face_orders(FILE *fp
=stdout
) {
155 std::vector
<int> v
;face_orders(v
);
156 voro_print_vector(v
,fp
);
158 void face_freq_table(std::vector
<int> &v
);
160 inline void output_face_freq_table(FILE *fp
=stdout
) {
161 std::vector
<int> v
;face_freq_table(v
);
162 voro_print_vector(v
,fp
);
164 void face_vertices(std::vector
<int> &v
);
166 inline void output_face_vertices(FILE *fp
=stdout
) {
167 std::vector
<int> v
;face_vertices(v
);
168 voro_print_face_vertices(v
,fp
);
170 void face_perimeters(std::vector
<double> &v
);
171 /** Outputs a list of the perimeters of each face.
172 * \param[in] fp the file handle to write to. */
173 inline void output_face_perimeters(FILE *fp
=stdout
) {
174 std::vector
<double> v
;face_perimeters(v
);
175 voro_print_vector(v
,fp
);
177 void normals(std::vector
<double> &v
);
178 /** Outputs a list of the perimeters of each face.
179 * \param[in] fp the file handle to write to. */
180 inline void output_normals(FILE *fp
=stdout
) {
181 std::vector
<double> v
;normals(v
);
182 voro_print_positions(v
,fp
);
184 /** Outputs a custom string of information about the Voronoi
185 * cell to a file. It assumes the cell is at (0,0,0) and has a
186 * the default_radius associated with it.
187 * \param[in] format the custom format string to use.
188 * \param[in] fp the file handle to write to. */
189 inline void output_custom(const char *format
,FILE *fp
=stdout
) {output_custom(format
,0,0,0,0,default_radius
,fp
);}
190 void output_custom(const char *format
,int i
,double x
,double y
,double z
,double r
,FILE *fp
=stdout
);
191 template<class vc_class
>
192 bool nplane(vc_class
&vc
,double x
,double y
,double z
,double rsq
,int p_id
);
193 bool plane_intersects(double x
,double y
,double z
,double rsq
);
194 bool plane_intersects_guess(double x
,double y
,double z
,double rsq
);
195 void construct_relations();
196 void check_relations();
197 void check_duplicates();
199 /** Returns a list of IDs of neighboring particles
200 * corresponding to each face.
201 * \param[out] v a reference to a vector in which to return the
202 * results. If no neighbor information is
203 * available, a blank vector is returned. */
204 virtual void neighbors(std::vector
<int> &v
) {v
.clear();}
205 /** This is a virtual function that is overridden by a routine
206 * to print a list of IDs of neighboring particles
207 * corresponding to each face. By default, when no neighbor
208 * information is available, the routine does nothing.
209 * \param[in] fp the file handle to write to. */
210 virtual void output_neighbors(FILE *fp
=stdout
) {}
211 /** This a virtual function that is overridden by a routine to
212 * print the neighboring particle IDs for a given vertex. By
213 * default, when no neighbor information is available, the
214 * routine does nothing.
215 * \param[in] i the vertex to consider. */
216 virtual void print_edges_neighbors(int i
) {};
217 /** This is a simple inline function for picking out the index
218 * of the next edge counterclockwise at the current vertex.
219 * \param[in] a the index of an edge of the current vertex.
220 * \param[in] p the number of the vertex.
221 * \return 0 if a=nu[p]-1, or a+1 otherwise. */
222 inline int cycle_up(int a
,int p
) {return a
==nu
[p
]-1?0:a
+1;}
223 /** This is a simple inline function for picking out the index
224 * of the next edge clockwise from the current vertex.
225 * \param[in] a the index of an edge of the current vertex.
226 * \param[in] p the number of the vertex.
227 * \return nu[p]-1 if a=0, or a-1 otherwise. */
228 inline int cycle_down(int a
,int p
) {return a
==0?nu
[p
]-1:a
-1;}
230 /** This a one dimensional array that holds the current sizes
231 * of the memory allocations for them mep array.*/
233 /** This is a one dimensional array that holds the current
234 * number of vertices of order p that are stored in the mep[p]
237 /** This is a two dimensional array for holding the information
238 * about the edges of the Voronoi cell. mep[p] is a
239 * one-dimensional array for holding the edge information about
240 * all vertices of order p, with each vertex holding 2*p+1
241 * integers of information. The total number of vertices held
242 * on mep[p] is stored in mem[p]. If the space runs out, the
243 * code allocates more using the add_memory() routine. */
245 inline void reset_edges();
246 template<class vc_class
>
247 void check_memory_for_copy(vc_class
&vc
,voronoicell_base
* vb
);
248 void copy(voronoicell_base
* vb
);
250 /** This is the delete stack, used to store the vertices which
251 * are going to be deleted during the plane cutting procedure.
253 int *ds
,*stackp
,*stacke
;
254 /** This is the auxiliary delete stack, which has size set by
255 * current_delete2_size. */
256 int *ds2
,*stackp2
,*stacke2
;
257 /** This is the extra search stack. */
258 int *xse
,*stackp3
,*stacke3
;
260 /** The x coordinate of the normal vector to the test plane. */
262 /** The y coordinate of the normal vector to the test plane. */
264 /** The z coordinate of the normal vector to the test plane. */
266 /** The magnitude of the normal vector to the test plane. */
268 template<class vc_class
>
269 void add_memory(vc_class
&vc
,int i
);
270 template<class vc_class
>
271 void add_memory_vertices(vc_class
&vc
);
272 template<class vc_class
>
273 void add_memory_vorder(vc_class
&vc
);
274 void add_memory_ds();
275 void add_memory_ds2();
276 void add_memory_xse();
277 bool failsafe_find(int &lp
,int &ls
,int &us
,double &l
,double &u
);
278 template<class vc_class
>
279 bool create_facet(vc_class
&vc
,int lp
,int ls
,double l
,int us
,double u
,int p_id
);
280 template<class vc_class
>
281 bool collapse_order1(vc_class
&vc
);
282 template<class vc_class
>
283 inline bool collapse_order2(vc_class
&vc
);
284 template<class vc_class
>
285 bool delete_connection(vc_class
&vc
,int j
,int k
,bool hand
);
286 inline bool search_for_outside_edge(int &up
);
287 inline void add_to_stack(int sc2
,int lp
);
288 inline void reset_mask() {
289 for(int i
=0;i
<current_vertices
;i
++) mask
[i
]=0;
292 inline bool search_downward(unsigned int &uw
,int &lp
,int &ls
,int &us
,double &l
,double &u
);
293 bool definite_max(int &lp
,int &ls
,double &l
,double &u
,unsigned int &uw
);
294 inline bool search_upward(unsigned int &lw
,int &lp
,int &ls
,int &us
,double &l
,double &u
);
295 bool definite_min(int &lp
,int &us
,double &l
,double &u
,unsigned int &lw
);
296 inline void minkowski_contrib(int i
,int k
,int m
,double r
,double &ar
,double &vo
);
297 void minkowski_edge(double x0
,double r1
,double s1
,double r2
,double s2
,double r
,double &ar
,double &vo
);
298 void minkowski_formula(double x0
,double y0
,double z0
,double r
,double &ar
,double &vo
);
299 inline bool plane_intersects_track(double x
,double y
,double z
,double rs
,double g
);
300 inline void normals_search(std::vector
<double> &v
,int i
,int j
,int k
);
301 inline bool search_edge(int l
,int &m
,int &k
);
302 inline unsigned int m_test(int n
,double &ans
);
303 inline unsigned int m_testx(int n
,double &ans
);
304 unsigned int m_calc(int n
,double &ans
);
305 inline void flip(int tp
) {ed
[tp
][nu
[tp
]<<1]=-1-ed
[tp
][nu
[tp
]<<1];}
306 int check_marginal(int n
,double &ans
);
307 friend class voronoicell
;
308 friend class voronoicell_neighbor
;
311 /** \brief Extension of the voronoicell_base class to represent a Voronoi
312 * cell without neighbor information.
314 * This class is an extension of the voronoicell_base class, in cases when
315 * is not necessary to track the IDs of neighboring particles associated
316 * with each face of the Voronoi cell. */
317 class voronoicell
: public voronoicell_base
{
319 using voronoicell_base::nplane
;
320 voronoicell() : voronoicell_base(default_length
*default_length
) {}
321 voronoicell(double max_len_sq_
) : voronoicell_base(max_len_sq_
) {}
322 template<class c_class
>
323 voronoicell(c_class
&con
) : voronoicell_base(con
.max_len_sq
) {}
324 /** Copies the information from another voronoicell class into
325 * this class, extending memory allocation if necessary.
326 * \param[in] c the class to copy. */
327 inline void operator=(voronoicell
&c
) {
328 voronoicell_base
* vb((voronoicell_base
*) &c
);
329 check_memory_for_copy(*this,vb
);copy(vb
);
331 /** Cuts a Voronoi cell using by the plane corresponding to the
332 * perpendicular bisector of a particle.
333 * \param[in] (x,y,z) the position of the particle.
334 * \param[in] rsq the modulus squared of the vector.
335 * \param[in] p_id the plane ID, ignored for this case where no
336 * neighbor tracking is enabled.
337 * \return False if the plane cut deleted the cell entirely,
339 inline bool nplane(double x
,double y
,double z
,double rsq
,int p_id
) {
340 return nplane(*this,x
,y
,z
,rsq
,0);
342 /** Cuts a Voronoi cell using by the plane corresponding to the
343 * perpendicular bisector of a particle.
344 * \param[in] (x,y,z) the position of the particle.
345 * \param[in] p_id the plane ID, ignored for this case where no
346 * neighbor tracking is enabled.
347 * \return False if the plane cut deleted the cell entirely,
349 inline bool nplane(double x
,double y
,double z
,int p_id
) {
350 double rsq
=x
*x
+y
*y
+z
*z
;
351 return nplane(*this,x
,y
,z
,rsq
,0);
353 /** Cuts a Voronoi cell using by the plane corresponding to the
354 * perpendicular bisector of a particle.
355 * \param[in] (x,y,z) the position of the particle.
356 * \param[in] rsq the modulus squared of the vector.
357 * \return False if the plane cut deleted the cell entirely,
359 inline bool plane(double x
,double y
,double z
,double rsq
) {
360 return nplane(*this,x
,y
,z
,rsq
,0);
362 /** Cuts a Voronoi cell using by the plane corresponding to the
363 * perpendicular bisector of a particle.
364 * \param[in] (x,y,z) the position of the particle.
365 * \return False if the plane cut deleted the cell entirely,
367 inline bool plane(double x
,double y
,double z
) {
368 double rsq
=x
*x
+y
*y
+z
*z
;
369 return nplane(*this,x
,y
,z
,rsq
,0);
371 /** Initializes the Voronoi cell to be rectangular box with the
373 * \param[in] (xmin,xmax) the minimum and maximum x coordinates.
374 * \param[in] (ymin,ymax) the minimum and maximum y coordinates.
375 * \param[in] (zmin,zmax) the minimum and maximum z coordinates. */
376 inline void init(double xmin
,double xmax
,double ymin
,double ymax
,double zmin
,double zmax
) {
377 init_base(xmin
,xmax
,ymin
,ymax
,zmin
,zmax
);
379 /** Initializes the cell to be an octahedron with vertices at
380 * (l,0,0), (-l,0,0), (0,l,0), (0,-l,0), (0,0,l), and (0,0,-l).
381 * \param[in] l a parameter setting the size of the octahedron.
383 inline void init_octahedron(double l
) {
384 init_octahedron_base(l
);
386 /** Initializes the cell to be a tetrahedron.
387 * \param[in] (x0,y0,z0) the coordinates of the first vertex.
388 * \param[in] (x1,y1,z1) the coordinates of the second vertex.
389 * \param[in] (x2,y2,z2) the coordinates of the third vertex.
390 * \param[in] (x3,y3,z3) the coordinates of the fourth vertex.
392 inline void init_tetrahedron(double x0
,double y0
,double z0
,double x1
,double y1
,double z1
,double x2
,double y2
,double z2
,double x3
,double y3
,double z3
) {
393 init_tetrahedron_base(x0
,y0
,z0
,x1
,y1
,z1
,x2
,y2
,z2
,x3
,y3
,z3
);
397 inline void n_allocate(int i
,int m
) {};
398 inline void n_add_memory_vertices(int i
) {};
399 inline void n_add_memory_vorder(int i
) {};
400 inline void n_set_pointer(int p
,int n
) {};
401 inline void n_copy(int a
,int b
,int c
,int d
) {};
402 inline void n_set(int a
,int b
,int c
) {};
403 inline void n_set_aux1(int k
) {};
404 inline void n_copy_aux1(int a
,int b
) {};
405 inline void n_copy_aux1_shift(int a
,int b
) {};
406 inline void n_set_aux2_copy(int a
,int b
) {};
407 inline void n_copy_pointer(int a
,int b
) {};
408 inline void n_set_to_aux1(int j
) {};
409 inline void n_set_to_aux2(int j
) {};
410 inline void n_allocate_aux1(int i
) {};
411 inline void n_switch_to_aux1(int i
) {};
412 inline void n_copy_to_aux1(int i
,int m
) {};
413 inline void n_set_to_aux1_offset(int k
,int m
) {};
414 inline void n_neighbors(std::vector
<int> &v
) {v
.clear();};
415 friend class voronoicell_base
;
418 /** \brief Extension of the voronoicell_base class to represent a Voronoi cell
419 * with neighbor information.
421 * This class is an extension of the voronoicell_base class, in cases when the
422 * IDs of neighboring particles associated with each face of the Voronoi cell.
423 * It contains additional data structures mne and ne for storing this
425 class voronoicell_neighbor
: public voronoicell_base
{
427 using voronoicell_base::nplane
;
428 /** This two dimensional array holds the neighbor information
429 * associated with each vertex. mne[p] is a one dimensional
430 * array which holds all of the neighbor information for
431 * vertices of order p. */
433 /** This is a two dimensional array that holds the neighbor
434 * information associated with each vertex. ne[i] points to a
435 * one-dimensional array in mne[nu[i]]. ne[i][j] holds the
436 * neighbor information associated with the jth edge of vertex
437 * i. It is set to the ID number of the plane that made the
438 * face that is clockwise from the jth edge. */
440 voronoicell_neighbor() : voronoicell_base(default_length
*default_length
) {
443 voronoicell_neighbor(double max_len_sq_
) : voronoicell_base(max_len_sq_
) {
446 template<class c_class
>
447 voronoicell_neighbor(c_class
&con
) : voronoicell_base(con
.max_len_sq
) {
450 ~voronoicell_neighbor();
451 void operator=(voronoicell
&c
);
452 void operator=(voronoicell_neighbor
&c
);
453 /** Cuts the Voronoi cell by a particle whose center is at a
454 * separation of (x,y,z) from the cell center. The value of rsq
455 * should be initially set to \f$x^2+y^2+z^2\f$.
456 * \param[in] (x,y,z) the normal vector to the plane.
457 * \param[in] rsq the distance along this vector of the plane.
458 * \param[in] p_id the plane ID (for neighbor tracking only).
459 * \return False if the plane cut deleted the cell entirely,
461 inline bool nplane(double x
,double y
,double z
,double rsq
,int p_id
) {
462 return nplane(*this,x
,y
,z
,rsq
,p_id
);
464 /** This routine calculates the modulus squared of the vector
465 * before passing it to the main nplane() routine with full
467 * \param[in] (x,y,z) the vector to cut the cell by.
468 * \param[in] p_id the plane ID (for neighbor tracking only).
469 * \return False if the plane cut deleted the cell entirely,
471 inline bool nplane(double x
,double y
,double z
,int p_id
) {
472 double rsq
=x
*x
+y
*y
+z
*z
;
473 return nplane(*this,x
,y
,z
,rsq
,p_id
);
475 /** This version of the plane routine just makes up the plane
476 * ID to be zero. It will only be referenced if neighbor
477 * tracking is enabled.
478 * \param[in] (x,y,z) the vector to cut the cell by.
479 * \param[in] rsq the modulus squared of the vector.
480 * \return False if the plane cut deleted the cell entirely,
482 inline bool plane(double x
,double y
,double z
,double rsq
) {
483 return nplane(*this,x
,y
,z
,rsq
,0);
485 /** Cuts a Voronoi cell using the influence of a particle at
486 * (x,y,z), first calculating the modulus squared of this
487 * vector before passing it to the main nplane() routine. Zero
488 * is supplied as the plane ID, which will be ignored unless
489 * neighbor tracking is enabled.
490 * \param[in] (x,y,z) the vector to cut the cell by.
491 * \return False if the plane cut deleted the cell entirely,
493 inline bool plane(double x
,double y
,double z
) {
494 double rsq
=x
*x
+y
*y
+z
*z
;
495 return nplane(*this,x
,y
,z
,rsq
,0);
497 void init(double xmin
,double xmax
,double ymin
,double ymax
,double zmin
,double zmax
);
498 void init_octahedron(double l
);
499 void init_tetrahedron(double x0
,double y0
,double z0
,double x1
,double y1
,double z1
,double x2
,double y2
,double z2
,double x3
,double y3
,double z3
);
501 virtual void neighbors(std::vector
<int> &v
);
502 virtual void print_edges_neighbors(int i
);
503 virtual void output_neighbors(FILE *fp
=stdout
) {
504 std::vector
<int> v
;neighbors(v
);
505 voro_print_vector(v
,fp
);
511 inline void n_allocate(int i
,int m
) {mne
[i
]=new int[m
*i
];}
512 inline void n_add_memory_vertices(int i
) {
513 int **pp
=new int*[i
];
514 for(int j
=0;j
<current_vertices
;j
++) pp
[j
]=ne
[j
];
517 inline void n_add_memory_vorder(int i
) {
518 int **p2
=new int*[i
];
519 for(int j
=0;j
<current_vertex_order
;j
++) p2
[j
]=mne
[j
];
520 delete [] mne
;mne
=p2
;
522 inline void n_set_pointer(int p
,int n
) {
523 ne
[p
]=mne
[n
]+n
*mec
[n
];
525 inline void n_copy(int a
,int b
,int c
,int d
) {ne
[a
][b
]=ne
[c
][d
];}
526 inline void n_set(int a
,int b
,int c
) {ne
[a
][b
]=c
;}
527 inline void n_set_aux1(int k
) {paux1
=mne
[k
]+k
*mec
[k
];}
528 inline void n_copy_aux1(int a
,int b
) {paux1
[b
]=ne
[a
][b
];}
529 inline void n_copy_aux1_shift(int a
,int b
) {paux1
[b
]=ne
[a
][b
+1];}
530 inline void n_set_aux2_copy(int a
,int b
) {
531 paux2
=mne
[b
]+b
*mec
[b
];
532 for(int i
=0;i
<b
;i
++) ne
[a
][i
]=paux2
[i
];
534 inline void n_copy_pointer(int a
,int b
) {ne
[a
]=ne
[b
];}
535 inline void n_set_to_aux1(int j
) {ne
[j
]=paux1
;}
536 inline void n_set_to_aux2(int j
) {ne
[j
]=paux2
;}
537 inline void n_allocate_aux1(int i
) {paux1
=new int[i
*mem
[i
]];}
538 inline void n_switch_to_aux1(int i
) {delete [] mne
[i
];mne
[i
]=paux1
;}
539 inline void n_copy_to_aux1(int i
,int m
) {paux1
[m
]=mne
[i
][m
];}
540 inline void n_set_to_aux1_offset(int k
,int m
) {ne
[k
]=paux1
+m
;}
541 friend class voronoicell_base
;