Merge branch 'x86/rdrand' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[wandboard.git] / net / sched / sch_sfq.c
blob67494aef9acf3c230aa80dd4d70d1369a5318c04
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/jhash.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/flow_keys.h>
27 #include <net/red.h>
30 /* Stochastic Fairness Queuing algorithm.
31 =======================================
33 Source:
34 Paul E. McKenney "Stochastic Fairness Queuing",
35 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
37 Paul E. McKenney "Stochastic Fairness Queuing",
38 "Interworking: Research and Experience", v.2, 1991, p.113-131.
41 See also:
42 M. Shreedhar and George Varghese "Efficient Fair
43 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
46 This is not the thing that is usually called (W)FQ nowadays.
47 It does not use any timestamp mechanism, but instead
48 processes queues in round-robin order.
50 ADVANTAGE:
52 - It is very cheap. Both CPU and memory requirements are minimal.
54 DRAWBACKS:
56 - "Stochastic" -> It is not 100% fair.
57 When hash collisions occur, several flows are considered as one.
59 - "Round-robin" -> It introduces larger delays than virtual clock
60 based schemes, and should not be used for isolating interactive
61 traffic from non-interactive. It means, that this scheduler
62 should be used as leaf of CBQ or P3, which put interactive traffic
63 to higher priority band.
65 We still need true WFQ for top level CSZ, but using WFQ
66 for the best effort traffic is absolutely pointless:
67 SFQ is superior for this purpose.
69 IMPLEMENTATION:
70 This implementation limits :
71 - maximal queue length per flow to 127 packets.
72 - max mtu to 2^18-1;
73 - max 65408 flows,
74 - number of hash buckets to 65536.
76 It is easy to increase these values, but not in flight. */
78 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
79 #define SFQ_DEFAULT_FLOWS 128
80 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
81 #define SFQ_EMPTY_SLOT 0xffff
82 #define SFQ_DEFAULT_HASH_DIVISOR 1024
84 /* We use 16 bits to store allot, and want to handle packets up to 64K
85 * Scale allot by 8 (1<<3) so that no overflow occurs.
87 #define SFQ_ALLOT_SHIFT 3
88 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
90 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
91 typedef u16 sfq_index;
94 * We dont use pointers to save space.
95 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
96 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
97 * are 'pointers' to dep[] array
99 struct sfq_head {
100 sfq_index next;
101 sfq_index prev;
104 struct sfq_slot {
105 struct sk_buff *skblist_next;
106 struct sk_buff *skblist_prev;
107 sfq_index qlen; /* number of skbs in skblist */
108 sfq_index next; /* next slot in sfq RR chain */
109 struct sfq_head dep; /* anchor in dep[] chains */
110 unsigned short hash; /* hash value (index in ht[]) */
111 short allot; /* credit for this slot */
113 unsigned int backlog;
114 struct red_vars vars;
117 struct sfq_sched_data {
118 /* frequently used fields */
119 int limit; /* limit of total number of packets in this qdisc */
120 unsigned int divisor; /* number of slots in hash table */
121 u8 headdrop;
122 u8 maxdepth; /* limit of packets per flow */
124 u32 perturbation;
125 u8 cur_depth; /* depth of longest slot */
126 u8 flags;
127 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
128 struct tcf_proto *filter_list;
129 sfq_index *ht; /* Hash table ('divisor' slots) */
130 struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
132 struct red_parms *red_parms;
133 struct tc_sfqred_stats stats;
134 struct sfq_slot *tail; /* current slot in round */
136 struct sfq_head dep[SFQ_MAX_DEPTH + 1];
137 /* Linked lists of slots, indexed by depth
138 * dep[0] : list of unused flows
139 * dep[1] : list of flows with 1 packet
140 * dep[X] : list of flows with X packets
143 unsigned int maxflows; /* number of flows in flows array */
144 int perturb_period;
145 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
146 struct timer_list perturb_timer;
150 * sfq_head are either in a sfq_slot or in dep[] array
152 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
154 if (val < SFQ_MAX_FLOWS)
155 return &q->slots[val].dep;
156 return &q->dep[val - SFQ_MAX_FLOWS];
160 * In order to be able to quickly rehash our queue when timer changes
161 * q->perturbation, we store flow_keys in skb->cb[]
163 struct sfq_skb_cb {
164 struct flow_keys keys;
167 static inline struct sfq_skb_cb *sfq_skb_cb(const struct sk_buff *skb)
169 BUILD_BUG_ON(sizeof(skb->cb) <
170 sizeof(struct qdisc_skb_cb) + sizeof(struct sfq_skb_cb));
171 return (struct sfq_skb_cb *)qdisc_skb_cb(skb)->data;
174 static unsigned int sfq_hash(const struct sfq_sched_data *q,
175 const struct sk_buff *skb)
177 const struct flow_keys *keys = &sfq_skb_cb(skb)->keys;
178 unsigned int hash;
180 hash = jhash_3words((__force u32)keys->dst,
181 (__force u32)keys->src ^ keys->ip_proto,
182 (__force u32)keys->ports, q->perturbation);
183 return hash & (q->divisor - 1);
186 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
187 int *qerr)
189 struct sfq_sched_data *q = qdisc_priv(sch);
190 struct tcf_result res;
191 int result;
193 if (TC_H_MAJ(skb->priority) == sch->handle &&
194 TC_H_MIN(skb->priority) > 0 &&
195 TC_H_MIN(skb->priority) <= q->divisor)
196 return TC_H_MIN(skb->priority);
198 if (!q->filter_list) {
199 skb_flow_dissect(skb, &sfq_skb_cb(skb)->keys);
200 return sfq_hash(q, skb) + 1;
203 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
204 result = tc_classify(skb, q->filter_list, &res);
205 if (result >= 0) {
206 #ifdef CONFIG_NET_CLS_ACT
207 switch (result) {
208 case TC_ACT_STOLEN:
209 case TC_ACT_QUEUED:
210 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
211 case TC_ACT_SHOT:
212 return 0;
214 #endif
215 if (TC_H_MIN(res.classid) <= q->divisor)
216 return TC_H_MIN(res.classid);
218 return 0;
222 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
224 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
226 sfq_index p, n;
227 struct sfq_slot *slot = &q->slots[x];
228 int qlen = slot->qlen;
230 p = qlen + SFQ_MAX_FLOWS;
231 n = q->dep[qlen].next;
233 slot->dep.next = n;
234 slot->dep.prev = p;
236 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
237 sfq_dep_head(q, n)->prev = x;
240 #define sfq_unlink(q, x, n, p) \
241 n = q->slots[x].dep.next; \
242 p = q->slots[x].dep.prev; \
243 sfq_dep_head(q, p)->next = n; \
244 sfq_dep_head(q, n)->prev = p
247 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
249 sfq_index p, n;
250 int d;
252 sfq_unlink(q, x, n, p);
254 d = q->slots[x].qlen--;
255 if (n == p && q->cur_depth == d)
256 q->cur_depth--;
257 sfq_link(q, x);
260 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
262 sfq_index p, n;
263 int d;
265 sfq_unlink(q, x, n, p);
267 d = ++q->slots[x].qlen;
268 if (q->cur_depth < d)
269 q->cur_depth = d;
270 sfq_link(q, x);
273 /* helper functions : might be changed when/if skb use a standard list_head */
275 /* remove one skb from tail of slot queue */
276 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
278 struct sk_buff *skb = slot->skblist_prev;
280 slot->skblist_prev = skb->prev;
281 skb->prev->next = (struct sk_buff *)slot;
282 skb->next = skb->prev = NULL;
283 return skb;
286 /* remove one skb from head of slot queue */
287 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
289 struct sk_buff *skb = slot->skblist_next;
291 slot->skblist_next = skb->next;
292 skb->next->prev = (struct sk_buff *)slot;
293 skb->next = skb->prev = NULL;
294 return skb;
297 static inline void slot_queue_init(struct sfq_slot *slot)
299 memset(slot, 0, sizeof(*slot));
300 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
303 /* add skb to slot queue (tail add) */
304 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
306 skb->prev = slot->skblist_prev;
307 skb->next = (struct sk_buff *)slot;
308 slot->skblist_prev->next = skb;
309 slot->skblist_prev = skb;
312 #define slot_queue_walk(slot, skb) \
313 for (skb = slot->skblist_next; \
314 skb != (struct sk_buff *)slot; \
315 skb = skb->next)
317 static unsigned int sfq_drop(struct Qdisc *sch)
319 struct sfq_sched_data *q = qdisc_priv(sch);
320 sfq_index x, d = q->cur_depth;
321 struct sk_buff *skb;
322 unsigned int len;
323 struct sfq_slot *slot;
325 /* Queue is full! Find the longest slot and drop tail packet from it */
326 if (d > 1) {
327 x = q->dep[d].next;
328 slot = &q->slots[x];
329 drop:
330 skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
331 len = qdisc_pkt_len(skb);
332 slot->backlog -= len;
333 sfq_dec(q, x);
334 kfree_skb(skb);
335 sch->q.qlen--;
336 sch->qstats.drops++;
337 sch->qstats.backlog -= len;
338 return len;
341 if (d == 1) {
342 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
343 x = q->tail->next;
344 slot = &q->slots[x];
345 q->tail->next = slot->next;
346 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
347 goto drop;
350 return 0;
353 /* Is ECN parameter configured */
354 static int sfq_prob_mark(const struct sfq_sched_data *q)
356 return q->flags & TC_RED_ECN;
359 /* Should packets over max threshold just be marked */
360 static int sfq_hard_mark(const struct sfq_sched_data *q)
362 return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
365 static int sfq_headdrop(const struct sfq_sched_data *q)
367 return q->headdrop;
370 static int
371 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
373 struct sfq_sched_data *q = qdisc_priv(sch);
374 unsigned int hash;
375 sfq_index x, qlen;
376 struct sfq_slot *slot;
377 int uninitialized_var(ret);
378 struct sk_buff *head;
379 int delta;
381 hash = sfq_classify(skb, sch, &ret);
382 if (hash == 0) {
383 if (ret & __NET_XMIT_BYPASS)
384 sch->qstats.drops++;
385 kfree_skb(skb);
386 return ret;
388 hash--;
390 x = q->ht[hash];
391 slot = &q->slots[x];
392 if (x == SFQ_EMPTY_SLOT) {
393 x = q->dep[0].next; /* get a free slot */
394 if (x >= SFQ_MAX_FLOWS)
395 return qdisc_drop(skb, sch);
396 q->ht[hash] = x;
397 slot = &q->slots[x];
398 slot->hash = hash;
399 slot->backlog = 0; /* should already be 0 anyway... */
400 red_set_vars(&slot->vars);
401 goto enqueue;
403 if (q->red_parms) {
404 slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
405 &slot->vars,
406 slot->backlog);
407 switch (red_action(q->red_parms,
408 &slot->vars,
409 slot->vars.qavg)) {
410 case RED_DONT_MARK:
411 break;
413 case RED_PROB_MARK:
414 sch->qstats.overlimits++;
415 if (sfq_prob_mark(q)) {
416 /* We know we have at least one packet in queue */
417 if (sfq_headdrop(q) &&
418 INET_ECN_set_ce(slot->skblist_next)) {
419 q->stats.prob_mark_head++;
420 break;
422 if (INET_ECN_set_ce(skb)) {
423 q->stats.prob_mark++;
424 break;
427 q->stats.prob_drop++;
428 goto congestion_drop;
430 case RED_HARD_MARK:
431 sch->qstats.overlimits++;
432 if (sfq_hard_mark(q)) {
433 /* We know we have at least one packet in queue */
434 if (sfq_headdrop(q) &&
435 INET_ECN_set_ce(slot->skblist_next)) {
436 q->stats.forced_mark_head++;
437 break;
439 if (INET_ECN_set_ce(skb)) {
440 q->stats.forced_mark++;
441 break;
444 q->stats.forced_drop++;
445 goto congestion_drop;
449 if (slot->qlen >= q->maxdepth) {
450 congestion_drop:
451 if (!sfq_headdrop(q))
452 return qdisc_drop(skb, sch);
454 /* We know we have at least one packet in queue */
455 head = slot_dequeue_head(slot);
456 delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
457 sch->qstats.backlog -= delta;
458 slot->backlog -= delta;
459 qdisc_drop(head, sch);
461 slot_queue_add(slot, skb);
462 return NET_XMIT_CN;
465 enqueue:
466 sch->qstats.backlog += qdisc_pkt_len(skb);
467 slot->backlog += qdisc_pkt_len(skb);
468 slot_queue_add(slot, skb);
469 sfq_inc(q, x);
470 if (slot->qlen == 1) { /* The flow is new */
471 if (q->tail == NULL) { /* It is the first flow */
472 slot->next = x;
473 q->tail = slot;
474 } else {
475 slot->next = q->tail->next;
476 q->tail->next = x;
478 /* We could use a bigger initial quantum for new flows */
479 slot->allot = q->scaled_quantum;
481 if (++sch->q.qlen <= q->limit)
482 return NET_XMIT_SUCCESS;
484 qlen = slot->qlen;
485 sfq_drop(sch);
486 /* Return Congestion Notification only if we dropped a packet
487 * from this flow.
489 if (qlen != slot->qlen)
490 return NET_XMIT_CN;
492 /* As we dropped a packet, better let upper stack know this */
493 qdisc_tree_decrease_qlen(sch, 1);
494 return NET_XMIT_SUCCESS;
497 static struct sk_buff *
498 sfq_dequeue(struct Qdisc *sch)
500 struct sfq_sched_data *q = qdisc_priv(sch);
501 struct sk_buff *skb;
502 sfq_index a, next_a;
503 struct sfq_slot *slot;
505 /* No active slots */
506 if (q->tail == NULL)
507 return NULL;
509 next_slot:
510 a = q->tail->next;
511 slot = &q->slots[a];
512 if (slot->allot <= 0) {
513 q->tail = slot;
514 slot->allot += q->scaled_quantum;
515 goto next_slot;
517 skb = slot_dequeue_head(slot);
518 sfq_dec(q, a);
519 qdisc_bstats_update(sch, skb);
520 sch->q.qlen--;
521 sch->qstats.backlog -= qdisc_pkt_len(skb);
522 slot->backlog -= qdisc_pkt_len(skb);
523 /* Is the slot empty? */
524 if (slot->qlen == 0) {
525 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
526 next_a = slot->next;
527 if (a == next_a) {
528 q->tail = NULL; /* no more active slots */
529 return skb;
531 q->tail->next = next_a;
532 } else {
533 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
535 return skb;
538 static void
539 sfq_reset(struct Qdisc *sch)
541 struct sk_buff *skb;
543 while ((skb = sfq_dequeue(sch)) != NULL)
544 kfree_skb(skb);
548 * When q->perturbation is changed, we rehash all queued skbs
549 * to avoid OOO (Out Of Order) effects.
550 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
551 * counters.
553 static void sfq_rehash(struct Qdisc *sch)
555 struct sfq_sched_data *q = qdisc_priv(sch);
556 struct sk_buff *skb;
557 int i;
558 struct sfq_slot *slot;
559 struct sk_buff_head list;
560 int dropped = 0;
562 __skb_queue_head_init(&list);
564 for (i = 0; i < q->maxflows; i++) {
565 slot = &q->slots[i];
566 if (!slot->qlen)
567 continue;
568 while (slot->qlen) {
569 skb = slot_dequeue_head(slot);
570 sfq_dec(q, i);
571 __skb_queue_tail(&list, skb);
573 slot->backlog = 0;
574 red_set_vars(&slot->vars);
575 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
577 q->tail = NULL;
579 while ((skb = __skb_dequeue(&list)) != NULL) {
580 unsigned int hash = sfq_hash(q, skb);
581 sfq_index x = q->ht[hash];
583 slot = &q->slots[x];
584 if (x == SFQ_EMPTY_SLOT) {
585 x = q->dep[0].next; /* get a free slot */
586 if (x >= SFQ_MAX_FLOWS) {
587 drop: sch->qstats.backlog -= qdisc_pkt_len(skb);
588 kfree_skb(skb);
589 dropped++;
590 continue;
592 q->ht[hash] = x;
593 slot = &q->slots[x];
594 slot->hash = hash;
596 if (slot->qlen >= q->maxdepth)
597 goto drop;
598 slot_queue_add(slot, skb);
599 if (q->red_parms)
600 slot->vars.qavg = red_calc_qavg(q->red_parms,
601 &slot->vars,
602 slot->backlog);
603 slot->backlog += qdisc_pkt_len(skb);
604 sfq_inc(q, x);
605 if (slot->qlen == 1) { /* The flow is new */
606 if (q->tail == NULL) { /* It is the first flow */
607 slot->next = x;
608 } else {
609 slot->next = q->tail->next;
610 q->tail->next = x;
612 q->tail = slot;
613 slot->allot = q->scaled_quantum;
616 sch->q.qlen -= dropped;
617 qdisc_tree_decrease_qlen(sch, dropped);
620 static void sfq_perturbation(unsigned long arg)
622 struct Qdisc *sch = (struct Qdisc *)arg;
623 struct sfq_sched_data *q = qdisc_priv(sch);
624 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
626 spin_lock(root_lock);
627 q->perturbation = net_random();
628 if (!q->filter_list && q->tail)
629 sfq_rehash(sch);
630 spin_unlock(root_lock);
632 if (q->perturb_period)
633 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
636 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
638 struct sfq_sched_data *q = qdisc_priv(sch);
639 struct tc_sfq_qopt *ctl = nla_data(opt);
640 struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
641 unsigned int qlen;
642 struct red_parms *p = NULL;
644 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
645 return -EINVAL;
646 if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
647 ctl_v1 = nla_data(opt);
648 if (ctl->divisor &&
649 (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
650 return -EINVAL;
651 if (ctl_v1 && ctl_v1->qth_min) {
652 p = kmalloc(sizeof(*p), GFP_KERNEL);
653 if (!p)
654 return -ENOMEM;
656 sch_tree_lock(sch);
657 if (ctl->quantum) {
658 q->quantum = ctl->quantum;
659 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
661 q->perturb_period = ctl->perturb_period * HZ;
662 if (ctl->flows)
663 q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
664 if (ctl->divisor) {
665 q->divisor = ctl->divisor;
666 q->maxflows = min_t(u32, q->maxflows, q->divisor);
668 if (ctl_v1) {
669 if (ctl_v1->depth)
670 q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
671 if (p) {
672 swap(q->red_parms, p);
673 red_set_parms(q->red_parms,
674 ctl_v1->qth_min, ctl_v1->qth_max,
675 ctl_v1->Wlog,
676 ctl_v1->Plog, ctl_v1->Scell_log,
677 NULL,
678 ctl_v1->max_P);
680 q->flags = ctl_v1->flags;
681 q->headdrop = ctl_v1->headdrop;
683 if (ctl->limit) {
684 q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
685 q->maxflows = min_t(u32, q->maxflows, q->limit);
688 qlen = sch->q.qlen;
689 while (sch->q.qlen > q->limit)
690 sfq_drop(sch);
691 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
693 del_timer(&q->perturb_timer);
694 if (q->perturb_period) {
695 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
696 q->perturbation = net_random();
698 sch_tree_unlock(sch);
699 kfree(p);
700 return 0;
703 static void *sfq_alloc(size_t sz)
705 void *ptr = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN);
707 if (!ptr)
708 ptr = vmalloc(sz);
709 return ptr;
712 static void sfq_free(void *addr)
714 if (addr) {
715 if (is_vmalloc_addr(addr))
716 vfree(addr);
717 else
718 kfree(addr);
722 static void sfq_destroy(struct Qdisc *sch)
724 struct sfq_sched_data *q = qdisc_priv(sch);
726 tcf_destroy_chain(&q->filter_list);
727 q->perturb_period = 0;
728 del_timer_sync(&q->perturb_timer);
729 sfq_free(q->ht);
730 sfq_free(q->slots);
731 kfree(q->red_parms);
734 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
736 struct sfq_sched_data *q = qdisc_priv(sch);
737 int i;
739 q->perturb_timer.function = sfq_perturbation;
740 q->perturb_timer.data = (unsigned long)sch;
741 init_timer_deferrable(&q->perturb_timer);
743 for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
744 q->dep[i].next = i + SFQ_MAX_FLOWS;
745 q->dep[i].prev = i + SFQ_MAX_FLOWS;
748 q->limit = SFQ_MAX_DEPTH;
749 q->maxdepth = SFQ_MAX_DEPTH;
750 q->cur_depth = 0;
751 q->tail = NULL;
752 q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
753 q->maxflows = SFQ_DEFAULT_FLOWS;
754 q->quantum = psched_mtu(qdisc_dev(sch));
755 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
756 q->perturb_period = 0;
757 q->perturbation = net_random();
759 if (opt) {
760 int err = sfq_change(sch, opt);
761 if (err)
762 return err;
765 q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
766 q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
767 if (!q->ht || !q->slots) {
768 sfq_destroy(sch);
769 return -ENOMEM;
771 for (i = 0; i < q->divisor; i++)
772 q->ht[i] = SFQ_EMPTY_SLOT;
774 for (i = 0; i < q->maxflows; i++) {
775 slot_queue_init(&q->slots[i]);
776 sfq_link(q, i);
778 if (q->limit >= 1)
779 sch->flags |= TCQ_F_CAN_BYPASS;
780 else
781 sch->flags &= ~TCQ_F_CAN_BYPASS;
782 return 0;
785 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
787 struct sfq_sched_data *q = qdisc_priv(sch);
788 unsigned char *b = skb_tail_pointer(skb);
789 struct tc_sfq_qopt_v1 opt;
790 struct red_parms *p = q->red_parms;
792 memset(&opt, 0, sizeof(opt));
793 opt.v0.quantum = q->quantum;
794 opt.v0.perturb_period = q->perturb_period / HZ;
795 opt.v0.limit = q->limit;
796 opt.v0.divisor = q->divisor;
797 opt.v0.flows = q->maxflows;
798 opt.depth = q->maxdepth;
799 opt.headdrop = q->headdrop;
801 if (p) {
802 opt.qth_min = p->qth_min >> p->Wlog;
803 opt.qth_max = p->qth_max >> p->Wlog;
804 opt.Wlog = p->Wlog;
805 opt.Plog = p->Plog;
806 opt.Scell_log = p->Scell_log;
807 opt.max_P = p->max_P;
809 memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
810 opt.flags = q->flags;
812 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
814 return skb->len;
816 nla_put_failure:
817 nlmsg_trim(skb, b);
818 return -1;
821 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
823 return NULL;
826 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
828 return 0;
831 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
832 u32 classid)
834 /* we cannot bypass queue discipline anymore */
835 sch->flags &= ~TCQ_F_CAN_BYPASS;
836 return 0;
839 static void sfq_put(struct Qdisc *q, unsigned long cl)
843 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
845 struct sfq_sched_data *q = qdisc_priv(sch);
847 if (cl)
848 return NULL;
849 return &q->filter_list;
852 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
853 struct sk_buff *skb, struct tcmsg *tcm)
855 tcm->tcm_handle |= TC_H_MIN(cl);
856 return 0;
859 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
860 struct gnet_dump *d)
862 struct sfq_sched_data *q = qdisc_priv(sch);
863 sfq_index idx = q->ht[cl - 1];
864 struct gnet_stats_queue qs = { 0 };
865 struct tc_sfq_xstats xstats = { 0 };
867 if (idx != SFQ_EMPTY_SLOT) {
868 const struct sfq_slot *slot = &q->slots[idx];
870 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
871 qs.qlen = slot->qlen;
872 qs.backlog = slot->backlog;
874 if (gnet_stats_copy_queue(d, &qs) < 0)
875 return -1;
876 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
879 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
881 struct sfq_sched_data *q = qdisc_priv(sch);
882 unsigned int i;
884 if (arg->stop)
885 return;
887 for (i = 0; i < q->divisor; i++) {
888 if (q->ht[i] == SFQ_EMPTY_SLOT ||
889 arg->count < arg->skip) {
890 arg->count++;
891 continue;
893 if (arg->fn(sch, i + 1, arg) < 0) {
894 arg->stop = 1;
895 break;
897 arg->count++;
901 static const struct Qdisc_class_ops sfq_class_ops = {
902 .leaf = sfq_leaf,
903 .get = sfq_get,
904 .put = sfq_put,
905 .tcf_chain = sfq_find_tcf,
906 .bind_tcf = sfq_bind,
907 .unbind_tcf = sfq_put,
908 .dump = sfq_dump_class,
909 .dump_stats = sfq_dump_class_stats,
910 .walk = sfq_walk,
913 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
914 .cl_ops = &sfq_class_ops,
915 .id = "sfq",
916 .priv_size = sizeof(struct sfq_sched_data),
917 .enqueue = sfq_enqueue,
918 .dequeue = sfq_dequeue,
919 .peek = qdisc_peek_dequeued,
920 .drop = sfq_drop,
921 .init = sfq_init,
922 .reset = sfq_reset,
923 .destroy = sfq_destroy,
924 .change = NULL,
925 .dump = sfq_dump,
926 .owner = THIS_MODULE,
929 static int __init sfq_module_init(void)
931 return register_qdisc(&sfq_qdisc_ops);
933 static void __exit sfq_module_exit(void)
935 unregister_qdisc(&sfq_qdisc_ops);
937 module_init(sfq_module_init)
938 module_exit(sfq_module_exit)
939 MODULE_LICENSE("GPL");