1 // Taken from http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html
5 // Mersenne Twister random number generator -- a C++ class MTRand
6 // Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
7 // Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com
9 // The Mersenne Twister is an algorithm for generating random numbers. It
10 // was designed with consideration of the flaws in various other generators.
11 // The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
12 // are far greater. The generator is also fast; it avoids multiplication and
13 // division, and it benefits from caches and pipelines. For more information
14 // see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
17 // M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
18 // Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
19 // Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
21 // Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
22 // Copyright (C) 2000 - 2003, Richard J. Wagner
23 // All rights reserved.
25 // Redistribution and use in source and binary forms, with or without
26 // modification, are permitted provided that the following conditions
29 // 1. Redistributions of source code must retain the above copyright
30 // notice, this list of conditions and the following disclaimer.
32 // 2. Redistributions in binary form must reproduce the above copyright
33 // notice, this list of conditions and the following disclaimer in the
34 // documentation and/or other materials provided with the distribution.
36 // 3. The names of its contributors may not be used to endorse or promote
37 // products derived from this software without specific prior written
40 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
41 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
42 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
43 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
44 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
45 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
46 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
47 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
48 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
49 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
50 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
52 // The original code included the following notice:
54 // When you use this, send an email to: matumoto@math.keio.ac.jp
55 // with an appropriate reference to your work.
57 // It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu
60 #ifndef _MERSENNETWISTER_H_
61 #define _MERSENNETWISTER_H_
63 // Not thread safe (unless auto-initialization is avoided and each thread has
64 // its own MTRand object)
74 typedef unsigned int uint32
; // unsigned integer type, at least 32 bits
76 enum { N
= 624 }; // length of state vector
77 enum { SAVE
= N
+ 1 }; // length of array for save()
80 enum { M
= 397 }; // period parameter
82 uint32 state
[N
]; // internal state
83 uint32
*pNext
; // next value to get from state
84 int left
; // number of values left before reload needed
89 MTRand( const uint32
& oneSeed
); // initialize with a simple uint32
90 MTRand( uint32
*const bigSeed
, uint32
const seedLength
= N
); // or an array
91 MTRand(); // auto-initialize with /dev/urandom or time() and clock()
93 // Do NOT use for CRYPTOGRAPHY without securely hashing several returned
94 // values together, otherwise the generator state can be learned after
95 // reading 624 consecutive values.
97 // Access to 32-bit random numbers
98 double rand(); // real number in [0,1]
99 double rand( const double& n
); // real number in [0,n]
100 double randExc(); // real number in [0,1)
101 double randExc( const double& n
); // real number in [0,n)
102 double randDblExc(); // real number in (0,1)
103 double randDblExc( const double& n
); // real number in (0,n)
104 uint32
randInt(); // integer in [0,2^32-1]
105 uint32
randInt( const uint32
& n
); // integer in [0,n] for n < 2^32
106 double operator()() { return rand(); } // same as rand()
108 // Access to 53-bit random numbers (capacity of IEEE double precision)
109 double rand53(); // real number in [0,1)
111 // Access to nonuniform random number distributions
112 double randNorm( const double& mean
= 0.0, const double& variance
= 0.0 );
114 // Re-seeding functions with same behavior as initializers
115 void seed( const uint32 oneSeed
);
116 void seed( uint32
*const bigSeed
, const uint32 seedLength
= N
);
119 // Saving and loading generator state
120 void save( uint32
* saveArray
) const; // to array of size SAVE
121 void load( uint32
*const loadArray
); // from such array
124 void initialize( const uint32 oneSeed
);
126 uint32
hiBit( const uint32
& u
) const { return u
& 0x80000000UL
; }
127 uint32
loBit( const uint32
& u
) const { return u
& 0x00000001UL
; }
128 uint32
loBits( const uint32
& u
) const { return u
& 0x7fffffffUL
; }
129 uint32
mixBits( const uint32
& u
, const uint32
& v
) const
130 { return hiBit(u
) | loBits(v
); }
131 uint32
twist( const uint32
& m
, const uint32
& s0
, const uint32
& s1
) const
132 { return m
^ (mixBits(s0
,s1
)>>1) ^ (-((int)loBit(s1
)) & 0x9908b0dfUL
); }
135 // This was protected, but we need it exposed so FIRan1.h can use it for seeding
136 static uint32
hash( time_t t
, clock_t c
);
140 inline MTRand::MTRand( const uint32
& oneSeed
)
143 inline MTRand::MTRand( uint32
*const bigSeed
, const uint32 seedLength
)
144 { seed(bigSeed
,seedLength
); }
146 inline MTRand::MTRand()
149 inline double MTRand::rand()
150 { return double(randInt()) * (1.0/4294967295.0); }
152 inline double MTRand::rand( const double& n
)
153 { return rand() * n
; }
155 inline double MTRand::randExc()
156 { return double(randInt()) * (1.0/4294967296.0); }
158 inline double MTRand::randExc( const double& n
)
159 { return randExc() * n
; }
161 inline double MTRand::randDblExc()
162 { return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
164 inline double MTRand::randDblExc( const double& n
)
165 { return randDblExc() * n
; }
167 inline double MTRand::rand53()
169 uint32 a
= randInt() >> 5, b
= randInt() >> 6;
170 return ( a
* 67108864.0 + b
) * (1.0/9007199254740992.0); // by Isaku Wada
173 inline double MTRand::randNorm( const double& mean
, const double& variance
)
175 // Return a real number from a normal (Gaussian) distribution with given
176 // mean and variance by Box-Muller method
177 double r
= sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance
;
178 double phi
= 2.0 * 3.14159265358979323846264338328 * randExc();
179 return mean
+ r
* cos(phi
);
182 inline MTRand::uint32
MTRand::randInt()
184 // Pull a 32-bit integer from the generator state
185 // Every other access function simply transforms the numbers extracted here
187 if( left
== 0 ) reload();
193 s1
^= (s1
<< 7) & 0x9d2c5680UL
;
194 s1
^= (s1
<< 15) & 0xefc60000UL
;
195 return ( s1
^ (s1
>> 18) );
198 inline MTRand::uint32
MTRand::randInt( const uint32
& n
)
200 // Find which bits are used in n
201 // Optimized by Magnus Jonsson (magnus@smartelectronix.com)
209 // Draw numbers until one is found in [0,n]
212 i
= randInt() & used
; // toss unused bits to shorten search
218 inline void MTRand::seed( const uint32 oneSeed
)
220 // Seed the generator with a simple uint32
226 inline void MTRand::seed( uint32
*const bigSeed
, const uint32 seedLength
)
228 // Seed the generator with an array of uint32's
229 // There are 2^19937-1 possible initial states. This function allows
230 // all of those to be accessed by providing at least 19937 bits (with a
231 // default seed length of N = 624 uint32's). Any bits above the lower 32
232 // in each element are discarded.
233 // Just call seed() if you want to get array from /dev/urandom
234 initialize(19650218UL);
236 register uint32 j
= 0;
237 register int k
= ( N
> seedLength
? N
: seedLength
);
241 state
[i
] ^ ( (state
[i
-1] ^ (state
[i
-1] >> 30)) * 1664525UL );
242 state
[i
] += ( bigSeed
[j
] & 0xffffffffUL
) + j
;
243 state
[i
] &= 0xffffffffUL
;
245 if( i
>= N
) { state
[0] = state
[N
-1]; i
= 1; }
246 if( j
>= seedLength
) j
= 0;
248 for( k
= N
- 1; k
; --k
)
251 state
[i
] ^ ( (state
[i
-1] ^ (state
[i
-1] >> 30)) * 1566083941UL );
253 state
[i
] &= 0xffffffffUL
;
255 if( i
>= N
) { state
[0] = state
[N
-1]; i
= 1; }
257 state
[0] = 0x80000000UL
; // MSB is 1, assuring non-zero initial array
262 inline void MTRand::seed()
264 // Seed the generator with an array from /dev/urandom if available
265 // Otherwise use a hash of time() and clock() values
267 // No point in trying this on Windows machines - won't work, so it just slows things down
269 #ifndef WDL_MTRAND_FASTSEED
270 // First try getting an array from /dev/urandom
271 FILE* urandom
= fopen( "/dev/urandom", "rb" );
275 register uint32
*s
= bigSeed
;
277 register bool success
= true;
278 while( success
&& i
-- )
279 success
= fread( s
++, sizeof(uint32
), 1, urandom
);
281 if( success
) { seed( bigSeed
, N
); return; }
286 // Was not successful, so use time() and clock() instead
287 seed( hash( time(NULL
), clock() ) );
291 inline void MTRand::initialize( const uint32 seed
)
293 // Initialize generator state with seed
294 // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
295 // In previous versions, most significant bits (MSBs) of the seed affect
296 // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
297 register uint32
*s
= state
;
298 register uint32
*r
= state
;
300 *s
++ = seed
& 0xffffffffUL
;
303 *s
++ = ( 1812433253UL * ( *r
^ (*r
>> 30) ) + i
) & 0xffffffffUL
;
309 inline void MTRand::reload()
311 // Generate N new values in state
312 // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
313 register uint32
*p
= state
;
315 for( i
= int(N
) - int(M
); i
--; ++p
)
316 *p
= twist( p
[M
], p
[0], p
[1] );
317 for( i
= M
; --i
; ++p
)
318 *p
= twist( p
[int(M
)-int(N
)], p
[0], p
[1] );
319 *p
= twist( p
[int(M
)-int(N
)], p
[0], state
[0] );
321 left
= N
, pNext
= state
;
325 inline MTRand::uint32
MTRand::hash( time_t t
, clock_t c
)
327 // Get a uint32 from t and c
328 // Better than uint32(x) in case x is floating point in [0,1]
329 // Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
331 static uint32 differ
= 0; // guarantee time-based seeds will change
334 unsigned char *p
= (unsigned char *) &t
;
335 for( size_t i
= 0; i
< sizeof(t
); ++i
)
337 h1
*= UCHAR_MAX
+ 2U;
341 p
= (unsigned char *) &c
;
342 for( size_t j
= 0; j
< sizeof(c
); ++j
)
344 h2
*= UCHAR_MAX
+ 2U;
347 return ( h1
+ differ
++ ) ^ h2
;
351 inline void MTRand::save( uint32
* saveArray
) const
353 register uint32
*sa
= saveArray
;
354 register const uint32
*s
= state
;
356 for( ; i
--; *sa
++ = *s
++ ) {}
361 inline void MTRand::load( uint32
*const loadArray
)
363 register uint32
*s
= state
;
364 register uint32
*la
= loadArray
;
366 for( ; i
--; *s
++ = *la
++ ) {}
368 pNext
= &state
[N
-left
];
373 #endif // MERSENNETWISTER_H
377 // v0.1 - First release on 15 May 2000
378 // - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
379 // - Translated from C to C++
380 // - Made completely ANSI compliant
381 // - Designed convenient interface for initialization, seeding, and
382 // obtaining numbers in default or user-defined ranges
383 // - Added automatic seeding from /dev/urandom or time() and clock()
384 // - Provided functions for saving and loading generator state
386 // v0.2 - Fixed bug which reloaded generator one step too late
388 // v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
390 // v0.4 - Removed trailing newline in saved generator format to be consistent
391 // with output format of built-in types
393 // v0.5 - Improved portability by replacing static const int's with enum's and
394 // clarifying return values in seed(); suggested by Eric Heimburg
395 // - Removed MAXINT constant; use 0xffffffffUL instead
397 // v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
398 // - Changed integer [0,n] generator to give better uniformity
400 // v0.7 - Fixed operator precedence ambiguity in reload()
401 // - Added access for real numbers in (0,1) and (0,n)
403 // v0.8 - Included time.h header to properly support time_t and clock_t
405 // v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
406 // - Allowed for seeding with arrays of any length
407 // - Added access for real numbers in [0,1) with 53-bit resolution
408 // - Added access for real numbers from normal (Gaussian) distributions
409 // - Increased overall speed by optimizing twist()
410 // - Doubled speed of integer [0,n] generation
411 // - Fixed out-of-range number generation on 64-bit machines
412 // - Improved portability by substituting literal constants for long enum's
413 // - Changed license from GNU LGPL to BSD