5 The length is a non-mutable field, so that we get for free that
6 modification of an array does not modify its length.
15 type array [@extraction:array] 'a = private {
16 mutable ghost elts : int -> 'a;
18 } invariant { 0 <= length }
20 function ([]) (a: array 'a) (i: int) : 'a = a.elts i
22 val ([]) (a: array 'a) (i: int) : 'a
23 requires { [@expl:index in array bounds] 0 <= i < length a }
24 ensures { result = a[i] }
26 val ghost function ([<-]) (a: array 'a) (i: int) (v: 'a): array 'a
27 ensures { result.length = a.length }
28 ensures { result.elts = Map.set a.elts i v }
30 val ([]<-) (a: array 'a) (i: int) (v: 'a) : unit writes {a}
31 requires { [@expl:index in array bounds] 0 <= i < length a }
32 ensures { a.elts = Map.set (old a).elts i v }
33 ensures { a = (old a)[i <- v] }
35 (** unsafe get/set operations with no precondition *)
39 let defensive_get (a: array 'a) (i: int)
40 ensures { 0 <= i < length a /\ result = a[i] }
41 raises { OutOfBounds -> i < 0 \/ i >= length a }
42 = if i < 0 || i >= length a then raise OutOfBounds;
45 let defensive_set (a: array 'a) (i: int) (v: 'a)
46 ensures { 0 <= i < length a }
47 ensures { a = (old a)[i <- v] }
48 raises { OutOfBounds -> (i < 0 \/ i >= length a) /\ a = old a }
49 = if i < 0 || i >= length a then raise OutOfBounds;
52 function make (n: int) (v: 'a) : array 'a
54 axiom make_spec : forall n:int, v:'a.
56 (forall i:int. 0 <= i < n -> (make n v)[i] = v) /\
59 val make [@extraction:array_make] (n: int) (v: 'a) : array 'a
60 requires { [@expl:array creation size] n >= 0 }
61 ensures { forall i:int. 0 <= i < n -> result[i] = v }
62 ensures { result.length = n }
64 val empty () : array 'a
65 ensures { result.length = 0 }
67 let copy (a: array 'a) : array 'a
68 ensures { length result = length a }
69 ensures { forall i:int. 0 <= i < length result -> result[i] = a[i] }
72 if len = 0 then empty ()
74 let b = make len a[0] in
75 for i = 1 to len - 1 do
76 invariant { forall k. 0 <= k < i -> b[k] = a[k] }
82 let sub (a: array 'a) (ofs: int) (len: int) : array 'a
83 requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
84 ensures { length result = len }
85 ensures { forall i:int. 0 <= i < len -> result[i] = a[ofs + i] }
87 if length a = 0 then begin
91 let b = make len a[0] in
93 invariant { forall k. 0 <= k < i -> b[k] = a[ofs+k] }
99 let fill (a: array 'a) (ofs: int) (len: int) (v: 'a)
100 requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
101 ensures { forall i:int.
102 (0 <= i < ofs \/ ofs + len <= i < length a) -> a[i] = old a[i] }
103 ensures { forall i:int. ofs <= i < ofs + len -> a[i] = v }
105 for k = 0 to len - 1 do
106 invariant { forall i:int.
107 (0 <= i < ofs \/ ofs + len <= i < length a) -> a[i] = old a[i] }
108 invariant { forall i:int. ofs <= i < ofs + k -> a[i] = v }
112 let blit (a1: array 'a) (ofs1: int)
113 (a2: array 'a) (ofs2: int) (len: int) : unit writes {a2}
114 requires { 0 <= ofs1 /\ 0 <= len /\ ofs1 + len <= length a1 }
115 requires { 0 <= ofs2 /\ ofs2 + len <= length a2 }
116 ensures { forall i:int.
117 (0 <= i < ofs2 \/ ofs2 + len <= i < length a2) -> a2[i] = old a2[i] }
118 ensures { forall i:int.
119 ofs2 <= i < ofs2 + len -> a2[i] = a1[ofs1 + i - ofs2] }
121 for i = 0 to len - 1 do
122 invariant { forall k. not (0 <= k < i) -> a2[ofs2 + k] = old a2[ofs2 + k] }
123 invariant { forall k. 0 <= k < i -> a2[ofs2 + k] = a1[ofs1 + k] }
124 a2[ofs2 + i] <- a1[ofs1 + i];
127 let append (a1: array 'a) (a2: array 'a) : array 'a
128 ensures { length result = length a1 + length a2 }
129 ensures { forall i. 0 <= i < length a1 -> result[i] = a1[i] }
130 ensures { forall i. 0 <= i < length a2 -> result[length a1 + i] = a2[i] }
132 if length a1 = 0 then copy a2
134 let a = make (length a1 + length a2) a1[0] in
135 blit a1 0 a 0 (length a1);
136 blit a2 0 a (length a1) (length a2);
140 let self_blit (a: array 'a) (ofs1: int) (ofs2: int) (len: int) : unit
142 requires { 0 <= ofs1 /\ 0 <= len /\ ofs1 + len <= length a }
143 requires { 0 <= ofs2 /\ ofs2 + len <= length a }
144 ensures { forall i:int.
145 (0 <= i < ofs2 \/ ofs2 + len <= i < length a) -> a[i] = old a[i] }
146 ensures { forall i:int.
147 ofs2 <= i < ofs2 + len -> a[i] = old a[ofs1 + i - ofs2] }
149 if ofs1 <= ofs2 then (* from right to left *)
150 for k = len - 1 downto 0 do
151 invariant { forall i:int.
152 (0 <= i <= ofs2 + k \/ ofs2 + len <= i < length a) ->
154 invariant { forall i:int.
155 ofs2 + k < i < ofs2 + len -> a[i] = (old a)[ofs1 + i - ofs2] }
156 a[ofs2 + k] <- a[ofs1 + k]
158 else (* from left to right *)
159 for k = 0 to len - 1 do
160 invariant { forall i:int.
161 (0 <= i < ofs2 \/ ofs2 + k <= i < length a) ->
163 invariant { forall i:int.
164 ofs2 <= i < ofs2 + k -> a[i] = (old a)[ofs1 + i - ofs2] }
165 a[ofs2 + k] <- a[ofs1 + k]
169 - concat : 'a array list -> 'a array
181 let init (n: int) (f: int -> 'a) : array 'a
182 requires { [@expl:array creation size] n >= 0 }
183 ensures { forall i:int. 0 <= i < n -> result[i] = f i }
184 ensures { result.length = n }
186 if n = 0 then empty ()
188 let a = make n (f 0) in
189 for i = 1 to n - 1 do
190 invariant { forall k. 0 <= k < i -> a[k] = f k }
199 (** {2 Sorted Arrays} *)
201 module IntArraySorted
205 clone map.MapSorted as M with type elt = int, predicate le = (<=)
207 predicate sorted_sub (a : array int) (l u : int) =
208 M.sorted_sub a.elts l u
209 (** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
210 is sorted w.r.t order relation `le` *)
212 predicate sorted (a : array int) =
213 M.sorted_sub a.elts 0 a.length
214 (** `sorted a` is true whenever the array `a` is sorted w.r.t `le` *)
227 predicate sorted_sub (a: array elt) (l u: int) =
228 forall i1 i2 : int. l <= i1 < i2 < u -> le a[i1] a[i2]
229 (** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
230 is sorted w.r.t order relation `le` *)
232 predicate sorted (a: array elt) =
233 forall i1 i2 : int. 0 <= i1 < i2 < length a -> le a[i1] a[i2]
234 (** `sorted a` is true whenever the array `a` is sorted w.r.t `le` *)
238 (** {2 Arrays Equality} *)
246 predicate array_eq_sub (a1 a2: array 'a) (l u: int) =
247 a1.length = a2.length /\ 0 <= l <= a1.length /\ 0 <= u <= a1.length /\
248 map_eq_sub a1.elts a2.elts l u
250 predicate array_eq (a1 a2: array 'a) =
251 a1.length = a2.length /\ map_eq_sub a1.elts a2.elts 0 (length a1)
259 use map.MapExchange as M
261 predicate exchange (a1 a2: array 'a) (i j: int) =
262 a1.length = a2.length /\
263 M.exchange a1.elts a2.elts 0 a1.length i j
264 (** `exchange a1 a2 i j` means that arrays `a1` and `a2` only differ
265 by the swapping of elements at indices `i` and `j` *)
269 (** {2 Permutation} *)
275 use map.MapPermut as M
278 use export ArrayExchange
280 predicate permut (a1 a2: array 'a) (l u: int) =
281 a1.length = a2.length /\ 0 <= l <= a1.length /\ 0 <= u <= a1.length /\
282 M.permut a1.elts a2.elts l u
283 (** `permut a1 a2 l u` is true when the segment
284 `a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`.
285 Values outside of the interval `(l..u-1)` are ignored. *)
287 predicate permut_sub (a1 a2: array 'a) (l u: int) =
288 map_eq_sub a1.elts a2.elts 0 l /\
290 map_eq_sub a1.elts a2.elts u (length a1)
291 (** `permut_sub a1 a2 l u` is true when the segment
292 `a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`
293 and values outside of the interval `(l..u-1)` are equal. *)
295 predicate permut_all (a1 a2: array 'a) =
296 a1.length = a2.length /\ M.permut a1.elts a2.elts 0 a1.length
297 (** `permut_all a1 a2 l u` is true when array `a1` is a permutation
300 lemma exchange_permut_sub:
301 forall a1 a2: array 'a, i j l u: int.
302 exchange a1 a2 i j -> l <= i < u -> l <= j < u ->
303 0 <= l -> u <= length a1 -> permut_sub a1 a2 l u
305 lemma permut_sub_trans:
306 forall a1 a2 a3: array 'a, l u: int.
307 0 <= l -> u <= length a1 -> permut_sub a1 a2 l u ->
308 permut_sub a2 a3 l u -> permut_sub a1 a3 l u
310 (** we can always enlarge the interval *)
311 lemma permut_sub_weakening:
312 forall a1 a2: array 'a, l1 u1 l2 u2: int.
313 permut_sub a1 a2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length a1 ->
314 permut_sub a1 a2 l2 u2
316 lemma exchange_permut_all:
317 forall a1 a2: array 'a, i j: int.
318 exchange a1 a2 i j -> permut_all a1 a2
326 use export ArrayExchange
328 let swap (a:array 'a) (i:int) (j:int) : unit
329 requires { 0 <= i < length a /\ 0 <= j < length a }
331 ensures { exchange (old a) a i j }
338 (** {2 Sum of elements} *)
345 (** `sum a l h` is the sum of `a[i]` for `l <= i < h` *)
346 function sum (a: array int) (l h: int) : int = S.sum a.elts l h
350 (** {2 Number of array elements satisfying a given predicate} *)
356 (** the number of `a[i]` such that `l <= i < u` and `pr i a[i]` *)
357 function numof (pr: int -> 'a -> bool) (a: array 'a) (l u: int) : int =
358 N.numof (fun i -> pr i a[i]) l u
366 (** the number of `a[i]` such that `l <= i < u` and `a[i] = v` *)
367 function numof (a: array 'a) (v: 'a) (l u: int) : int =
368 N.numof (fun i -> a[i] = v) l u
377 let rec function to_list (a: array 'a) (l u: int) : list 'a
378 requires { l >= 0 /\ u <= a.length }
380 = if u <= l then Nil else Cons a[l] (to_list a (l+1) u)
384 let rec lemma to_list_append (a: array 'a) (l m u: int)
385 requires { 0 <= l <= m <= u <= a.length }
387 ensures { to_list a l m ++ to_list a m u = to_list a l u }
388 = if l < m then to_list_append a (l+1) m u
397 let rec function to_seq_sub (a: array 'a) (l u: int) : S.seq 'a
398 requires { l >= 0 /\ u <= a.length }
400 = if u <= l then S.empty else S.cons a[l] (to_seq_sub a (l+1) u)
402 let rec lemma to_seq_length (a: array 'a) (l u: int)
403 requires { 0 <= l <= u <= length a }
405 ensures { S.length (to_seq_sub a l u) = u - l }
406 = if l < u then to_seq_length a (l+1) u
408 let rec lemma to_seq_nth (a: array 'a) (l i u: int)
409 requires { 0 <= l <= i < u <= length a }
411 ensures { S.get (to_seq_sub a l u) (i - l) = a[i] }
412 = if l < i then to_seq_nth a (l+1) i u
414 let function to_seq (a: array 'a) : S.seq 'a = to_seq_sub a 0 (length a)
415 meta coercion function to_seq
419 (** {2 Number of inversions in an array of integers}
421 We show that swapping two elements that are ill-sorted decreases
422 the number of inversions. Useful to prove the termination of
423 sorting algorithms that use swaps. *)
433 (* to prove termination, we count the total number of inversions *)
434 predicate inversion (a: array int) (i j: int) =
437 function inversions_for (a: array int) (i: int) : int =
438 numof (inversion a i) i (length a)
440 function inversions (a: array int) : int =
441 sum (inversions_for a) 0 (length a)
443 (* the key lemma to prove termination: whenever we swap two consecutive
444 values that are ill-sorted, the total number of inversions decreases *)
445 let lemma exchange_inversion (a1 a2: array int) (i0: int)
446 requires { 0 <= i0 < length a1 - 1 }
447 requires { a1[i0] > a1[i0 + 1] }
448 requires { exchange a1 a2 i0 (i0 + 1) }
449 ensures { inversions a2 < inversions a1 }
450 = assert { inversion a1 i0 (i0+1) };
451 assert { not (inversion a2 i0 (i0+1)) };
452 assert { forall i. 0 <= i < i0 ->
453 inversions_for a2 i = inversions_for a1 i
454 by numof (inversion a2 i) i (length a2)
455 = numof (inversion a2 i) i i0
456 + numof (inversion a2 i) i0 (i0+1)
457 + numof (inversion a2 i) (i0+1) (i0+2)
458 + numof (inversion a2 i) (i0+2) (length a2)
459 /\ numof (inversion a1 i) i (length a1)
460 = numof (inversion a1 i) i i0
461 + numof (inversion a1 i) i0 (i0+1)
462 + numof (inversion a1 i) (i0+1) (i0+2)
463 + numof (inversion a1 i) (i0+2) (length a1)
464 /\ numof (inversion a2 i) i0 (i0+1)
465 = numof (inversion a1 i) (i0+1) (i0+2)
466 /\ numof (inversion a2 i) (i0+1) (i0+2)
467 = numof (inversion a1 i) i0 (i0+1)
468 /\ numof (inversion a2 i) i i0 = numof (inversion a1 i) i i0
469 /\ numof (inversion a2 i) (i0+2) (length a2)
470 = numof (inversion a1 i) (i0+2) (length a1)
472 assert { forall i. i0 + 1 < i < length a1 ->
473 inversions_for a2 i = inversions_for a1 i };
474 assert { inversions_for a2 i0 = inversions_for a1 (i0+1)
475 by numof (inversion a1 (i0+1)) (i0+2) (length a1)
476 = numof (inversion a2 i0 ) (i0+2) (length a1) };
477 assert { 1 + inversions_for a2 (i0+1) = inversions_for a1 i0
478 by numof (inversion a1 i0) i0 (length a1)
479 = numof (inversion a1 i0) (i0+1) (length a1)
480 = 1 + numof (inversion a1 i0) (i0+2) (length a1)
481 = 1 + numof (inversion a2 (i0+1)) (i0+2) (length a2) };
482 let sum_decomp (a: array int) (i j k: int)
483 requires { 0 <= i <= j <= k <= length a = length a1 }
484 ensures { sum (inversions_for a) i k =
485 sum (inversions_for a) i j + sum (inversions_for a) j k }
487 let decomp (a: array int)
488 requires { length a = length a1 }
489 ensures { inversions a = sum (inversions_for a) 0 i0
490 + inversions_for a i0
491 + inversions_for a (i0+1)
492 + sum (inversions_for a) (i0+2) (length a) }
493 = sum_decomp a 0 i0 (length a);
494 sum_decomp a i0 (i0+1) (length a);
495 sum_decomp a (i0+1) (i0+2) (length a);
497 decomp a1; decomp a2;