2 use int.ComputerDivision
5 let product (a b: int) {b >= 0} (return (c: int) {c = a * b}) =
7 [ loop {p * q + r = a * b /\ q >= 0}
8 = if {q > 0} next (-> return {r})
10 if {mod q 2 = 1} (-> [&r <- r + p] step) step
11 [ step -> [&p <- p + p | &q <- div q 2] loop ] ] ]
12 [ &p: int = a | &q: int = b | &r: int = 0 ]
14 let product_pure (a b: int) {b >= 0} (return (c: int) {c = a * b}) =
16 [ loop (p q r: int) {p * q + r = a * b /\ q >= 0}
17 = if {q > 0} (-> if {mod q 2 = 1} (-> next {r+p}) (-> next {r})
18 [ next (s: int) -> loop {p+p} {div q 2} {s} ])
22 let product_inline (a b: int) {b >= 0} (return (c: int) {c = a * b}) =
24 [ loop (p q r: int) {p * q + r = a * b /\ q >= 0}
25 = if {q > 0} (-> if {mod q 2 = 1} (-> loop {p+p} {div q 2} {r+p})
26 (-> loop {p+p} {div q 2} {r}))